WO2021165308A1 - Verfahren zum behandeln von substraten mit chemikalien - Google Patents

Verfahren zum behandeln von substraten mit chemikalien Download PDF

Info

Publication number
WO2021165308A1
WO2021165308A1 PCT/EP2021/053867 EP2021053867W WO2021165308A1 WO 2021165308 A1 WO2021165308 A1 WO 2021165308A1 EP 2021053867 W EP2021053867 W EP 2021053867W WO 2021165308 A1 WO2021165308 A1 WO 2021165308A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment medium
substrate
treatment
temperature
chemical
Prior art date
Application number
PCT/EP2021/053867
Other languages
English (en)
French (fr)
Inventor
Harald Okorn-Schmidt
Manuel LINDER
Jörg HOFER-MOSER
Philipp Tobias ENGESSER
Klaus Smoliner
Original Assignee
4Tex Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 4Tex Gmbh filed Critical 4Tex Gmbh
Priority to EP21707631.4A priority Critical patent/EP4122006A1/de
Priority to JP2022549907A priority patent/JP2023519493A/ja
Publication of WO2021165308A1 publication Critical patent/WO2021165308A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67023Apparatus for fluid treatment for general liquid treatment, e.g. etching followed by cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/469Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers
    • H01L21/4757After-treatment
    • H01L21/47573Etching the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/18Network architectures or network communication protocols for network security using different networks or channels, e.g. using out of band channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/003Secret communication by varying carrier frequency at or within predetermined or random intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/006Secret communication by varying or inverting the phase, at periodic or random intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/08Secret communication by varying the polarisation of transmitted waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling

