WO2021166753A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2021166753A1
WO2021166753A1 PCT/JP2021/004887 JP2021004887W WO2021166753A1 WO 2021166753 A1 WO2021166753 A1 WO 2021166753A1 JP 2021004887 W JP2021004887 W JP 2021004887W WO 2021166753 A1 WO2021166753 A1 WO 2021166753A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat generating
generating component
refrigerant
temperature
Prior art date
Application number
PCT/JP2021/004887
Other languages
English (en)
French (fr)
Inventor
直輝 山田
健太 湯淺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022501830A priority Critical patent/JP7250208B2/ja
Priority to US17/786,769 priority patent/US20230025136A1/en
Publication of WO2021166753A1 publication Critical patent/WO2021166753A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21153Temperatures of a compressor or the drive means therefor of electronic components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to an air conditioner equipped with a control device equipped with heat generating parts.
  • an inverter circuit for controlling the rotation speed of the compressor is provided.
  • a heat generating component such as a power element that generates high heat is used in an inverter circuit.
  • Patent Document 1 describes an air conditioner provided with a cooling member for cooling such a heat generating component.
  • the cooling member includes a refrigerant jacket made of a metal having high thermal conductivity and a refrigerant pipe embedded in the refrigerant jacket.
  • a sub-refrigerant circuit branched from the main refrigerant circuit is connected to the refrigerant pipe of the cooling member.
  • the refrigerant discharged from the compressor mainly flows through the main refrigerant circuit, but after passing through the condenser, a part of the refrigerant flows through the sub-refrigerant circuit via the second expansion portion.
  • the refrigerant jacket is in close contact with one side of the heat generating component.
  • the heat-generating component is cooled by the flow of the refrigerant from the sub-refrigerant circuit through the refrigerant pipe of the cooling member.
  • the control unit sets the cooling target temperature of the heat generating component in advance.
  • the control unit opens the second expansion valve to promote the cooling of the heat generating component, and increases the flow rate of the refrigerant flowing through the refrigerant pipe of the cooling member.
  • the control unit closes the second expansion valve to reduce the flow rate of the refrigerant flowing through the refrigerant pipe of the cooling member.
  • a discharge gas branch refrigerant circuit is further provided to prevent dew condensation.
  • the discharge gas branch refrigerant circuit is provided in parallel with the main refrigerant circuit in a portion from between the compressor and the four-way valve to between the second expansion valve and the cooling member.
  • a solenoid valve is provided in the discharge gas branch refrigerant circuit.
  • This disclosure has been made in order to solve such a problem, and has a simple configuration that does not require the addition of a solenoid valve or the like, and can cool heat-generating parts while preventing the occurrence of dew condensation.
  • the purpose is to get the device.
  • the air conditioner according to the present disclosure includes a refrigerant circuit in which a compressor, a condenser, an expansion valve and an evaporator are connected via a refrigerant pipe for circulating a refrigerant, and the refrigerant discharged from the discharge port of the compressor.
  • a bypass pipe for circulating a part of the compressor and a control device for controlling the operation of the compressor are provided, and both ends of the bypass pipe are at any two positions between the condenser and the suction port of the compressor.
  • the control device is connected to the refrigerant pipe, the control device controls the operation of the compressor, the plurality of heat generating parts arranged on the board, the plurality of heat generating parts, and the bypass pipe.
  • the second heat-generating component is arranged in a region of the cooling plate that overlaps with the bypass pipe when the cooling plate is viewed in a plan view, including a second heat-generating component that generates less heat than the second heat-generating component.
  • the first heat-generating component and the second heat-generating component each have a long side and a short side when viewed in a plan view, and the first heat-generating component has a longitudinal direction in which the long side extends.
  • the second heat generating component is arranged so as to be parallel to the flow direction of the refrigerant in the bypass pipe, and the short side extending the short side is parallel to the flow direction of the refrigerant in the bypass pipe. It is what has been done.
  • the air conditioner according to the present disclosure by devising the arrangement of the heat generating parts, it is possible to cool the heat generating parts while preventing the occurrence of dew condensation with a simple configuration that does not require the addition of a solenoid valve or the like. ..
  • FIG. It is a block diagram which showed the structure of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a top view which shows the internal structure of the control device 5 of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a circuit diagram which shows the structure of the power conversion device provided inside the control device 5 of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a top view which shows the internal structure of the control device 5 of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a side view which shows the internal structure of the control device 5 of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the control flow of the control part 10 of the air conditioner which concerns on Embodiment 1.
  • FIG. 1 It is a figure which shows an example of the temperature change graph for demonstrating the flowchart of FIG.
  • FIG. It is a circuit diagram which shows the structure of the power conversion device provided inside the control device 5 of the air conditioner which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the control flow of the control part 10 of the air conditioner which concerns on Embodiment 2.
  • FIG. It is a figure which shows an example of the temperature change graph for demonstrating the flowchart of FIG.
  • It is a top view which shows the cooling plate 6 and the heat generating component 4a to 4d in the air conditioner which concerns on Embodiment 3.
  • FIG. It is a side view which shows the internal structure of the control device 5 of the air conditioner which concerns on Embodiment 3.
  • FIG. It is a block diagram which showed the structure of the modification of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a block diagram which showed the structure of the modification of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a block diagram which showed the structure of the modification of the air conditioner which concerns on Embodiment 1.
  • FIG. 1 is a configuration diagram showing a configuration of an air conditioner according to the first embodiment.
  • FIG. 1 shows a refrigerant circuit diagram in a state where the air conditioner is in a cooling operation.
  • the four-way valve is not shown in FIG. 1, the four-way valve is between the discharge port 32 of the compressor 7 and the heat exchanger 1 of the outdoor unit 100 and the heat exchanger 41 of the indoor unit 101. May be provided.
  • the air conditioner can switch between cooling operation and heating operation.
  • the air conditioner includes an outdoor unit 100 and an indoor unit 101.
  • the outdoor unit 100 and the indoor unit 101 are connected via a refrigerant pipe 30.
  • the indoor unit 101 is installed in the indoor space to be air-conditioned by the air conditioner.
  • the indoor unit 101 has a heat exchanger 41 and an indoor unit fan 42.
  • the indoor unit fan 42 blows indoor air to the heat exchanger 41.
  • the heat exchanger 41 has a heat transfer tube inside, and exchanges heat between the refrigerant flowing through the heat transfer tube and the indoor air.
  • the heat exchanger 41 is, for example, a fin-and-tube heat exchanger.
  • the heat exchanger 41 functions as a load side heat exchanger.
  • the indoor unit fan 42 is, for example, a propeller fan.
  • the heat exchanger 41 of the indoor unit 101 functions as an evaporator.
  • the heat exchanger 41 of the indoor unit 101 functions as a condenser.
  • the outdoor unit 100 is installed outside the indoor space.
  • the outdoor unit 100 includes a heat exchanger 1, an outdoor unit fan 2, a compressor 7, and an expansion valve 35.
  • the outdoor unit fan 2 blows outside air to the heat exchanger 1.
  • the heat exchanger 1 has a heat transfer tube inside, and exchanges heat between the refrigerant flowing through the heat transfer tube and the outside air.
  • the heat exchanger 1 is, for example, a fin-and-tube heat exchanger.
  • the heat exchanger 1 functions as a heat source side heat exchanger.
  • the outdoor unit fan 2 is, for example, a propeller fan.
  • the heat exchanger 1 of the outdoor unit 100 functions as a condenser.
  • the heat exchanger 1 of the outdoor unit 100 functions as an evaporator.
  • the compressor 7 compresses the low-pressure refrigerant sucked from the suction port 33 and discharges it from the discharge port 32 as a high-pressure refrigerant.
  • the suction port 33 is provided on the suction side of the compressor 7, and the discharge port 32 is provided on the discharge side of the compressor 7.
  • the compressor 7 is, for example, an inverter compressor whose operating frequency can be adjusted. An operating frequency range is preset in the compressor 7.
  • the compressor 7 operates with the operating frequency adjusted within the operating frequency range under the control of the control unit 10 shown in FIG. 2, which will be described later.
  • FIG. 1 when the air conditioner is in the cooling operation, the refrigerant discharged from the discharge port 32 of the compressor 7 flows into the heat exchanger 1 of the outdoor unit 100.
  • the refrigerant discharged from the discharge port 32 of the compressor 7 flows into the heat exchanger 41 of the indoor unit 101 via a four-way valve (not shown).
  • the expansion valve 35 is connected between the heat exchanger 1 of the outdoor unit 100 and the heat exchanger 41 of the indoor unit 101.
  • the expansion valve 35 is a valve that reduces the pressure of the refrigerant.
  • the expansion valve 35 is, for example, an electronic expansion valve whose opening degree can be adjusted by controlling the control unit 10 shown in FIG. 2 to be described later, which is provided in the control device 5.
  • the compressor 7, the heat exchanger 1, the expansion valve 35, and the heat exchanger 41 are connected by a refrigerant pipe 30 to form a refrigerant circuit.
  • the outdoor unit 100 includes a control device 5.
  • the control device 5 is provided with a cooling plate 6 and a plurality of heat generating components 4 attached to the cooling plate 6.
  • the plurality of heat generating parts 4 include heat generating parts 4a, 4b, 4c and 4d.
  • a cooling refrigerant pipe 14 is attached to the cooling plate 6.
  • the cooling refrigerant pipe 14 is a part of the bypass pipe 31.
  • the bypass pipe 31 is a refrigerant pipe arranged between the connection point A and the connection point B in FIG. Both the connection point A and the connection point B are provided in the refrigerant pipe 30 on the suction side of the compressor 7.
  • connection point A and the connection point B are the suction port 33 of the compressor 7 and the heat exchanger of the indoor unit 101 operating as an evaporator, as shown in FIG. It is arranged between 41 and 41.
  • One end of the bypass pipe 31 is connected to the refrigerant pipe 30 at the connection point A, and the other end of the bypass pipe 31 is connected to the refrigerant pipe 30 at the connection point B.
  • the connection point B is arranged at a position closer to the suction port 33 of the compressor 7 than the connection point A. That is, in the direction in which the refrigerant flows, the connection point A is arranged on the upstream side and the connection point B is arranged on the downstream side.
  • the refrigerant flowing out from the heat exchanger 41 of the indoor unit 101 is divided into two at the connection point A.
  • One refrigerant flows into the refrigerant pipe 30, and the other refrigerant flows into the bypass pipe 31.
  • the refrigerant that has flowed into the bypass pipe 31 passes through the cooling refrigerant pipe 14.
  • the refrigerant that has passed through the cooling refrigerant pipe 14 and the refrigerant that is sucked into the suction port 33 of the compressor 7 merge through the refrigerant pipe 30.
  • the combined refrigerant is sucked into the suction port 33 of the compressor 7.
  • the refrigerant flowing out from the heat exchanger 41 of the indoor unit 101 is divided into two at the connection point A.
  • One refrigerant flows into the refrigerant pipe 30, and the other refrigerant flows into the bypass pipe 31.
  • the refrigerant that has flowed into the bypass pipe 31 passes through the cooling refrigerant pipe 14.
  • the refrigerant that has passed through the cooling refrigerant pipe 14 and the refrigerant that is sucked into the suction port 33 of the compressor 7 merge through the refrigerant pipe 30.
  • the combined refrigerant is sucked into the suction port 33 of the compressor 7.
  • both ends of the bypass pipe 31 (that is, the connection points A and B) have a low pressure between the evaporator (that is, the heat exchanger 1 or the heat exchanger 41) and the suction port 33 of the compressor 7. On the side, it is connected to the refrigerant pipe 30.
  • the air conditioner according to the first embodiment is not limited to this case.
  • a modified example will be described below.
  • 14 to 16 are block diagrams showing the configuration of a modified example of the air conditioner according to the first embodiment.
  • both ends of the bypass pipe 31 (that is, connection points A and B) are connected from the condenser (that is, the heat exchanger 41 or the heat exchanger 1) to the compressor 7. It may be connected to the refrigerant pipe 30 at any two positions on the low pressure side between the suction port 33 and the above.
  • both ends of the bypass pipe 31 are connected to the heat exchanger 1 that operates as a condenser.
  • both ends of the bypass pipe 31 are connected in the middle of the heat transfer pipe provided in the heat exchanger 1 (condenser).
  • the connection point A is arranged on the upstream side
  • the connection point B is arranged on the downstream side in the direction in which the refrigerant flows. That is, in the modified example of FIG. 14, both ends of the bypass pipe 31 (that is, connection points A and B) are connected between the upstream side and the downstream side in the condenser.
  • both ends of the bypass pipe 31 are connected to the refrigerant pipe 30 between the heat exchanger 1 operating as a condenser and the expansion valve 35, respectively.
  • the connection point A is arranged on the upstream side and the connection point B is arranged on the downstream side in the direction in which the refrigerant flows.
  • both ends of the bypass pipe 31 are connected to the refrigerant pipe 30 between the expansion valve 35 and the heat exchanger 41 operating as an evaporator. May be.
  • both ends of the bypass pipe 31 are refrigerants between the heat exchanger 1 operating as a condenser and the suction port 33 of the compressor 7, respectively. It is connected to the pipe 30.
  • the connection point A is arranged on the upstream side and the connection point B is arranged on the downstream side in the direction in which the refrigerant flows.
  • one end of the bypass pipe 31 (that is, the connection point A) is connected to the downstream side of the heat exchanger 1 that operates as a condenser. Therefore, the refrigerant condensed by the heat exchanger 1 and turned into a single-phase liquid refrigerant flows through the bypass pipe 31. Then, the refrigerant flows through the cooling refrigerant pipe 14 toward the connection point B arranged on the suction port 33 side of the compressor 7.
  • both ends of the bypass pipe 31 are on the low pressure side between the heat exchanger 1 operating as a condenser and the suction port 33 of the compressor 7. It may be connected to the refrigerant pipe 30 at any two positions. Specifically, both ends of the bypass pipe 31 are between the evaporator and the suction port 33 of the compressor 7 (see FIG. 1), or between the upstream side and the downstream side of the heat transfer tube in the condenser (FIG. 1). 14), or between the condenser and the expansion valve 35 (see FIG. 15), or between the expansion valve 35 and the evaporator, or between the condenser and the suction port 33 of the compressor 7 (see FIG. 14). 16), and both ends thereof may be connected to the refrigerant pipe 30.
  • the cooling refrigerant pipe 14 is provided with a refrigerant flow rate adjusting device 3 for adjusting the refrigerant flow rate.
  • the refrigerant flow rate adjusting device 3 is composed of, for example, an on-off valve. Switching between ON (open state) and OFF (closed state) of the refrigerant flow rate adjusting device 3 is controlled by a control signal 8a provided in the control device 5 from a control unit 10 shown in FIG. 2 to be described later.
  • the heat generating parts 4d, 4c, 4b, and 4a are arranged in order along the direction in which the refrigerant flows in the cooling refrigerant pipe 14.
  • the heat-generating component 4d is on the most upstream side, and the heat-generating component 4a is on the most downstream side.
  • FIG. 2 is a plan view showing the internal configuration of the control device 5 of the air conditioner according to the first embodiment.
  • the control device 5 has a rectangular parallelepiped housing 5a.
  • FIG. 2 shows the configuration inside the housing 5a.
  • a rectangular cooling plate 6 is arranged in the housing 5a in a plan view.
  • the cooling plate 6 is a plate-shaped member.
  • the cooling plate 6 is made of a metal having high thermal conductivity such as copper or aluminum.
  • the cooling plate 6 functions as a heat sink.
  • a substrate 20 is arranged on the upper surface of the cooling plate 6. Heat generating components 4a, 4b, 4c and 4d are attached to the upper surface or the lower surface of the substrate 20. That is, FIG.
  • each of the heat generating parts 4a, 4b, 4c and 4d has a rectangular or substantially rectangular shape in a plan view. Therefore, each of the heat generating parts 4a, 4b, 4c, and 4d has a long side and a short side when viewed in a plan view.
  • the direction in which the long sides of the heat generating parts 4a, 4b, 4c and 4d extend is referred to as the "longitudinal direction", and the direction in which the short sides of the heat generating parts 4a, 4b, 4c and 4d extend is referred to as the "short direction”.
  • the heat generating components 4a, 4b, 4c, and 4d are arranged side by side in a row so as to be parallel to one side 20a of the substrate 20.
  • One side 20a of the substrate 20 is one of the long sides extending in the longitudinal direction of the substrate 20.
  • each of the heat generating parts 4a, 4b, 4c and 4d has a height when viewed from the side.
  • a control unit 10 is mounted on the upper surface of the substrate 20.
  • other components 19a, 19b, 19c and 19d are mounted on the upper surface of the substrate 20.
  • the calorific value of the other components 19a, 19b, 19c and 19d is smaller than the calorific value of the heat generating components 4a, 4b, 4c and 4d.
  • the heat generating parts 4a, 4b, 4c and 4d are provided with temperature detection units 21a, 21b, 21c and 21d.
  • the temperature detection units 21a, 21b, 21c and 21d are, for example, internal thermistors provided inside the heat generating parts 4a, 4b, 4c and 4d.
  • the temperature detection units 21a, 21b, 21c and 21d are, for example, temperature sensors provided inside or on the outer surface of the heat generating parts 4a, 4b, 4c and 4d.
  • the temperature detection unit 21a detects the temperature of the heat generating component 4a.
  • the temperature detection unit 21b detects the temperature of the heat generating component 4b.
  • the temperature detection unit 21c detects the temperature of the heat generating component 4c.
  • the temperature detection unit 21d detects the temperature of the heat generating component 4d.
  • the temperatures detected by the temperature detection units 21a, 21b, 21c and 21d are transmitted to the control unit 10 as temperature information 8b, respectively.
  • the control unit 10 generates a control signal 8a by using the temperature information 8b and a specific calculation formula stored in the memory in advance.
  • the refrigerant flow rate adjusting device 3 is switched ON / OFF according to the control signal 8a. When the refrigerant flow rate adjusting device 3 is in the ON state (open state), the refrigerant flows through the cooling refrigerant pipe 14, while when the refrigerant flow rate adjusting device 3 is in the OFF state (closed state), the cooling refrigerant pipe 14 is connected. Refrigerant does not flow.
  • each of the heat generating parts 4a, 4b, and 4c is arranged side by side in a row so that the longitudinal direction is parallel to one side 20a of the substrate 20, as shown in FIG. Therefore, one short side of the heat generating component 4a and one short side of the heat generating component 4b are arranged so as to face each other through a gap of a certain distance.
  • the other short side of the heat generating component 4b and one short side of the heat generating component 4c are arranged so as to face each other with a gap of a certain distance.
  • the longitudinal direction of the heat generating component 4d and the longitudinal direction of the heat generating components 4a to 4c are orthogonal to each other.
  • the other short side of the heat generating component 4c and the one long side of the heat generating component 4d are arranged so as to face each other with a gap of a certain distance.
  • the heat generating parts 4a to 4c are arranged side by side in a row and close to each other so that the short sides face each other.
  • the heat generating component 4d is arranged adjacent to the heat generating component at the beginning or the end of the heat generating components 4a to 4c arranged in a row.
  • the head heat-generating component is the heat-generating component on the most upstream side in the direction in which the refrigerant flows in the cooling refrigerant pipe 14.
  • the heat-generating component at the end is the heat-generating component on the most downstream side in the direction in which the refrigerant flows in the cooling refrigerant pipe 14. In the example of FIG.
  • the heat-generating component 4c is the most upstream heat-generating component
  • the heat-generating component 4a is the most downstream heat-generating component.
  • the heat generating component 4d is arranged adjacent to the heat generating component 4c on the most upstream side via a gap of a certain distance. Therefore, in the example of FIG. 2, among the heat-generating components 4a to 4d, the heat-generating component 4d is the most upstream heat-generating component.
  • the heat generating parts 4d arranged most upstream are arranged in a direction in which the longitudinal direction thereof is orthogonal to the longitudinal directions of the other three heat generating parts, and the heat generating parts 4a to 4d are arranged in close proximity to each other.
  • the control unit 10 has a storage device (not shown).
  • the control unit 10 is composed of a processing circuit.
  • the processing circuit is composed of dedicated hardware or a processor.
  • the dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the processor executes a program stored in memory.
  • the storage device provided in the control unit 10 is composed of a memory.
  • the memory is a non-volatile or volatile semiconductor memory such as RAM (RandomAccessMemory), ROM (ReadOnlyMemory), flash memory, EPROM (ErasableProgrammableROM), or a disk such as a magnetic disk, flexible disk, or optical disk. be.
  • FIG. 3 is a circuit diagram showing a configuration of a power conversion device provided inside the control device 5 of the air conditioner according to the first embodiment.
  • the power conversion device is composed of heat generating parts 4a, 4b, 4c and 4d.
  • the power converter also includes other components 19 as needed.
  • the other parts 19 are, for example, the other parts 19a to 19d shown in FIG.
  • the heat generating components 4a, 4b, 4c and 4d are, for example, a converter module, a rectifier, or an inverter module.
  • a case where the heat generating component 4d is composed of a rectifier and the heat generating components 4a, 4b, and 4c are composed of an inverter joule will be described as an example.
  • the other components 19a to 19d are, for example, capacitors.
  • the heat generating component 4d which is a rectifier, is connected between the positive bus 50 and the negative bus 51. Further, the heat generating component 4d is connected to the AC power supply 13.
  • the heat generating component 4d converts the alternating current from the alternating current power supply 13 into a direct current.
  • the heat generating component 4d is composed of a diode bridge circuit. Six diodes are provided in the heat generating component 4d. Specifically, in the heat generating component 4d, the diode of the upper arm and the diode of the lower arm are connected in series to form a series body. In the heat generating component 4d, three series connected in parallel are provided. Each of the three series is connected to the U-phase, V-phase, and W-phase of the AC power supply 13.
  • the heat generating parts 4a, 4b and 4c which are inverter modules, are connected in parallel to the heat generating parts 4d, respectively. That is, the heat generating component 4a is connected between the positive bus 50 and the negative bus 51. Similarly, the heat generating component 4b is connected between the positive bus 50 and the negative bus 51. Similarly, the heat generating component 4c is connected between the positive bus 50 and the negative bus 51.
  • a direct current from the heat-generating component 4d flows through the heat-generating components 4a, 4b, and 4c.
  • the heat generating components 4a, 4b, and 4c convert the direct current into alternating currents having different frequencies.
  • the heat generating parts 4a, 4b and 4c are connected to the motor of the compressor 7. Each of the three heat generating components 4a, 4b and 4c is connected to the W phase, V phase and U phase of the motor of the compressor 7.
  • the heat generating component 4a is composed of a full bridge circuit. As shown in FIG. 3, the heat generating component 4a is provided with six switching elements. A freewheeling diode (not shown) is connected in antiparallel to each switching element. Each switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the heat generating component 4b is composed of a full bridge circuit. As shown in FIG. 3, the heat generating component 4b is provided with six switching elements. A freewheeling diode (not shown) is connected in antiparallel to each switching element. Each switching element is, for example, an IGBT or a MOSFET. In the heat generating component 4b, the switching of the upper arm and the switching element of the lower arm are connected in series to form a series body. As described above, the heat generating component 4b is provided with a total of three series bodies including a pair of switching elements of the upper and lower arms. These series are connected in parallel.
  • the heat generating component 4c is composed of a full bridge circuit. As shown in FIG. 3, the heat generating component 4c is provided with six switching elements. A freewheeling diode (not shown) is connected in antiparallel to each switching element. Each switching element is, for example, an IGBT or a MOSFET. In the heat generating component 4c, the switching of the upper arm and the switching element of the lower arm are connected in series to form a series body. As described above, the heat generating component 4c is provided with a total of three series bodies including a pair of switching elements of the upper and lower arms. These series are connected in parallel.
