WO2021164146A1 - 一种马赛克型磁性印迹吸附剂的制备方法及其应用 - Google Patents

一种马赛克型磁性印迹吸附剂的制备方法及其应用 Download PDF

Info

Publication number
WO2021164146A1
WO2021164146A1 PCT/CN2020/092493 CN2020092493W WO2021164146A1 WO 2021164146 A1 WO2021164146 A1 WO 2021164146A1 CN 2020092493 W CN2020092493 W CN 2020092493W WO 2021164146 A1 WO2021164146 A1 WO 2021164146A1
Authority
WO
WIPO (PCT)
Prior art keywords
sns
emulsion
mosaic
pickering
add
Prior art date
Application number
PCT/CN2020/092493
Other languages
English (en)
French (fr)
Inventor
王盼
潘建明
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2021164146A1 publication Critical patent/WO2021164146A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties

Definitions

  • the invention belongs to the technical field of preparation of specific selective separation functional materials, and specifically relates to a preparation method of a mosaic magnetic imprinting adsorbent.
  • Nanosheet adsorbents have good physical and chemical properties, and have received extensive attention in the field of adsorption and separation due to their high specific surface area and easy modification.
  • the two sides of the nanosheets can be modified or grafted with different types of functional groups or polymer chains through covalent interaction to obtain functionalized nanosheets.
  • the traditional nanosheet adsorbents still have shortcomings. For example, the selectivity of adsorption and separation needs to be improved, the site loss caused by the agglomeration and stacking of sheet materials, and the difficulty of separation and collection limit their application in the separation of complex systems. Therefore, there is an urgent need to develop a new strategy to solve the above-mentioned limitations of traditional nanosheet adsorbents.
  • SI-ATRP Surface-initiated atom transfer radical polymerization
  • SI-MIPs Molecular surface molecularly imprinted polymers
  • molecularly imprinted nanosheet materials are prepared by surface imprinting process using nanosheets as the substrate for molecular imprinting, which significantly improves the material performance of nanosheets.
  • Janus materials are anisotropic materials with two different structures and chemical compositions at the same time. They are widely used in many fields and have received great attention from the scientific community. Therefore, a suitable method can be used to combine the Janus material and molecularly imprinted nanosheets to prepare multifunctional nanosheet adsorbents (Janus-MIPs), which endows the nanosheet materials with versatility.
  • Pickering emulsion is an emulsion that uses solid particles to adsorb on the oil-water interface to reduce its surface energy and improve its stability.
  • the anisotropic Janus nanosheets have two opposite wetting surfaces that can stabilize the Pickering emulsion.
  • the embedding depth of the nanosheets can be controlled and adjusted according to the wettability of the two sides, generating a mosaic-like Pickering emulsion.
  • Alginate is a natural ionic reactive polysaccharide, due to its biocompatibility and biodegradability and a divalent cation (particularly Ca 2+) have a good gelation have good biological
  • paramagnetic particles Fe 3 O 4 -NH 2
  • the present invention provides a mosaic magnetic imprinting adsorbent to solve the technical bottlenecks such as the selectivity of the existing nanosheet adsorbent, the site loss caused by the agglomeration and stacking of sheet materials, and the difficulty of separation and collection.
  • Method and used for selective adsorption and separation of dA are described in detail below.
  • the present invention firstly uses graphene oxide (GO) nanosheets as stable particles to generate a Pickering emulsion of paraffin in water, and modifies bromine on the outer surface through brominated isobutyryl bromide (BIBB) to remove the paraffin to produce a side with bromine.
  • GO graphene oxide
  • BIBB brominated isobutyryl bromide
  • J-SNs Unmodified Janus nanosheets
  • ATRP atom transfer radical polymerization
  • dA is used as the template molecule to form hydrogen bonds with dA and have good matching 5 -(2-Methoxyvinyl)-2'-deoxyuridine (AcrU) as a functional monomer, grafted with dA molecularly imprinted polymer (J-SNs-MIPs) on the hydrophobic surface of Janus nanosheets; J-SNs-MIPs are used as stable particles to obtain Pickering emulsion B with internal phases of Ca 2+ and Fe 3 O 4 -NH 2 and Pickering emulsion A with internal phases of Alg - and Fe 3 O 4 -NH 2 .
  • the emulsion is mixed through gentle mechanical stirring and dynamic combination to induce Alg-Ca 2+ gelation.
  • a mosaic magnetic imprinting adsorbent J-SNs-MMIPs-Pickering
  • Alg-Ca 2+ as the core is prepared, and the result will be
  • the material is used for efficient and selective adsorption and separation of dA in aqueous solution.
  • GO nanosheets are prepared by Hummer's method; GO nanosheets are used as stable particles, water and paraffin wax are used as continuous phase and dispersed phase respectively, and then a certain amount of saturated sodium chloride (NaCl) solution is added as electrolyte, at a certain speed Stir to generate GO-Pickering emulsion; then collect by centrifugation and vacuum dry; obtain GO-Pickering product, disperse in N,N-dimethylformamide (DMF) solution, and add a certain amount of BIBB and triethylamine to react After the reaction, centrifuge to collect, clean and remove the oil phase, ultrasonically break and vacuum dry to obtain J-SNs nanosheets, for use;
  • NaCl saturated sodium chloride
  • DMF N,N-dimethylformamide
  • the product was collected by centrifugation and washed twice with methanol and acetone. Then use a methanol/hydrochloric acid mixed solution as the eluent (7:3, V:V) for Soxhlet extraction of the product, and finally, after drying, the J-SNs-MIPs nanosheets are obtained;
  • the dosage ratio of FeCl 3 ⁇ 6H 2 O, 1,6-hexamethylene diamine, anhydrous sodium acetate and ethylene glycol in step (1) is: 1.0g: 6.0-7.0g: 50-70 mg : 1.5-2.5g: 20-40mL.
  • the dosage ratio of the GOGO nanosheet, water, paraffin wax and saturated sodium chloride (NaCl) solution is: 1.0mg: 0.8-1.2mL: 0.08-0.12g: 0.07-0.08mL .
  • the dosage ratio of GO-Pickering, N,N-dimethylformamide, BIBB and triethylamine is 1.0 g: 60 mL: 45-55 ⁇ L: 90-110 ⁇ L.
  • the high-speed stirring in step (2) has a speed of 14000 rpm and a time of 5-10 min; the adding a certain amount of BIBB and triethylamine for the reaction time is 24 hours.
  • the dosage ratio of 2'-deoxyadenosine, 5-(2-methoxyvinyl)-2'-deoxyuridine, dimethylsulfoxide and acetonitrile is 1.0g :4.0-5.0g: 40 ⁇ 60mL: 140 ⁇ 160mL.
  • the dosage ratio of the 2'-deoxyadenosine, ethylene glycol dimethacrylate and J-SNs nanosheets is 1.0 g: 10-12 mL: 900-1100 mg.
  • the dosage ratio of 2'-deoxyadenosine, PMDEIA, CuBr 2 and VC is 1.0 g: 1.0 mL: 70-80 mg: 60-65 mg.
  • the reaction time for introducing nitrogen gas is 30-40 min; the time for self-assembly in the dark is 90-100 min; the stirring temperature under a certain temperature condition is 30°C, and the time is 30°C. ⁇ 40min; the temperature of the water bath heating reaction is 60-70°C, and the time is 12h-15h; the temperature of the drying is 45°C.
  • the dosage ratio of J-SNs-MIPs, water and toluene in the emulsion A is: 1.0 mg: 0.225-0.275 mL: 0.35-0.4 mL.
  • the dosage ratio of J-SNs-MIPs, span80, Alg-Na and Fe 3 O 4 -NH 2 in the emulsion A is 1.0 mg:0.01-0.02g:0.003-0.004g : 0.2-0.3g.
  • the dosage ratio of J-SNs-MIPs, water and toluene in the emulsion B is 1.0 mg: 0.225-0.275 mL: 0.35-0.4 mL.