Definitions

  • the invention relates to a method for treating substrates with chemicals.
  • treatment media When processing substrate surfaces, such as silicon or other semiconductor materials, complex and expensive mixtures of chemicals (“treatment media”) are often used.
  • the aim of processing substrate surfaces is, among other things, to selectively remove layers of the substrate that are no longer required from underlying layers of the substrate.
  • etching mixtures as the treatment medium, contain water or an organic solvent as the main component, which in certain cases also serves as an inert matrix, and other active components, for example an inorganic or organic acid or an inorganic or organic base.
  • the mixtures of chemicals used for treating substrate surfaces contain, for example, treatment media that are used in the manufacture of integrated circuits, and other components.
  • additional components can be buffer substances in order to stabilize the pH value, since the acid concentration or the base concentration can change during the etching process.
  • Corrosion inhibitors are often added to mixtures of treatment media containing chemicals, which are intended to ensure that certain materials which are exposed to the treatment medium, for example the etching mixture, are not attacked (not etched).
  • oxidizing agents are also added to the etching mixtures, which are necessary are, for example, to convert metals into their ionized, soluble chemical states.
  • etch mixtures used in the manufacture of semiconductors contain several components in certain concentrations in order to be effective.
  • the concentrations of the chemicals that are particularly suitable for carrying out the substrate treatment, in particular for etching are obtained, for example, from experiments in which the etching rates of the exposed materials are measured and their etching selectivities are determined therefrom. It is often desirable to obtain high etching rates, as this enables the process times to be kept short.
  • etching rates can be achieved with more concentrated mixtures, i.e. treatment media in which the active component (e.g. acid or base or oxidizing agent) is present in higher concentration.
  • the active component e.g. acid or base or oxidizing agent
  • the mixtures of treatment media are expensive, in any case more expensive than the inert matrix component (e.g. water).
  • water also has the task of causing the dissociation (activation) of the acid or base and thus serves to finally dissolve the etching residues and the materials which are soluble in the etching medium and formed during the etching.
  • a problem that arises in particular when etching substrate surfaces is that the process time can be very long, since the etching cannot always be optimized by increasing the concentration and / or increasing the temperature.
  • a specific method in which this problem occurs is the removal of a coating, for example a structured or unstructured masking layer ("hard mask, HM)," during the process sequence to prepare for the creation of electrical contacting and wiring of the electronic components applied to microchips
  • a coating for example a structured or unstructured masking layer ("hard mask, HM)," during the process sequence to prepare for the creation of electrical contacting and wiring of the electronic components applied to microchips
  • the area of microchip and component production is generally referred to as the "back end of line” (BEOL), the process area for creating the Metal contacts, designated.
  • a typical masking layer can, for example, be a coating made of titanium nitride (TiN).
  • hydrogen peroxide When etching this masking layer, hydrogen peroxide is used, for example, which decomposes to oxygen and water in the basic pH range and at higher temperatures and possibly also through prolonged contact with titanium ions and is then no longer available in a sufficiently high concentration as an oxidizing agent for titanium nitride.
  • the oxidation of titanium nitride is necessary, however, so that the material of the masking layer can be dissolved in the etching medium.
  • Hydrogen peroxide can also decompose in the neutral and acidic pH range. Etching mixtures for relevant materials in these pH ranges can be advantageous if special etching selectivities between two specific materials are necessary.
  • Masking layers are also used in other areas of the manufacture of semiconductor components, such as in FEOL ("front end of line”, process area for creating critical electronic components, for example transistors), MoL ("middle of line", process area for creating the first critical electrical contacts to the critical components).
  • FEOL front end of line
  • MoL middle of line
  • process area for creating the first critical electrical contacts to the critical components An example of a further process area where masking layers are used is the so-called “back end” (BE, area of the final process steps for the separation and packaging of the microchips or components).
  • mixtures of chemicals treatment media
  • the mixture of chemicals e.g. 40 liters
  • the specified process temperature e.g. 60 °
  • the invention is based on the object of specifying a method of the type mentioned at the outset which, while being highly effective, results in a lower consumption of chemicals. This object is achieved according to the invention with a method which has the features of claim 1.
  • the treatment medium used to treat the substrate which contains at least one chemical effective for the treatment, is heated to a temperature in a predetermined temperature range at which the chemical is still sufficiently stable.
  • the treatment medium is heated in a very short time to the temperature required for the process (process temperature) immediately before being applied to the substrate, so that no or only slight and negligible decomposition of the at least one chemical occurs in the short time.
  • the procedure can be such that the treatment medium is heated to a temperature immediately before application to the substrate, so that it has the optimum temperature for the effective processing of the substrate at the time when the treatment medium occurs on the substrate, and so on good result of processing (process result) is achieved.
  • the method according to the invention is suitable for processing substrates with non-recyclable (reusable) treatment media, such as, for example, those containing hydrogen peroxide, which is used for removing titanium nitride layers during wafer production.
  • non-recyclable (reusable) treatment media such as, for example, those containing hydrogen peroxide, which is used for removing titanium nitride layers during wafer production.
  • An advantageous effect of the method according to the invention is that because of the short-term increase in temperature to an optimal temperature for effective processing of the substrate, this temperature increase occurring immediately before the treatment medium is applied to the substrate, there is only a very short period of time within which the active chemical (e.g. hydrogen peroxide) cannot or only slightly decomposes.
  • Another advantage of the method according to the invention is that large areas of the apparatus and devices used for carrying out the method according to the invention do not have to be designed in such a way that they have to withstand high temperatures, since they are only exposed to low temperatures.
  • the following devices can be used to heat the treatment medium:
  • Resistance heater using a heating element The heating element is connected to a direct voltage or alternating voltage, in particular high-frequency alternating voltage, by means of two electrical contacts. Due to the specific resistance of the material, a certain current can flow, which generates heat and heats the material. The material is in direct or indirect contact, separated by a separating material or a coating, with the medium to be heated. The medium washes around the heating element and dissipates the heat. A material for direct contact with the medium could be glassy carbon, for example.
  • Resistance heater using a heating medium Electrical heating via contact electrodes that are in direct electrical contact with the heating medium. The heating medium is heated by means of direct current or low or high frequency alternating current because of its specific resistance.
  • the advantage of this method lies in the fact that there is no thermal mass of the heating element.
  • the design is galvanically separated in order to avoid voltage potentials through the medium.
  • the contact electrodes can be made of glassy carbon, for example.
  • the geometry and positioning of the contacts should be selected in a way that is advantageous for the heating of the medium.
  • Heat exchanger • Heating by blowing in steam. Introduction of pure water vapor or superheated water vapor into the medium.
  • Temperature control by mixing media with different temperatures For example, a cold medium is combined with a warm medium via separate lines and separately controllable control valves in a mixed line.
  • the mixed temperature can be set through the different and individually controllable inflow of cold and warm medium (cf. AT 515 147 Bl).
  • the invention solves the problem by dividing the heating of the treatment medium into two steps:
  • the treatment medium is heated according to the point of impact on the substrate (wafer) in order to achieve an optimal process result.
  • the invention can be used for many processes in the semiconductor and component manufacturing process (such as in FEOL, BEOL, MOL and BE); also for the removal of unwanted contamination, e.g. when cleaning substrates.
  • the main application is in the area of non-recirculable treatment media, and here especially in the area of media that contain H2O2 (or other time or temperature-dependent unstable oxidizing agents), and there in particular in processes for removing masking layers made of TiN (or other selectively removable, and for masking suitable materials).
  • FIG. 1 shows, in section, a typical microstructure arrangement on a semiconductor substrate, which schematically shows the process area for creating the metal contacts (only the details relevant to understanding the present invention are shown, parts of the material layers required for a functioning electronic circuit are not shown),