  • the heat generating parts 4a to 4c constitute one inverter.
  • a well-known inverter that converts a direct current into a three-phase alternating current is composed of a pair of upper and lower arm switching elements per phase.
  • the inverter of the first embodiment is composed of three pairs of upper and lower arm switching elements per phase.
  • the control unit 10 regards the three pairs of upper and lower arm switching elements as a set of upper and lower arm switching elements having a large current capacity, and generates a PWM signal.
  • Each of the switching elements of the heat generating components 4a to 4c performs an on / off operation according to the PWM signal.
  • a capacitor 19 is provided between the heat generating component 4d and the heat generating component 4c.
  • the capacitor 19 is connected in parallel to the heat generating component 4d and the heat generating component 4c.
  • the number of capacitors 19 may be one, but may be plural.
  • the components 19a to 19d are, for example, capacitors.
  • the parts 19a to 19d constitute the capacitor 19 of FIG.
  • the capacitor 19 of FIG. 3 may be composed of one component, but may be composed of a plurality of components 19a to 19d shown in FIG.
  • a reactor may be connected in series to the positive bus 50 between the heat generating component 4d and the heat generating component 4c, if necessary. It is desirable that the reactor is arranged closer to the AC power supply 13 than the capacitor 19.
  • the direct current output from the heat generating component 4d is input to the heat generating components 4a to 4c via the reactor.
  • the capacitor 19 is included in the power conversion device, but the present invention is not limited to this.
  • the capacitor 19 may be configured to be externally attached to the power conversion device.
  • the reactor when the reactor is provided, it has been described that the reactor is included in the power conversion device, but the present invention is not limited to this.
  • the reactor may be configured to be externally attached to the power conversion device.
  • FIG. 4 is a plan view showing the internal configuration of the control device 5 of the air conditioner according to the first embodiment.
  • FIG. 5 is a side view showing the internal configuration of the control device 5 of the air conditioner according to the first embodiment.
  • the housing 5a of the control device 5 is not shown.
  • the heat generating parts 4a to 4d since the heat generating parts 4a to 4d are arranged on the lower surface of the substrate 20, the heat generating parts 4a to 4d should be indicated by broken lines in FIG. However, if the heat generating parts 4a to 4d are shown by broken lines, it becomes difficult to understand. Therefore, in FIG. 4, the heat generating parts 4a to 4d are shown by solid lines.
  • the cooling plate 6 is arranged to face the substrate 20 so as to be parallel to the substrate 20, and is in close contact with one surface of the heat generating components 4a to 4d.
  • the cooling plate 6 is in contact with the heat generating parts 4a to 4d and the cooling refrigerant pipe 14, and is thermally connected to the heat generating parts 4a to 4d and the cooling refrigerant pipe 14.
  • the cooling refrigerant pipe 14 is arranged so as to penetrate the inside of the cooling plate 6.
  • the cooling refrigerant pipe 14 may be provided on the outer surface of the cooling plate 6.
  • the cooling plate 6 may be provided with a groove for accommodating the cooling refrigerant pipe 14, and the cooling refrigerant pipe 14 may be accommodated in the groove.
  • the cooling plate 6 since the cooling plate 6 cools the heat generating parts 4a to 4d using the refrigerant 11, at least a part of the cooling plate 6 is arranged between the heat generating parts 4a to 4d and the cooling refrigerant pipe 14. It is desirable to have.
  • the cooling refrigerant pipe 14 is attached to the cooling plate 6 in a state of being in direct contact with the cooling plate 6 by brazing or the like.
  • the cooling refrigerant pipe 14 is made of a metal having high thermal conductivity such as copper or aluminum. Further, the cooling refrigerant pipe 14 may be attached to the cooling plate 6 in a state of being indirectly in contact with the cooling plate 6 via a sealing material or the like.
  • FIGS. 4 and 5 a configuration in which one cooling refrigerant pipe 14 is attached to the plate-shaped cooling plate 6 is shown, but these are merely examples. That is, the number and shape of the cooling plates 6 and the number and shape of the cooling refrigerant pipes 14 may be changed as appropriate.
  • FIG. 13 which will be described later, an example is shown in which two cooling refrigerant pipes 14 are provided on one cooling plate 6.
  • the refrigerant 11 flows inside the cooling refrigerant pipe 14.
  • the heat generating components 4a to 4d are arranged in a region of the cooling plate 6 that overlaps with the cooling refrigerant pipe 14 when the cooling plate 6 is viewed in a plan view.
  • the heat generating parts 4d, 4c, 4b, and 4a are arranged side by side in a row along the direction in which the refrigerant 11 of the cooling refrigerant pipe 14 flows.
  • the longitudinal direction of the heat generating parts 4a to 4c is parallel to the direction in which the refrigerant 11 flows.
  • the center position of the heat generating parts 4a to 4c in the lateral direction and the center position of the cooling refrigerant pipe 14 in the radial direction coincide with each other.
  • the radial direction of the cooling refrigerant pipe 14 is the width direction when the cooling refrigerant pipe 14 is viewed in a plan view, and is the direction perpendicular to the direction in which the refrigerant 11 flows.
  • the heat generating component 4d is arranged so that the lateral direction of the heat generating component 4d is parallel to the direction in which the refrigerant 11 flows.
  • the refrigerant 11 flows in parallel with the heat generating parts 4d, 4c, 4b and 4a arranged in a row. Therefore, the heat-generating components 4a to 4d are cooled in the order of the heat-generating component 4d, the heat-generating component 4c, the heat-generating component 4b, and the heat-generating component 4a.
  • the refrigerant 11 receives the heat of the heat-generating components 4a to 4d, so that the temperature of the refrigerant 11 rises as the distance from the inflow side of the refrigerant 11 increases.
  • the cooling capacity of the refrigerant 11 is highest when cooling the heat generating component 4d and lowest when cooling the heat generating component 4a. Therefore, if the heat-generating temperatures of the heat-generating components 4a to 4c are equal, the temperature of the heat-generating components 4a to 4c will be changed to (temperature of the heat-generating component 4a)> (temperature of the heat-generating component 4b)> (temperature of the heat-generating component 4c) due to cooling. Become a relationship.
  • the heat generating parts 4a to 4c are arranged so that the longitudinal direction of the heat generating parts 4a to 4c is parallel to the direction in which the refrigerant 11 flows. Therefore, the distance between the heat generating parts 4a to 4c and the cooling refrigerant pipe 14 becomes long. On the contrary, if the heat generating parts 4a to 4c are arranged so that the lateral direction is parallel to the direction in which the refrigerant 11 flows, the distance between the heat generating parts 4a to 4c and the cooling refrigerant pipe 14 overlaps. It gets shorter.
  • the heat generating parts 4a to 4c are arranged so that the longitudinal direction of the heat generating parts 4a to 4c is parallel to the direction in which the refrigerant 11 flows. As a result, the distance between the heat generating parts 4a to 4c and the cooling refrigerant pipe 14 is increased, and the cooling of the heat generating parts 4a to 4c is promoted.
  • the heat-generating component 4d generates less heat than the heat-generating components 4a to 4c. Therefore, the heat-generating component 4d is the component whose temperature is most unlikely to rise among the heat-generating components 4a to 4d. Therefore, the heat generating component 4d does not have to be cooled so much originally. Further, depending on the temperature conditions, the heat generating component 4d may be cooled more than necessary, and dew condensation may occur on the surface of the heat generating component 4d. Therefore, as shown in FIG. 4, the heat generating parts 4d are arranged as shown in (i) and (ii) below.
  • the heat generating component 4d is arranged so that the lateral direction of the heat generating component 4d is parallel to the direction in which the refrigerant 11 flows.
  • the center position of the heat generating component 4d in the longitudinal direction is offset in the direction of arrow C with respect to the center position in the radial direction of the cooling refrigerant pipe 14.
  • the distance between the heat generating component 4d and the cooling refrigerant pipe 14 is shortened, and the cooling of the heat generating component 4d is suppressed.
  • the heat generating component 4d can be prevented from being overcooled by the above (i) and (ii). As a result, it is possible to prevent dew condensation from occurring on the surface of the heat generating component 4d.
  • the heat-generating parts 4a to 4c are used as the first heat-generating parts, and the heat-generating parts 4d are used as the second heat-generating parts that generate less heat than the first heat-generating parts.
  • the first heat generating component is arranged so that the longitudinal direction is parallel to the direction in which the refrigerant 11 flows.
  • the second heat generating component is arranged so that the lateral direction is parallel to the direction in which the refrigerant 11 flows. Further, it is more desirable to offset the central position of the second heat generating component in the longitudinal direction with respect to the cooling refrigerant pipe 14.
  • the heat generating component 4d arranged at the most upstream is orthogonal to the longitudinal direction of the other three heat generating parts. It is arranged in the direction, and the heat generating parts 4a to 4d are arranged close to each other. Further, the heat generating parts 4a to 4d are arranged side by side in a row in the central portion of the substrate 20. As shown in FIG. 4, the central portion of the substrate 20 is a central portion in the width direction when the substrate 20 is viewed in a plan view, and is a central portion in a direction perpendicular to the direction in which the refrigerant 11 flows.
  • FIG. 17 is a plan view showing a case where the “miniaturized peripheral component 70” is mounted on the substrate 20 of FIG.
  • the “miniaturized peripheral component 70” is, for example, a chip capacitor such as a ceramic capacitor.
  • the control board that is, the board 20
  • the peripheral parts mounted on the control board have also been miniaturized.
  • a load may be applied to a part of the substrate 20 when the substrate 20 is mounted in the housing 5a of the control device 5 or when a connector (not shown) provided on the substrate 20 is inserted or removed in the manufacturing process or the like. be.
  • the substrate 20 bends and distortion occurs in various parts of the substrate 20.
  • the "miniaturized peripheral component 70" is mounted on the substrate 20, when the amount of strain at the mounting location exceeds the limit value, the "miniaturized peripheral component 70" is stressed more than the strain bearing capacity. There is a problem that "miniaturized peripheral parts" are cracked and break down. Therefore, in the substrate 20, it is necessary to suppress the amount of distortion at the mounting location of the "miniaturized peripheral component 70" to be lower than the limit value.
  • the substrate 20 is distorted by arranging the heat generating components 4a to 4d at the center of the substrate 20 along the longitudinal direction of the substrate 20. It has a structure that is difficult to do. This prevents stress exceeding the strain bearing capacity of the "miniaturized peripheral component 70" from being generated in the substrate 20 in the manufacturing process of the substrate 20, and protects the "miniaturized peripheral component 70". I have to.
  • a plurality of small electric components including the "miniaturized peripheral component 70" exist in the region 71 including the periphery of the heat generating component 4a to 4d arrangement region shown in FIG.
  • the region 72 and the region 73 are regions included in the region 71.
  • the region 72 is a region adjacent to the arrangement region of the heat generating parts 4a to 4d.
  • the region 73 is a region between the heat generating parts 4a to 4d.
  • the heat generating parts 4a to 4d are larger in size than the substrate 20 as compared with the “miniaturized peripheral parts 70”. Therefore, the mounting area of each of the heat generating components 4a to 4d on the substrate 20 is larger than the mounting area of the "miniaturized peripheral component 70" on the substrate 20. Further, the heat generating parts 4a to 4d are parts having higher rigidity and less bending than the "miniaturized peripheral parts 70". Therefore, by mounting the heat-generating components 4a to 4d in the central portion of the substrate 20, the rigidity of the entire substrate 20 can be increased, and in particular, the bending of the peripheral region 71 of the heat-generating components 4a to 4d can be prevented.
  • the main bodies of the heat generating components 4a to 4d are not in contact with the substrate 20, but the connection terminals 140 (see FIGS. 5 and 13) of the heat generating components 4a to 4d are arranged on the substrate 20. ing. That is, the connection terminals 140 and the wiring patterns of the heat generating components 4a to 4d are arranged in the region 72 of FIG.
  • the main bodies of the heat generating parts 4a to 4d are closely fixed to the cooling plate 6. Therefore, due to the cooling plate 6, the rigidity of the heat generating parts 4a to 4d is higher.
  • the heat-generating components 4a to 4d have high rigidity and the heat-generating components 4a to 4d are not distorted, the heat-generating components 4a to 4d support the substrate 20 with sufficient strength via the connection terminals 140. Therefore, when the "miniaturized peripheral component 70" is connected to the wiring patterns of the heat generating components 4a to 4d and arranged in the region 72, the substrate 20 does not bend in the region 72 portion. It is possible to obtain a damage prevention effect of preventing damage due to bending of the substrate 20. Further, in addition to the region 72, also in the region 73 between the heat generating parts 4a to 4d, since the heat generating parts 4a to 4d are mounted close to each other, the substrate 20 does not bend, so that the same applies. A damage prevention effect can be obtained.
  • the heat generating component 4d arranged at the most upstream is arranged so that the longitudinal direction thereof is orthogonal to the longitudinal direction of the other three heat generating components 4a to 4c. Further, the heat generating parts 4a to 4d are arranged close to each other. Further, the heat generating parts 4a to 4d are arranged side by side in the central portion of the substrate 20. Therefore, it is possible to prevent the substrate 20 from bending in a wide range such as a region 71 including not only the arrangement region of the heat generating parts 4a to 4d but also the periphery thereof.
  • the "miniaturized peripheral component 70" is arranged at a position away from the heat generating components 4a to 4d, for example, in the region 72 or the region 73. It is possible to prevent the generation of stress exceeding the strain bearing capacity of.
  • the cooling plate 6 increases the rigidity of the heat generating parts 4a to 4d, and further, the bending of the substrate 20 is increased. Effective for prevention.
  • the refrigerant sucked from the suction port of the compressor 7 is compressed by the compressor 7, then discharged from the compressor 7 and flows to the heat exchanger 1 of the outdoor unit 100.
  • the refrigerant is cooled in the heat exchanger 1 by blowing air from the outdoor unit fan 2.
  • the cooling refrigerant pipe 14 is passed through the bypass pipe 31. Flow toward.
  • the refrigerant flowing through the cooling refrigerant pipe 14 cools the heat generating parts 4a to 4d attached to the cooling plate 6 and then operates as a condenser from the heat exchanger 1 to the suction port 33 of the compressor 7.
  • the refrigerant joins the refrigerant flowing through the refrigerant pipe 30 toward the suction port 33 of the compressor 7.
  • the combined refrigerant is sucked into the compressor 7 from the suction port 33 of the compressor 7. Further, as described above, the presence or absence of the flow of the refrigerant 11 in the cooling refrigerant pipe 14 can be switched by the control unit 10 controlling the refrigerant flow rate adjusting device 3.
  • the heat generating component 4d is a rectifier and the heat generating components 4a to 4c are an inverter module
  • the AC current from the AC power supply 13 is input to the heat generating component 4d which is a rectifier.
  • the heat generating component 4d converts an alternating current into a direct current power source.
  • the DC power output output from the heat generating component 4d flows to the heat generating components 4a to 4c, which are the inverter modules.
  • the heat generating parts 4a to 4c of the inverter module are connected in parallel with the heat generating parts 4d of the rectifier.
  • circuit currents 12a to 12f flow through the positive bus 50 and the negative bus 51 as shown by the arrows in FIG.
  • the circuit current 12a is a circuit current flowing through the positive bus 50 between the heat generating component 4d and the heat generating component 4c.
  • the circuit current 12b is a circuit current flowing through the positive bus 50 between the heat generating component 4c and the heat generating component 4b.
  • the circuit current 12c is a circuit current flowing through the positive bus 50 between the heat generating component 4b and the heat generating component 4a.
  • the circuit current 12d is a circuit current flowing through the negative bus 51 between the heat generating component 4a and the heat generating component 4b.
  • the circuit current 12e is a circuit current flowing through the negative bus 51 between the heat generating component 4b and the heat generating component 4c.
  • the circuit current 12f is a circuit current flowing through the negative bus 51 between the heat generating component 4c and the heat generating component 4d.
  • the circuit currents 12a to 12f shown in FIG. 3 are as shown below.
  • the circuit current 12c and the circuit current 12d flow only in the heat generating component 4a.
  • the circuit current 12b and the circuit current 12e flow through the heat generating component 4a and the heat generating component 4b.
  • the circuit current 12a and the circuit current 12f flow through the heat generating components 4a, 4b and 4c. Therefore, the magnitude of the current values of the circuit currents 12a to 12f is related to the relationship of (current values of the circuit currents 12a and 12f)> (current values of the circuit currents 12b and 12e)> (current values of the circuit currents 12c and 12d). Become.
  • the temperatures of the heat-generating components 4a to 4c have a relationship of (temperature of the heat-generating component 4c)> (temperature of the heat-generating component 4b)> (temperature of the heat-generating component 4a).
  • the temperatures of the heat-generating components 4a to 4d are caused by the refrigerant 11 and the circuit currents 12a to 12f (temperature of the heat-generating component 4d)> (temperature of the heat-generating component 4c)> (temperature of the heat-generating component 4b)> ( The temperature of the heat generating component 4a).
  • FIG. 6 is a flowchart showing a control flow of the control unit 10 of the air conditioner according to the first embodiment.
  • FIG. 6 shows an operation when the control unit 10 controls the refrigerant flow rate adjusting device 3.
  • FIG. 7 is a diagram showing an example of a temperature change graph for explaining the flowchart of FIG.
  • reference numeral 16a is the first threshold temperature
  • reference numeral 16b is the second threshold temperature.
  • the first threshold temperature 16a is determined based on, for example, the heat-resistant temperature of the heat-generating components 4a to 4d.
  • the first threshold temperature 16a may be determined based on the temperature difference between the heat generating parts 4a to 4d.
  • the second threshold temperature 16b is determined based on, for example, the dew condensation temperature of the cooling plate 6.
  • the second threshold temperature 16b may be determined based on the heat-resistant temperature of the heat-generating components 4a to 4d, the ambient temperature of the outdoor unit 100, or the average value of the refrigerant temperature of the refrigerant 11. Further, in FIG.
  • reference numeral 15a is the temperature of the heat generating component 4a
  • reference numeral 15b is the temperature of the heat generating component 4b
  • reference numeral 15c is the temperature of the heat generating component 4c
  • reference numeral 15d is the temperature of the heat generating component 4d.
  • control unit 10 determines ON / OFF switching of the refrigerant flow rate adjusting device 3.
  • step S1 the control unit 10 acquires the temperature information 8b from the temperature detection units 21a to 21d.
  • the control unit 10 acquires the temperatures 15a to 15d of the heat generating parts 4a to 4d based on the temperature information 8b.
  • step S2 the control unit 10 compares the temperatures 15a to 15d of the heat generating parts 4a to 4d, obtains the maximum value among them, and sets the maximum temperature of the heat generating parts 4a to 4d. Further, the control unit 10 compares the temperatures 15a to 15d of the heat generating parts 4a to 4d, finds the minimum value among them, and sets the temperature as the minimum temperature of the heat generating parts 4a to 4d.
  • the maximum temperature is the temperature 15d of the heat generating component 4d
  • the minimum temperature is the temperature 15a of the heat generating component 4a.
  • the maximum temperature is the temperature 15d of the heat generating component 4d
  • the minimum temperature is the temperature 15a of the heat generating component 4a.
  • step S3 the control unit 10 obtains the absolute value of the difference between the maximum temperature and the first threshold temperature 16a, and sets it as the first calculation result R1. Further, the control unit 10 obtains the absolute value of the difference between the minimum temperature and the second threshold temperature 16b, and sets it as the second calculation result R2.
  • step S4 the control unit 10 compares the first calculation result R1 with the second calculation result R2. When the first calculation result R1 is equal to or higher than the second calculation result R2, the control unit 10 proceeds to the process of step S6. On the other hand, when the first calculation result R1 is less than the second calculation result R2, the control unit 10 proceeds to the process of step S5.
  • step S5 since the temperatures 15a to 15d of the heat generating parts 4a to 4d are generally high, the control unit 10 turns on the refrigerant flow rate adjusting device 3 (open state) and turns on the refrigerant in the cooling refrigerant pipe 14. Allow 11 distributions. As a result, the refrigerant 11 flows through the cooling refrigerant pipe 14. As a result, the heat generating parts 4a to 4d are cooled by the refrigerant 11.
  • step S6 since the temperatures 15a to 15d of the heat generating parts 4a to 4d are generally low, the control unit 10 turns off the refrigerant flow rate adjusting device 3 (closed state) and turns off the refrigerant in the cooling refrigerant pipe 14. Stop the distribution of 11. As a result, the refrigerant 11 does not flow through the cooling refrigerant pipe 14. As a result, the heat generating parts 4a to 4d are not cooled by the refrigerant 11.
  • the control unit 10 controls ON / OFF switching of the refrigerant flow rate adjusting device 3 according to the control flow of FIG.
  • the temperatures 15a to 15d of the heat generating components 4a to 4d are always in the range between the first threshold temperature 16a and the second threshold temperature 16b, as shown in FIG.
  • the range between the first threshold temperature 16a and the second threshold temperature 16b is referred to as a threshold temperature band. Therefore, the first threshold temperature 16a becomes the upper limit value of the threshold temperature band, and the second threshold temperature 16b becomes the lower limit value of the threshold temperature band.
  • the control unit 10 switches ON / OFF of the refrigerant flow rate adjusting device 3 so that the temperatures 15a to 15d detected by the temperature detecting units 21a to 21d are always within the threshold temperature range.
  • the first calculation result R1 and the second calculation result R2 are compared, but the present invention is not limited thereto.
  • the first calculation result R1 may be compared with a preset threshold value. In that case, when the first calculation result R1 is smaller than the threshold value, the control unit 10 turns on the refrigerant flow rate adjusting device 3, and when the first calculation result R1 is equal to or more than the threshold value, the refrigerant flow rate adjusting device 3 is turned on. Turn it off.
  • the first calculation result R1 is smaller than the threshold value at time t1. In that case, the control unit 10 turns on the refrigerant flow rate adjusting device 3. Further, it is assumed that the first calculation result R1 is equal to or higher than the threshold value at time t2. In that case, the control unit 10 turns off the refrigerant flow rate adjusting device 3.
  • the cooling plate 6 uses a part of the refrigerant 11 flowing from the heat exchanger 1 operating as a condenser toward the suction port 33 of the compressor 7, and is a heat generating component of the control unit 10. Cool 4a-4d. As a result, the heat generating parts 4a to 4d can be cooled, and the heat generating parts 4a to 4d can be prevented from being destroyed by heat. As shown in FIGS. 1 and 14 to 16, both ends of the bypass pipe 31 through which the refrigerant 11 used for cooling flows are arbitrary on the low pressure side between the condenser and the suction port 33 of the compressor 7. It may be connected to each of the two positions.
  • the temperature detecting units 21a to 21d are provided on the heat generating parts 4a to 4d.
  • the control unit 10 switches ON and OFF of the refrigerant flow rate adjusting device 3 based on the temperatures 15a to 15d of the heat generating parts 4a to 4d detected by the temperature detecting units 21a to 21d. As a result, the heat generating parts 4a to 4d can be appropriately cooled as needed.
  • the heat generating parts 4a to 4c having a large calorific value are designated as the first heat generating parts
  • the heat generating parts 4d having a small calorific value are designated as the second heat generating parts.
  • the first heat generating component is arranged so that the longitudinal direction is parallel to the direction in which the refrigerant 11 flows
  • the second heat generating component is arranged so that the lateral direction is parallel to the direction in which the refrigerant 11 flows.
  • the orientation of the first heat generating component and the second heat generating component is different.
  • the first heat generating component is cooled by the refrigerant 11 for a long time, so that the whole is sufficiently cooled.