  • the dosage ratio of J-SNs-MIPs, span80, CaCl 2 and Fe 3 O 4 -NH 2 in the emulsion B is 1.0 mg:0.01-0.02g:0.015-0.020g: 0.2-0.3g.
  • the volume ratio of emulsion A, emulsion B and ethanol in step (4) is 1:1:5.
  • the rotational speed of the mechanical stirring in step (4) is 800 rpm, and the stirring time is 30-50 minutes; the time for adding ethanol for stirring is 5-10 minutes.
  • the present invention uses Janus nanosheets as the substrate, ATRP technology as the reaction platform, and AcrU as the functional monomer to construct a highly selective novel nanosheet adsorbent (J-SNs-MIPs), which significantly improves the performance of nanosheet materials.
  • J-SNs-MIPs are used as stable particles to obtain Pickering emulsions A and B whose internal phases are Ca 2+ and Alg - with magnetic particles.
  • the two emulsions are dynamically combined to induce Alg-Ca 2+ gel
  • the preparation of J-SNs-MMIPs-Pickering can effectively solve the problem of easy stacking of molecularly imprinted nanosheet materials; at the same time, it is filled with paramagnetic particles (Fe 3 O 4 -NH 2 ) to make the Pickering emulsion magnetically responsive and easy to separate collect.
  • Figure 1 is a scanning electron micrograph of J-SNs (a), J-SNs-MIPs (b), and J-SNs-MMIPs-Pickering (c, d) prepared in Example 1.
  • Figure 2 shows the contact angles of GO, J-SNs-MIPs and GO-MIPs prepared in Example 1.
  • Figure 3 is the infrared spectra of Fe 3 O 4 -NH 2 (a), GO (b), J-SNs-MIPs (c) and J-SNs-MMIPs-Pickering (d) prepared in Example 1.
  • Fig. 4 shows the XRD spectra of Fe 3 O 4 -NH 2 and J-SNs-MMIPs-Pickering prepared in Example 1.
  • Figure 5 shows the adsorption kinetics and model fitting curves of J-SNs-MMIPs-Pickering and J-SNs-MNIPs-Pickering prepared in Example 1.
  • Figure 6 shows the adsorption equilibrium and model fitting curves of J-SNs-MMIPs-Pickering and J-SNs-MNIPs-Pickering in Example 1.
  • Figure 7 shows the regeneration adsorption capacity of J-SNs-MMIPs-Pickering and J-SNs-MNIPs-Pickering in Example 1.
  • the recognition performance evaluation is carried out according to the following method:
  • the dA content after adsorption is used Measure with UV-Vis spectrophotometer, and calculate the adsorption capacity according to the result; add 5mL of dA solution with initial concentration of 300 ⁇ mol/L to the centrifuge tube, add a certain amount of J-SNs-MMIPs-Pickering adsorbent, respectively at a certain time Take it out under the gradient, and calculate the adsorption capacity according to the result, which is used to participate in the study of the kinetic performance of the J-SNs-MMIPs-Pickering adsorbent.
  • nucleoside compounds with similar structures and properties, such as 2-deoxyguanosine (dG), 2-deoxycytidine (dC) and 5'-monophosphate-adenosine (AMP) as selective adsorbents, Participate in research on the recognition performance of adsorbents.
  • dG 2-deoxyguanosine
  • dC 2-deoxycytidine
  • AMP 5'-monophosphate-adenosine
  • the GO nanosheets were prepared by Hummer’s method. 50mg GO nanosheets are used as stable particles, 50mL water and 5g solid paraffin are respectively used as continuous phase and dispersed phase, add 3.75mL saturated sodium chloride (NaCl) solution as electrolyte, stir at high speed at 14000rpm for 5min to produce GO stable Pickering Emulsion (GO-Pickering). Then it was collected by centrifugation and dried in vacuum.
  • NaCl saturated sodium chloride
  • GO-Pickering was dispersed in 60mL N,N-dimethylformamide (DMF) solution, 400 ⁇ L BIBB and 800 ⁇ L triethylamine were added to react for 24h, then centrifuged to collect, washed off the oil phase, ultrasonically broken to obtain J -SNs nanosheets, vacuum dried.
  • DMF N,N-dimethylformamide
  • J-SNs-MNIPs-Pickering are the same as those of J-SNs-MMIPs-Pickering, except that the template molecule 2'-deoxyadenosine (dA) is not added.
  • Figure 1 is a scanning electron micrograph of J-SNs (a), J-SNs-MIPs (b), and J-SNs-MMIPs-Pickering (c, d) prepared in the examples.
  • J-SNs-MIPs have obviously formed polymers on the surface of J-SNs, indicating that the molecularly imprinted polymers have been successfully modified on the nanosheets.
  • the size of J-SNs-MMIPs-Pickering is 15 ⁇ m, and the surface can be obvious Seeing the distribution of nanosheets indicates that J-SNs-MMIPs-Pickering was successfully prepared.
  • Figure 2 shows the contact angles of GO, J-SNs-MIPs and GO-MIPs prepared in the examples.
  • the figure shows that the hydrophobicity of GO, J-SNs-MIPs and GO-MIPs nanosheets increases successively, and the structures on both sides of the nanosheets are different, and the J-SNs-MIPs nanosheets were successfully prepared.
  • FIG. 3 shows the infrared spectra of Fe 3 O 4 -NH 2 (a), GO (b), J-SNs-MIPs (c) and J-SNs-MMIPs-Pickering (d) prepared in the examples.
  • Figure 4 shows the XRD spectra of Fe 3 O4-NH 2 and J-SNs-MMIPs-Pickering prepared in the examples. The figure shows that the prepared Fe 3 O 4 -NH 2 and J-SNs-MMIPs-Pickering match the Fe 3 O 4 standard card, indicating that the mosaic magnetic imprinting adsorbent was successfully prepared.
  • GO nanosheets by Hummer's method; 50mg GO nanosheets are used as stable particles, 40mL of water and 4g of paraffin wax are used as continuous and dispersed phases, respectively, 3.5mL of saturated sodium chloride (NaCl) solution is added as electrolyte, at high speed at 14000rpm Stir for 5 min to generate GO-stable Pickering emulsion (GO-Pickering). Then it was collected by centrifugation and dried in vacuum.
  • NaCl saturated sodium chloride
  • GO-Pickering was dispersed in 60mL N,N-dimethylformamide (DMF) solution, and 360 ⁇ L BIBB and 720 ⁇ L triethylamine were added to react for 24 hours, then centrifuged to collect, wash off the oil phase, and ultrasonically break to obtain J-SNs nanosheets, vacuum dried.
  • DMF N,N-dimethylformamide
  • the GO nanosheets were prepared by Hummer’s method. 50mg GO nanosheets are used as stable particles, 60mL of water and 6g of paraffin wax are used as the continuous phase and the dispersed phase, respectively, 4mL of saturated sodium chloride (NaCl) solution is added as the electrolyte, and high-speed stirring at 14000rpm for 5min to generate GO stable Pickering emulsion (GO-Pickering). Then it was collected by centrifugation and dried in vacuum.
  • NaCl saturated sodium chloride
  • GO-Pickering was dispersed in 60mL N,N-dimethylformamide (DMF) solution, added 440 ⁇ L BIBB and 880 ⁇ L triethylamine to react for 24h, then centrifuged to collect, washed off the oil phase, ultrasonically broken to obtain J -SNs nanosheets, vacuum dried.
  • DMF N,N-dimethylformamide
  • Example 1 Take 5 mL of dA solution with initial concentrations of 20, 40, 70, 100, 300, 500, 700, 1000 ⁇ mol/L and add them to the centrifuge tube, and add 5 mg of the J-SNs-MNIPs-Pickering adsorbent in Example 1. Place the test solution in a water bath at 25°C for 4 hours, separate the imprinted adsorbent from the solution by a magnet, and measure the concentration of unadsorbed dA molecules with an ultraviolet-visible spectrophotometer at a wavelength of 259nm, and get the results according to the results. Figure 6 and calculate the adsorption capacity.
  • J-SNs-MMIPs-Pickering has good adsorption specificity for dA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及马赛克型磁性印迹吸附剂的制备方法,属特异性分离功能材料制备技术领域;首先制备出氨基改性的Fe 3O 4颗粒和Janus纳米片,然后通过ATRP分子印迹技术制备Janus分子印迹聚合物;再将Alg-Ca 2+和Pickering乳液以及Janus-MIPs纳米片的各向异性相结合同时填充Fe 3O 4-NH 2制备马赛克型Alg-Ca 2+核心的磁性分子印迹吸附剂;本发明制备的马赛克型磁性印迹吸附剂具有较高的吸附容量,可以有效的解决分子印迹纳米片材料易堆叠的难题;同时填充顺磁性粒子,使Pickering乳液具有磁响应,易于分离收;并具有明显的dA分子的识别性能,用于水溶液中dA的选择性识别和分离。