  • FIG. 2 shows a diagram of etching rate / temperature
  • FIG. 3 shows a diagram of etching rate / distance to the center
  • FIG. 4 shows a diagram of etching rate / diameter
  • FIG. 5 shows a diagram of etching rate / diameter.
  • a semiconductor substrate 110 shown in FIG. 1 has a masking layer (for example TiN hard mask) 101 on its front side.
  • An opening 102 was made in the masking layer 101 via a series of lithography-relevant processes, so that a trench 103 could be etched in the dielectric 109 with the dielectric constant kl (kl usually has a value in the BEOL range that is below the value k of thermal S1O2).
  • a cover layer 105 which is exposed after the dry etching processes.
  • a metal film 107 which is divided into an intermediate layer 108, a dielectric with the dielectric constant k2 (k2 in the BEOL range usually has a value that is below the value k of thermal S1O2; kl and k2 can also have the same k Have value, ie the layers 108 and 109 can consist of the same or very similar materials), is embedded.
  • the masking layer 101 is selectively removed without the exposed area of the cover layer 105 or the Interlayer 109 are chemically attacked or corroded.
  • the metal film 107 can also be exposed.
  • a treatment medium etching medium
  • the material layers to be removed can be located on the front side of the substrate or on the rear side thereof.
  • the material layers can be layers of many different elements and combinations of elements
  • Si Si, SiGe, Ge, SiC, Ti0 2 , III / V (GaAs, InGaAs, GaN and other materials with similar semiconductor properties).
  • Conductor PolySi (with or without doping), W, Co, Cu, Mo, Ti,
  • TiN, Ta, TaN, BN, Graphene can also act as a semiconductor under certain conditions) and Sn compounds.
  • Insulator Si oxide, Si nitride, Al oxide, low-k materials (materials with a low dielectric constant: k typically lower than the dielectric constant of thermally generated Si0 2) , high-k materials (materials with a high dielectric constant: k typically higher than the dielectric constant of thermally generated Si0 2 , eg Hf oxide).
  • Auxiliary films masking layers (hard masks), photo films, block masks, planarization layers, which can consist of many of the above-mentioned elements and element connections.
  • Treatment media used that have different removal rates depending on the temperature. In almost all cases the etching rate increases when the temperature of the treatment medium is increased.
  • treatment media When removing a TiN masking layer, treatment media are used that dissolve the TiN in two stages.
  • the first step is the oxidation of the Ti / TiN
  • the TiO x , Ti x O y , Ti x OH y , or T1O2 is dissolved.
  • H2O2 is used for the oxidation.
  • Other oxidizing agents are also possible, such as, for example, percarbonates, oxo anions, permanganates, dichromates, oxidizing metal ions (for example noble metal ions), anions of halogenated oxygen acids, or oxidizing elements such as oxygen, sulfur and halogens.
  • the oxides then often dissolve in the pH range above 7, mostly in a pH range between 7 and 10. Etching mixtures in the pH range 7 and below may also be desirable, for example in order to achieve a certain selectivity for the etching of two materials allow relative to each other.
  • Example of a possible process sequence a) applying the TiN masking layer, b) structuring the TiN masking layer / opening the masking layer, c) Dry etching of the material in the open area of the TiN masking layer, d) Removal of the TiN masking layer and the dry etching by-products:
  • the removal of the TiN masking layer and the dry etching by-products can be carried out in one step or in two successive steps.
  • a mixture of a base eg TMAH, NH 4 OH, TEAH
  • an oxidizing agent eg H 2 O 2
  • water is used as a typical treatment medium.
  • a mixture of a base eg TMAH (tetramethylammonium hydroxide), NH 4 OH, TEAH (tetraethylammonium hydroxide)
  • an oxidizing agent eg H 2 O 2
  • water is used as a typical treatment medium.
  • Diluted HF hydrofluoric acid
  • a typical treatment medium which can also contain chemical additives to prevent unwanted corrosion on existing materials, e.g. citric acid or benzotriazole.
  • the targeted control of atmospheric oxygen and light can also be advantageous in order to be able to control corrosion processes in a targeted manner.
  • the treatment medium within the system is heated to the temperature at which the chemical contained in the treatment medium is still stable. This temperature depends on the mixture and can be between 30 ° C and 70 ° C.
  • the treatment medium is now increased from the temperature to which the treatment medium was heated in the system to a temperature which results in an optimal process temperature on the substrate.
  • the temperature difference between the system and the end point of the line can be between 5 ° C and 80 ° C.
  • the higher temperature reduces the time that is required to remove the TiN masking layer. In addition, this reduces the amount of treatment media required.
  • the masking layer 101 is typically removed after the dry etching processes, which are used to define the trench 103 and the contact hole 104, have been completed.
  • the increased difficulty arises because of the materials (cover layer materials 105 or metal films 107) that can be exposed during dry etching, e.g. Cu, Co, CoWP, Ta,
  • TaN or Ru to name just a few of the materials currently in use. These materials, which are used to distribute the currents within the semiconductor chip, must be protected from oxidation and dissolution.
  • anti-corrosive agents are added to the treatment medium, which are often organic inhibitors that prevent unwanted attack on the metals through absorption or adsorption on the surface, e.g. BTA (benzotriazole) is used, or citric acid.
  • BTA benzotriazole
  • citric acid e.g. citric acid
  • FIG. 3 Diagrams of the etching profiles at 55 ° C. with central (in the center of rotation of the substrate) and decentralized (outside the center of rotation of the substrate) application of the etching medium (no additional heating of the treatment medium before application) are shown in FIG. 3.
  • FIG. 4 A diagram of the etching rates when the temperature is increased from 55 ° C. to 65 ° C. without temperature compensation, i.e. without adapting the heating temperature as a function of the radial distance of the application point from the rotation center of the substrate, during application is shown in FIG. 4.
  • FIG. 5 shows a diagram of the etching rate with a temperature increase from 55 ° C. to 65 ° C. and additional temperature compensation during application.
  • the temperature of the treatment medium is optimally adapted to the point of application on the wafer.
  • the temperature is increased from 65 ° C in the center to 67.5 ° C at a radial distance of 60 mm from the center.
  • the increase takes place linearly as a function of the position and in such a way that the optimum temperature was reached at the time of impact on the substrate.
  • the treatment medium is an aqueous solution which contains 5% by volume
  • H2O2 150ppm tetramethylammonium hydroxide and 200ppm 1,2,4-triazole.
  • the standard process results in an etching rate at 50 ° C (temperature on the substrate) of 216 A / min, which results in a process time of 83 seconds for a TiN layer of 300 A to be removed.
  • the treatment medium is an aqueous solution, which contains 10Vol% H2O2, 200ppm choline hydroxide and 150ppm 1,2,3-triazole.
  • the standard process results in an etching rate at 55 ° C (temperature on the substrate) of 226 A / min, which results in a process time of 93 seconds for a TiN layer of 350 A to be removed.
  • the process according to the invention with a targeted increase in the temperature immediately before application to the substrate, so that the contact temperature of the treatment medium on the substrate is increased by 10 ° C., results in an etching rate of 454 A / min, which is 350 A for a TiN layer to be removed results in a process time of 46 seconds.
  • the treatment medium is an aqueous solution which contains 15 vol% H2O2, 150ppm tetramethylammonium hydroxide and 550ppm imidazole.
  • the standard process results in an etching rate at 50 ° C (temperature on the substrate) of 196 A / min, which results in a process time of 76 seconds for a TiN layer of 250 A to be removed.
  • the process according to the invention with a targeted increase in the temperature immediately before application to the substrate, so that the contact temperature of the treatment medium on the substrate is increased by 15 ° C, results in an etching rate of 554 A / min, which results in a process time of 27 seconds for a TiN layer of 250 A to be removed.
  • the treatment medium is an aqueous solution which contains 20% by volume H2O2, 200 ppm choline hydroxide and 200 ppm imidazole.
  • the standard process results in an etching rate at 50 ° C (temperature on the substrate) of 226 A / min, which results in a process time of 92 seconds for a TiN layer of 350 A to be removed.
  • the treatment medium When treating substrates with a treatment medium which contains at least one chemical effective for the treatment, For example, when removing a masking layer 101 from a semiconductor substrate 110 by etching, the treatment medium is only heated to a temperature effective for the treatment immediately before being applied to the substrate 110, the treatment medium having the optimal temperature for the treatment when it is applied to the substrate meets. In this way, a short treatment time, low, thermally induced decomposition losses of chemicals and a saving in treatment medium are achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Weting (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Beim Behandeln von Substraten mit einem Behandlungsmedium, das wenigstens eine für das Behandeln wirksame Chemikalie enthält, beispielsweise beim Entfernen einer Maskierungsschicht (101) von einem Halbleitersubstrat (110) durch Ätzen, wird das Behandlungsmedium erst unmittelbar vor dem Aufbringen auf das Substrat (110) auf eine für das Behandeln wirksame Temperatur erwärmt, wobei das Behandlungsmedium die für das Behandeln optimale Temperatur hat, wenn es auf das Substrat trifft. So werden eine kurze Behandlungsdauer, geringe, thermisch bedingte Zersetzungsverluste an Chemikalie und ein Einsparen an Behandlungsmedium erreicht.