  • the cooling capacity of the refrigerant 11 is lowest when the refrigerant 11 is flowing in a gaseous state. In that case, the heat generating component 4a located at the most downstream may not be sufficiently cooled. In order to avoid this, in the first embodiment, the first heat generating component is arranged so that the longitudinal direction is parallel to the flow direction of the refrigerant 11. As a result, the heat generating parts 4a to 4c can also be sufficiently cooled. On the other hand, the cooling capacity of the refrigerant 11 is highest when the refrigerant 11 is flowing in a liquid state. In that case, dew condensation may occur on the most upstream heat generating component 4d.
  • the second heat generating component is arranged so that the lateral direction is parallel to the flowing direction of the refrigerant 11.
  • the center position in the longitudinal direction of the second heat generating component is offset from the center position in the radial direction of the cooling refrigerant pipe 14. This is more desirable because it can prevent the second heat generating component from cooling as a whole.
  • the heat generating component 4c is on the upstream side and the heat generating component 4a is on the downstream side in the direction in which the refrigerant 11 flows.
  • the heat-generating component 4c is on the upstream side and the heat-generating component 4a is on the downstream side in the direction in which the refrigerant 11 flows. Is desirable. As a result, the temperature difference between the heat generating parts 4a to 4c is reduced.
  • the heat-generating component having the highest heat generation amount among the heat-generating parts 4a to 4c is arranged on the most upstream side and the heat-generating component having the least heat generation amount is arranged on the most downstream side.
  • the heat generating parts 4a to 4c can be cooled more efficiently.
  • the heat generating parts 4a to 4d are arranged in the central portion of the substrate 20 along the longitudinal direction of the substrate 20.
  • the rigidity of the substrate 20 is increased, and in particular, the substrate 20 does not bend in the region 71 around the arrangement region of the heat generating parts 4a to 4d.
  • control unit 10 may control the opening degree of the refrigerant flow rate adjusting device 3 based on the temperature information 8b to adjust the flow path flowing through the cooling refrigerant pipe 14. ..
  • the control unit 10 stores in advance a table in which the opening degree of the refrigerant flow rate adjusting device 3 is preset for each maximum temperature or minimum temperature of the temperatures 15a to 15b of the heat generating parts 4a to 4d. ..
  • control unit 10 obtains the maximum temperature or the minimum temperature of the temperatures 15a to 15b of the heat generating parts 4a to 4d based on the temperature information 8b.
  • the control unit 10 obtains the opening degree of the refrigerant flow rate adjusting device 3 from the table based on the obtained maximum temperature or the minimum temperature, and controls the opening degree of the refrigerant flow rate adjusting device 3.
  • the arrangement of the heat generating parts 4a to 4d on the substrate 20 is matched with the arrangement of the electric circuit shown in FIG. That is, as shown in FIG. 3, since the heat generating parts 4d, 4c, 4b, and 4a are electrically connected in this order, the heat generating parts 4d, 4c, 4b, and 4a are similarly connected on the substrate 20. Are arranged in this order. That is, the heat generating components 4a to 4d are arranged on the substrate 20 in accordance with the electrical connection order.
  • the heat generating parts 4a to 4d By arranging the heat generating parts 4a to 4d on the substrate 20 in accordance with the arrangement of the electric circuit in this way, the wiring and the like can be shortened, and the heat generating parts 4a to 4d and the other parts 19a to 19d can be efficiently arranged. Can be done.
  • the refrigerant 11 is flowed along the direction in which the current flows in the electric circuit shown in FIG. Therefore, the direction in which the refrigerant 11 flows is parallel to the direction in which the current flows.
  • the current flowing through the U-phase heat-generating component 4c is the largest. Therefore, by arranging the U-phase heat generating parts 4c at the most upstream in the direction in which the refrigerant 11 flows, the heat generating parts 4a to 4c can be efficiently cooled.
  • FIG. 8 is a circuit diagram showing a configuration of a power conversion device provided inside the control device 5 of the air conditioner according to the second embodiment.
  • the power conversion device is composed of heat generating parts 4a, 4b, 4c and 4d.
  • the heat generating components 4a, 4b, 4c and 4d are, for example, a converter module, a rectifier, or an inverter module.
  • a case where the heat generating component 4d is composed of a rectifier and the heat generating components 4a, 4b, and 4c are composed of an inverter joule will be described as an example.
  • the heat generating component 4d which is a rectifier, is connected between the positive bus 50 and the negative bus 51. Further, the heat generating component 4d is connected to the AC power supply 13.
  • the heat generating component 4d converts the alternating current from the alternating current power supply 13 into a direct current.
  • the heat generating component 4d is composed of a diode bridge. As shown in FIG. 3, the heat generating component 4d is provided with six diodes. Specifically, in the heat generating component 4d, the diode of the upper arm and the diode of the lower arm are connected in series to form a series body. In the heat generating component 4d, three series bodies connected in parallel are provided. Each of the three series is provided for the U phase, V phase, and W phase of the AC power supply 13.
  • the heat generating parts 4a, 4b and 4c which are inverter modules, are connected in parallel to the heat generating parts 4d, respectively.
  • the positive generatrix 50 is branched into three positive generatrix at the connection point P.
  • the three positive generatrix will be referred to as a first positive generatrix 50a, a second positive generatrix 50b, and a third positive generatrix 50c, respectively.
  • the negative bus 51 is branched into three negative bus at the connection point Q.
  • the three negative generatrix will be referred to as a first negative generatrix 51a, a second negative generatrix 51b, and a third negative generatrix 51c, respectively.
  • the heat generating component 4a is connected between the first positive generatrix 50a and the first negative generatrix 51a.
  • the heat generating component 4b is connected between the second positive bus 50b and the second negative bus 51b.
  • the heat generating component 4c is connected between the third positive bus 50c and the third negative bus 51c.
  • a direct current from the heat-generating component 4d flows through the heat-generating components 4a, 4b, and 4c.
  • the heat generating components 4a, 4b, and 4c convert the direct current into alternating currents having different frequencies.
  • the heat generating parts 4a, 4b and 4c are connected to the compressor 7.
  • Each of the three heat generating components 4a, 4b and 4c is provided for the W phase, the V phase and the U phase of the compressor 7.
  • the heat generating component 4a is provided with six switching elements.
  • a freewheeling diode (not shown) is connected in antiparallel to each switching element.
  • Each switching element is, for example, an IGBT or a MOSFET.
  • the switching of the upper arm and the switching element of the lower arm are connected in series to form a series body.
  • the heat generating component 4a is provided with a total of three series bodies including a pair of switching elements of the upper and lower arms. The three series are connected in parallel.
  • the heat generating component 4b is provided with six switching elements.
  • a freewheeling diode (not shown) is connected in antiparallel to each switching element.
  • Each switching element is, for example, an IGBT or a MOSFET.
  • the switching of the upper arm and the switching element of the lower arm are connected in series to form a series body.
  • the heat generating component 4b is provided with a total of three series bodies including a pair of switching elements of the upper and lower arms. The three series are connected in parallel.
  • the heat generating component 4c is provided with six switching elements.
  • a freewheeling diode (not shown) is connected in antiparallel to each switching element.
  • Each switching element is, for example, an IGBT or a MOSFET.
  • the switching of the upper arm and the switching element of the lower arm are connected in series to form a series body.
  • the heat generating component 4c is provided with a total of three series bodies including a pair of switching elements of the upper and lower arms. The three series are connected in parallel.
  • the heat generating parts 4a to 4c constitute one inverter.
  • a well-known inverter that reacts direct current to three-phase alternating current is composed of a pair of upper and lower arm switching elements per phase.
  • the inverter of the second embodiment is composed of three pairs of upper and lower arm switching elements per phase.
  • the control unit 10 regards the three pairs of upper and lower arm switching elements as a set of upper and lower arm switching elements having a large current capacity, and generates a PWM signal.
  • Each of the switching elements of the heat generating components 4a to 4c performs an on / off operation according to the PWM signal.
  • a capacitor 19 is provided between the heat generating component 4d and the heat generating component 4a.
  • the capacitor 19 is connected in parallel to the heat generating component 4d. That is, the capacitor 19 is connected between the positive bus 50 and the negative bus 51.
  • the number of capacitors 19 may be one, but may be plural. That is, as shown in FIG. 2 of the first embodiment, the components 19a to 19d may be composed of capacitors, and the capacitor 19 may be composed of the components 19a to 19d.
  • a reactor may be provided between the heat generating component 4d and the heat generating component 4a, if necessary.
  • the direct current output from the heat generating component 4d is input to the heat generating component 4a via the reactor.
  • the capacitor 19 and the reactor are described as being included in the power conversion device, but the present invention is not limited to this.
  • the capacitor 19 and the reactor may be externally attached to the power conversion device.
  • the currents flowing through the heat generating components 4a to 4d will be described with reference to FIG.
  • the AC current output from the AC power supply 13 is input to the heat generating component 4d, which is a rectifier.
  • the heat generating component 4d converts the alternating current into a direct current.
  • the DC power supply flows to the heat generating components 4a to 4c, which are inverter modules.
  • the heat generating parts 4a to 4c are connected to the heat generating parts 4d, which are rectifiers, at points P and Q, respectively. Therefore, the circuit currents 12a to 12f are as shown below.
  • the circuit current 12a is the current flowing through the third positive bus 50c
  • the circuit current 12f is the current flowing through the third negative bus 51c
  • the circuit current 12b is a current flowing through the second positive bus 50b
  • the circuit current 12e is a current flowing through the second negative bus 51b
  • the circuit current 12c is a current flowing through the first positive bus 50a
  • the circuit current 12d is a current flowing through the first negative bus 51a.
  • the circuit currents 12c and 12d flow only in the heat generating component 4a.
  • the circuit currents 12b and 12e flow only in the heat generating component 4b.
  • FIG. 9 is a flowchart showing a control flow of the control unit 10 of the air conditioner according to the second embodiment.
  • FIG. 9 shows an operation when the control unit 10 controls the refrigerant flow rate adjusting device 3.
  • FIG. 10 is a diagram showing an example of a temperature change graph for explaining the flowchart of FIG. 9.
  • reference numeral 15a is the temperature of the heat generating component 4a
  • reference numeral 15b is the temperature of the heat generating component 4b
  • reference numeral 15c is the temperature of the heat generating component 4c
  • reference numeral 15d is the temperature of the heat generating component 4d
  • reference numeral 18a is a first target temperature
  • reference numeral 18b is a second target temperature.
  • the first target temperature 18a is a preset target value with respect to the temperatures 15a to 15c of the heat generating parts 4a to 4c.
  • the second target temperature 18b is a preset target value with respect to the temperature 15d of the heat generating component 4d.
  • the first target temperature 18a is determined based on, for example, the heat resistant temperature of the heat generating parts 4a to 4c. Alternatively, the first target temperature 18a may be determined based on the temperature difference between the heat generating parts 4a to 4c. Further, the second target temperature 18b is determined based on, for example, the heat resistant temperature of the heat generating component 4d. Alternatively, the first target temperature 18a and the second target temperature 18b may be determined based on the ambient temperature of the outdoor unit 100 or the average value of the refrigerant temperatures of the refrigerant 11. The flow of FIG. 9 is repeatedly executed in the control cycle T.
  • the cooling performance of the cooling plate 6 and the refrigerant 11 is the same for the heat generating parts 4a to 4c, and the current values flowing through the current paths of the heat generating parts 4a to 4c are the same. Therefore, it can be seen that the temperatures 15a to 15c of the heat generating parts 4a to 4c are the same, and only the temperature 15d of the heat generating parts 4d is different. In the example of FIG. 10, the temperature 15d is generally lower than the temperatures 15a to 15c, but the case is not limited to this case. That is, the temperature 15d may be generally higher than the temperatures 15a-15c.
  • control unit 10 determines ON / OFF switching of the refrigerant flow rate adjusting device 3.
  • step S7 the control unit 10 acquires the temperature information 8b from the temperature detection units 21a, 21b, 21c and 21d.
  • the control unit 10 acquires the temperatures 15a to 15d of the heat generating parts 4a to 4d based on the temperature information 8b.
  • the control unit 10 may acquire only the temperature information 8b from the temperature detection units 21a and 21d.
  • step S8 the control unit 10 compares the temperatures 15a to 15c with the first target temperature 18a. At this time, since the temperatures 15a to 15c are equal, the control unit 10 may compare only the temperature 15a with the first target temperature 18a. Further, the control unit 10 compares the temperature 15d with the second target temperature 18b.
  • step S9 if at least one of the following two conditions (A) and (B) is satisfied, the process of the control unit 10 proceeds to step S10. On the other hand, if both of the following two conditions (A) and (B) are not satisfied, the process of the control unit 10 proceeds to step S11.
  • Condition (A) The temperatures 15a to 15c exceed the first target temperature 18a.
  • step S10 since the temperature of any of the heat generating parts 4a to 4d is high, the control unit 10 turns on the refrigerant flow rate adjusting device 3 (open state) and distributes the refrigerant 11 in the cooling refrigerant pipe 14. Allow. As a result, the refrigerant 11 flows through the cooling refrigerant pipe 14. As a result, the heat generating parts 4a to 4d are cooled by the refrigerant 11.
  • step S11 since the temperatures of all the heat generating parts 4a to 4d are low, the control unit 10 turns off (closed state) the refrigerant flow rate adjusting device 3 to distribute the refrigerant 11 in the cooling refrigerant pipe 14. Stop it. As a result, the refrigerant 11 does not flow through the cooling refrigerant pipe 14. As a result, the heat generating parts 4a to 4d are not cooled by the refrigerant 11.
  • the temperatures 15a to 15c and the first target temperature 18a at the time t2 in FIG. 10 are less than the first target temperature 18a. Therefore, the condition (A) is not satisfied. Further, when the temperature 15d and the second target temperature 18b are compared at the time t2, the temperature 15d exceeds the second target temperature 18b. Therefore, the condition (B) is satisfied. Therefore, the control unit 10 keeps the refrigerant flow rate adjusting device 3 ON.
  • the temperatures 15a to 15c and the first target temperature 18a at the time t3 in FIG. 10 are less than the first target temperature 18a. Therefore, the condition (A) is not satisfied. Further, when the temperature 15d and the second target temperature 18b are compared at the time t3, the temperature 15d is less than the second target temperature 18b. Therefore, the condition (B) is not satisfied. Therefore, the control unit 10 turns off the refrigerant flow rate adjusting device 3.
  • the control unit 10 controls ON / OFF switching of the refrigerant flow rate adjusting device 3 according to the control flow of FIG.
  • the temperatures 15a to 15d of the heat generating components 4a to 4d are always in the threshold temperature band as shown in FIG.
  • the control unit 10 switches ON / OFF of the refrigerant flow rate adjusting device 3 so that the temperatures 15a to 15d detected by the temperature detecting units 21a to 21d are always within the threshold temperature range.
  • the first threshold temperature 16a and the second threshold temperature 16b in FIG. 10 are, for example, the same as the first threshold temperature 16a and the second threshold temperature 16b shown in FIG.
  • the heat generating parts 4a to 4c are connected to the AC power supply 13 so that the values of the currents flowing through the heat generating parts 4a to 4c are all equal.
  • the magnitudes of heat loss generated in the heat generating parts 4a to 4c become equal.
  • the temperatures of the heat-generating components 4a to 4c are all equal, and the temperatures of the heat-generating components 4d are different.
  • the control unit 10 can control the refrigerant flow rate adjusting device 3 using only two temperatures, the temperature of the heat generating component 4a and the temperature of the heat generating component 4d. Therefore, the amount of calculation of the control unit 10 can be reduced.
  • the heat generating component 4d is a rectifier
  • the heat generating component 4d may be a converter module that converts an alternating current into a direct current.
  • Embodiment 3 modifications of the first embodiment and the second embodiment will be described. Hereinafter, only the configurations different from those of the first embodiment and the second embodiment will be described. Since other configurations are the same as those of the first embodiment and the second embodiment, the description thereof will be omitted here.
  • FIG. 11 is a plan view showing the cooling plate 6 and the heat generating parts 4a to 4d in the air conditioner according to the third embodiment.
  • the cooling plate 6 has an L-shape in a plan view in accordance with the installation positions of the heat generating parts 4a to 4d. That is, the cooling plate 6 is composed of a main body portion 6a extending in a strip shape and a convex portion 6b extending in the vertical direction from the main body portion 6a.
  • the arrangement positions of the heat generating parts 4a to 4d are shown by broken lines.
  • the main body portion 6a mainly corresponds to the heat generating parts 4a to 4c, and the convex portion 6b corresponds to the heat generating parts 4d.
  • the length of the main body portion 6a in the longitudinal direction is referred to as "the length of the main body portion 6a”
  • the length of the main body portion 6a in the lateral direction is referred to as "the width of the main body portion 6a”.
  • the cooling refrigerant pipe 14 is arranged along the longitudinal direction of the main body portion 6a.
  • the width x of the main body portion 6a of the cooling plate 6 is the heat generating component. It is shorter than the length y of the short side of 4a to 4c. That is, the relationship is x ⁇ y.
  • the heat generating parts 4a to 4c have a plurality of connection terminals 140 on the long side.
  • the connection terminal 140 is connected to the substrate 20 as shown in FIG. At this time, when x ⁇ y, if the length of the connection terminal 140 is short or the height of the heat generating parts 4a to 4c is low, the distance between the connection terminal 140 and the cooling plate 6 becomes short. In that case, a sufficient insulation distance cannot be secured between the connection terminal 140 and the cooling plate 6.
  • the width x of the cooling plate 6 is shortened so that the relationship of x ⁇ y is established.
  • the heat generating component 4d is arranged so that the lateral direction of the heat generating component 4d is parallel to the direction in which the refrigerant 11 flows. That is, the heat generating component 4d is arranged so that the longitudinal direction of the heat generating component 4d is orthogonal to the direction in which the refrigerant 11 flows. Therefore, as shown in FIG. 13, the connection terminal 140 of the heat generating component 4d is provided only on one side 4d-1 of the two long sides. Sides 4d-1 are arranged on the upstream side in the flow direction of the refrigerant 11. That is, the side 4d-1 corresponds to the side 6b-1 of the convex portion 6b of the cooling plate 6 of FIG. As shown in FIG.
  • the side 6b-1 of the convex portion 6b is arranged so as to be inside the side where the connection terminal 140 of the heat generating component 4d is provided.
  • the connection terminal 140 of the heat generating component 4d is provided only on one side on the upstream side of the heat generating component 4d.
  • the side 4d-1 faces the side 4d-2.
  • the side 4d-2 corresponds to the side 6b-2 of the convex portion 6b of the cooling plate 6 of FIG.
  • connection terminal 140 is also provided on the side 4d-2 of the heat generating component 4, the side 6b-2 is between the connection terminal 140 and the cooling plate 6 unless processing such as scraping is performed. In addition, a sufficient insulation distance cannot be secured. However, in the third embodiment, the connection terminal 140 is not provided on the upstream side 4d-2 of the heat generating component 4d. As a result, with respect to the side 6b-2 of the convex portion 6b, since it is not necessary to consider the insulation distance of the connection terminal 140, it is not necessary to particularly perform a process such as cutting the side 6b-2.
  • FIG. 12 is a side view showing the internal configuration of the control device 5 of the air conditioner according to the third embodiment. In FIG. 12, the housing 5a of the control device 5 is not shown.
  • a metal plate 60 as a heat conductive member is provided between the heat generating parts 4a to 4c and the cooling plate 6.
  • the metal plate 60 is made of a metal having high thermal conductivity, such as copper.
  • the metal plate 60 may be made of a material other than metal as long as it is made of a material having high thermal conductivity.
  • no metal plate 60 is provided between the heat generating component 4d and the cooling plate 6.
  • the metal plate 60 between the first heat generating component and the cooling plate 6 for which cooling is to be promoted in this way, the speed at which the heat from the first heat generating component is conducted to the cooling plate 6 becomes faster. As a result, the first heat generating component is cooled more efficiently.
  • the metal plate 60 is not provided between the second heat generating component whose cooling is desired to be suppressed and the cooling plate 6. As a result, it is possible to prevent the second heat generating component from being overcooled, and it is possible to suppress the occurrence of dew condensation.
  • the distance between the heat generating parts 4a to 4c and the cooling plate 6 will vary. In that case, the variation can be corrected by changing the thickness of the metal plate 60 for each of the heat generating parts 4a to 4c. In this way, the metal plate 60 functions as an adjusting member for adjusting the distance between the heat generating parts 4a to 4c and the cooling plate 6 so that the heat generating parts 4a to 4c and the cooling plate 6 are in uniform contact with each other. Also has.
  • FIG. 13 is a plan view showing the internal configuration of the control device 5 of the air conditioner according to the third embodiment.
  • FIG. 13 shows a state in which the substrate 20 is removed. Therefore, in FIG. 13, the substrate 20, the control unit 10, and the other components 19a to 19d are not shown.
  • FIG. 13 shows a case where the cooling refrigerant pipe 14 has the folded-back portion 14a.
  • the cooling refrigerant pipe 14 has a first portion 14b, a second portion 14c, and a folded portion 14a. Since the first portion 14b corresponds to the cooling refrigerant pipe 14 described in the first and second embodiments, the description thereof is omitted here. In the example shown in FIG. 13, the first portion 14b and the second portion 14c are housed in the groove 6c formed in the cooling plate 6.
  • the second portion 14c is arranged so as to be parallel to the first portion 14b.
  • the second portion 14c is attached to the cooling plate 6 in the same manner as the first portion 14b.
  • the second portion 14c may be arranged so as to penetrate the inside of the cooling plate 6, or may be provided on the outer surface of the cooling plate 6.
  • the second portion 14c is attached to the cooling plate 6 in a state of being in direct contact with the cooling plate 6 by brazing or the like.
  • the second portion 14c is made of a metal having a high thermal conductivity such as copper or aluminum.
  • the second portion 14c may be attached to the cooling plate 6 in a state of being indirectly in contact with the cooling plate 6 via a sealing material or the like.
  • the folded portion 14a of the cooling refrigerant pipe 14 has a U-shape in a plan view.
  • Refrigerant 11 flows inside the folded portion 14a.
  • the folded portion 14a is made of a metal having a high thermal conductivity such as copper or aluminum.
  • the first portion 14b and the second portion 14c of the cooling refrigerant pipe 14 are connected to each other via the folded-back portion 14a to form one cooling refrigerant pipe 14. Therefore, as shown by the arrow in FIG. 13, the refrigerant 11 flows in the order of the second portion 14c, the folded portion 14a, and the first portion 14b. Therefore, also in the example of FIG. 13, among the heat generating parts 4a to 4d, the heat generating parts 4d are arranged most upstream in the direction in which the refrigerant 11 flows.
  • the center position of the heat generating component 4d in the longitudinal direction is offset in the arrow C direction with respect to the radial center position of the cooling refrigerant pipe 14.
  • the folding direction of the folded portion 14a is opposite to the direction of the arrow C, as shown by the arrow D. That is, when the heat generating component 4d is offset upward on the paper surface, the folded-back portion 14a is folded downward on the paper surface.
  • the second portion 14c will pass in the vicinity of the heat-generating component 4d.
  • the second portion 14c and the heat generating component 4d overlap. In that case, the cooling effect of the heat-generating component 4d will be enhanced, and there is a possibility that the heat-generating component 4d will be cooled too much.
  • the folded-back portion 14a is folded back in the direction opposite to the offset direction of the heat generating component 4d.
  • the heat generating parts 4a to 4d can be appropriately cooled while suppressing the occurrence of dew condensation on the heat generating parts 4d.