Description

一种马赛克型磁性印迹吸附剂的制备方法及其应用 技术领域
本发明属于特异性选择分离功能材料制备技术领域,具体涉及一种马赛克型磁性印迹吸附剂的制备方法。
背景技术
纳米片吸附剂具有较好的物理和化学特性,因其较高的比表面积和易改性的优点在吸附分离领域得到广泛的关注。其纳米片的两面可通过共价作用修饰或接枝不同类型的官能团或者聚合物链,得到功能化的纳米片。然而传统的纳米片吸附剂仍存在不足,如吸附分离的选择性有待提高、片状材料的团聚与堆叠造成的位点损失和难分离收集的问题限制了在复杂体系目标物分离中的应用。因此迫切需要开发一种新的策略,解决了传统纳米片吸附剂的上述局限性。
表面引发原子转移自由基聚合(SI-ATRP)是基底表面接枝聚合物的常用方法,生成分子表面分子印迹聚合物(SI-MIPs)把分子印迹位点构筑在基质材料的表面,为基底材料的表面功能化带来了全新的可能。一般来说,生成的聚合物拥有高度可控的结构、高结合能力、快速传质和快速结合动力学,可作为进一步化学修饰理想的反应平台。目前,结合纳米片具有的高比表面积和较高的横纵比而具有的差异化方向性,通过表面印迹过程将纳米片作为分子印迹的基底制备分子印迹纳米片材料,显著提高纳米片材料的选择性。雅努斯(Janus)材料是指同时拥有两种不同结构和化学组成的各向异性的材料,并在诸多领域有着广泛的应用,受到了科学界极大的关注。因而可采用合适的方法将Janus材料和分子印迹纳米片相结合,从而制备出具有多功能的纳米片吸附剂(Janus-MIPs),赋予了纳米片材料的多功能性。
Pickering乳液是一种利用固体颗粒吸附在油水界面降低其表面能从而提高其稳定性的乳液。各向异性Janus纳米片具有两个相对的润湿表面可以较好的稳定Pickering乳液,纳米片嵌入的深度可以根据其两面的润湿性可控调节,生成类似于马赛克型的Pickering乳液,解决了分子印迹纳米片材料易堆叠的难题。海藻酸盐(Alg -)是一种天然的离子反应性多糖,由于其生物相容性和可降解性以及与二价阳离子(尤其是Ca 2+)有良好的胶凝作用而具有良好的生物医学应用,因此可以通过合适的方法将Alg-Ca 2+和Pickering乳液以及Janus-MIPs纳米片的各向异性相结合同时填充顺磁性粒子(Fe 3O 4-NH 2)制备马赛克型Alg-Ca 2+核心的磁性分子印迹吸附剂(J-SNs-MMIPs-Pickering),并用于选择性的吸附分离2'-脱氧腺苷(dA)分子。
发明内容
针对现有技术的不足,本发明为解决现存纳米片吸附剂选择性、片状材料的团聚与堆叠造成的位点损失和难分离收集等技术瓶颈,提供了一种马赛克型磁性印迹吸附剂制备方法,并用于选择性的吸附分离dA。
本发明首先通过氧化石墨烯(GO)纳米片作稳定粒子生成水包固体石蜡的Pickering乳液,通过溴代异丁酰溴(BIBB)在外表面修饰上溴元素,将石蜡去除生成一面带溴元素一面没有做修饰的Janus纳米片(J-SNs);随后以表面的溴元素为原子转移自由基聚合(ATRP)的引发剂,dA作为模板分子,与dA形成氢键且具有较好匹配性的5-(2-甲氧基乙烯基)-2'-脱氧尿苷(AcrU)作为功能单体,在Janus纳米片疏水的表面接枝了dA分子印迹聚合物(J-SNs-MIPs);再通过J-SNs-MIPs作为稳定粒子得到内相分别为Ca 2+和Fe 3O 4-NH 2的Pickering乳液B和内相为Alg -与Fe 3O 4-NH 2的Pickering乳液A,将两种乳液混合通过温和的机械搅拌,动态结合,诱导Alg-Ca 2+凝胶化,制备了Alg-Ca 2+为核心的马赛克型磁性印迹吸附剂(J-SNs-MMIPs-Pickering),并将得到的材料应用于水溶液中dA的高效选择性吸附与分离。
为了实现以上目的,本发明的具体步骤如下:
(1)Fe 3O 4-NH 2的制备;
将一定量的FeCl 3·6H 2O、1,6-己二胺、无水乙酸钠和乙二醇混合得到混合液,在一定温度条件下进行50℃条件下搅拌至混合液透明,然后将混合液转移到高压釜中进行加热反应;并加热至200℃保持6小时,在反应完后,用水和乙醇洗涤,并用磁铁分离,50℃条件下真空干燥后得到黑色修饰氨基的Fe 3O 4纳米颗粒,记为Fe 3O 4-NH 2;将所得产物以10mg/mL的浓度分散在甲苯中;
(2)J-SNs纳米片的制备;
首先通过Hummer’s方法制备GO纳米片;取GO纳米片作稳定粒子,水和固体石蜡分别作连续相和分散相,再加入一定量的饱和氯化钠(NaCl)溶液作电解质,在一定的转速下进行搅拌,生成GO-Pickering乳液;随后离心收集,真空干燥;得到GO-Pickering产物,分散于N,N-二甲基甲酰胺(DMF)溶液中,再加入一定量的BIBB和三乙胺反应,反应后,离心收集,清洗去油相,经超声破碎、真空干燥后得到J-SNs纳米片,备用;
(3)J-SNs-MIPs纳米片的制备;
首先将二甲亚砜和乙腈混合,加入2'-脱氧腺苷(dA)、5-(2-甲氧基乙烯基)-2'-脱氧尿苷(AcrU),常温条件下通入氮气反应后进行避光自组装;然后,再加入二甲基丙烯酸乙二醇酯(EGDMA)和步骤(2)制备的J-SNs纳米片,在一定温度条件下搅拌后,加入N,N,N,N,N-五甲基二乙烯三胺(PMDEIA)、溴化铜(CuBr 2)和抗坏血酸(VC),持续搅拌并进行水浴加热反 应,反应后离心收集产物,并用甲醇和丙酮洗两次,再用甲醇/盐酸的混合溶液作为洗脱剂(7:3,V:V)对产物进行索氏提取,最后,经干燥后得到J-SNs-MIPs纳米片;
(4)J-SNs-MMIPs-Pickering的制备;
取步骤(3)制备的J-SNs-MIPs纳米片作稳定粒子,加入一定量的span80辅助稳定,再加入水、甲苯、一定量的Alg-Na和步骤(1)制备的Fe 3O 4-NH 2颗粒,在一定转速的机械搅拌下搅拌30min,得Pickering乳液A;