Description

VERFAHREN ZUM BEHANDELN VON SUBSTRATEN MIT CHEMIKALIEN
Die Erfindung betrifft ein Verfahren zum Behandeln von Substraten mit Chemikalien.
Beim Bearbeiten von Substratoberflächen, wie z.B. Silizium oder anderen Halbleiterwerkstoffen, werden oft komplexe und teure Mischungen von Chemikalien („Behandlungsmedien") verwendet.
Ziel der Bearbeitung von Substratoberflächen ist es u.a., nicht mehr benötigte Schichten des Substrates selektiv von darunterliegenden Schichten des Substrates zu entfernen.
Bekannte Mischungen von Chemikalien, so auch "Ätzmischungen" als Behandlungsmedium, enthalten Wasser oder ein organisches Lösungsmittel als Hauptkomponente, das in bestimmten Fällen auch als inerte Matrix dient, und andere aktive Komponenten, beispielsweise eine anorganische oder organische Säure oder eine anorganische oder organische Base.
In vielen Fällen enthalten die für das Behandeln von Substratoberflächen eingesetzten Mischungen von Chemikalien beispielsweise Behandlungsmedien, die beim Herstellen von integrierten Schaltungen verwendet werden, und weitere Komponenten. Diese weiteren Komponenten können Puffersubstanzen sein, um den pH-Wert zu stabilisieren, da sich beim Ätzvorgang die Säurekonzentration oder die Basenkonzentration ändern kann.
Oft werden Mischungen von Chemikalien enthaltenden Behandlungsmedien auch Korrosionsinhibitoren zugesetzt, die sicherstellen sollen, dass bestimmte Werkstoffe, die dem Behandlungsmedium, z.B. der Ätzmischung, ausgesetzt sind, nicht angegriffen (nicht geätzt) werden. In vielen Fällen werden Ätzmischungen auch Oxidationsmittel zugesetzt, die notwendig sind, um zum Beispiel Metalle in ihre ionisierten, löslichen chemischen Zustände überzuführen.
Ätzmischungen, die beim Herstellen von Halbleitern verwendet werden, enthalten also mehrere Komponenten in bestimmten Konzentrationen, um wirksam zu sein.
Die für das Ausführen der Substratbehandlung, insbesondere zum Ätzen, besonders geeigneten Konzentrationen der Chemikalien ergeben sich beispielsweise durch Experimente, bei denen Ätzraten der exponierten Werkstoffe gemessen und daraus deren Ätzselektivitäten bestimmt werden. Häufig ist es wünschenswert, hohe Ätzraten zu erhalten, da dadurch die Prozesszeiten kurz gehalten werden können.
Hohe Ätzraten können durch höher konzentrierte Mischungen, d.h. Behandlungsmedien, in welchen die aktive Komponente (z.B. Säure oder Base oder Oxidationsmittel) in höherer Konzentration vorliegt, erreicht werden. Dies hat allerdings meist zur Folge, dass die Mischungen von Behandlungsmedien (Chemikalien) teuer sind, jedenfalls teurer als die inerte Matrixkomponente (z.B. Wasser) .
In bestimmten Mischungen von Chemikalien enthaltenden Behandlungsmedien hat Wasser auch die Aufgabe, die Dissoziation (Aktivierung) der Säure oder Base zu bewirken und dient somit dem endgültigen Auflösen der Ätzrückstände und der beim Ätzen gebildeten, im Ätzmedium löslichen Materialien.
Es ist auch schon vorgeschlagen worden, höhere Ätzraten ohne besonders hohe Konzentrationen der aktiven Komponenten zu erhalten, indem das Ätzen bei höheren Temperaturen ausgeführt wird. Es ist bekannt, dass mit Ätzprozessen bei höheren Temperaturen meist eine signifikante Erhöhung der Abtragsrate erreicht wird. Ein Problem beim Erhöhen der Temperatur beim Ätzen ist es jedoch, dass sich bestimmte Komponenten der Ätzmischungen, die für das Gesamtergebnis wichtig sind, verflüchtigen oder zersetzen können, zum Beispiel durch einen zu hohen Dampfdruck der Mischung entweichen oder durch thermische Instabilität in zumeist inaktive Bestandteile zersetzt werden. Es ist daher erforderlich, dass ein optimaler Kompromiss zwischen höheren Konzentrationen der Chemikalien in dem Behandlungsmedium (Ätzmedium) einerseits, und anderseits der Temperatur, bei der das Behandeln (Ätzen) durchgeführt wird (Prozesstemperatur), zu finden.
Ein Problem, das sich insbesondere beim Ätzen von Substratoberflächen ergibt, ist es, dass die Prozesszeit sehr lange sein kann, da sich das Ätzen nicht immer durch Erhöhen der Konzentration und/oder Erhöhen der Temperatur optimieren lässt.
Lange Prozesszeiten führen in der Regel zu hohen Produktionskosten, da der Durchsatz für den Prozess verringert ist, gemessen in Anzahl der pro Zeiteinheit behandelten Substrate. Auch führen Fälle, bei denen das eine Mischung der Chemikalien enthaltende Behandlungsmedium (wegen Abbau aktiver Komponenten) nur einmal verwendet werden kann, zu sehr hohen Kosten. Lange Zeiten, während welcher Behandlungsmedien auf das Substrat (z.B. einen Wafer) aufgebracht werden müssen, ergeben einen hohen Verbrauch an Behandlungsmedien.
Ein konkretes Verfahren, bei dem dieses Problem vorliegt, ist das Entfernen einer Beschichtung, z.B. einer strukturierten oder unstrukturierten Maskierungsschicht ("hard mask, HM), während der Prozessabfolge zur Vorbereitung der Erstellung der elektrischen Kontaktierung und Verdrahtung der auf Mikrochips aufgebrachten elektronischen Bauelemente. Dieser Bereich der Mikrochip- und Bauelemente-Fertigung wird generell als "back end of line" (BEOL), Prozessbereich zur Erstellung der Metallkontakte, bezeichnet. Eine typische Maskierungsschicht kann z.B. eine Beschichtung aus Titannitrid (TiN) sein. Beim Ätzen dieser Maskierungsschicht wird z.B. Wasserstoffperoxid eingesetzt, das sich im basischen pH-Bereich und bei höheren Temperaturen und gegebenenfalls auch durch lang andauernden Kontakt mit Titanionen zu Sauerstoff und Wasser zersetzt und dann als Oxidationsmittel für Titannitrid nicht mehr in genügend hoher Konzentration zur Verfügung steht. Die Oxidation von Titannitrid ist aber erforderlich, damit der Werkstoff der Maskierungsschicht in dem Ätzmedium gelöst werden kann.
Wasserstoffperoxid kann sich auch im neutralen und sauren pH- Bereich zersetzen. Ätzmischungen für relevante Materialien in diesen pH-Bereichen können von Vorteil sein, wenn spezielle Ätzselektivitäten zwischen zwei bestimmten Materialien notwendigerweise zu erreichen sind.
Maskierungsschichten werden auch in anderen Bereichen der Herstellung von Halbleiterbauelementen verwendet, wie z.B. im FEOL („front end of line", Prozessbereich zur Erstellung der kritischen elektronischen Bauelemente, zum Beispiel der Transistoren), MoL („middle of line", Prozessbereich zur Erstellung der ersten kritischen elektrischen Kontakte zu den kritischen Bauelementen). Ein Beispiel eines weiteren Prozessbereiches, wo Maskierungschichten genutzt werden, ist das sogenannte „back end" (BE, Bereich der finalen Prozessschritte zur Vereinzelung und Verpackung der Mikrochips oder Bauelemente) .
Ein weiteres Problem, das beim Behandeln von Substratoberflächen, insbesondere beim Bearbeiten von Waferoberflächen, mit Hilfe von Ätzmedien auftritt, ist es, dass es auf Grund technisch-physikalischer Gegebenheiten oft nicht möglich ist, die Prozessparameter über das gesamte Werkstück (Wafer) gleich zu halten. Dies hat den Nachteil zur Folge, dass die Substratoberfläche an unterschiedlichen Stellen verschieden bearbeitet bzw. abgetragen wird. Es ist versucht worden, diesem Problem durch Anpassung der Prozessparameter entgegenzuwirken, wie dies durch Erhöhen der Temperatur, beispielsweise mit Hilfe einer Vorrichtung zum Erwärmen von Medien (Induktionsheizvorrichtung), die in der AT 515147 Bl beschrieben ist, an sich möglich ist.
Es ist auch versucht worden, das Problem, das sich durch instabile Komponenten von Ätzmischungen (z.B. H2O2) ergibt, durch Optimieren der Prozesszeit und Optimieren der Konzentration der Chemikalien und auch der Prozesstemperaturen zu lösen. Dieser Versuch hat jedoch den Nachteil, dass die am häufigsten verwendeten Mischungen von Chemikalien (Behandlungsmedien), beispielsweise auch jene, die auf Wasserstoffperoxid basieren, nur einmal verwendet werden können, sodass sich hohe Kosten ergeben.