Abstract

空気調和装置は、冷媒を流通させる冷媒配管を介して圧縮機と凝縮器と膨張弁と蒸発器とが接続された冷媒回路と、圧縮機の吐出口から吐出された冷媒の一部分を流通させるバイパス配管と、圧縮機の動作を制御する制御装置とを備え、バイパス配管の両端は、凝縮器から圧縮機の吸入口までの間のいずれか2か所で、冷媒配管にそれぞれ接続され、制御装置は、基板と、圧縮機の動作を制御する制御部と、基板に配置された複数の発熱部品と、複数の発熱部品とバイパス配管との間に設けられ、バイパス配管を流れる冷媒を用いて複数の発熱部品を冷却させる冷却プレートとを有し、複数の発熱部品は、第1発熱部品と、第1発熱部品よりも発熱量の少ない第2発熱部品とを含み、第1発熱部品および第2発熱部品は、冷却プレートを平面視したとき、冷却プレートにおいてバイパス配管とオーバーラップする領域に配置され、第1発熱部品および第2発熱部品は、平面視したときに、それぞれ、長辺と短辺とを有し、第1発熱部品は、長辺が延びる長手方向が、バイパス配管の冷媒の流れる方向に平行になるように配置され、第2発熱部品は、短辺が延びる短手方向が、バイパス配管の冷媒の流れる方向に平行になるように配置されている。