再次取步骤(3)制备的J-SNs-MIPs纳米片作稳定粒子,加入一定量的span80辅助稳定,再加入水、甲苯、CaCl 2和Fe 3O 4-NH 2颗粒,得Pickering乳液B;将乳液A加入到乳液B中,得到混合液,在一定转速条件下进行搅拌混合通过相同得转速机械搅拌下搅拌,再加入乙醇进行搅拌,经离心、洗去甲苯、真空干燥,得到马赛克型磁性印迹吸附剂,记为J-SNs-MMIPs-Pickering。
优选的,步骤(1)中所述的FeCl 3·6H 2O、1,6-己二胺、无水乙酸钠和乙二醇的用量比为:1.0g:6.0-7.0g:50-70mg:1.5-2.5g:20-40mL。
优选的,步骤(2)中,所述GOGO纳米片、水、固体石蜡和饱和氯化钠(NaCl)溶液的用量比为:1.0mg:0.8-1.2mL:0.08-0.12g:0.07-0.08mL。
优选的,步骤(2)中,所述GO-Pickering、N,N-二甲基甲酰胺、BIBB和三乙胺的用量比为:1.0g:60mL:45-55μL:90-110μL。
优选的,步骤(2)中所述高速搅拌得速度为14000rpm,时间为5~10min;所述加入一定量的BIBB和三乙胺反应是时间为24h。
优选的,步骤(3)中,所述的2'-脱氧腺苷、5-(2-甲氧基乙烯基)-2'-脱氧尿苷、二甲亚砜和乙腈的用量比为1.0g:4.0-5.0g:40~60mL:140~160mL。
优选的,步骤(3)中,所述的2'-脱氧腺苷、二甲基丙烯酸乙二醇酯和J-SNs纳米片的用量比为1.0g:10-12mL:900-1100mg。
优选的,步骤(3)中,所述的2'-脱氧腺苷、PMDEIA、CuBr 2和VC的用量比为1.0g:1.0mL:70-80mg:60-65mg。
优选的,步骤(3)中,所述通入氮气反应的时间为30~40min;避光自组装的时间为90~100min;所述在一定温度条件下搅拌的温度为30℃,时间为30~40min;所述水浴加热反应的温度60~70℃,时间12h~15h;所述干燥的温度为45℃。
优选的,步骤(4)中,所述的乳液A中J-SNs-MIPs、水和甲苯的用量比为:1.0mg:0.225-0.275mL:0.35-0.4mL。
优选的,步骤(4)中,所述的乳液A中J-SNs-MIPs、span80、Alg-Na和Fe 3O 4-NH 2的用量比为1.0mg:0.01-0.02g:0.003-0.004g:0.2-0.3g。
优选的,步骤(4)中,所述的乳液B中J-SNs-MIPs、水和甲苯的用量比为:1.0mg:0.225-0.275mL:0.35-0.4mL。
优选的,步骤(4)中,所述的乳液B中J-SNs-MIPs、span80、CaCl 2和Fe 3O 4-NH 2的用量比为1.0mg:0.01-0.02g:0.015-0.020g:0.2-0.3g。
优选的,步骤(4)所述的乳液A、乳液B和乙醇的体积比为1:1:5。
优选的,步骤(4)中所述机械搅拌的转速为800rpm,搅拌的时间为30~50min;所述加入乙醇进行搅拌的时间为5~10min。
与现有检测技术相比,本发明的有益效果如下:
本发明以Janus纳米片为基底、ATRP技术制备的聚合物为反应平台、AcrU为功能单体,构筑了高选择性的新型纳米片吸附剂(J-SNs-MIPs),显著提高纳米片材料的选择性;再通过J-SNs-MIPs作为稳定粒子得到内相分别为带磁性粒子的Ca 2+和Alg -的Pickering乳液A和B,将两种乳液动态结合,诱导Alg-Ca 2+凝胶化,制备了J-SNs-MMIPs-Pickering可以有效的解决了分子印迹纳米片材料易堆叠的难题;同时填充顺磁性粒子(Fe 3O 4-NH 2)使其Pickering乳液具有磁响应,易于分离收集。
附图说明
图1为该实施例1中制备的J-SNs(a)、J-SNs-MIPs(b)、J-SNs-MMIPs-Pickering(c,d)的扫描电镜图。
图2为该实施例1中制备的GO、J-SNs-MIPs和GO-MIPs的接触角。
图3为该实施例1中制备的Fe 3O 4-NH 2(a)、GO(b)、J-SNs-MIPs(c)和J-SNs-MMIPs-Pickering(d)的红外谱图。
图4为该实施例1中制备的Fe 3O 4-NH 2和J-SNs-MMIPs-Pickering的XRD谱图。
图5为实施例1中制备的J-SNs-MMIPs-Pickering和J-SNs-MNIPs-Pickering的吸附动力学及其模型拟合曲线。
图6为实施例1中J-SNs-MMIPs-Pickering和J-SNs-MNIPs-Pickering的吸附平衡及其模型拟合曲线。
图7为实施例1中J-SNs-MMIPs-Pickering和J-SNs-MNIPs-Pickering的再生吸附容量。
具体实施方式
为更好的使本领域技术人员理解本发明的技术方案,下面结合具体实施例和附图对本发明的技术方案进一步的说明。
本发明具体实施方式中识别性能评价按照下述方法进行:
利用静态吸附实验完成;将5mL一定浓度的dA溶液加入到离心管中,加入一定量的J-SNs-MMIPs-Pickering吸附剂,放在25℃恒温水域中静置若干小时,吸附后dA含量用紫外可见分光光度计测定,并根据结果计算出吸附容量;将5mL初始浓度为300μmol/L的dA溶液加入到离心管中,加入一定量的J-SNs-MMIPs-Pickering吸附剂,分别在一定时间梯度下取出,并根据结果计算出吸附容量,用于参与研究J-SNs-MMIPs-Pickering吸附剂的动力学性能。选择几种结构和性质类似的核苷类化合物,例如2-脱氧鸟苷(dG)、2-脱氧胞苷(dC)和5′-单磷酸-腺苷(AMP)等作为选择性吸附物,参与研究吸附剂的识别性能。
下面结合具体实施实例对本发明做进一步说明。
实施例1:
(1)Fe 3O 4-NH 2的制备;
将1.0g FeCl 3·6H 2O、6.5g 1,6-己二胺、2.0g无水乙酸钠和30mL乙二醇在50℃条件下搅拌透明。将混合物转移到高压釜中并加热至200℃保持6小时。在反应完后,用水和乙醇洗涤黑色修饰氨基的Fe 3O 4纳米颗粒(Fe 3O 4-NH 2)并用磁铁分离,50℃条件下真空干燥。将产物以10mg/mL的浓度再分散在甲苯中。