Der Umstand, dass Mischungen von Chemikalien (Behandlungsmedien) nur einmal verwendet werden können, ergibt sich aus der Tatsache, dass die Mischung von Chemikalien (z.B. 40 Liter) insgesamt auf die vorgegebene Prozesstemperatur, z.B. 60°, erhitzt werden muss, wobei die Chemikalie, insbesondere Wasserstoffperoxid, beginnt, sich rasch zu zersetzen.
Ein Problem ist auch darin zu sehen, dass das für das Behandeln von Substraten verwendete, eine Mischung von Chemikalien enthaltende Behandlungsmedium ordnungsgemäß entsorgt werden muss, was oft wegen zusätzlicher toxischer Bestandteile, wie zum Beispiel Tetramethylammoniumhydroxid, mit erheblichem Aufwand und Kosten verbunden ist.
Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren der eingangs genannten Gattung anzugeben, das bei hoher Wirksamkeit einen geringeren Verbrauch an Chemikalien ergibt. Gelöst wird diese Aufgabe erfindungsgemäß mit einem Verfahren, welches die Merkmale von Anspruch 1 aufweist.
Bevorzugte und vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstand der Unteransprüche.
Bei dem erfindungsgemäßen Verfahren wird das zum Behandeln des Substrates verwendete Behandlungsmedium, welches wenigstens eine für das Behandeln wirksame Chemikalie enthält, bis auf eine Temperatur in einem vorbestimmten Temperaturbereich erwärmt, bei der die Chemikalie noch ausreichend stabil ist.
In einem weiteren Schritt wird das Behandlungsmedium unmittelbar vor dem Aufbringen auf das Substrat in sehr kurzer Zeit auf die für den Prozess benötigte Temperatur (Prozesstemperatur) erhitzt, sodass in der kurzen Zeit kein oder ein nur geringfügiges und vernachlässigbares Zersetzen der wenigstens einen Chemikalie auftritt.
Dabei kann so vorgegangen werden, dass das Behandlungsmedium unmittelbar vor dem Aufbringen auf das Substrat auf eine Temperatur erwärmt wird, sodass es zum Zeitpunkt, in dem das Behandlungsmedium auf das Substrat auftritt, die für das wirksame Bearbeiten des Substrates optimale Temperatur hat, und so ein gutes Ergebnis des Bearbeitens (Prozessergebnis) erreicht wird.
Insbesondere ist das erfindungsgemäße Verfahren für das Bearbeiten von Substraten mit nicht rezirkulierbaren (wiederverwendbaren) Behandlungsmedien, wie beispielsweise solchen, die Wasserstoffperoxid, das für das Entfernen von Titannitridschichten bei der Waferherstellung eingesetzt wird, enthalten, geeignet. Ein vorteilhafter Effekt des erfindungsgemäßen Verfahrens liegt darin, dass wegen des kurzfristigen Erhöhens der Temperatur auf eine für das wirksame Bearbeiten des Substrates optimale Temperatur, wobei diese Temperaturerhöhung unmittelbar vor dem Aufbringen des Behandlungsmediums auf das Substrat erfolgt, eine nur sehr kurze Zeitspanne vorliegt, innerhalb welcher sich die wirksame Chemikalie (z.B. Wasserstoffperoxid) nicht oder nur wenig zersetzen kann.
Mit dem erfindungsgemäßen Verfahren kann eine erhebliche Verringerung des Verbrauches an Chemikalien (bis zu etwa 30% oder auch noch darüber hinaus) erreicht werden.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt darin, dass weite Bereiche der für das Ausführen des erfindungsgemäßen Verfahrens verwendeten Apparaturen und Vorrichtungen nicht so ausgelegt werden müssen, dass sie hohen Temperaturen standhalten müssen, da sie eben nur niedrigen Temperaturen ausgesetzt sind.
Für das Erwärmen des Behandlungsmediums können beispielsweise die nachstehend genannten Einrichtungen verwendet werden:
• Widerstandsheizer mittels Heizelement. Das Heizelement wird mittels zweier elektrischer Kontakte an eine Gleichspannung oder Wechselspannung, insbesondere hochfrequente Wechselspannung, angeschlossen. Durch den spezifischen Widerstand des Materials kann ein bestimmter Strom fließen, welcher Wärme erzeugt und das Material erhitzt. Das Material steht im direkten oder indirekten Kontakt, getrennt durch ein Trennmaterial oder eine Beschichtung, mit dem zu heizenden Medium. Das Medium umspült das Heizelement und trägt die Wärme ab. Ein Material für direkten Kontakt mit dem Medium könnte beispielsweise Glaskohlenstoff sein. • Widerstandsheizer mittels Heizmedium. Elektrisches Heizen über Kontaktelektroden, die mit dem Heizmedium im direkten elektrischen Kontakt stehen. Mittels Gleichstrom oder nieder- oder hochfrequentem Wechselstrom wird das Heizmedium wegen dessen spezifischen Widerstandes erwärmt. Der Vorteil dieser Methode liegt in den entfallenden thermischen Massen des Heizelements. Die Ausführung ist galvanisch getrennt, um Spannungspotentiale über das Medium zu vermeiden. Die Kontaktelektroden können beispielsweise aus Glaskohlenstoff ausgeführt sein. Die Geometrie und Positionierung der Kontakte ist in einer für das Aufheizen des Mediums vorteilhaften Art zu wählen.
• Heizen mittels elektromagnetischer Wellen, wie beispielsweise Mikrowellenheizung. Das Medium wird direkt über Mikrowellen erhitzt.
• Heizung mittels elektromagnetischer Wellen, wie beispielsweise Licht oder infrarotes Licht. Infrarotlicht wird vom Medium absorbiert.
• Heizung mittels elektromagnetischer Wellen, wie beispielsweise kohärente Strahlung (Laser), die vom Medium absorbiert werden.
• Heizen mittels Plasma.
• Heizen durch chemische Reaktionswärme. Die Wärmemenge wird durch Regeln der Menge der reagierenden Stoffe eingestellt.
Heizen über Wärmeleitung oder nach dem Prinzip eines
Wärmetauschers . • Heizen durch Dampfeinblasen. Einbringen von reinem Wasserdampf oder überhitztem Wasserdampf in das Medium.
• Heizen durch Dampfkondensation an einer die Wärme an das Medium übertragenden Trennschicht.
• Temperaturregelung durch Mischen von Medien mit unterschiedlichen Temperaturen. Beispielsweise wird ein kaltes Medium mit einem warmen Medium über separate Leitungen und separat regelbare Stellventile in einer Mischleitung zusammengeführt. Durch den unterschiedlichen und einzeln regelbaren Zustrom von kaltem und warmem Medium kann die Mischtemperatur eingestellt werden, (vgl. AT 515 147 Bl).
Nachstehend wird das erfindungsgemäße Verfahren beispielhaft näher erläutert:
Die Erfindung löst das Problem durch zeitliches Aufteilen des Aufheizens des Behandlungsmediums in zwei Schritten:
1. Aufheizen des Behandlungsmediums bis zu einer Temperatur, bei der die einzelnen chemischen Komponenten und Mischverhältnisse noch stabil sind und/oder im Versorgungssystem noch sicher gehandhabt werden können.
2. Anpassung der Temperatur des Behandlungsmediums auf eine zu einem zufriedenstellenden Prozess führende Temperatur in der Stichleitung zum Substrat (Wafer) innerhalb sehr kurzer Zeit, um dem Behandlungsmedium, insbesondere den darin enthaltenen Chemikalien, keine Zeit zum Verfall zu lassen.
Hiermit kann mit wirtschaftlich vernünftigem Aufwand eine hohe Prozessgeschwindigkeit erreicht und das Behandlungsmedium in der Vorbereitung bei Temperaturen gehalten werden, bei welchen die einzelnen chemischen Komponenten und Mischverhältnisse noch stabil sind.
In einer besonderen Ausführung der Erfindung wird das Behandlungsmedium dem Auftreffpunkt auf dem Substrat (Wafer) entsprechend erwärmt, um ein optimales Prozessergebnis zu erreichen.
Die Erfindung lässt sich für viele Prozesse im Halbleiter- und Bauelemente-Herstellungsprozess (wie z.B. im FEOL, BEOL, MOL sowie BE) anwenden; auch für die Entfernung ungewollter Kontaminationen, wie z.B. bei der Substratreinigung. Die Hauptanwendung liegt im Bereich von nicht rezirkulierbaren Behandlungsmedien, und hierbei speziell im Bereich von Medien, welche H2O2 enthalten (oder andere zeitlich bzw. temperaturabhängig instabile Oxidationsmittel), und dort im Besonderen in Prozessen zum Entfernen von Maskierungsschichten aus TiN (oder anderer selektiv entfernbarer, und zur Maskierung geeigneter Materialien).