Description

空気調和装置
 本開示は、発熱部品が搭載された制御装置を備えた空気調和装置に関するものである。
 従来、インバータ圧縮機を有する空気調和装置では、圧縮機の回転速度を制御するインバータ回路が設けられている。一般にインバータ回路には、高熱を生じるパワー素子などの発熱部品が用いられている。
 例えば特許文献1には、そのような発熱部品を冷却するための冷却部材を備えた空気調和装置が記載されている。特許文献1に記載の空気調和装置では、冷却部材が、熱伝導率の高い金属からなる冷媒ジャケットと、冷媒ジャケットに埋設された冷媒管とを備えている。冷却部材の冷媒管には、主冷媒回路から分岐した副冷媒回路が接続されている。圧縮機から吐出された冷媒は主に主冷媒回路を流れるが、凝縮器を通過した後、当該冷媒の一部は、第2膨張部を介して、副冷媒回路を流れる。冷媒ジャケットは、発熱部品の一面に密着している。冷却部材の冷媒管に、副冷媒回路からの冷媒が流れることによって、発熱部品が冷却される。
 特許文献1に記載の従来の空気調和装置では、制御部が、発熱部品の冷却目標温度を予め設定している。冷媒ジャケットの温度が冷却目標温度よりも高い場合は、制御部は、発熱部品の冷却を促進するために、第2膨張弁を開き、冷却部材の冷媒管を流れる冷媒の流量を増やす。一方、冷媒ジャケットの温度が冷却目標温度よりも低い場合は、制御部は、第2膨張弁を閉じて、冷却部材の冷媒管に流れる冷媒の流量を減らす。
国際公開第2019/069470号
 上記特許文献1に記載の従来の空気調和装置では、結露防止のために、さらに、吐出ガス分岐冷媒回路を設けている。吐出ガス分岐冷媒回路は、圧縮機と四方弁との間から、第2膨張弁と冷却部材との間までの部分に、主冷媒回路と並列に設けられている。吐出ガス分岐冷媒回路には、電磁弁が設けられている。冷却部材の温度が、結露温度を下回った場合に、発熱部品およびその周辺部に結露が生じる。そのため、上記特許文献1では、冷却部材の温度が結露温度を下回った場合に、制御部が電磁弁を開く。電磁弁が開くと、圧縮機から吐出された高圧高温のガス冷媒の一部が、吐出ガス分岐冷媒回路を介して、副冷媒回路に流れる。これにより、結露温度を下回った冷却部材の温度を上昇させることができ、発熱部品およびその周辺部での結露発生を防止することが可能になる。このように、特許文献1では、副冷媒回路に流れる冷媒の温度を制御するために、吐出ガス分岐冷媒回路と電磁弁とを追加しており、空気調和装置の構成が複雑になり、コストもかかるという課題があった。
 本開示は、かかる課題を解決するためになされたものであり、電磁弁等の追加を不要とする簡易な構成で、結露発生を防止しながら、発熱部品を冷却することが可能な、空気調和装置を得ることを目的としている。
 本開示に係る空気調和装置は、冷媒を流通させる冷媒配管を介して圧縮機と凝縮器と膨張弁と蒸発器とが接続された冷媒回路と、前記圧縮機の吐出口から吐出された前記冷媒の一部分を流通させるバイパス配管と、前記圧縮機の動作を制御する制御装置とを備え、前記バイパス配管の両端は、前記凝縮器から前記圧縮機の吸入口までの間のいずれか2か所で、前記冷媒配管にそれぞれ接続され、前記制御装置は、基板と、前記圧縮機の動作を制御する制御部と、前記基板に配置された複数の発熱部品と、前記複数の発熱部品と前記バイパス配管との間に設けられ、前記バイパス配管を流れる前記冷媒を用いて前記複数の発熱部品を冷却させる冷却プレートとを有し、前記複数の発熱部品は、第1発熱部品と、前記第1発熱部品よりも発熱量の少ない第2発熱部品とを含み、前記第1発熱部品および前記第2発熱部品は、前記冷却プレートを平面視したとき、前記冷却プレートにおいて前記バイパス配管とオーバーラップする領域に配置され、前記第1発熱部品および前記第2発熱部品は、平面視したときに、それぞれ、長辺と短辺とを有し、前記第1発熱部品は、前記長辺が延びる長手方向が、前記バイパス配管の前記冷媒の流れる方向に平行になるように配置され、前記第2発熱部品は、前記短辺が延びる短手方向が、前記バイパス配管の前記冷媒の流れる方向に平行になるように配置されているものである。
 本開示に係る空気調和装置によれば、発熱部品の配置を工夫することで、電磁弁等の追加を不要とする簡易な構成で、結露発生を防止しながら、発熱部品を冷却することができる。
実施の形態1に係る空気調和装置の構成を示した構成図である。 実施の形態1に係る空気調和装置の制御装置5の内部の構成を示す平面図である。 実施の形態1に係る空気調和装置の制御装置5の内部に設けられた電力変換装置の構成を示す回路図である。 実施の形態1に係る空気調和装置の制御装置5の内部の構成を示す平面図である。 実施の形態1に係る空気調和装置の制御装置5の内部の構成を示す側面図である。 実施の形態1に係る空気調和装置の制御部10の制御フローを示すフローチャートである。 図6のフローチャートを説明するための温度変化グラフの一例を示す図である。 実施の形態2に係る空気調和装置の制御装置5の内部に設けられた電力変換装置の構成を示す回路図である。 実施の形態2に係る空気調和装置の制御部10の制御フローを示すフローチャートである。 図9のフローチャートを説明するための温度変化グラフの一例を示す図である。 実施の形態3に係る空気調和装置における冷却プレート6と発熱部品4a~4dとを示す平面図である。 実施の形態3に係る空気調和装置の制御装置5の内部の構成を示す側面図である。 実施の形態3に係る空気調和装置の制御装置5の内部の構成を示す平面図である。 実施の形態1に係る空気調和装置の変形例の構成を示した構成図である。 実施の形態1に係る空気調和装置の変形例の構成を示した構成図である。 実施の形態1に係る空気調和装置の変形例の構成を示した構成図である。 図2の基板20に「小型化された周辺部品70」が搭載されている場合を示す平面図である。
 以下、本開示に係る空気調和装置の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、実施の形態1に係る空気調和装置の構成を示した構成図である。図1は、空気調和装置が冷房運転を行っている状態の冷媒回路図を示している。なお、図1においては、四方弁の図示を省略しているが、圧縮機7の吐出口32と、室外機100の熱交換器1および室内機101の熱交換器41との間に四方弁を設けるようにしてもよい。四方弁を設ける場合、空気調和装置は冷房運転と暖房運転とを切り替えることができる。
 図1に示すように、空気調和装置は、室外機100と室内機101とを有している。室外機100と室内機101とは冷媒配管30を介して接続されている。
 室内機101は、空気調和装置の空調対象の室内空間に設置されている。室内機101は、熱交換器41と室内機ファン42とを有している。室内機ファン42は、熱交換器41に対して室内空気を送風する。熱交換器41は、内部に伝熱管を有し、伝熱管を流れる冷媒と室内空気との間で熱交換を行う。熱交換器41は、例えば、フィンアンドチューブ型熱交換器である。熱交換器41は、負荷側熱交換器として機能する。室内機ファン42は、例えば、プロペラファンである。空気調和装置が冷房運転を行っているときは、室内機101の熱交換器41は、蒸発器として機能する。一方、空気調和装置が暖房運転を行っているときは、室内機101の熱交換器41は、凝縮器として機能する。
 室外機100は、室内空間の外部に設置されている。室外機100は、熱交換器1と、室外機ファン2と、圧縮機7と、膨張弁35とを備えている。室外機ファン2は、熱交換器1に対して外気を送風する。熱交換器1は、内部に伝熱管を有し、伝熱管を流れる冷媒と外気との間で熱交換を行う。熱交換器1は、例えば、フィンアンドチューブ型熱交換器である。熱交換器1は、熱源側熱交換器として機能する。室外機ファン2は、例えば、プロペラファンである。空気調和装置が冷房運転を行っているときは、室外機100の熱交換器1は、凝縮器として機能する。一方、空気調和装置が暖房運転を行っているときは、室外機100の熱交換器1は、蒸発器として機能する。
 圧縮機7は、吸入口33から吸入した低圧の冷媒を圧縮し、高圧の冷媒として吐出口32から吐出する。吸入口33は、圧縮機7の吸入側に設けられ、吐出口32は、圧縮機7の吐出側に設けられている。圧縮機7は、例えば、運転周波数が調整可能なインバータ圧縮機である。圧縮機7には、運転周波数範囲が予め設定されている。圧縮機7は、後述する図2に示す制御部10の制御により、運転周波数範囲内で運転周波数が調整されて動作する。図1に示すように、空気調和装置が冷房運転を行っている場合は、圧縮機7の吐出口32から吐出された冷媒は、室外機100の熱交換器1に流入される。一方、空気調和装置が暖房運転を行っている場合は、圧縮機7の吐出口32から吐出された冷媒は、図示しない四方弁を介して、室内機101の熱交換器41に流入される。
 膨張弁35は、室外機100の熱交換器1と室内機101の熱交換器41との間に接続されている。膨張弁35は、冷媒を減圧させる弁である。膨張弁35は、例えば、制御装置5内に設けられた後述する図2に示す制御部10の制御により開度の調整が可能な電子膨張弁である。
 図1に示すように、圧縮機7、熱交換器1、膨張弁35、および、熱交換器41は、冷媒配管30により接続されて、冷媒回路を構成している。
 また、図1に示すように、室外機100は、制御装置5を備えている。制御装置5には、図1に示すように、冷却プレート6と、冷却プレート6に取り付けられた複数の発熱部品4が設けられている。複数の発熱部品4は、発熱部品4a、4b、4cおよび4dを含む。冷却プレート6には、図1の破線で示すように、冷却用冷媒配管14が取り付けられている。なお、冷却用冷媒配管14は、バイパス配管31の一部分である。バイパス配管31は、図1の接続点Aから接続点Bまでの間に配置されている冷媒配管である。接続点Aおよび接続点Bは、共に、圧縮機7の吸入側の冷媒配管30に設けられている。空気調和装置が冷房運転を行っている場合は、接続点Aおよび接続点Bは、図1に示すように、圧縮機7の吸入口33と、蒸発器として作動する室内機101の熱交換器41との間に配置される。バイパス配管31の一端は、接続点Aで冷媒配管30に接続され、バイパス配管31の他端は、接続点Bで冷媒配管30に接続されている。なお、接続点Bは、接続点Aよりも、圧縮機7の吸入口33に近い位置に配置されている。すなわち、冷媒の流れる方向において、接続点Aが上流側で、接続点Bが下流側に配置されている。
 空気調和装置が冷房運転を行っている場合、接続点Aでは、室内機101の熱交換器41から流出された冷媒が2つに分かれる。一方の冷媒は、冷媒配管30に流入し、他方の冷媒は、バイパス配管31に流入する。バイパス配管31に流入した冷媒は、冷却用冷媒配管14を通過する。接続点Bでは、冷却用冷媒配管14を通過した冷媒と冷媒配管30を介して圧縮機7の吸入口33に吸入される冷媒とが合流する。合流した冷媒は、圧縮機7の吸入口33に吸入される。
 空気調和装置が暖房運転を行っている場合も同様に、接続点Aでは、室内機101の熱交換器41から流出された冷媒が2つに分かれる。一方の冷媒は、冷媒配管30に流入し、他方の冷媒は、バイパス配管31に流入する。バイパス配管31に流入した冷媒は、冷却用冷媒配管14を通過する。接続点Bでは、冷却用冷媒配管14を通過した冷媒と冷媒配管30を介して圧縮機7の吸入口33に吸入される冷媒とが合流する。合流した冷媒は、圧縮機7の吸入口33に吸入される。
 このように、バイパス配管31の両端(すなわち、接続点AおよびB)は、蒸発器(すなわち、熱交換器1または熱交換器41)から、圧縮機7の吸入口33までの間の、低圧側で、冷媒配管30に接続されている。なお、実施の形態1に係る空気調和装置は、この場合に限定されない。以下に、変形例について説明する。図14~図16は、実施の形態1に係る空気調和装置の変形例の構成を示した構成図である。例えば図14~図16の変形例に示すように、バイパス配管31の両端(すなわち、接続点AおよびB)を、凝縮器から(すなわち、熱交換器41または熱交換器1)から圧縮機7の吸入口33までの間の低圧側のいずれか2か所の位置で、冷媒配管30に接続するようにしてもよい。
 図14の変形例では、バイパス配管31の両端(すなわち、接続点AおよびB)が、凝縮器として作動する熱交換器1に接続されている。具体的には、バイパス配管31の両端が、熱交換器1(凝縮器)に設けられた伝熱管の途中にそれぞれ接続されている。この場合、冷媒の流れる方向において、接続点Aが上流側で、接続点Bが下流側に配置されている。すなわち、図14の変形例では、バイパス配管31の両端(すなわち、接続点AおよびB)が、凝縮器内の上流側と下流側との間に接続されている。
 また、図15の変形例では、バイパス配管31の両端(すなわち、接続点AおよびB)が、凝縮器として作動する熱交換器1から膨張弁35までの間で、それぞれ、冷媒配管30に接続されている。この場合、冷媒の流れる方向において、接続点Aが上流側で、接続点Bが下流側に配置されている。なお、この場合に限らず、バイパス配管31の両端(すなわち、接続点AおよびB)が、膨張弁35から蒸発器として作動する熱交換器41までの間で、それぞれ、冷媒配管30に接続されていてもよい。
 また、図16の変形例では、バイパス配管31の両端(すなわち、接続点AおよびB)が、凝縮器として作動する熱交換器1から圧縮機7の吸入口33までの間で、それぞれ、冷媒配管30に接続されている。この場合、冷媒の流れる方向において、接続点Aが上流側で、接続点Bが下流側に配置されている。具体的には、バイパス配管31の一端(すなわち、接続点A)が、凝縮器として作動する熱交換器1の下流側に接続されている。そのため、バイパス配管31には、熱交換器1で凝縮されて単相の液冷媒になった冷媒が流れる。そして、当該冷媒は、冷却用冷媒配管14を介して、圧縮機7の吸入口33側に配置された接続点Bに向かって流れる。
 このように、実施の形態1では、バイパス配管31の両端(すなわち、接続点AおよびB)を、凝縮器として作動する熱交換器1から圧縮機7の吸入口33までの間の低圧側の任意の2か所の位置で、冷媒配管30にそれぞれ接続させればよい。具体的には、バイパス配管31の両端は、蒸発器と圧縮機7の吸入口33との間(図1参照)、または、凝縮器内の伝熱管の上流側と下流側との間(図14参照)、または、凝縮器と膨張弁35との間(図15参照)、または、膨張弁35と蒸発器との間、または、凝縮器と圧縮機7の吸入口33との間(図16参照)、のいずれかに配置され、当該両端が冷媒配管30に接続されていればよい。
 また、冷却用冷媒配管14には、図1に示すように、冷媒流量を調整するための冷媒流量調整装置3が設けられている。冷媒流量調整装置3は、例えば、開閉弁から構成される。冷媒流量調整装置3のON(開状態)とOFF(閉状態)との切替は、制御装置5に設けられた後述する図2に示す制御部10からの制御信号8aによって制御される。
 発熱部品4d、4c、4bおよび4aは、図1に示すように、冷却用冷媒配管14の冷媒の流れる方向に沿って、順に配置されている。発熱部品4dが最も上流側で、発熱部品4aが最も下流側である。
 図2は、実施の形態1に係る空気調和装置の制御装置5の内部の構成を示す平面図である。制御装置5は、図1および図2に示すように、直方体形状の筐体5aを有している。図2は、筐体5a内の構成を示している。筐体5a内には、平面視で矩形形状の冷却プレート6が配置されている。冷却プレート6は、板状の部材である。冷却プレート6は、例えば銅またはアルミニウムなどの熱伝導率の高い金属から構成されている。冷却プレート6は、ヒートシンクとして機能する。冷却プレート6の上面には、基板20が配置されている。基板20の上面または下面には、発熱部品4a、4b、4cおよび4dが取り付けられている。すなわち、図2では、発熱部品4a、4b、4cおよび4dが基板20の上面に設けられている場合を示しているが、発熱部品4a、4b、4cおよび4dは、後述する図5に示すように、基板20の下面に設けるようにしてもよい。発熱部品4a、4b、4cおよび4dのそれぞれは、図2に示すように、平面視で長方形又は略長方形の形状を有している。従って、発熱部品4a、4b、4cおよび4dのそれぞれは、平面視したときに、長辺と短辺とを有している。以下では、発熱部品4a、4b、4cおよび4dの長辺が延びる方向を「長手方向」と呼び、発熱部品4a、4b、4cおよび4dの短辺が延びる方向を「短手方向」と呼ぶ。発熱部品4a、4b、4cおよび4dのそれぞれは、図2に示すように、基板20の一辺20aに平行になるように、一列に並んで配置されている。基板20の一辺20aは、基板20の長手方向に延びる長辺の1つである。また、後述する図5に示すように、発熱部品4a、4b、4cおよび4dのそれぞれは、側面視したときに、高さを有している。また、図2に示すように、基板20の上面には、制御部10が搭載されている。さらに、基板20の上面には、他の部品19a、19b、19cおよび19dが搭載されている。他の部品19a、19b、19cおよび19dの発熱量は、発熱部品4a、4b、4cおよび4dの発熱量よりも少ない。
 図2に示すように、発熱部品4a、4b、4cおよび4dには、温度検出部21a、21b、21cおよび21dが設けられている。温度検出部21a、21b、21cおよび21dは、例えば、発熱部品4a、4b、4cおよび4dの内部に設けられた内部サーミスタである。あるいは、温度検出部21a、21b、21cおよび21dは、例えば、発熱部品4a、4b、4cおよび4dの内部または外面に設けられた温度センサである。温度検出部21aは、発熱部品4aの温度を検出する。温度検出部21bは、発熱部品4bの温度を検出する。温度検出部21cは、発熱部品4cの温度を検出する。温度検出部21dは、発熱部品4dの温度を検出する。温度検出部21a、21b、21cおよび21dが検出した温度は、それぞれ、温度情報8bとして制御部10に送信される。制御部10は、温度情報8bと予めメモリに記憶された特定の算出式とを用いて、制御信号8aを生成する。冷媒流量調整装置3は、制御信号8aに従って、ON/OFFが切り替えられる。冷媒流量調整装置3がON状態(開状態)の場合、冷却用冷媒配管14に冷媒が流れるが、一方、冷媒流量調整装置3がOFF状態(閉状態)の場合、冷却用冷媒配管14には冷媒は流れない。
 図2に示すように、発熱部品4a、4b、4cのそれぞれは、図2に示すように、長手方向が、基板20の一辺20aに平行になるように、一列に並んで配置されている。そのため、発熱部品4aの一方の短辺と発熱部品4bの一方の短辺とが、一定距離の空隙を介して、対向して配置されている。発熱部品4bの他方の短辺と発熱部品4cの一方の短辺とが、一定距離の空隙を介して、対向して配置されている。一方、図2に示すように、発熱部品4dの長手方向と、発熱部品4a~4cの長手方向とは、直交している。発熱部品4cの他方の短辺と発熱部品4dの一方の長辺とが、一定距離の空隙を介して、対向して配置されている。
 このように、発熱部品4a~4cは、短辺同士が対向するように、一列に並んで近接して配置されている。また、発熱部品4dは、一列に並んだ発熱部品4a~4cのうちの先頭または末尾の発熱部品に隣接して配置されている。ここで、先頭の発熱部品とは、冷却用冷媒配管14の冷媒が流れる方向の最も上流側の発熱部品である。また、末尾の発熱部品とは、冷却用冷媒配管14の冷媒が流れる方向の最も下流側の発熱部品である。図2の例では、発熱部品4a~4cのうち、発熱部品4cが最も上流側の発熱部品で、発熱部品4aが最も下流側の発熱部品である。図2の例では、発熱部品4dは、最も上流側の発熱部品4cに対して、一定距離の空隙を介して、隣接して配置されている。従って、図2の例では、発熱部品4a~4dの中では、発熱部品4dが最も上流側の発熱部品となる。最も上流に配置される発熱部品4dは、その長手方向が他の3つの発熱部品の長手方向に直交する方向に配置され、且つ、各発熱部品4a~4dは近接して配置されている。
 ここで、制御部10のハードウェアについて説明する。制御部10は、図示しない記憶装置を有している。制御部10は処理回路から構成される。処理回路は、専用のハードウェア、または、プロセッサから構成される。専用のハードウェアは、例えば、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などである。プロセッサは、メモリに記憶されるプログラムを実行する。制御部10に設けられた記憶装置は、メモリから構成される。メモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)などの不揮発性または揮発性の半導体メモリ、もしくは、磁気ディスク、フレキシブルディスク、光ディスクなどのディスクである。
 図3は、実施の形態1に係る空気調和装置の制御装置5の内部に設けられた電力変換装置の構成を示す回路図である。電力変換装置は、発熱部品4a、4b、4cおよび4dから構成されている。電力変換装置は、必要に応じて、他の部品19も含む。他の部品19は、例えば、図2に示す他の部品19a~19dである。発熱部品4a、4b、4cおよび4dは、例えば、コンバータモジュール、整流器、あるいは、インバータモジュールである。ここでは、発熱部品4dが整流器から構成され、発熱部品4a、4bおよび4cがインバータジュールから構成されている場合を例に挙げて説明する。また、他の部品19a~19dは、例えば、コンデンサである。
 図3に示すように、整流器である発熱部品4dは、正側母線50と負側母線51との間に接続されている。また、発熱部品4dは、交流電源13に接続されている。発熱部品4dは、交流電源13からの交流電流を直流電流に変換する。発熱部品4dは、図3に示すように、ダイオードブリッジ回路から構成されている。発熱部品4dには、6個のダイオードが設けられている。具体的には、発熱部品4dにおいては、上アームのダイオードと下アームのダイオードとが直列に接続されて、直列体を構成している。発熱部品4dにおいては、並列接続された3つの直列体が設けられている。3つの直列体のそれぞれは、交流電源13のU相、V相、および、W相に接続されている。
 図3に示すように、インバータモジュールである発熱部品4a、4bおよび4cは、発熱部品4dに対して、それぞれ並列に接続されている。すなわち、発熱部品4aは、正側母線50と負側母線51との間に接続されている。同様に、発熱部品4bは、正側母線50と負側母線51との間に接続されている。同様に、発熱部品4cは、正側母線50と負側母線51との間に接続されている。発熱部品4a、4bおよび4cには、発熱部品4dからの直流電流が流れる。発熱部品4a、4bおよび4cは、当該直流電流を、周波数の異なる交流電流に変換する。発熱部品4a、4bおよび4cは、圧縮機7のモータに接続されている。3つの発熱部品4a、4bおよび4cのそれぞれは、圧縮機7のモータのW相、V相、および、U相に接続されている。
 発熱部品4aは、図3に示すように、フルブリッジ回路から構成されている。発熱部品4aには、図3に示すように、6個のスイッチング素子が設けられている。各スイッチング素子には、図示しない還流ダイオードが逆並列接続されている。各スイッチング素子は、例えば、IGBT(Insulated Gate Bipolar Transistor)、あるいは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。発熱部品4aにおいては、上アームのスイッチングと下アームのスイッチング素子とが直列に接続されて直列体を構成している。このように、発熱部品4aは、1対の上下アームのスイッチング素子からなる直列体が、合計3個設けられている。これらの直列体は、並列に接続されている。
 発熱部品4bは、図3に示すように、フルブリッジ回路から構成されている。発熱部品4bには、図3に示すように、6個のスイッチング素子が設けられている。各スイッチング素子には、図示しない還流ダイオードが逆並列接続されている。各スイッチング素子は、例えば、IGBT、あるいは、MOSFETである。発熱部品4bにおいては、上アームのスイッチングと下アームのスイッチング素子とが直列に接続されて直列体を構成している。このように、発熱部品4bは、1対の上下アームのスイッチング素子からなる直列体が、合計3個設けられている。これらの直列体は、並列に接続されている。
 発熱部品4cは、図3に示すように、フルブリッジ回路から構成されている。発熱部品4cには、図3に示すように、6個のスイッチング素子が設けられている。各スイッチング素子には、図示しない還流ダイオードが逆並列接続されている。各スイッチング素子は、例えば、IGBT、あるいは、MOSFETである。発熱部品4cにおいては、上アームのスイッチングと下アームのスイッチング素子とが直列に接続されて直列体を構成している。このように、発熱部品4cは、1対の上下アームのスイッチング素子からなる直列体が、合計3個設けられている。これらの直列体は、並列に接続されている。
 なお、発熱部品4a~4cは、1つのインバータを構成している。直流電流を三相交流電流に変換する周知のインバータは、1相あたり、1対の上下アームのスイッチング素子で構成される。これに対し、実施の形態1のインバータは、1相あたり、3対の上下アームのスイッチング素子で構成される。制御部10は、3対の上下アームのスイッチング素子を、大きな電流容量の1組の上下アームのスイッチング素子であるとみなして、PWM信号を生成する。発熱部品4a~4cの各スイッチング素子は、当該PWM信号に従って、オンオフ動作を行う。
 また、図3に示すように、発熱部品4dと発熱部品4cとの間に、コンデンサ19が設けられている。コンデンサ19は、発熱部品4dおよび発熱部品4cに対して、並列に接続されている。コンデンサ19の個数は1個でもよいが、複数個でもよい。上述したように、図2において、部品19a~19dは、例えば、コンデンサである。部品19a~19dは、図3のコンデンサ19を構成している。図3のコンデンサ19は、1つの部品から構成されていてもよいが、図2に示す複数の部品19a~19dから構成されていてもよい。