(2)J-SNs纳米片的制备;
通过Hummer’s方法制备GO纳米片。50mg GO纳米片作稳定粒子,50mL水和5g固体石蜡分别作连续相和分散相,加入3.75mL的饱和氯化钠(NaCl)溶液作电解质,在14000rpm转速下高速搅拌5min,生成GO稳定的Pickering乳液(GO-Pickering)。随后离心收集,真空干燥。8.0g GO-Pickering分散于60mL的N,N-二甲基甲酰胺(DMF)溶液中,加入400μL BIBB和800μL三乙胺反应24h,随后,离心收集,洗去油相,超声破碎,得到J-SNs纳米片,真空干燥。
(3)J-SNs-MIPs纳米片的制备;
将0.1g 2'-脱氧腺苷(dA)、0.45g 5-(2-甲氧基乙烯基)-2'-脱氧尿苷(AcrU)溶于5mL二甲亚砜和15mL乙腈的混合液中,常温通氮气30min,避光自组装1.5h;再加入1.09mL二甲基丙烯酸乙二醇酯(EGDMA)和100mg J-SNs纳米片,30℃搅拌0.5h后,加入0.4mL N,N,N,N,N-五甲基二乙烯三胺(PMDEIA)、30mg溴化铜(CuBr 2)和25mg抗坏血酸(VC),混合溶液持续搅拌并在70℃下水浴加热反应12h之后,离心收集产物,接着以甲醇和丙酮洗两次,再用甲醇/盐酸的混合溶液作为洗脱剂(7:3,V:V)对J-SNs-MIPs进行索氏提取,以去除未反应的模板分子和有机溶剂,最后,在45℃下使纯化的J-SNs-MIPs干燥。
(4)J-SNs-MMIPs-Pickering的制备;
20mg J-SNs-MIPs纳米片作稳定粒子,和0.3g span80辅助稳定,5mL水和7.5mL甲苯分别作分散相和连续相,水相中加入0.075g Alg-Na和5mg Fe 3O 4-NH 2颗粒,在一定转速的机械搅拌下搅拌30min,得Pickering乳液A;同样条件下水相中加入0.35g CaCl 2和5mg Fe 3O 4-NH 2颗粒,得Pickering乳液B;将乳液A加入到乳液B中,混合通过相同得转速机械搅拌下搅拌30min,加入5ml乙醇搅拌5min,离心,洗去甲苯,得到J-SNs-MMIPs-Pickering,真空干燥。
J-SNs-MNIPs-Pickering的制备步骤与J-SNs-MMIPs-Pickering的制备步骤相同,区别是不加入模板分子2'-脱氧腺苷(dA)。
图1为实施例中制备的J-SNs(a)、J-SNs-MIPs(b)、J-SNs-MMIPs-Pickering(c,d)的扫描电镜图。图中可以看出J-SNs-MIPs相对于J-SNs表面明显生成了聚合物,表明纳米片上成功修饰上了分子印迹聚合物,J-SNs-MMIPs-Pickering的大小为15μm,且表面可以明显看到纳米片的分布,表明J-SNs-MMIPs-Pickering成功制备。
图2为实施例中制备的GO、J-SNs-MIPs和GO-MIPs的接触角。图中表明GO、J-SNs-MIPs和GO-MIPs纳米片的疏水性依次递增,纳米片两侧的结构不同,J-SNs-MIPs纳米片成功制备。
图3为实施例中制备的Fe 3O 4-NH 2(a)、GO(b)、J-SNs-MIPs(c)和J-SNs-MMIPs-Pickering(d)的红外谱图。图中表明在576cm -1、669cm -1、1108~1729cm -1、2920cm -1产生的几个特征吸收峰,表明马赛克型磁性印迹吸附剂成功制备。
图4为实施例中制备的Fe 3O4-NH 2和J-SNs-MMIPs-Pickering的XRD谱图。图中表明制备的Fe 3O 4-NH 2和J-SNs-MMIPs-Pickering与Fe 3O 4标准卡匹配,表明马赛克型磁性印迹吸附剂成功制备。
实施例2:
(1)Fe 3O 4-NH 2的制备;
将1.0g FeCl 3·6H 2O、6g 1,6-己二胺、1.5g无水乙酸钠和20mL乙二醇在50℃条件下搅拌透明;将混合物转移到高压釜中并加热至200℃保持6h。在反应完后,用水和乙醇洗涤黑色修饰氨基的Fe 3O 4纳米颗粒(Fe 3O 4-NH 2)并用磁铁分离,50℃条件下真空干燥。将产物以10mg/mL的浓度再分散在甲苯中。
(2)J-SNs纳米片的制备;
通过Hummer’s方法制备GO纳米片;50mg GO纳米片作稳定粒子,40mL水和4g固体石蜡分别作连续相和分散相,加入3.5mL的饱和氯化钠(NaCl)溶液作电解质,在14000rpm转速下高速搅拌5min,生成GO稳定的Pickering乳液(GO-Pickering)。随后离心收集,真空干燥。8.0g GO-Pickering分散于60mL的N,N-二甲基甲酰胺(DMF)溶液中,加入360 μL BIBB和720μL三乙胺反应24h,随后,离心收集,洗去油相,超声破碎,得到J-SNs纳米片,真空干燥。
(3)J-SNs-MIPs纳米片的制备;
将0.1g 2'-脱氧腺苷(dA)、0.4g 5-(2-甲氧基乙烯基)-2'-脱氧尿苷(AcrU)溶于4mL二甲亚砜和16mL乙腈的混合液中,常温通氮气30min,避光自组装1.5h;再加入1.0mL二甲基丙烯酸乙二醇酯(EGDMA)和90mg J-SNs纳米片,30℃搅拌0.5h后,加入0.4mL N,N,N,N,N-五甲基二乙烯三胺(PMDEIA)、28mg溴化铜(CuBr 2)和24mg抗坏血酸(VC),混合溶液持续搅拌并在70℃下水浴加热反应12h之后,离心收集产物,接着以甲醇和丙酮洗两次,再用甲醇/盐酸的混合溶液作为洗脱剂(7:3,V:V)对J-SNs-MIPs进行索氏提取,以去除未反应的模板分子和有机溶剂,最后,在45℃下使纯化的J-SNs-MIPs干燥。
(4)J-SNs-MMIPs-Pickering的制备;