Die Erfindung wird nachstehend beispielhaft unter Bezug auf die Zeichnungen näher erläutert. Es zeigt:
Fig. 1 im Schnitt eine typische Mikrostrukturanordnung auf einem Halbleitersubstrat, welche schematisch den Prozessbereich zur Erstellung der Metallkontakte darstellt (nur die zum Verständnis der vorliegenden Erfindung relevanten Details werden gezeigt, Teile des für einen funktionierenden elektronischen Schaltkreis notwendigen Materiallagen sind nicht dargestellt),
Fig. 2 ein Diagramm Ätzrate/Temperatur, Fig. 3 ein Diagramm Ätzrate/Abstand zum Zentrum, Fig. 4 ein Diagramm Ätzrate/Durchmesser und Fig. 5 ein Diagramm Ätzrate/Durchmesser. Ein in Fig. 1 gezeigtes Halbleitersubstrat 110 weist auf seiner Vorderseite eine Maskierungsschicht (z.B. TiN-Hardmaske) 101 auf. In die Maskierungsschicht 101 wurde über eine Serie von Lithographie-relevanten Prozessen eine Öffnung 102 eingebracht, sodass ein Graben 103 in das Dielektrikum 109 mit der Dielektrizitätskonstante kl geätzt werden konnte (kl besitzt im BEOL-Bereich meist einen Wert, der unter dem Wert k von thermischem S1O2 liegt). Dies wird meist durch sogenannte Trockenätzprozesse (unter Zuhilfenahme eines Plasmas bzw. aktivierter Gasmoleküle) erreicht. Über weitere Lithographie relevante Prozesse wurde eine weitere Öffnung definiert, durch welche ein Kontaktloch 104 in das Dielektrikum 109 trocken geätzt wurde. Die Abfolge der Lithographie- und Trockenätzprozesse, um den Graben bzw. das Kontaktloch zu erzeugen, kann variieren.
Am Grund des Kontaktlochs 104 befindet sich eine Deckschicht 105, welche nach den Trockenätzprozessen frei liegt. Unterhalb der Deckschicht 105 befindet sich ein Metallfilm 107, der in eine Zwischenschicht 108, ein Dielektrikum mit der Dielektrizitätskonstante k2 (k2 besitzt im BEOL-Bereich meist einen Wert, der unter dem Wert k von thermischem S1O2 liegt; kl und k2 können auch denselben k Wert besitzen, d.h. die Schichten 108 und 109 können aus dem gleichen oder sehr ähnlichen Materialien bestehen), eingebettet ist.
Durch das erfindungsgemäße Verfahren kann dann beim nass chemischen Ätzen, nach der Trockenätzung des Grabens 103 und des Kontaktlochs 104, unter Zuhilfenahme einer geeigneten chemischen Ätzmischung erreicht werden, dass die Maskierungsschicht 101 selektiv entfernt wird, ohne dass der frei liegende Bereich der Deckschicht 105 oder die Zwischenschicht 109 chemisch angegriffen oder korrodiert werden. In bestimmten Fällen kann auch der Metallfilm 107 frei liegen. In solchen Fällen wird beispielsweise ein Behandlungsmedium (Ätzmedium) eingesetzt, das gegenüber diesem Material selektiv ist.
Beispiele:
1. Entfernen einer oder mehrerer Materiallagen eines weitestgehend durchgängigen Films oder einer strukturierten Schicht von einem Wafer:
Die zu entfernenden Materiallagen können sich auf der Vorderseite des Substrates oder auch auf der Rückseite dessen befinden.
Bei den Materiallagen kann es sich um Schichten aus vielen verschiedenen Elementen und Elementkombinationen
(Elementverbindungen) handeln. Als nicht exkludierende Beispiele seien angeführt:
Halbleiter: Si, SiGe, Ge, SiC, Ti02, III/V (GaAs, InGaAs, GaN und weitere Materialien mit ähnlichen Halbleitereigenschaften).
Leiter: PolySi (mit oder ohne Dotierung), W, Co, Cu, Mo, Ti,
TiN, Ta, TaN, BN, Graphene (kann unter bestimmten Bedingungen auch als Halbleiter agieren) und Sn-Verbindungen.
Nichtleiter: Si-Oxid, Si-Nitrid, Al-Oxid, low-k Materialien (Materialien mit einer niedrigen Dielektrizitätskonstante: k typischerweise niedriger als die Dielektrizitätskonstante von thermisch generiertem Si02) , high-k Materialien (Materialien mit einer hohen Dielektrizitätskonstante: k typischerweise höher als die Dielektrizitätskonstante von thermisch generiertem Si02, z.B. Hf-oxid). Hilfsfilme: Maskierungsschichten (Hardmasken), Fotofilme, Blockmasken, Planarisierungslagen, welche aus vielen der oben genannten Elemente und Elementverbindungen bestehen können.
Zum nasschemischen Entfernen dieser Filme werden
Behandlungsmedien eingesetzt, die in Abhängigkeit der Temperatur unterschiedliche Entfernungsraten aufweisen. In fast allen Fällen steigt die Ätzrate, wenn die Temperatur des Behandlungsmediums erhöht wird.
2. Entfernen einer TiN-Maskierungsschicht:
Beim Entfernen einer TiN-Maskierungsschicht werden Behandlungsmedien eingesetzt, die das TiN in zwei Stufen in Lösung bringen. Der erste Schritt ist die Oxidation des Ti/TiN, im zweiten Schritt wird dasTiOx, TixOy, TixOHy, oder T1O2 aufgelöst. In den meisten Fällen wird für die Oxidation H2O2 verwendet. Andere Oxidationsmittel sind auch möglich, wie z.B. Percarbonate, Oxoanionen, Permanganate, Dichromate, oxidierende Metallionen (z.B. Edelmetallionen), Anionen von Halogensauerstoffsäuren, oder oxidierend Elemente wie Sauerstoff, Schwefel und Halogene. Das Auflösen der Oxide findet dann häufig im pH-Bereich über 7 statt, meist in einem pH- Bereich zwischen 7 und 10. Auch Ätzmischungen im pH-Bereich 7 und darunter sind unter Umständen erwünscht, um zum Beispiel eine bestimmte Selektivität der Ätzung zweier Materialien relativ zueinander zu ermöglichen.
Beispiel eines möglichen Prozessablaufs: a) Aufbringen der TiN-Maskierungsschicht, b) Strukturieren der TiN-Maskierungsschicht/Öffnen der MaskierungsSchicht, c) Trockenätzen des Materials im offenen Bereich der TiN- MaskierungsSchicht, d) Entfernen der TiN-Maskierungsschicht und der Trockenätznebenprodukte :
Das Entfernen der TiN-Maskierungsschicht und der Trockenätznebenprodukte kann in einem Schritt oder in zwei aufeinander folgenden Schritten durchgeführt werden.
Beispiel eines Einschritt-Prozesses:
Als typische Behandlungsmedium wird eine Mischung aus einer Base (z.B. TMAH, NH4OH, TEAH) eines Oxidationsmittels (z.B. H2O2) und Wasser verwendet.
Beispiel eines Zweischritt-Prozesses:
Erster Schritt:
Als typische Behandlungsmedium wird eine Mischung aus einer Base (z.B. TMAH (Tetramethylammoniumhydroxid), NH4OH, TEAH (Tetraethylammoniumhydroxid)) eines Oxidationsmittels (z.B. H2O2) und Wasser verwendet.
Zweiter Schritt:
Als typisches Behandlungsmedium wird verdünnte HF (Flusssäure) verwendet, welche auch chemische Additive beinhalten kann, um ungewollte Korrosion an vorhandenen Materialien zu verhindern, z.B. Zitronensäure oder Benzotriazol. Unter bestimmten Voraussetzungen kann auch die gezielte Kontrolle von Luftsauerstoff und Licht von Vorteil sein, um Korrosionsvorgänge gezielt kontrollieren zu können. Für das Entfernen der Maskierungsschicht (Base + Oxidationsmittel) wird das Behandlungsmedium innerhalb des Systems auf die Temperatur, bei der die im Behandlungsmedium enthaltene Chemikalie noch stabil ist, aufgeheizt. Diese Temperatur ist mischungsabhängig und kann zwischen 30°C und 70°C liegen. In der Leitung, die das Behandlungsmedium zum Wafer führt, wird das Behandlungsmedium nun von der Temperatur, auf welche das Behandlungsmedium im System erwärmt wurde, auf eine Temperatur erhöht, welche eine optimale Prozesstemperatur am Substrat ergibt. Der Temperaturunterschied zwischen System und Endpunkt der Leitung kann zwischen 5°C und 80°C liegen. Durch die höhere Temperatur verringert sich die Zeit, die benötigt wird, um die TiN-Maskierungsschicht zu entfernen. Im Weiteren wird hierdurch die benötigte Menge an Behandlungsmedien verringert .
Beispiel zum Entfernen einer TiN-Maskierungsschicht im BEOL- Bereich :