 さらに、発熱部品4dと発熱部品4cとの間の正側母線50に、必要に応じて、リアクトルを直列接続してもよい。リアクトルは、コンデンサ19よりも交流電源13側に配置されることが望ましい。リアクトルを設ける場合、発熱部品4dから出力される直流電流は、リアクトルを介して、発熱部品4a~4cに入力される。なお、実施の形態1では、コンデンサ19が電力変換装置に含まれているとして説明したが、これに限るものではない。コンデンサ19は、電力変換装置に対して外付けする構成としてもよい。また、リアクトルを設ける場合、リアクトルが電力変換装置に含まれるとして説明したが、これに限るものではない。リアクトルは、電力変換装置に対して外付けする構成としてもよい。
 図4は、実施の形態1に係る空気調和装置の制御装置5の内部の構成を示す平面図である。また、図5は、実施の形態1に係る空気調和装置の制御装置5の内部の構成を示す側面図である。図4および図5では、制御装置5の筐体5aの図示は省略している。また、図5に示すように、発熱部品4a~4dは、基板20の下面に配置されているため、図4においては発熱部品4a~4dを破線で示すべきところである。しかしながら、発熱部品4a~4dを破線で示すと、分かりにくくなるため、図4では、発熱部品4a~4dを実線で示している。
 図4および図5は、冷却プレート6に取り付けられた冷却用冷媒配管14と、発熱部品4a~4dとの位置関係を示している。図5に示すように、冷却プレート6は、基板20と平行になるように基板20に対向して配置され、発熱部品4a~4dの一面に密着している。冷却プレート6は、発熱部品4a~4dおよび冷却用冷媒配管14に接触しており、発熱部品4a~4dおよび冷却用冷媒配管14と熱的に接続されている。図4および図5に示すように、冷却用冷媒配管14は、冷却プレート6の内部を貫通するように配置されている。ただし、この場合に限らず、冷却用冷媒配管14は、冷却プレート6の外面に設けられていてもよい。あるいは、冷却プレート6に、冷却用冷媒配管14を収容する溝を設けておき、当該溝の中に冷却用冷媒配管14を収容するようにしてもよい。いずれの場合においても、冷却プレート6は冷媒11を用いて発熱部品4a~4dを冷却するため、冷却プレート6の少なくとも一部分は、発熱部品4a~4dと冷却用冷媒配管14との間に配置されていることが望ましい。冷却用冷媒配管14は、冷却プレート6にロウ付け等により直接接触した状態で取り付けられている。冷却用冷媒配管14は、例えば、銅またはアルミニウムなどの熱伝導率の高い金属で構成されている。また、冷却用冷媒配管14は、冷却プレート6との間にシール材などを介して、間接的に接触した状態で、冷却プレート6に取り付けられていてもよい。なお、図4および図5の例では、板状の冷却プレート6に、1本の冷却用冷媒配管14が取り付けられている構成が示されているが、これらはあくまでも一例である。すなわち、冷却プレート6の個数および形状、並びに、冷却用冷媒配管14の本数および形状は、適宜、変更してもよい。後述する図13では、2本の冷却用冷媒配管14が、1つの冷却プレート6に設けられている例が示されている。
 図4および図5に示すように、冷却用冷媒配管14の内部には冷媒11が流れている。発熱部品4a~4dは、図4に示すように、冷却プレート6を平面視したときに、冷却プレート6において、冷却用冷媒配管14とオーバーラップする領域に配置されている。発熱部品4d、4c、4bおよび4aは、冷却用冷媒配管14の冷媒11が流れる方向に沿って、一列に並んで配置されている。図4に示すように、発熱部品4a~4cの長手方向は、冷媒11が流れる方向に対して平行である。さらに、発熱部品4a~4cの短手方向の中心位置と、冷却用冷媒配管14の径方向の中心位置とは、一致している。なお、冷却用冷媒配管14の径方向とは、図4に示すように、冷却用冷媒配管14を平面視したときの幅方向であり、冷媒11が流れる方向に対して垂直の方向である。一方、発熱部品4dは、発熱部品4dの短手方向が冷媒11が流れる方向に対して平行になるように配置されている。
 冷媒11は、図4および図5に示すように、一列に並んだ発熱部品4d、4c、4bおよび4aに対して、平行に流れていく。そのため、発熱部品4a~4dは、発熱部品4d、発熱部品4c、発熱部品4b、発熱部品4aの順に冷却されていく。発熱部品4a~4dを冷却する際に、冷媒11は、発熱部品4a~4dの熱を受け取るため、冷媒11の流入側から離れるほど冷媒11の温度は上昇していく。そのため、冷媒11の冷却能力は、発熱部品4dを冷却するときが最も高く、発熱部品4aを冷却するときが最も低くなる。よって、仮に発熱部品4a~4cの発熱温度が等しい場合、冷却により、発熱部品4a~4cの温度は、(発熱部品4aの温度)>(発熱部品4bの温度)>(発熱部品4cの温度)の関係になる。
 なお、発熱部品4a~4cは、図4に示すように、発熱部品4a~4cの長手方向が、冷媒11が流れる方向に対して平行になるように、配置されている。そのため、発熱部品4a~4cと冷却用冷媒配管14とがオーバーラップする距離が長くなる。逆に、もし、発熱部品4a~4cの短手方向が冷媒11が流れる方向に対して平行になるように配置した場合、発熱部品4a~4cと冷却用冷媒配管14とがオーバーラップする距離が短くなる。そのため、実施の形態1では、発熱部品4a~4cの長手方向が冷媒11が流れる方向に対して平行になるように、発熱部品4a~4cを配置している。これにより、発熱部品4a~4cと冷却用冷媒配管14とがオーバーラップする距離が長くなり、発熱部品4a~4cの冷却が促進される。
 一方、発熱部品4dは、発熱部品4a~4cに比べて、発熱量が少ない。そのため、発熱部品4dは、発熱部品4a~4dの中で最も温度が高くなりにくい部品である。そのため、発熱部品4dは、本来はあまり冷やさなくてよい。また、温度条件によっては、発熱部品4dが必要以上に冷却され、発熱部品4dの表面に結露が発生する可能性がある。そのため、図4に示すように、発熱部品4dについては、以下の(i)および(ii)のように配置している。
 (i)発熱部品4dは、発熱部品4dの短手方向が冷媒11が流れる方向に対して平行になるように配置されている。
 (ii)発熱部品4dの長手方向の中央位置を、冷却用冷媒配管14の径方向の中心位置に対して、矢印C方向にオフセットしている。
 上記(i)により、発熱部品4dと冷却用冷媒配管14とがオーバーラップする距離が短くなり、発熱部品4dの冷却が抑制される。
 上記(ii)により、発熱部品4dの長手方向の中央位置が冷却用冷媒配管14に対してオフセットされているので、発熱部品4dが全体的に冷えてしまうことを防止することができる。
 このように、発熱部品4dについては、上記(i)および(ii)により、冷やし過ぎを防止することができる。その結果、発熱部品4dの表面に結露が発生することを防止することができる。
 発熱部品4a~4cを第1発熱部品とし、発熱部品4dを第1発熱部品よりも発熱量の少ない第2発熱部品とする。このとき、第1発熱部品については、長手方向が冷媒11が流れる方向に対して平行になるように配置する。一方、第2発熱部品については、短手方向が冷媒11が流れる方向に対して平行になるように配置する。さらに、第2発熱部品の長手方向の中央位置を冷却用冷媒配管14に対してオフセットさせることがより望ましい。これにより、発熱量の多い第1発熱部品については冷却が促進され、発熱量の多い第2発熱部品については冷却が抑制される。その結果、第1発熱部品は十分に冷却され、第2発熱部品は結露を生じることなく冷却することができる。
 また、上述したように、実施の形態1では、図2および図4に示すように、最も上流に配置される発熱部品4dは、その長手方向が他の3つの発熱部品の長手方向に直交する方向に配置され、且つ、各発熱部品4a~4dは互いに近接して配置されている。また、発熱部品4a~4dは基板20の中央部に一列に並んで配置されている。基板20の中央部とは、図4に示すように、基板20を平面視したときの幅方向の中央部であり、冷媒11が流れる方向に対して垂直の方向における中央部である。このように、基板20の中央部に発熱部品4a~4dが実装されていることで、基板20が撓みにくくなり、基板20全体の剛性が高くなる。そのため、基板20に応力がかかった場合にも、基板20が撓みにくいので、基板20に搭載された各部品にかかる応力を歪耐力以下にすることができる。以下に、図17を用いて詳細に説明する。図17は、図2の基板20に「小型化された周辺部品70」が搭載されている場合を示す平面図である。「小型化された周辺部品70」は、例えば、セラミックコンデンサなどのチップコンデンサである。
 近年、制御基板(すなわち、基板20)の小型化が進んでおり、それに伴い、制御基板に搭載される周辺部品も小型化が進んでいる。製造工程等で、基板20を制御装置5の筐体5a内へ取り付ける時、または、基板20に設けられたコネクタ(図示せず)の挿抜時などに、基板20の一部分に荷重がかかることがある。その場合、基板20が撓み、基板20の各所に歪みが発生する。基板20において、「小型化された周辺部品70」が実装されている場合、実装箇所の歪み量が限界値を超えると、「小型化された周辺部品70」に歪耐力以上の応力がかかり、「小型化された周辺部品」にクラックが発生して故障するという問題が発生している。そのため、基板20において、「小型化された周辺部品70」の実装箇所の歪み量を限界値よりも低く抑える必要がある。
 そのため、実施の形態1では、図2および図17に示すように、各発熱部品4a~4dを基板20の長手方向に沿って基板20の中央部に配置することで、基板20に歪みが発生しにくい構成にしている。これにより、基板20の製造工程等において、基板20において「小型化された周辺部品70」の歪耐力を超える応力が発生することを防止し、「小型化された周辺部品70」の保護を可能にしている。
 図17に示す発熱部品4a~4dの配置領域の周辺を含む領域71内には、「小型化された周辺部品70」を含む小型の電気部品が複数存在している。ここでは、領域71のうち、発熱部品4a~4dの配置領域に隣接している領域72に、「小型化された周辺部品70」が配置されている場合を例に挙げて説明する。なお、図17において、領域72および領域73は、領域71に含まれる領域である。領域72は、発熱部品4a~4dの配置領域に隣接する領域である。また、領域73は、発熱部品4a~4d同士の間の領域である。
 図17に示すように、「小型化された周辺部品70」と比較すると、発熱部品4a~4dは、基板20に対してサイズが大きい部品である。そのため、発熱部品4a~4dは、いずれも、基板20への実装面積が、「小型化された周辺部品70」の基板20への実装面積よりも大きくなっている。また、発熱部品4a~4dは、「小型化された周辺部品70」と比較すると、剛性が高く、撓みにくい部品である。そのため、発熱部品4a~4dを基板20の中央部に実装することで、基板20全体の剛性を高め、特に、発熱部品4a~4dの周辺の領域71の撓みを防止することができる。
 上述した図5に示すように、発熱部品4a~4dの本体は基板20に接触していないが、発熱部品4a~4dの接続端子140(図5および図13参照)は、基板20に配置されている。すなわち、図17の領域72には、発熱部品4a~4dの接続端子140および配線パターンが配置されている。発熱部品4a~4dの本体は、冷却プレート6に密着して固定されている。従って、冷却プレート6により、発熱部品4a~4dの剛性は、より高くなっている。発熱部品4a~4dの剛性が高く、発熱部品4a~4dが歪まないため、発熱部品4a~4dは接続端子140を介して基板20を十分な強度で支持していることになる。そのため、「小型化された周辺部品70」が、発熱部品4a~4dの配線パターンと接続され、領域72に配置されている場合には、領域72部分には基板20の撓みが発生しないので、基板20の撓みによる破損を防止する破損防止効果を得ることができる。また、領域72以外にも、発熱部品4a~4d同士の間の領域73においても、発熱部品4a~4dが互いに近接して実装されていることで、基板20に撓みが発生しないので、同様の破損防止効果を得ることができる。
 このように、実施の形態1では、最も上流に配置される発熱部品4dは、その長手方向が他の3つの発熱部品4a~4cの長手方向と直交するように配置されている。また、発熱部品4a~4dは、各々、互いに近接して配置されている。さらに、発熱部品4a~4dは、基板20の中央部に並んで配置されている。そのため、発熱部品4a~4dの配置領域だけでなく、その周辺を含む領域71のような広範囲で、基板20の撓みを防止することができる。その結果、「小型化された周辺部品70」が、発熱部品4a~4dから離れた位置、例えば、領域72または領域73に配置されている場合であっても、「小型化された周辺部品70」の歪耐力を超える応力が発生することを防止することができる。
 さらに、実施の形態1では、発熱部品4a~4dは、冷却プレート6と機械的に接合されているので、冷却プレート6によって発熱部品4a~4dの剛性が高くなり、さらに、基板20の撓みの防止に効果的である。
 次に、実施の形態1に係る空気調和装置の動作について説明する。ここでは、空気調和装置が冷房運転を行っている場合の動作について説明する。空気調和装置が暖房運転を行っている場合の動作については、説明を省略する。
 図1に示すように、圧縮機7の吸入口から吸入された冷媒は、圧縮機7で圧縮された後、圧縮機7から吐出され、室外機100の熱交換器1に流れる。当該冷媒は、熱交換器1において、室外機ファン2からの送風によって冷却される。このとき、凝縮器として作動する熱交換器1から、圧縮機7の吸入口33までの、いずれか1か所に配置された接続点Aから、バイパス配管31を介して、冷却用冷媒配管14に向かって流れる。
 冷却用冷媒配管14に流れた冷媒は、冷却プレート6に取り付けられた発熱部品4a~4dを冷却した後、凝縮器として作動する熱交換器1から、圧縮機7の吸入口33までの、いずれか1か所に配置された接続点Bで、圧縮機7の吸入口33に向かって冷媒配管30を流れる冷媒と合流する。合流した冷媒は、圧縮機7の吸入口33から圧縮機7に吸入される。また、上述したように、冷却用冷媒配管14における冷媒11の流れの有無は、制御部10が冷媒流量調整装置3を制御することで、切替可能となっている。
 次に、図3を用いて、発熱部品4a~4dに流れる電流について説明する。ここでも、発熱部品4dが整流器で、発熱部品4a~4cがインバータモジュールの場合を例に挙げて説明する。図3に示すように、まず、交流電源13からの交流電流が、整流器である発熱部品4dに入力される。発熱部品4dは、交流電流を直流電源に変換する。続いて、発熱部品4dから出力された直流電源は、インバータモジュールである発熱部品4a~4cに流れていく。上述したように、インバータモジュールである発熱部品4a~4cは、整流器である発熱部品4dに対して並列に接続されている。
 なお、電力変換装置において、正側母線50および負側母線51には、図3の矢印で示すように回路電流12a~12fが流れる。ここで、回路電流12aは、発熱部品4dと発熱部品4cとの間の正側母線50を流れる回路電流である。回路電流12bは、発熱部品4cと発熱部品4bとの間の正側母線50を流れる回路電流である。回路電流12cは、発熱部品4bと発熱部品4aとの間の正側母線50を流れる回路電流である。また、回路電流12dは、発熱部品4aと発熱部品4bとの間の負側母線51を流れる回路電流である。回路電流12eは、発熱部品4bと発熱部品4cとの間の負側母線51を流れる回路電流である。回路電流12fは、発熱部品4cと発熱部品4dとの間の負側母線51を流れる回路電流である。
 このとき、図3に示す回路電流12a~12fは、以下に示すようになる。回路電流12cおよび回路電流12dは、発熱部品4aのみに流れる。回路電流12bおよび回路電流12eは、発熱部品4aと発熱部品4bとに流れる。回路電流12aおよび回路電流12fは、発熱部品4a、4bおよび4cに流れる。そのため、回路電流12a~12fの電流値の大きさは、(回路電流12aおよび12fの電流値)>(回路電流12bおよび12eの電流値)>(回路電流12cおよび12dの電流値)の関係となる。ここで、発熱部品4a、4bおよび4cを流れる電流の電流値は全て等しいため、発熱部品4a~4cで発生する熱損失の大きさは等しい。しかし、発熱部品4a~4cは回路電流12a~12fが流れている電流経路と接続されているため、回路電流12a~12fが流れたことによる熱損失の影響を受ける。よって、発熱部品4a~4cの温度は、(発熱部品4cの温度)>(発熱部品4bの温度)>(発熱部品4aの温度)の関係になる。
 また、図4および図5を用いて上述したように、発熱部品4a~4dの発熱温度が等しいと仮定する。このとき、発熱部品4a~4dの温度は、冷媒11および回路電流12a~12fに起因して、(発熱部品4dの温度)>(発熱部品4cの温度)>(発熱部品4bの温度)>(発熱部品4aの温度)の関係になる。
 図6は、実施の形態1に係る空気調和装置の制御部10の制御フローを示すフローチャートである。図6は、制御部10が、冷媒流量調整装置3を制御する場合の動作を示している。また、図7は、図6のフローチャートを説明するための温度変化グラフの一例を示す図である。
 図7において、符号16aは、第1閾値温度であり、符号16bは、第2閾値温度である。第1閾値温度16aは、例えば、発熱部品4a~4dの耐熱温度を基準に決定する。あるいは、第1閾値温度16aは、発熱部品4a~4dの温度差を基準に決定してもよい。また、第2閾値温度16bは、例えば、冷却プレート6の結露温度を基準に決定する。あるいは、第2閾値温度16bは、発熱部品4a~4dの耐熱温度、または、室外機100の周囲温度、または、冷媒11の冷媒温度の平均値を基準に決定してもよい。また、図7において、符号15aは、発熱部品4aの温度であり、符号15bは、発熱部品4bの温度である。また、符号15cは、発熱部品4cの温度であり、符号15dは、発熱部品4dの温度である。図6のフローは、制御周期Tで繰り返し実行される。
 図6の制御フローでは、制御部10が、冷媒流量調整装置3のON/OFFの切替を決定する。
 ステップS1で、制御部10は、温度検出部21a~21dからの温度情報8bを取得する。制御部10は、温度情報8bに基づいて、発熱部品4a~4dの温度15a~15dを取得する。
 次に、ステップS2で、制御部10は、発熱部品4a~4dの温度15a~15dを比較して、その中の最大値を求めて、発熱部品4a~4dの最大温度とする。また、制御部10は、発熱部品4a~4dの温度15a~15dを比較して、その中の最小値を求めて、発熱部品4a~4dの最小温度とする。図7の例で説明すると、時刻t1の場合、最大温度は、発熱部品4dの温度15dで、最小温度は、発熱部品4aの温度15aである。また、時刻t2の場合も同様に、最大温度は、発熱部品4dの温度15dで、最小温度は、発熱部品4aの温度15aである。
 次に、ステップS3で、制御部10は、最大温度と第1閾値温度16aとの差の絶対値を求めて、第1演算結果R1とする。また、制御部10は、最小温度と第2閾値温度16bとの差の絶対値を求めて、第2演算結果R2とする。
 次に、ステップS4で、制御部10は、第1演算結果R1と第2演算結果R2とを比較する。第1演算結果R1が第2演算結果R2以上の場合は、制御部10は、ステップS6の処理に進む。一方、第1演算結果R1が第2演算結果R2未満の場合は、制御部10は、ステップS5の処理に進む。
 ステップS5では、発熱部品4a~4dの温度15a~15dが全般的に高い状態であるため、制御部10は、冷媒流量調整装置3をON(開状態)にして、冷却用冷媒配管14における冷媒11の流通を許可する。これにより、冷却用冷媒配管14に冷媒11が流れる。その結果、発熱部品4a~4dが、冷媒11により冷却される。
 ステップS6では、発熱部品4a~4dの温度15a~15dが全般的に低い状態であるため、制御部10は、冷媒流量調整装置3をOFF(閉状態)にして、冷却用冷媒配管14における冷媒11の流通を停止させる。これにより、冷却用冷媒配管14に冷媒11が流れない。その結果、発熱部品4a~4dが、冷媒11により冷却されない。
 図7の例で説明すると、時刻t1のとき、第1演算結果R1と第2演算結果R2とを比較すると、第1演算結果R1が第2演算結果R2未満であるため、冷媒流量調整装置3はON状態となる。一方、時刻t2のときは、第1演算結果R1と第2演算結果R2とを比較すると、第1演算結果R1が第2演算結果R2以上であるため、冷媒流量調整装置3はOFF状態となる。
 このように、制御部10が、図6の制御フローに従って、冷媒流量調整装置3のON/OFFの切替を制御する。これにより、発熱部品4a~4dの温度15a~15dは、図7に示すように、常に、第1閾値温度16aと第2閾値温度16bとの間の範囲になる。ここで、第1閾値温度16aと第2閾値温度16bとの間の範囲を、閾値温度帯域と呼ぶ。従って、第1閾値温度16aが閾値温度帯域の上限値となり、第2閾値温度16bが閾値温度帯域の下限値となる。制御部10は、温度検出部21a~21dが検出する温度15a~15dが常に閾値温度帯域の範囲になるように、冷媒流量調整装置3のON/OFFの切替を行っている。
 なお、図6の制御フローでは、第1演算結果R1と第2演算結果R2とを比較しているが、それに限定されない。例えば、第1演算結果R1と予め設定された閾値とを比較するようにしてもよい。その場合、第1演算結果R1が当該閾値よりも小さい場合に、制御部10が、冷媒流量調整装置3をONにし、第1演算結果R1が当該閾値以上の場合に、冷媒流量調整装置3をOFFにする。図7の例で説明すると、時刻t1で、第1演算結果R1が当該閾値よりも小さいと仮定する。その場合、制御部10は、冷媒流量調整装置3をONにする。また、時刻t2で、第1演算結果R1が当該閾値以上であると仮定する。その場合、制御部10は、冷媒流量調整装置3をOFFにする。
 このように、実施の形態1では、冷却プレート6が、凝縮器として作動する熱交換器1から圧縮機7の吸入口33に向かって流れる冷媒11の一部分を用いて、制御部10の発熱部品4a~4dを冷却する。これにより、発熱部品4a~4dを冷却することができ、発熱部品4a~4dの熱による破壊を防止することができる。なお、図1、および、図14~図16に示すように、冷却に用いる冷媒11が流れるバイパス配管31の両端は、凝縮器から圧縮機7の吸入口33までの間の低圧側の任意の2か所の位置にそれぞれ接続してよい。
 また、実施の形態1では、発熱部品4a~4dに温度検出部21a~21dが設けられている。制御部10は、温度検出部21a~21dが検出した発熱部品4a~4dの温度15a~15dに基づいて、冷媒流量調整装置3のONとOFFとを切り替える。これにより、発熱部品4a~4dを、必要に応じて適切に冷却することができる。
 また、実施の形態1では、発熱量の多い発熱部品4a~4cを第1発熱部品とし、発熱量の少ない発熱部品4dを第2発熱部品として、区別している。第1発熱部品は、長手方向が冷媒11の流れる方向に平行になるように配置し、第2発熱部品は、短手方向が冷媒11の流れる方向に平行になるように配置している。このように、第1発熱部品と第2発熱部品とで配置する向きが異なっている。これにより、第1発熱部品は冷媒11によって冷却される時間が長くなるので、全体が十分に冷却される。一方、第2発熱部品は冷媒11によって冷却される時間が短くなるので、冷やしすぎが防止できる。これにより、第2発熱部品に結露が発生することを防止できる。このように、実施の形態1では、発熱部品4a~4dの配置を工夫することで、簡易な構成で、結露発生を防止しながら、発熱部品4a~4dを冷却することができる。そのため、上記の特許文献1に記載の結露防止用の電磁弁等の追加の構成を不要とするため、構成が簡易となり、製造コストも低減できる。
 なお、冷媒11の冷却能力が最も低くなるのは、冷媒11が気体の状態で流れている場合である。その場合、最も下流にある発熱部品4aが十分に冷えない可能性がある。それを回避するため、実施の形態1では、第1発熱部品については、長手方向が冷媒11の流れる方向に平行になるように配置している。これにより、発熱部品4a~4cについても、十分に冷却することができる。一方、冷媒11の冷却能力が最も高くなるのは、冷媒11が液体の状態で流れている場合である。その場合、最も上流にある発熱部品4dに結露が発生する可能性がある。それを回避するため、実施の形態1では、第2発熱部品については、短手方向が冷媒11の流れる方向に平行になるように配置している。その結果、実施の形態1では、冷媒11の状態が液体/気体に関わらず、発熱部品4a~4dのすべてを、結露の発生を抑えながら、十分に冷却することができる。
 また、実施の形態1では、第2発熱部品の長手方向の中心位置を、冷却用冷媒配管14の径方向の中心位置からオフセットさせている。これにより、第2発熱部品が、全体的に冷えてしまうことを防止できるため、さらに望ましい。
 なお、実施の形態1では、図4に示すように、冷媒11が流れる方向において、発熱部品4cを上流側にし、発熱部品4aを下流側にした。このように、発熱部品4cに向かう電流値の方が、発熱部品4aに向かう電流値よりも大きいため、冷媒11が流れる方向において、発熱部品4cを上流側にし、発熱部品4aを下流側にすることが望ましい。それにより、発熱部品4a~4cの温度差が低減される。このように、冷媒11が流れる方向において、発熱部品4a~4cの中で最も発熱量の多い発熱部品を最も上流側に配置し、最も発熱量の少ない発熱部品を最も下流側に配置すれば、より効率よく、発熱部品4a~4cを冷却することができる。