20mg J-SNs-MIPs纳米片作稳定粒子,和0.2g span80辅助稳定,4.5mL水和7mL甲苯分别作分散相和连续相,水相中加入0.06g Alg-Na和4mg Fe 3O 4-NH 2颗粒,在一定转速的机械搅拌下搅拌30min,得Pickering乳液A;同样条件下水相中加入0.3g CaCl 2和4mg Fe 3O 4-NH 2颗粒,得Pickering乳液B;将乳液A加入到乳液B中,混合通过相同得转速机械搅拌下搅拌30min,加入5ml乙醇搅拌5min,离心,洗去甲苯,得到J-SNs-MMIPs-Pickering,真空干燥。
实施例3:
(1)Fe 3O 4-NH 2的制备;
将1.0g FeCl 3·6H 2O、7g 1,6-己二胺、2.5g无水乙酸钠和40mL乙二醇在50℃条件下搅拌透明。将混合物转移到高压釜中并加热至200℃保持6h。在反应完后,用水和乙醇洗涤黑色修饰氨基的Fe 3O 4纳米颗粒(Fe 3O 4-NH 2)并用磁铁分离,50℃条件下真空干燥。将产物以10mg/mL的浓度再分散在甲苯中。
(2)J-SNs纳米片的制备;
通过Hummer’s方法制备GO纳米片。50mg GO纳米片作稳定粒子,60mL水和6g固体石蜡分别作连续相和分散相,加入4mL的饱和氯化钠(NaCl)溶液作电解质,在14000rpm转速下高速搅拌5min,生成GO稳定的Pickering乳液(GO-Pickering)。随后离心收集,真空干燥。8.0g GO-Pickering分散于60mL的N,N-二甲基甲酰胺(DMF)溶液中,加入440μL BIBB和880μL三乙胺反应24h,随后,离心收集,洗去油相,超声破碎,得到J-SNs纳米片,真空干燥。
(3)J-SNs-MIPs纳米片的制备;
将0.1g 2'-脱氧腺苷(dA)、0.5g 5-(2-甲氧基乙烯基)-2'-脱氧尿苷(AcrU)溶于6mL二甲亚砜和14mL乙腈的混合液中,常温通氮气30min,避光自组装1.5h;再加入1.2mL二甲基丙烯酸乙二醇酯(EGDMA)和90mg J-SNs纳米片,30℃搅拌0.5h后,加入0.4mL N,N,N,N,N-五甲基二乙烯三胺(PMDEIA)、32mg溴化铜(CuBr 2)和26mg抗坏血酸(VC),混合溶液持续搅拌并在70℃下水浴加热反应12h之后,离心收集产物,接着以甲醇和丙酮洗两次,再用甲醇/盐酸的混合溶液作为洗脱剂(7:3,V:V)对J-SNs-MIPs进行索氏提取,以去除未反应的模板分子和有机溶剂,最后,在45℃下使纯化的J-SNs-MIPs干燥。
(4)J-SNs-MMIPs-Pickering的制备;
20mg J-SNs-MIPs纳米片作稳定粒子,和0.4g span80辅助稳定,5.5mL水和8mL甲苯分别作分散相和连续相,水相中加入0.08g Alg-Na和6mg Fe 3O 4-NH 2颗粒,在一定转速的机械搅拌下搅拌30min,得Pickering乳液A;同样条件下水相中加入0.4g CaCl 2和6mg Fe 3O 4-NH 2颗粒,得Pickering乳液B;将乳液A加入到乳液B中,混合通过相同得转速机械搅拌下搅拌30min,加入5ml乙醇搅拌5min,离心,洗去甲苯,得到J-SNs-MMIPs-Pickering,真空干燥。
试验例1:
取5mL初始浓度为300μmol/L的2'-脱氧腺苷(dA)溶液分别加入到离心管中,分别加入5mg实施例1中的J-SNs-MMIPs-Pickering和J-SNs-MNIPs-Pickering吸附剂,分别在5、15、30、60、120、240、360、480、720min的时候取出;通过磁体将印迹吸附剂和溶液分离开。滤液中的dA浓度通过紫外分光光度计在259nm的波长下计算测定,并根据结果得到了图5并计算达到吸附平衡的时间;结果表明,在最初的60min,J-SNs-MMIPs-Pickering和J-SNs-MNIPs-Pickerings的吸附容量快速增加,说明模板分子能很容易地扩散进入吸附剂。而且J-SNs-MMIPs-Pickering的吸附效率明显要比J-SNs-MNIPs-Pickering更快,对dA的吸附容量也比J-SNs-MNIPs-Pickering要大,说明在J-SNs-MMIPs-Pickering表面有大量空的印迹位点。在快速吸附后,由于dA浓度的下降以及结合位点数量的减少,吸附速率急剧下降并且在100min时达到平衡。
试验例2:
取5mL初始浓度分别为20、40、70、100、300、500、700、1000μmol/L的dA溶液加入到离心管中,分别加入5mg实施例1中的J-SNs-MNIPs-Pickering吸附剂,把测试液放在25℃的水浴中静置4h后,通过磁体将印迹吸附剂和溶液分离开,未吸附的dA分子浓度分别用紫外可见分光光度计在259nm的波长下测定,并根据结果得到图6并计算出吸附容量。结果表明,在25℃条件下,达到吸附平衡时J-SNs-MMIPs-Pickering对dA的最大吸附容量 是73.04μmol/g,达到吸附平衡时J-SNs-MNIPs-Pickering对dA的最大吸附容量分别是53.39μmol/g,在相同温度下J-SNs-MMIPs-Pickering比J-SNs-MNIPs-Pickering的最大吸附量要高,说明J-SNs-MMIPs-Pickering是一种有效识别dA的吸附剂。
试验例3:
选择2-脱氧鸟苷(dG)、2-脱氧胞苷(dC)和5′-单磷酸-腺苷(AMP)等作为选择性吸附物,分别配制以上三种化合物的溶液,浓度为300μmol/L,分别取5mL加入到离心管中,分别加入5mg实施例1中制备的印迹吸附剂和非印迹吸附剂,将测试液放在25℃的水浴振荡器中10h后,通过磁体将印迹吸附剂和溶液分离开,未吸附的dA分子浓度分别用紫外可见分光光度计在259nm的波长下测定,并根据结果得出图7。结果表明J-SNs-MMIPs-Pickering对四种化合物的吸附量遵循dA﹥dG﹥dC﹥AMP的顺序,因此可以推断J-SNs-MMIPs-Pickering的表面存在与dA形状尺寸一致的印迹位点使得J-SNs-MMIPs-Pickering对dA具有较好的吸附专一性。
说明:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围内。