Typischerweise erfolgt das Entfernen der Maskierungsschicht 101 nach Abschluss der Trockenätzprozesse, welche zur Definition des Grabens 103 und des Kontaktlochs 104 angewendet werden. Die erhöhte Schwierigkeit ergibt sich wegen der Materialien (Deckschichtmaterialien 105 bzw. Metallfilme 107), die beim Trockenätzen freigelegt werden können, z.B. Cu, Co, CoWP, Ta,
TaN oder Ru, um nur einige der zur Zeit gängigen Materialien zu nennen. Diese Materialien, welche zum Verteilen der Ströme innerhalb des Halbleiterchips dienen, müssen vor Oxidation und Auflösung geschützt werden.
Hierfür werden dem Behandlungsmedium Korrosionsschutzmittel zugegeben, wobei es sich häufig um organische Inhibitoren handelt, die durch Ab- oder Adsorption auf der Oberfläche den ungewollten Angriff auf die Metalle verhindern, z.B. wird BTA (Benzotriazol), verwendet, oder auch Zitronensäure. Der Prozess zum Entfernen der Maskierungsschicht unterscheidet sich aber grundsätzlich nicht von dem unter 2. beschriebenen.
Beispiel für das Entfernen einer TiN-Maskierungsschicht:
A) Der Standardprozess ist in dem Diagramm der Fig. 2 wiedergegeben .
Diagramme der Ätzprofile bei 55°C mit zentralem (im Rotationszentrum des Substrates) sowie dezentralem (außerhalb des Rotationszentrum des Substrates) Aufbringen des Ätzmediums (keine zusätzliches Erwärmen des Behandlungsmediums vor dem Aufbringen) sind in Fig. 3 wiedergegeben.
Daraus ergeben sich die folgenden minimalen Ätzraten, Ungleichmäßigkeiten, die entsprechenden Prozesszeiten für einen 30nm dicken Schichtabtrag sowie die Verbräuche an Behandlungsmedien bei einer Flusseinstellung von 1,61/min:
Figure imgf000018_0001
B) Ein Diagramm der Ätzraten bei Temperaturerhöhung von 55°C auf 65°C ohne Temperaturkompensation, also ohne Anpassung der Aufheiztemperatur in Abhängigkeit von der radialen Distanz des Aufbringpunktes vom Rotationszentrum des Substrates, beim Aufbringen ist in Fig. 4 wiedergegeben.
Daraus ergeben sich die folgenden minimalen Ätzraten, Ungleichmäßigkeiten, die entsprechende Prozesszeiten für einen 30nm dicken Schichtabtrag sowie die Verbräuche an Behandlungsmedien bei einer Flusseinstellung von 1,61/min:
Figure imgf000019_0001
Damit ergibt sich bei einer Temperaturerhöhung von nur 10°C durch das Verwenden einer zusätzlichen Heizeinrichtung ganz nahe am Ort der Verwendung des Behandlungsmediums eine Einsparung an Behandlungsmedien von 50%. Nur eine geringe Verringerung der Gleichmäßigkeit um 2,2%, bei dezentraler Aufbringung ohne Temperaturkompensation, wurde als Konsequenz dieses Behandlungsexperimentes gemessen.
C) Fig. 5 zeigt ein Diagramm der Ätzrate mit Temperaturerhöhung von 55°C auf 65°C und zusätzlicher Temperaturkompensation beim Aufbringen .
Zum Verbessern der Ätzgleichmäßigkeit wird die Temperatur des Behandlungsmediums dem Aufbringpunkt auf den Wafer optimal angepasst. Die Temperatur wird in diesem Beispiel von 65°C im Zentrum auf 67,5°C bei 60mm radialer Distanz vom Zentrum erhöht. Das Erhöhen erfolgt in diesem Beispiel in linearer Abhängigkeit von der Position und in einer Art und Weise, sodass die optimale Temperatur zur Zeit des Auftreffens auf dem Substrat erreicht wurde.
Daraus ergeben sich die folgenden minimalen Ätzraten, Ungleichmäßigkeiten, die entsprechende Prozesszeiten für einen 30nm dicken Schichtabtrag sowie die Verbräuche an Behandlungsmedien bei einer Flusseinstellung bei 1,61/min:
Figure imgf000020_0001
In diesem Beispielexperiment war es also möglich, bei fast gleicher Abtragsgleichmäßigkeit (6,7 versus 7,4%) die Prozesszeit zur Entfernung einer TiN-Maskierungsschicht von 104 s auf 48 s zu verringern und damit den Verbrauch an Behandlungsmedien um 54% zu verringern.
Beispiele für Behandlungsmedien:
Beispiel 1:
Das Behandlungsmedium ist eine wässrige Lösung, welche 5Vol%
H2O2, 150ppm Tetramethylammoniumhydroxid und 200ppm 1,2,4-Triazol beinhaltet .
Der Standardprozess ergibt eine Ätzrate bei 50°C (Temperatur am Substrate) von 216 A/min, was bei einer abzutragenden TiN- Schicht von 300 A eine Prozesszeit von 83 Sekunden ergibt.
Der erfindungsgemäße Prozess mit gezielter Erhöhung der Temperatur unmittelbar vor dem Aufbringen auf das Substrat, sodass die Auftrefftemperatur des Behandlungsmediums am Substrat um 10°C erhöht ist, ergibt eine Ätzrate von 430 A/min, was bei einer abzutragende TiN-Schicht von 300 A eine Prozesszeit von 42 Sekunden ergibt. Mit diesem erfindungsgemäßen Prozess wurde somit eine Einsparung von 50% an Behandlungsmedien bei gleichbleibender Gleichmäßigkeit des Abtrages erreicht.
Beispiel 2:
Das Behandlungsmedium ist eine wässrige Lösung, welche 10Vol% H2O2, 200ppm Cholinhydroxid und 150ppm 1,2,3-Triazol beinhaltet. Der Standardprozess ergibt eine Ätzrate bei 55°C (Temperatur am Substrat) von 226 A/min, was bei einer abzutragenden TiN-Schicht von 350 A eine Prozesszeit von 93 Sekunden ergibt.
Der erfindungsgemäße Prozess, mit gezielter Erhöhung der Temperatur unmittelbar vor dem Aufbringen auf das Substrat, sodass die Auftrefftemperatur des Behandlungsmediums am Substrat um 10°C erhöht ist, ergibt eine Ätzrate von 454 A/min, was bei einer abzutragende TiN-Schicht von 350 A eine Prozesszeit von 46 Sekunden ergibt.
Mit diesem neuen Prozess wurde somit eine Einsparung von 50% an Behandlungsmedien bei gleichbleibender Gleichmäßigkeit des Abtrages erreicht.
Beispiel 3:
Das Behandlungsmedium ist eine wässrige Lösung, welche 15Vol% H2O2, 150ppm Tetramethylammoniumhydroxid und 550ppm Imidazol beinhaltet .
Der Standardprozess ergibt eine Ätzrate bei 50°C (Temperatur am Substrate) von 196 A/min, was bei einer abzutragenden TiN- Schicht von 250 A eine Prozesszeit von 76 Sekunden ergibt.
Der erfindungsgemäße Prozess mit gezielter Erhöhung der Temperatur unmittelbar vor dem Aufbringen auf das Substrat, sodass die Auftrefftemperatur des Behandlungsmediums am Substrat um 15°C erhöht ist, ergibt eine Ätzrate von 554 A/min was bei einer abzutragende TiN-Schicht von 250 A eine Prozesszeit von 27 Sekunden ergibt.
Mit diesem erfindungsgemäßen Prozess wurde somit eine Einsparung von 65% an Behandlungsmedien bei gleichbleibender Gleichmäßigkeit des Abtrages erreicht.
Beispiel 4:
Das Behandlungsmedium ist eine wässrige Lösung, welche 20Vol% H2O2, 200ppm Cholinhydroxid und 200ppm Imidazol beinhaltet.
Der Standardprozess ergibt eine Ätzrate bei 50°C (Temperatur am Substrate) von 226 A/min, was bei einer abzutragenden TiN- Schicht von 350 A eine Prozesszeit von 92 Sekunden ergibt.
Der erfindungsgemäße Prozess mit gezielter Erhöhung der Temperatur unmittelbar vor dem Aufbringen auf das Substrat, sodass die Auftrefftemperatur des Behandlungsmediums am Substrat um 10°C erhöht ist, ergibt eine Ätzrate von 453 A/min, was bei einer abzutragende TiN-Schicht von 350 A eine Prozesszeit von 46 Sekunden ergibt.
Mit dem erfindungsgemäßen Prozess wurde somit eine Einsparung von 50% an Behandlungsmedien bei gleichbleibender Gleichmäßigkeit des Abtrages erreicht.
Zusammenfassend kann ein Ausführungsbeispiel der Erfindung wie folgt beschrieben werden:
Beim Behandeln von Substraten mit einem Behandlungsmedium, das wenigstens eine für das Behandeln wirksame Chemikalie enthält, beispielsweise beim Entfernen einer Maskierungsschicht 101 von einem Halbleitersubstrat 110 durch Ätzen, wird das Behandlungsmedium erst unmittelbar vor dem Aufbringen auf das Substrat 110 auf eine für das Behandeln wirksame Temperatur erwärmt, wobei das Behandlungsmedium die für das Behandeln optimale Temperatur hat, wenn es auf das Substrat trifft. So werden eine kurze Behandlungsdauer, geringe, thermisch bedingte Zersetzungsverluste an Chemikalie und ein Einsparen an Behandlungsmedium erreicht.