 また、実施の形態1では、発熱部品4a~4dを、基板20の長手方向に沿って、基板20の中央部に配置している。これにより、基板20の剛性が高くなり、特に、発熱部品4a~4dの配置領域の周辺の領域71では、基板20の撓みが発生しない。それにより、領域71に配置された「小型化された周辺部品70」を含む小型の電気部品に対して、歪耐力を超える応力がかかることを防止できる。これにより、領域71に配置された小型の電気部品の破損を防止することができる。
 また、実施の形態1では、制御部10が、冷媒流量調整装置3のONとOFFとを切り替える例について説明した。しかしながら、この場合に限らず、制御部10が、温度情報8bに基づいて、冷媒流量調整装置3の開度を制御して、冷却用冷媒配管14に流れる流路を調整するようにしてもよい。その場合には、制御部10が、発熱部品4a~4dの温度15a~15bの最大温度または最小温度ごとに、冷媒流量調整装置3の開度を予め設定したテーブルを予めメモリに記憶しておく。そして、制御部10は、温度情報8bに基づいて発熱部品4a~4dの温度15a~15bの最大温度または最小温度を求める。制御部10は、求めた最大温度または最小温度に基づいて、当該テーブルから冷媒流量調整装置3の開度を求めて、冷媒流量調整装置3の開度を制御する。
 また、実施の形態1では、発熱部品4a~4dの基板20上の配置を、図3に示す電気回路の配置に合わせている。すなわち、図3に示すように、発熱部品4d、4c、4b、4aがこの順序で電気的に接続されているので、基板20上においても、同じように、発熱部品4d、4c、4b、4aをこの順序で配置している。すなわち、発熱部品4a~4dは、電気的な接続順序に合わせて、基板20上に配置されている。このように、電気回路の配置に合わせて発熱部品4a~4dを基板20に配置することで、配線等が短くなり、発熱部品4a~4dおよび他の部品19a~19dなどを効率良く配置することができる。
 さらに、実施の形態1では、図3に示す電気回路における電流の流れる方向に沿って、冷媒11を流している。従って、冷媒11の流れる方向は、電流の流れる方向と平行である。図3に示す電気回路において、発熱部品4a~4cのうち、U相の発熱部品4cに流れる電流が最も大きい。そのため、冷媒11が流れる方向の最も上流に、U相の発熱部品4cを配置することで、発熱部品4a~4cを効率良く冷却することができる。
 実施の形態2.
 図8は、実施の形態2に係る空気調和装置の制御装置5の内部に設けられた電力変換装置の構成を示す回路図である。電力変換装置は、発熱部品4a、4b、4cおよび4dから構成されている。発熱部品4a、4b、4cおよび4dは、例えば、コンバータモジュール、整流器、あるいは、インバータモジュールである。ここでは、発熱部品4dが整流器から構成され、発熱部品4a、4bおよび4cがインバータジュールから構成されている場合を例に挙げて説明する。
 図8に示すように、整流器である発熱部品4dは、正側母線50と負側母線51との間に接続されている。また、発熱部品4dは、交流電源13に接続されている。発熱部品4dは、交流電源13からの交流電流を直流電流に変換する。発熱部品4dは、ダイオードブリッジから構成されている。発熱部品4dには、図3に示すように、6個のダイオードが設けられている。具体的には、発熱部品4dにおいては、上アームのダイオードと下アームのダイオードとが直列に接続されて、直列体を構成している。発熱部品4dにおいては、並列に接続された3つの直列体が設けられている。3つの直列体のそれぞれは、交流電源13のU相、V相、および、W相に対して設けられている。
 図8に示すように、インバータモジュールである発熱部品4a、4bおよび4cは、発熱部品4dに対して、それぞれ並列に接続されている。
 但し、図8の例では、正側母線50が、接続点Pで、3つの正側母線に分岐している。以下では、3つの正側母線を、それぞれ、第1正側母線50a、第2正側母線50b、および、第3正側母線50cと呼ぶ。
 また、図8の例では、負側母線51が、接続点Qで、3つの負側母線に分岐している。以下では、3つの負側母線を、それぞれ、第1負側母線51a、第2負側母線51b、および、第3負側母線51cと呼ぶ。
 このように、図8の例では、正側母線50および負側母線51が分岐している点が、図3と異なる。
 図8に示すように、発熱部品4aは、第1正側母線50aと第1負側母線51aとの間に接続されている。発熱部品4bは、第2正側母線50bと第2負側母線51bとの間に接続されている。発熱部品4cは、第3正側母線50cと第3負側母線51cとの間に接続されている。発熱部品4a、4bおよび4cには、発熱部品4dからの直流電流が流れる。発熱部品4a、4bおよび4cは、当該直流電流を、周波数の異なる交流電流に変換する。発熱部品4a、4bおよび4cは、圧縮機7に接続されている。3つの発熱部品4a、4bおよび4cのそれぞれは、圧縮機7のW相、V相、および、U相に対して設けられている。
 発熱部品4aには、図8に示すように、6個のスイッチング素子が設けられている。各スイッチング素子には、図示しない還流ダイオードが逆並列接続されている。各スイッチング素子は、例えば、IGBT、あるいは、MOSFETである。発熱部品4aにおいては、上アームのスイッチングと下アームのスイッチング素子とが直列に接続されて直列体を構成している。このように、発熱部品4aは、1対の上下アームのスイッチング素子からなる直列体が、合計3個設けられている。3つの直列体は並列に接続されている。
 発熱部品4bには、図8に示すように、6個のスイッチング素子が設けられている。各スイッチング素子には、図示しない還流ダイオードが逆並列接続されている。各スイッチング素子は、例えば、IGBT、あるいは、MOSFETである。発熱部品4bにおいては、上アームのスイッチングと下アームのスイッチング素子とが直列に接続されて直列体を構成している。このように、発熱部品4bは、1対の上下アームのスイッチング素子からなる直列体が、合計3個設けられている。3つの直列体は並列に接続されている。
 発熱部品4cには、図8に示すように、6個のスイッチング素子が設けられている。各スイッチング素子には、図示しない還流ダイオードが逆並列接続されている。各スイッチング素子は、例えば、IGBT、あるいは、MOSFETである。発熱部品4cにおいては、上アームのスイッチングと下アームのスイッチング素子とが直列に接続されて直列体を構成している。このように、発熱部品4cは、1対の上下アームのスイッチング素子からなる直列体が、合計3個設けられている。3つの直列体は並列に接続されている。
 なお、発熱部品4a~4cは、1つのインバータを構成している。直流電流を三相交流電流に反感する周知のインバータは、1相あたり、1対の上下アームのスイッチング素子で構成される。これに対し、実施の形態2のインバータは、1相あたり、3対の上下アームのスイッチング素子で構成される。制御部10は、3対の上下アームのスイッチング素子を、大きな電流容量の1組の上下アームのスイッチング素子であるとみなして、PWM信号を生成する。発熱部品4a~4cの各スイッチング素子は、当該PWM信号に従って、オンオフ動作を行う。
 また、図8に示すように、発熱部品4dと発熱部品4aとの間に、コンデンサ19が設けられている。コンデンサ19は、発熱部品4dに対して、並列に接続されている。すなわち、コンデンサ19は、正側母線50と負側母線51との間に接続されている。コンデンサ19の個数は1個でもよいが、複数個でもよい。すなわち、実施の形態1の図2に示すように、部品19a~19dをそれぞれコンデンサで構成し、コンデンサ19をそれらの部品19a~19dから構成してもよい。
 さらに、発熱部品4dと発熱部品4aとの間に、必要に応じて、リアクトルを設けるようにしてもよい。この場合、発熱部品4dから出力される直流電流は、リアクトルを介して、発熱部品4aに入力される。なお、実施の形態2では、コンデンサ19とリアクトルとを、電力変換装置に含まれているとして説明しているが、これに限るものではない。コンデンサ19とリアクトルとを、電力変換装置に対して外付けする構成としてもよい。
 他の構成については、実施の形態1と同じであるため、ここでは、その説明を省略する。
 以下、図8を用いて、発熱部品4a~4dに流れる電流について説明する。まず、交流電源13から出力された交流電流が、整流器である発熱部品4dに入力される。発熱部品4dは、当該交流電流を直流電流に変換する。続いて、当該直流電源は、インバータモジュールである発熱部品4a~4cまで流れていく。このとき、発熱部品4a~4cは、整流器である発熱部品4dに対して、それぞれ点Pおよび点Qで接続されている。そのため、回路電流12a~12fは以下に示すようになる。
 ここで、回路電流12aは第3正側母線50cを流れる電流で、回路電流12fは第3負側母線51cを流れる電流である。回路電流12bは第2正側母線50bを流れる電流で、回路電流12eは第2負側母線51bを流れる電流である。回路電流12cは第1正側母線50aを流れる電流で、回路電流12dは第1負側母線51aを流れる電流である。
 回路電流12cおよび12dは、発熱部品4aのみに流れる。回路電流12bおよび12eは、発熱部品4bのみに流れる。回路電流12aおよび12fは、発熱部品4cのみに流れる。そのため、回路電流12a~12fを流れる電流は全て等しくなる。また、発熱部品4a、4bおよび4cを流れる電流は全て等しいため、発熱部品4a~4cで発生する熱損失の大きさは等しい。よって、発熱部品4a~4cの温度は、(発熱部品4aの温度)=(発熱部品4bの温度)=(発熱部品4cの温度)という関係になる。
 図9は、実施の形態2に係る空気調和装置の制御部10の制御フローを示すフローチャートである。図9は、制御部10が、冷媒流量調整装置3を制御する場合の動作を示している。また、図10は、図9のフローチャートを説明するための温度変化グラフの一例を示す図である。
 図10において、符号15aは、発熱部品4aの温度であり、符号15bは、発熱部品4bの温度である。また、符号15cは、発熱部品4cの温度であり、符号15dは、発熱部品4dの温度である。また、図10において、符号18aは、第1目標温度であり、符号18bは、第2目標温度である。第1目標温度18aは、発熱部品4a~4cの温度15a~15cに対して予め設定された目標値である。第2目標温度18bは、発熱部品4dの温度15dに対して予め設定された目標値である。第1目標温度18aは、例えば、発熱部品4a~4cの耐熱温度を基準に決定する。あるいは、第1目標温度18aは、発熱部品4a~4cの温度差を基準に決定してもよい。また、第2目標温度18bは、例えば、発熱部品4dの耐熱温度を基準に決定する。あるいは、第1目標温度18aおよび第2目標温度18bは、室外機100の周囲温度、または、冷媒11の冷媒温度の平均値を基準に決定してもよい。図9のフローは、制御周期Tで繰り返し実行される。
 発熱部品4a~4cに対する冷却プレート6および冷媒11の冷却性能は等しく、且つ、発熱部品4a~4cの電流経路を流れる電流値は等しい。そのため、発熱部品4a~4cの温度15a~15cは等しく、発熱部品4dの温度15dのみが異なることがわかる。図10の例では、温度15dが、全般的に、温度15a~15cよりも低い場合を示しているが、この場合に限定されない。すなわち、温度15dが、全般的に、温度15a~15cよりも高くてもよい。
 図10の制御フローでは、制御部10が、冷媒流量調整装置3のON/OFFの切替を決定する。
 ステップS7で、制御部10は、温度検出部21a、21b、21cおよび21dからの温度情報8bを取得する。制御部10は、温度情報8bに基づいて、発熱部品4a~4dの温度15a~15dを取得する。このとき、発熱部品4a~4cの温度15a~15cは同じであるため、制御部10は、温度検出部21aおよび21dからの温度情報8bのみを取得するようにしてもよい。
 次に、ステップS8で、制御部10は、温度15a~15cと第1目標温度18aとを比較する。このとき、温度15a~15cは等しいため、制御部10は、温度15aのみと第1目標温度18aとを比較するようにしてもよい。また、制御部10は、温度15dと第2目標温度18bとを比較する。
 次に、ステップS9で、下記の2つの条件(A)および(B)のうち、少なくともいずれか一方の条件が成立している場合は、制御部10の処理はステップS10に進む。一方、下記の2つの条件(A)および(B)の両方ともが成立していない場合は、制御部10の処理はステップS11に進む。
 条件(A):温度15a~15cが、第1目標温度18aを超えている。
 条件(B):温度15dが、第2目標温度18bを超えている。
 ステップS10では、発熱部品4a~4dのいずれかの温度が高い場合であるため、制御部10は、冷媒流量調整装置3をON(開状態)にして、冷却用冷媒配管14における冷媒11の流通を許可する。これにより、冷却用冷媒配管14に冷媒11が流れる。その結果、発熱部品4a~4dが、冷媒11により冷却される。
 ステップS11では、すべての発熱部品4a~4dの温度が低い場合であるため、制御部10は、冷媒流量調整装置3をOFF(閉状態)にして、冷却用冷媒配管14における冷媒11の流通を停止させる。これにより、冷却用冷媒配管14に冷媒11が流れない。その結果、発熱部品4a~4dが、冷媒11により冷却されない。
 図10の例で説明すると、時刻t1のとき、温度15a~15cと第1目標温度18aとを比較すると、温度15a~15cが第1目標温度18aを超えている。従って、条件(A)が成立している。また、時刻t1のとき、温度15dと第2目標温度18bとを比較すると、温度15dが第2目標温度18bを超えている。従って、条件(B)が成立している。そのため、制御部10は、冷媒流量調整装置3をONにする。
 図10の時刻t2のとき、温度15a~15cと第1目標温度18aとを比較すると、温度15a~15cが第1目標温度18a未満である。従って、条件(A)は成立しない。また、時刻t2のとき、温度15dと第2目標温度18bとを比較すると、温度15dが第2目標温度18bを超えている。従って、条件(B)は成立している。そのため、制御部10は、冷媒流量調整装置3のONを維持する。
 図10の時刻t3のとき、温度15a~15cと第1目標温度18aとを比較すると、温度15a~15cが第1目標温度18a未満である。従って、条件(A)は成立しない。また、時刻t3のとき、温度15dと第2目標温度18bとを比較すると、温度15dが第2目標温度18b未満である。従って、条件(B)は成立していない。そのため、制御部10は、冷媒流量調整装置3をOFFにする。
 このように、制御部10が、図9の制御フローに従って、冷媒流量調整装置3のON/OFFの切替を制御する。これにより、発熱部品4a~4dの温度15a~15dは、図10に示すように、常に、閾値温度帯域になる。制御部10は、温度検出部21a~21dが検出する温度15a~15dが常に閾値温度帯域の範囲になるように、冷媒流量調整装置3のON/OFFの切替を行っている。なお、図10の第1閾値温度16aおよび第2閾値温度16bは、例えば、図3に示す第1閾値温度16aおよび第2閾値温度16bと同じである。
 このように、実施の形態2においても、実施の形態1と同様の効果を得ることができる。
 さらに、実施の形態2では、発熱部品4a~4cに流れる電流の値が全て等しくなるように、発熱部品4a~4cを交流電源13に対して接続している。これにより、発熱部品4a~4cで発生する熱損失の大きさが等しくなる。その結果、発熱部品4a~4cの温度が全て等しくなり、発熱部品4dの温度だけ異なる。これにより、制御部10は、発熱部品4aの温度と発熱部品4dの温度との2つの温度だけを用いて、冷媒流量調整装置3の制御を行うことができる。そのため、制御部10の演算量が低減できる。
 なお、実施の形態1および実施の形態2では、発熱部品4dが整流器の場合を例に挙げて説明したが、発熱部品4dは、交流電流を直流電流に変換するコンバータモジュールであってもよい。
 実施の形態3.
 実施の形態3では、実施の形態1および実施の形態2の変形例について説明する。以下では、実施の形態1および実施の形態2と異なる構成についてのみ説明する。他の構成については、実施の形態1および実施の形態2と同じであるため、ここでは、その説明を省略する。
 <変形例1>
 図11は、実施の形態3に係る空気調和装置における冷却プレート6と発熱部品4a~4dとを示す平面図である。図11に示すように、冷却プレート6は、発熱部品4a~4dの設置位置に合わせて、平面視で、L字型形状になっている。すなわち、冷却プレート6は、帯状に延びた本体部分6aと、本体部分6aから垂直方向に延びた凸部6bとから構成されている。図11では、発熱部品4a~4dの配置位置を破線で示している。冷却プレート6は、本体部分6aが主に発熱部品4a~4cに対応し、凸部6bは発熱部品4dに対応する。以下では、本体部分6aの長手方向の長さを「本体部分6aの長さ」と呼び、本体部分6aの短手方向の長さを「本体部分6aの幅」と呼ぶ。図11の場合、冷却用冷媒配管14は、本体部分6aの長手方向に沿って配置される。
 図11に示すように、発熱部品4a~4cの短辺の長さをyとし、冷却プレート6の本体部分6aの幅をxとすると、冷却プレート6の本体部分6aの幅xは、発熱部品4a~4cの短辺の長さyよりも短い。すなわち、x<yの関係となっている。
 発熱部品4a~4cは、図13に示すように、長辺に複数の接続端子140を有している。接続端子140は、図5に示すように、基板20に接続される。このとき、x≧yの場合、接続端子140の長さが短い、または、発熱部品4a~4cの高さが低いと、接続端子140と冷却プレート6との間の距離が短くなってしまう。その場合、接続端子140と冷却プレート6との間に、十分な絶縁距離を確保することができない。
 一方、x<yの関係が成り立っていれば、発熱部品4a~4cを冷却プレート6に取り付けた際に、接続端子140の長さが短くても、接続端子140と冷却プレート6との間に、十分な絶縁距離を確保することができる。従って、実施の形態3では、x<yの関係が成り立つように、冷却プレート6の幅xを短くしている。
 また、発熱部品4dは、発熱部品4dの短手方向が冷媒11の流れる方向に平行になるように配置される。すなわち、発熱部品4dは、発熱部品4dの長手方向が冷媒11の流れる方向に直交するように配置されている。そのため、発熱部品4dの接続端子140は、図13に示すように、2つの長辺のうちの一方の辺4d-1のみに設けられている。辺4d-1は、冷媒11の流れる方向の上流側に配置されている。すなわち、辺4d-1は、図11の冷却プレート6の凸部6bの辺6b-1に対応している。図11に示すように、凸部6bの辺6b-1は、発熱部品4dの接続端子140が設けられている辺よりも内側になるように配置されている。これにより、発熱部品4dを冷却プレート6に取り付けた際に、接続端子140の長さが短くても、接続端子140と冷却プレート6との間に、十分な絶縁距離を確保することができる。当該効果を得るために、実施の形態3では、発熱部品4dの接続端子140は、発熱部品4dの上流側の一辺のみに設けている。図13に示すように、辺4d-1は、辺4d-2に対向している。辺4d-2は、図11の冷却プレート6の凸部6bの辺6b-2に対応している。仮に、発熱部品4の辺4d-2にも接続端子140が設けられている場合には、辺6b-2に対して削るなどの処理を行わなければ、接続端子140と冷却プレート6との間に、十分な絶縁距離を確保することができない。しかしながら、実施の形態3では、発熱部品4dの上流側の辺4d-2には接続端子140が設けられていない。その結果、凸部6bの辺6b-2については、接続端子140の絶縁距離を考慮しなくてもよいため、辺6b-2を削るなどの処理を特に行う必要はない。
 <変形例2>
 図12は、実施の形態3に係る空気調和装置の制御装置5の内部の構成を示す側面図である。図12では、制御装置5の筐体5aの図示は省略している。
 図12に示すように、発熱部品4a~4cと冷却プレート6との間には、熱伝導部材としての金属板60が設けられている。金属板60は、例えば、銅などの熱伝導率の高い金属から構成されている。なお、金属板60は、熱伝導率が高い材質であれば、金属以外の材質から構成してもよい。
 一方、発熱部品4dと冷却プレート6との間には、金属板60を設けない。
 このように、冷却を促進したい第1発熱部品と冷却プレート6との間に金属板60を設けることで、第1発熱部品からの熱が冷却プレート6に伝導する速度が速くなる。これにより、第1発熱部品の冷却がより効率よく行われる。
 一方、冷却を抑制したい第2発熱部品と冷却プレート6との間には、金属板60を設けない。これにより、第2発熱部品の冷やしすぎが防止でき、結露の発生を抑えることができる。
 また、発熱部品4a~4dの高さが同じでない場合には、発熱部品4a~4cと冷却プレート6との距離にバラツキが生じる。その場合には、金属板60の厚さを発熱部品4a~4cごとに替えることで、バラツキを補整することができる。このように、金属板60は、発熱部品4a~4cと冷却プレート6との間の距離を補整して、発熱部品4a~4cと冷却プレート6とを均一に接触させるための調整部材としての機能も有する。
 <変形例3>
 図13は、実施の形態3に係る空気調和装置の制御装置5の内部の構成を示す平面図である。但し、図13では、基板20を除いた状態を示している。従って、図13では、基板20、制御部10、および、他の部品19a~19dの図示は省略している。図13は、冷却用冷媒配管14が、折り返し部分14aを有している場合を示している。
 図13に示す例では、冷却用冷媒配管14が、第1部分14bと、第2部分14cと、折り返し部分14aとを有している。第1部分14bは、実施の形態1および実施の形態2で説明した冷却用冷媒配管14に相当するため、ここでは、説明を省略する。図13に示す例では、第1部分14bと第2部分14cとが、冷却プレート6に形成された溝6c内に収容されている。
 第2部分14cは、図13に示すように、第1部分14bと平行になるように配置されている。第2部分14cは、第1部分14bと同様に、冷却プレート6に取り付けられている。第2部分14cは、冷却プレート6の内部を貫通するように配置されていてもよく、あるいは、冷却プレート6の外面に設けられていてもよい。第2部分14cは、冷却プレート6にロウ付け等により直接接触した状態で取り付けられている。第2部分14cは、第1部分14bと同様に、例えば、銅またはアルミニウムなどの熱伝導率の高い金属で構成されている。また、第2部分14cは、冷却プレート6との間にシール材などを介して、間接的に接触した状態で、冷却プレート6に取り付けられていてもよい。第2部分14cを設けることにより、冷却プレート6から空中に放熱される熱量が多くなり、冷却プレート6の冷却が促進される。その結果、発熱部品4a~4dの冷却がさらに促進される。
 冷却用冷媒配管14の折り返し部分14aは、図13に示すように、平面視で、U字型形状を有している。折り返し部分14aの内部は、冷媒11が流れる。折り返し部分14aは、第1部分14bと同様に、例えば、銅またはアルミニウムなどの熱伝導率の高い金属で構成されている。冷却用冷媒配管14の第1部分14bと第2部分14cとは、折り返し部分14aを介して連結されて、一本の冷却用冷媒配管14を構成している。従って、冷媒11は、図13の矢印に示されるように、第2部分14c、折り返し部分14a、および、第1部分14bの順に流れる。従って、図13の例においても、発熱部品4a~4dのうちで、発熱部品4dが、冷媒11が流れる方向において最も上流に配置されている。
 実施の形態1で説明したように、発熱部品4dの長手方向の中心位置は、冷却用冷媒配管14の径方向の中心位置に対して、矢印C方向にオフセットされている。このとき、折り返し部分14aの折り返し方向は、矢印Dで示されるように、矢印Cの向きとは反対の向きにする。すなわち、発熱部品4dが紙面の上方向にオフセットされている場合は、折り返し部分14aは紙面の下方向に折り返される。
 もし、発熱部品4dが紙面の上方向にオフセットされている場合に、折り返し部分14aも紙面の上方向に折り返すと、第2部分14cが、発熱部品4d付近を通ることになる。あるいは、平面視で、第2部分14cと発熱部品4dとがオーバーラップすることになる。その場合、発熱部品4dの冷却効果を高めることになり、発熱部品4dを冷やしすぎる可能性が出てくる。
 そのため、折り返し部分14aは、発熱部品4dのオフセット方向と反対の向きに折り返されている。これにより、発熱部品4dの結露の発生を抑えながら、発熱部品4a~4dを適度に冷却することができる。
 1 熱交換器、2 室外機ファン、3 冷媒流量調整装置、4 発熱部品、4a 発熱部品、4b 発熱部品、4c 発熱部品、4d 発熱部品、5 制御装置、5a 筐体、6 冷却プレート、6a 本体部分、6b 凸部、7 圧縮機、8a 制御信号、8b 温度情報、10 制御部、11 冷媒、12a 回路電流、12b 回路電流、12c 回路電流、12d 回路電流、12e 回路電流、12f 回路電流、13 交流電源、14 冷却用冷媒配管、14a 折り返し部分、14b 第1部分、14c 第2部分、15a 温度、15b 温度、15c 温度、15d 温度、16a 第1閾値温度、16b 第2閾値温度、18a 第1目標温度、18b 第2目標温度、19 コンデンサ、19a 部品、19b 部品、19c 部品、19d 部品、20 基板、20a 一辺、21a 温度検出部、21b 温度検出部、21c 温度検出部、21d 温度検出部、30 冷媒配管、31 バイパス配管、32 吐出口、33 吸入口、35 膨張弁、41 熱交換器、42 室内機ファン、50 正側母線、50a 第1正側母線、50b 第2正側母線、50c 第3正側母線、51 負側母線、51a 第1負側母線、51b 第2負側母線、51c 第3負側母線、60 金属板、70 小型化された周辺部品、71 領域、72 領域、73 領域、100 室外機、101 室内機、140 接続端子。