Claims (10)

  1. 一种马赛克型磁性印迹吸附剂的制备方法,其特征在于,具体步骤如下:
    (1)制备获得Fe 3O 4-NH 2
    (2)制备获得J-SNs纳米片;
    (3)首先将二甲亚砜和乙腈混合,加入2'-脱氧腺苷、5-(2-甲氧基乙烯基)-2'-脱氧尿苷,常温条件下通入氮气反应后进行避光自组装;然后,再加入二甲基丙烯酸乙二醇酯和步骤(2)制备的J-SNs纳米片,在一定温度条件下搅拌后,加入N,N,N,N,N-五甲基二乙烯三胺、溴化铜和抗坏血酸,持续搅拌并进行水浴加热反应,反应后离心收集产物,并用甲醇和丙酮洗两次,再用甲醇/盐酸的混合溶液作为洗脱剂对产物进行索氏提取,最后,经干燥后得到J-SNs-MIPs纳米片;
    (4)J-SNs-MMIPs-Pickering的制备;
    取步骤(3)制备的J-SNs-MIPs纳米片作稳定粒子,加入一定量的span80辅助稳定,再加入水、甲苯、Alg-Na和步骤(1)制备的Fe 3O 4-NH 2颗粒,在一定转速的机械搅拌下搅拌,得Pickering乳液A;
    再次取步骤(3)制备的J-SNs-MIPs纳米片作稳定粒子,加入一定量的span80辅助稳定,再加入水、甲苯、CaCl 2和Fe 3O 4-NH 2颗粒,得Pickering乳液B;将乳液A加入到乳液B中,得到混合液,在一定转速条件下进行搅拌混合通过相同得转速机械搅拌下搅拌,再加入乙醇进行搅拌,经离心、洗去甲苯、真空干燥,得到马赛克型磁性印迹吸附剂,记为J-SNs-MMIPs-Pickering。
  2. 根据权利要求1所述的一种马赛克型磁性印迹吸附剂的制备方法,其特征在于,步骤(3)中,所述的2'-脱氧腺苷、5-(2-甲氧基乙烯基)-2'-脱氧尿苷、二甲亚砜和乙腈的用量比为1.0g:4.0-5.0g:40~60mL:140~160mL。
  3. 根据权利要求1所述的一种马赛克型磁性印迹吸附剂的制备方法,其特征在于,步骤(3)中,所述的2'-脱氧腺苷、二甲基丙烯酸乙二醇酯和J-SNs纳米片的用量比为1.0g:10-12mL:900-1100mg。
  4. 根据权利要求1所述的一种马赛克型磁性印迹吸附剂的制备方法,其特征在于,步骤(3)中,所述的2'-脱氧腺苷、N,N,N,N,N-五甲基二乙烯三胺、溴化铜和抗坏血酸的用量比为1.0g:1.0mL:70-80mg:60-65mg。
  5. 根据权利要求1所述的一种马赛克型磁性印迹吸附剂的制备方法,其特征在于,步骤(3)中,所述通入氮气反应的时间为30~40min;避光自组装的时间为90~100min;所述在一定温度条件下搅拌的温度为30℃,时间为30~40min;所述水浴加热反应的温度60~70℃,时间12h~15h;所述干燥的温度为45℃。
  6. 根据权利要求1所述的一种马赛克型磁性印迹吸附剂的制备方法,其特征在于,步骤(4)中,所述的乳液A中J-SNs-MIPs、水和甲苯的用量比为:1.0mg:0.225-0.275mL:0.35-0.4mL。
  7. 根据权利要求1所述的一种马赛克型磁性印迹吸附剂的制备方法,其特征在于,步骤(4)中,所述的乳液A中J-SNs-MIPs、span80、Alg-Na和Fe 3O 4-NH 2的用量比为1.0mg:0.01-0.02g:0.003-0.004g:0.2-0.3g。
  8. 根据权利要求1所述的一种马赛克型磁性印迹吸附剂的制备方法,其特征在于,步骤(4)中,所述的乳液B中J-SNs-MIPs、水和甲苯的用量比为:1.0mg:0.225-0.275mL:0.35-0.4mL;所述的乳液B中J-SNs-MIPs、span80、CaCl 2和Fe 3O 4-NH 2的用量比为1.0mg:0.01-0.02g:0.015-0.020g:0.2-0.3g。
  9. 根据权利要求1所述的一种马赛克型磁性印迹吸附剂的制备方法,其特征在于,步骤(4)所述的乳液A、乳液B和乙醇的体积比为1:1:5;所述机械搅拌的转速为800rpm,搅拌的时间为30~50min;所述加入乙醇进行搅拌的时间为5~10min。
  10. 根据权利要求1~9任意一项所述的方法制备的马赛克型磁性印迹吸附剂应用于2'-脱氧腺苷的选择性吸附。
PCT/CN2020/092493 2020-02-17 2020-05-27 一种马赛克型磁性印迹吸附剂的制备方法及其应用 WO2021164146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010097210.2 2020-02-17
CN202010097210.2A CN111318265B (zh) 2020-02-17 2020-02-17 一种马赛克型磁性印迹吸附剂的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2021164146A1 true WO2021164146A1 (zh) 2021-08-26