Claims

Ansprüche:
1. Verfahren zum Behandeln von Substraten mit einem wenigstens eine wirksame Chemikalie enthaltenden Behandlungsmedium, dadurch gekennzeichnet, dass das wenigstens eine Chemikalie, insbesondere eine bei hoher Temperatur, insbesondere der Prozesstemperatur, vom Zerfall bedrohte Chemikalie, enthaltende Behandlungsmedium unmittelbar vor dem Aufbringen des Behandlungsmediums auf das Substrat auf die Prozesstemperatur erwärmt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur des Mediums zum Zeitpunkt des Auftreffens des Behandlungsmediums auf das Substrat im Bereich der Prozesstemperatur liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Bearbeiten des Substrates das selektive Entfernen von wenigstens einer Schicht vom Substrat umfasst.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Bearbeiten das Entfernen wenigstens einer
Maskierungsschicht, beispielsweise einer Maskierungsschicht aus Titannitrid, umfasst.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Behandlungsmedium verwendet wird, das die wenigstens eine Chemikalie in Wasser oder einem organischen Lösungsmittel enthält.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Behandlungsmedium verwendet wird, das zusätzlich zu der wenigstens einen Chemikalie und dem Lösungsmittel eine anorganische oder organische Säure enthält, oder eine anorganische oder organische Base.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Behandlungsmedium verwendet wird, das zum Entfernen von Titannitridschichten als Chemikalie Wasserstoffperoxid (H2O2) enthält.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein Behandlungsmedium verwendet wird, das einen Korrosionsinhibitor enthält.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das wenigstens eine Chemikalie enthaltende Behandlungsmedium unmittelbar vor dem Aufbringen des Behandlungsmediums auf das Substrat auf die Prozesstemperatur erwärmt wird, wobei die Erwärmung abhängig vom Aufbringpunkt auf dem Substrat abhängig gemacht wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Temperatur, auf die das Behandlungsmedium erwärmt wird, in Abhängigkeit vom radialen Abstand des Aufbringpunktes von Rotationszentrum des Substrates gewählt wird.
PCT/EP2021/053867 2020-02-20 2021-02-17 Verfahren zum behandeln von substraten mit chemikalien WO2021165308A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21707631.4A EP4122006A1 (de) 2020-02-20 2021-02-17 Verfahren zum behandeln von substraten mit chemikalien
JP2022549907A JP2023519493A (ja) 2020-02-20 2021-02-17 化学物質を用いた基板処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM21/2020 2020-02-20
ATGM21/2020U AT16977U3 (de) 2020-02-20 2020-02-20 Verfahren zum Behandeln von Substraten mit Chemikalien

Publications (1)

Publication Number Publication Date
WO2021165308A1 true WO2021165308A1 (de) 2021-08-26

Family

ID=74125756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/053867 WO2021165308A1 (de) 2020-02-20 2021-02-17 Verfahren zum behandeln von substraten mit chemikalien

Country Status (4)

Country Link
EP (1) EP4122006A1 (de)
JP (1) JP2023519493A (de)
AT (1) AT16977U3 (de)
WO (1) WO2021165308A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515147B1 (de) 2013-12-09 2016-10-15 4Tex Gmbh Verfahren und Vorrichtung zum Behandeln von Gegenständen mit einer Flüssigkeit
US20160314994A1 (en) * 2015-04-27 2016-10-27 Taiwan Semiconductor Manufacturing Co., Ltd. Method for etching etch layer and wafer etching apparatus
US20180156665A1 (en) * 2015-08-27 2018-06-07 Zeus Co., Ltd. Substrate processing apparatus and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558879B1 (en) * 2000-09-25 2003-05-06 Ashland Inc. Photoresist stripper/cleaner compositions containing aromatic acid inhibitors
DE102009060931A1 (de) * 2009-12-23 2011-06-30 Gebr. Schmid GmbH & Co., 72250 Verfahren und Vorrichtung zur Behandlung von Siliziumsubstraten
US9831100B2 (en) * 2014-06-24 2017-11-28 Intermolecular, Inc. Solution based etching of titanium carbide and titanium nitride structures
DE102018206978A1 (de) * 2018-01-26 2019-08-01 Singulus Technologies Ag Verfahren und Vorrichtung zur Behandlung von geätzten Oberflächen eines Halbleitersubstrats unter Verwendung von ozonhaltigem Medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515147B1 (de) 2013-12-09 2016-10-15 4Tex Gmbh Verfahren und Vorrichtung zum Behandeln von Gegenständen mit einer Flüssigkeit
US20160314994A1 (en) * 2015-04-27 2016-10-27 Taiwan Semiconductor Manufacturing Co., Ltd. Method for etching etch layer and wafer etching apparatus
US20180156665A1 (en) * 2015-08-27 2018-06-07 Zeus Co., Ltd. Substrate processing apparatus and method

Also Published As

Publication number Publication date
AT16977U3 (de) 2021-03-15
EP4122006A1 (de) 2023-01-25
JP2023519493A (ja) 2023-05-11
AT16977U2 (de) 2021-01-15

Similar Documents

Publication Publication Date Title
DE60028962T2 (de) Zusammensetzungen zum reinigen von substraten von organischen und plasmaätz-rückständen bei halbleiter-vorrichtungen
DE69935100T2 (de) Verfahren zur Ätzung einer Metallisierung mittels einer harten Maske
EP1733421B1 (de) Wässrige lösung und verwendung dieser lösung zur entfernung von post-etch residue von halbleitersubstraten
DE69914917T2 (de) Verfahren und Vorrichtung zum Behandeln eines Werkstücks, wie beispielsweise eines Halbleiter-Wafers
DE10157223B4 (de) Verfahren zur Herstellung eines Kontaktes bei einer Halbleitervorrichtung unter Verwendung einer Cluster-Vorrichtung mit zumindest einem Plasmavorbehandlungsmodul
EP2922086B1 (de) Zusammensetzung, System, und Verfahren für TiNxOy Entfernung
DE2720893B2 (de)
EP0094528A2 (de) Verfahren zum Herstellen von Strukturen von aus Metallsilizid und Polysilizium bestehenden Doppelschichten auf integrierte Halbleiterschaltungen enthaltenden Substraten durch reaktives Ionenätzen
EP2481080B1 (de) Verfahren und vorrichtung zum rückätzen einer halbleiterschicht
US20030064326A1 (en) Resist stripper, resist stripping method, and thin film circuit device formation method
DE102009015749B3 (de) Erhöhen der Haftung von dielektrischen Zwischenschichtmaterialien von Halbleiterbauelementen durch Unterdrücken der Silizidbildung am Substratrand
KR102517903B1 (ko) 식각액 조성물, 및 식각액 조성물을 이용한 식각 방법
DE10340848A1 (de) Herstellungsverfahren für eine Halbleitereinrichtung
US6387804B1 (en) Passivation of sidewall spacers using ozonated water
DE102007009913B4 (de) Plasmaätzprozess mit hoher Ausbeute für Zwischenschichtdielektrika
WO2021165308A1 (de) Verfahren zum behandeln von substraten mit chemikalien
DE69933025T2 (de) Reinigungsflüssigkeit und reinigungsverfahren für halbleiterbearbeitungsmaschinenkomponente
KR102179756B1 (ko) 질화 금속막 식각액 조성물
DE10304851A1 (de) Ätzverfahren
DE102009046259A1 (de) Stärkere Haftung eines PECVD-Kohlenstoffs auf dielektrischen Materialien durch Vorsehen einer Haftungsgrenzfläche
JP5399308B2 (ja) 半導体ウエハ上への無電解めっきの前処理液、無電解めっき方法、及び半導体装置
DE102007006151B4 (de) Verfahren zur Verringerung und Homogenisierung der Dicke einer Halbleiterschicht, die sich auf der Oberfläche eines elektrisch isolierenden Materials befindet
EP1095403B1 (de) Verfahren zur beseitigung von defekten von siliziumkörpern durch selektive ätzung
KR20110053562A (ko) 몰리브덴용 식각액 조성물
DE102011090164A1 (de) Reparatur geschädigter Oberflächenbereiche von empfindlichen Dielektrika mit kleinem ε von Mikrostrukturbauelementen nach einer Plasmabehandlung durch in-situ-Behandlung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21707631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021707631

Country of ref document: EP

Effective date: 20220920