Claims (15)

  1.  冷媒を流通させる冷媒配管を介して圧縮機と凝縮器と膨張弁と蒸発器とが接続された冷媒回路と、
     前記圧縮機の吐出口から吐出された前記冷媒の一部分を流通させるバイパス配管と、
     前記圧縮機の動作を制御する制御装置と
     を備え、
     前記バイパス配管の両端は、前記凝縮器から前記圧縮機の吸入口までの間のいずれか2か所で、前記冷媒配管にそれぞれ接続され、
     前記制御装置は、
     基板と、
     前記圧縮機の動作を制御する制御部と、
     前記基板に配置された複数の発熱部品と、
     前記複数の発熱部品と前記バイパス配管との間に設けられ、前記バイパス配管を流れる前記冷媒を用いて前記複数の発熱部品を冷却させる冷却プレートと
     を有し、
     前記複数の発熱部品は、
     第1発熱部品と、
     前記第1発熱部品よりも発熱量の少ない第2発熱部品と
     を含み、
     前記第1発熱部品および前記第2発熱部品は、前記冷却プレートを平面視したとき、前記冷却プレートにおいて前記バイパス配管とオーバーラップする領域に配置され、
     前記第1発熱部品および前記第2発熱部品は、平面視したときに、それぞれ、長辺と短辺とを有し、
     前記第1発熱部品は、前記長辺が延びる長手方向が、前記バイパス配管の前記冷媒の流れる方向に平行になるように配置され、
     前記第2発熱部品は、前記短辺が延びる短手方向が、前記バイパス配管の前記冷媒の流れる方向に平行になるように配置されている、
     空気調和装置。
  2.  前記第1発熱部品は、複数個設けられており、
     前記第1発熱部品は、平面視したときに、前記第1発熱部品の短辺同士が対向するように、一列に並んで配置されている、
     請求項1に記載の空気調和装置。
  3.  前記基板は、平面視したときに、長辺と短辺とを有し、
     前記第1発熱部品および前記第2発熱部品は、前記基板の前記長辺が延びる長手方向に沿って前記基板の中央部に並んで配置されている、
     請求項1または2に記載の空気調和装置。
  4.  前記第2発熱部品は、平面視したときに、前記第2発熱部品の前記長手方向の中心位置が、前記バイパス配管の径方向の中心位置に対してオフセットされて配置されている、
     請求項1~3のいずれか1項に記載の空気調和装置。
  5.  前記第1発熱部品は、インバータモジュールであり、
     前記第2発熱部品は、整流器またはコンバータモジュールである、
     請求項1~4のいずれか1項に記載の空気調和装置。
  6.  前記冷却プレートは、平面視したときに、幅と長さとを有し、
     前記冷却プレートの前記幅は、前記第1発熱部品の短辺の長さよりも短い、
     請求項1~5のいずれか1項に記載の空気調和装置。
  7.  前記バイパス配管を流通する前記冷媒の量を調整する冷媒流量調整装置
     を備え、
     前記制御部は、前記圧縮機の動作および前記冷媒流量調整装置の動作を制御するものであって、
     前記制御部は、
     前記複数の発熱部品のそれぞれの温度を検出する温度検出部を有し、前記温度検出部が検出した前記温度に基づいて、前記冷媒流量調整装置の動作を制御する、
     請求項1~6のいずれか1項に記載の空気調和装置。
  8.  前記温度検出部は、前記複数の発熱部品のそれぞれに設けられた内部サーミスタ、または、前記複数の発熱部品のそれぞれに取り付けられた温度センサである、
     請求項7に記載の空気調和装置。
  9.  前記制御部は、
     第1目標温度と、前記第1目標温度よりも低い第2目標温度とを有し、
     前記温度検出部が検出した前記複数の発熱部品の前記温度の中から、最大温度と最小温度とを求め、
     前記最大温度と前記第1目標温度との差の絶対値を、第1演算結果として求め、
     前記最小温度と前記第2目標温度との差の絶対値を、第2演算結果として求め、
     前記第1演算結果が前記第2演算結果以上の場合に、前記冷媒流量調整装置を閉状態にして、前記バイパス配管における前記冷媒の流通を停止させ、
     前記第1演算結果が前記第2演算結果未満の場合に、前記冷媒流量調整装置を開状態にして、前記バイパス配管における前記冷媒の流通を許可する、
     請求項7または8に記載の空気調和装置。
  10.  前記制御部は、
     前記第1発熱部品の前記温度に対して設定された第1目標温度と、前記第2発熱部品の前記温度に対して設定された第2目標温度とを有し、
     前記第1発熱部品が前記第1目標温度を超えているか、あるいは、前記第2発熱部品が前記第2目標温度を超えている場合に、前記冷媒流量調整装置を開状態にして、前記バイパス配管における前記冷媒の流通を許可し、
     それ以外の場合に、前記冷媒流量調整装置を閉状態にして、前記バイパス配管における前記冷媒の流通を停止させる、
     請求項7~9のいずれか1項に記載の空気調和装置。
  11.  前記制御部は、
     前記複数の発熱部品の前記温度に対して閾値温度帯域を予め設定しておき、
     前記複数の発熱部品の前記温度が前記閾値温度帯域の範囲内になるように、前記冷媒流量調整装置の開閉を制御する、
     請求項7~10のいずれか1項に記載の空気調和装置。
  12.  前記閾値温度帯域の上限値は、前記発熱部品の耐熱温度に基づいて設定され、
     前記閾値温度帯域の下限値は、前記発熱部品の結露温度に基づいて設定される、
     請求項11に記載の空気調和装置。
  13.  前記第2発熱部品から前記第1発熱部品に向かって電流が流れるように、前記第1発熱部品と前記第2発熱部品とは電気的に接続されており、
     前記バイパス配管の前記冷媒の流れる方向は、前記電流の流れる方向と平行であり、
     前記バイパス配管の前記冷媒の流れる方向において、前記第2発熱部品は、前記第1発熱部品よりも、上流側に配置されている、
     請求項1~12のいずれか1項に記載の空気調和装置。
  14.  前記第1発熱部品と前記第2発熱部品とは、前記第1発熱部品と前記第2発熱部品との電気的な接続順序に合わせて、前記基板上に配置されている、
     請求項13に記載の空気調和装置。
  15.  前記第2発熱部品は、前記第2発熱部品の長辺が延びる長手方向が前記バイパス配管の前記冷媒の流れる方向に直交するように配置され、
     前記第2発熱部品の接続端子は、前記第2発熱部品の2つの長辺のうち、上流側の長辺に設けられている、
     請求項13または14に記載の空気調和装置。
PCT/JP2021/004887 2020-02-21 2021-02-10 空気調和装置 WO2021166753A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022501830A JP7250208B2 (ja) 2020-02-21 2021-02-10 空気調和装置
US17/786,769 US20230025136A1 (en) 2020-02-21 2021-02-10 Air-conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/006956 WO2021166204A2 (ja) 2020-02-21 2020-02-21 空気調和装置
JPPCT/JP2020/006956 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021166753A1 true WO2021166753A1 (ja) 2021-08-26

Family

ID=77390521

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/006956 WO2021166204A2 (ja) 2020-02-21 2020-02-21 空気調和装置
PCT/JP2021/004887 WO2021166753A1 (ja) 2020-02-21 2021-02-10 空気調和装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006956 WO2021166204A2 (ja) 2020-02-21 2020-02-21 空気調和装置

Country Status (3)

Country Link
US (1) US20230025136A1 (ja)
JP (1) JP7250208B2 (ja)
WO (2) WO2021166204A2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113606821A (zh) * 2021-08-31 2021-11-05 美的集团武汉暖通设备有限公司 空气源热泵设备、控制方法及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002120A (ja) * 2008-06-19 2010-01-07 Daikin Ind Ltd 冷凍装置
WO2011077720A1 (ja) * 2009-12-22 2011-06-30 ダイキン工業株式会社 冷凍装置
JP2016109350A (ja) * 2014-12-05 2016-06-20 ダイキン工業株式会社 冷凍装置
WO2018051499A1 (ja) * 2016-09-16 2018-03-22 三菱電機株式会社 冷凍サイクル装置
WO2019106792A1 (ja) * 2017-11-30 2019-06-06 三菱電機株式会社 電力変換装置及び空気調和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739738Y2 (ja) * 1978-06-19 1982-09-01
IT1298522B1 (it) * 1998-01-30 2000-01-12 Rc Condizionatori Spa Impianto frigorifero con inverter di controllo del compressore raffreddato mediante fluido dell'impianto,e procedimento
DE10128307B4 (de) * 2001-06-12 2004-03-18 Siemens Ag Klimaanlage
JP5611423B2 (ja) * 2013-07-17 2014-10-22 三菱重工業株式会社 インバータ冷却装置およびインバータ冷却方法ならびに冷凍機
WO2017145276A1 (ja) * 2016-02-24 2017-08-31 三菱電機株式会社 空気調和装置
JP2018148671A (ja) * 2017-03-03 2018-09-20 ダイキン工業株式会社 電源基板、電源ユニットならびに冷凍装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002120A (ja) * 2008-06-19 2010-01-07 Daikin Ind Ltd 冷凍装置
WO2011077720A1 (ja) * 2009-12-22 2011-06-30 ダイキン工業株式会社 冷凍装置
JP2016109350A (ja) * 2014-12-05 2016-06-20 ダイキン工業株式会社 冷凍装置
WO2018051499A1 (ja) * 2016-09-16 2018-03-22 三菱電機株式会社 冷凍サイクル装置
WO2019106792A1 (ja) * 2017-11-30 2019-06-06 三菱電機株式会社 電力変換装置及び空気調和装置

Also Published As

Publication number Publication date
US20230025136A1 (en) 2023-01-26
JP7250208B2 (ja) 2023-03-31
JPWO2021166753A1 (ja) 2021-08-26
WO2021166204A2 (ja) 2021-08-26

Similar Documents

Publication Publication Date Title
US9523529B2 (en) Refrigeration apparatus
JP6701637B2 (ja) インバータ装置
JP5354083B2 (ja) 半導体装置
US11557521B2 (en) Heat sink and circuit device
US20150114021A1 (en) Refrigeration apparatus
JP6615326B2 (ja) モータ駆動装置および空気調和機
WO2019106792A1 (ja) 電力変換装置及び空気調和装置
WO2021166753A1 (ja) 空気調和装置
JPWO2018051499A1 (ja) 冷凍サイクル装置
JP2010245158A (ja) 冷却器
JP2015031450A (ja) 空気調和装置
JP2019128071A (ja) 空気調和装置
JP6972309B2 (ja) 空気調和装置および空気調和制御装置
JP6759725B2 (ja) 冷凍装置
US11486613B2 (en) Power converter and air-conditioning apparatus employing the same
US11391473B2 (en) Outdoor unit and air conditioner
CN216528872U (zh) 功率装置、变频系统和空调设备
US20230052725A1 (en) Converter
US20230100590A1 (en) Outdoor unit of air-conditioning apparatus
CN114171473A (zh) 功率装置及其控制方法、变频系统和空调设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756528

Country of ref document: EP

Kind code of ref document: A1