Family

ID=71168870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092493 WO2021164146A1 (zh) 2020-02-17 2020-05-27 一种马赛克型磁性印迹吸附剂的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN111318265B (zh)
WO (1) WO2021164146A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791061A (zh) * 2021-09-15 2021-12-14 合肥海关技术中心 一种快速检测食品中腈菌唑残留的方法及其使用的磁性表面分子印迹吸附剂
CN113952940A (zh) * 2021-10-11 2022-01-21 江苏嘉通能源有限公司 一种选择性去除Sb离子的表面印迹微球吸附材料的制备方法
CN114539467A (zh) * 2022-01-21 2022-05-27 江苏大学 一种后交联分子印迹聚合物的制备方法及其吸附应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892430B (zh) * 2021-01-15 2022-08-23 江苏大学 一种Pickering乳液构建封装离子液体萃取材料的方法及其应用
CN114392725B (zh) * 2021-12-24 2023-11-10 江苏大学 一种Janus型单孔中空印迹颗粒复合凝胶吸附剂的制备方法及其应用
CN115028206B (zh) * 2022-06-21 2023-10-31 中海石油(中国)有限公司 一种Janus二维磁性纳米颗粒及其制备方法与应用
CN115282943B (zh) * 2022-09-01 2024-03-19 江苏大学 一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106749830A (zh) * 2016-12-29 2017-05-31 江苏大学 一种磁性多孔分子印迹聚合物的制备方法
CN109718745A (zh) * 2019-01-25 2019-05-07 江苏大学 一种雅努斯型磁性印迹纳米片及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063705A2 (en) * 2003-01-08 2004-07-29 University Of Massachusetts Liquid-liquid interfacial nanoparticle assemblies
WO2010097785A1 (en) * 2009-02-26 2010-09-02 University College Dublin, National University Of Ireland, Dublin A method for the selective concentration of a specific low abundance biomolecule
CN103608010A (zh) * 2010-08-02 2014-02-26 中央佛罗里达大学研究基金公司 作为stat蛋白的抑制剂的取代的2-羟基-4-(2-(苯基磺酰氨基)乙酰氨基)苯甲酸类似物
CN104386672B (zh) * 2014-10-22 2016-03-30 复旦大学 一种具有非对称结构的氧化石墨烯材料的制备方法
CN105440208A (zh) * 2015-12-29 2016-03-30 江苏大学 一种乙酰甲胺磷分子印迹聚合物的制备方法及应用
CN106824139B (zh) * 2017-03-14 2019-03-26 西北农林科技大学 一种基于纳米粒子稳定Pickering乳液作为填料的整体柱制备方法
CN109824840A (zh) * 2019-02-28 2019-05-31 陕西科技大学 基于Pickering乳液法制备两亲性Janus SiO2纳米粒子的制备方法
CN110368826B (zh) * 2019-07-14 2021-08-03 山东理工大学 一种磁场及氧化还原双重响应的皮克林乳液的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106749830A (zh) * 2016-12-29 2017-05-31 江苏大学 一种磁性多孔分子印迹聚合物的制备方法
CN109718745A (zh) * 2019-01-25 2019-05-07 江苏大学 一种雅努斯型磁性印迹纳米片及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAN JIAN-MING;YIN YI-JIE: "Development of Porous Imprinted Polymers Synthesized via Pickering Emulsion Template", JILIN NORMAL UNIVERSITY JOURNAL(NATURAL SCIENCE EDITION), vol. 37, no. 2, 15 May 2016 (2016-05-15), pages 12 - 16, XP055838627, ISSN: 1674-3873, DOI: 10.16862/j.cnki.issn1674-3873.2016.02.003 *
WANG PAN; LIU JINXIN; MA YUE; TANG JING; YANG KAIWEN; LIU ZHANCHAO; PAN JIANMING: "Mosaic-inspired magnetic alginate composite sorbents derived from coalesce of two emulsion droplets for selective recognition of 2′-deoxyadenosine", CHEMICAL ENGINEERING JOURNAL, vol. 394, 3 April 2020 (2020-04-03), pages 1 - 11, XP086187033, ISSN: 1385-8947, DOI: 10.1016/j.cej.2020.124931 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791061A (zh) * 2021-09-15 2021-12-14 合肥海关技术中心 一种快速检测食品中腈菌唑残留的方法及其使用的磁性表面分子印迹吸附剂
CN113791061B (zh) * 2021-09-15 2024-03-12 合肥海关技术中心 一种快速检测食品中腈菌唑残留的方法及其使用的磁性表面分子印迹吸附剂
CN113952940A (zh) * 2021-10-11 2022-01-21 江苏嘉通能源有限公司 一种选择性去除Sb离子的表面印迹微球吸附材料的制备方法
CN113952940B (zh) * 2021-10-11 2023-11-14 江苏嘉通能源有限公司 一种选择性去除Sb离子的表面印迹微球吸附材料的制备方法
CN114539467A (zh) * 2022-01-21 2022-05-27 江苏大学 一种后交联分子印迹聚合物的制备方法及其吸附应用
CN114539467B (zh) * 2022-01-21 2023-09-22 江苏大学 一种后交联分子印迹聚合物的制备方法及其吸附应用

Also Published As

Publication number Publication date
CN111318265B (zh) 2022-01-11
CN111318265A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2021164146A1 (zh) 一种马赛克型磁性印迹吸附剂的制备方法及其应用
CN109718745B (zh) 一种雅努斯型磁性印迹纳米片及其制备方法和应用
Yang et al. Micellar assembly of a photo-and temperature-responsive amphiphilic block copolymer for controlled release
CN104744702B (zh) 牛血清白蛋白表面分子印迹聚合物及其制备方法
CN109772178B (zh) 一种基于点击化学双面负载的乙胺嘧啶分子印迹复合膜的制备方法及应用
CN110180509B (zh) 一种荧光分子印迹聚合物空心微球及其制备方法和应用
CN107652410B (zh) β-环糊精基21臂星形聚合物及其制备方法和制成的单分子胶束/金纳米粒子杂化材料
CN108745321B (zh) 用于分离花色苷的虚拟模板分子印迹磁性微球的制备方法
Musarurwa et al. Thermo-responsive polymers and advances in their applications in separation science
Bai et al. Upper surface imprinted membrane prepared by magnetic guidance phase inversion method for highly efficient and selective separation of Artemisinin
CN106076271A (zh) 一种纳米磁性聚赖氨酸/(石墨烯‑碳纳米管)生物吸附材料的制备方法及应用
CN104403041A (zh) 具有Janus结构的pH响应型磁性复合微球及其制备方法
CN114392725B (zh) 一种Janus型单孔中空印迹颗粒复合凝胶吸附剂的制备方法及其应用
CN111410723A (zh) 一种多孔硼亲和印迹聚合物及其制备方法和应用
Musarurwa et al. Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices
Wu et al. Membrane-associated molecularly imprinted surfaces with tailor-made SiO2@ polydopamine-based recognition sites for selective separation of artemisinin
Pan et al. Experimental investigation of a natural favonoid adsorption on macroporous polymers with intrinsic cis-diol moieties recognition function: Static and dynamic methods
Wang et al. Preparation of magnetic molecularly imprinted polymer beads and their recognition for baicalein
Samart et al. Preparation of poly acrylic acid grafted-mesoporous silica as pH responsive releasing material
CN110614086B (zh) 一种磁性胶聚体及其制备方法、应用
Zhang et al. Preparation of flower-like molecularly imprinted polymers based on metal coordination for selective extraction of hemoglobin
Yang et al. Preparation and properties of UiO-66 based hybrid materials via surface initiated metal-free ATRP
CN106565915B (zh) 一种双温敏型介孔印迹聚合物的制备方法
CN113797899B (zh) 一种P(Allyl-β-CD)/PSA微球的制备方法及其在吸附辛可宁中的应用
CN106893055B (zh) 一种具有四重响应性嵌段共聚物的制备及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919758

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20919758

Country of ref document: EP

Kind code of ref document: A1