WO2021164135A1 - 一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法 - Google Patents

一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法 Download PDF

Info

Publication number
WO2021164135A1
WO2021164135A1 PCT/CN2020/089257 CN2020089257W WO2021164135A1 WO 2021164135 A1 WO2021164135 A1 WO 2021164135A1 CN 2020089257 W CN2020089257 W CN 2020089257W WO 2021164135 A1 WO2021164135 A1 WO 2021164135A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
catalyst
temperature plasma
catalytic conversion
plasma catalytic
Prior art date
Application number
PCT/CN2020/089257
Other languages
English (en)
French (fr)
Inventor
宋华
Original Assignee
陕西华大骄阳能源环保发展集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西华大骄阳能源环保发展集团有限公司 filed Critical 陕西华大骄阳能源环保发展集团有限公司
Publication of WO2021164135A1 publication Critical patent/WO2021164135A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself

Definitions

  • the invention belongs to the deep processing of gaseous alkanes such as natural gas, shale gas and liquefied petroleum gas, and particularly relates to a catalyst for low-temperature plasma catalytic conversion of gaseous alkanes and a preparation method thereof.
  • gaseous alkanes such as methane into liquid fuel
  • gaseous alkanes such as natural gas and liquefied petroleum gas are mainly used for residential heating, cooking and power generation.
  • the huge reserves of gaseous alkanes far exceed market demand.
  • gaseous alkanes especially methane
  • the chemical structure of gaseous alkanes, especially methane, is stable, which makes its chemical activity relatively low and it is difficult to activate.
  • the catalytic conversion of gaseous alkanes often requires a high reaction temperature, which promotes the production of thermodynamically advantageous but low-value products, such as CO 2 or coke. Therefore, controlling the activation of CH bonds or CC in gaseous alkanes is essential for converting them into liquid chemicals (such as gasoline-range alkanes).
  • Low-temperature plasma is a promising technology that can realize the catalytic conversion of gaseous alkanes under low-temperature and normal-pressure conditions, and has great commercial potential.
  • the purpose of the present invention is to provide a catalyst for low-temperature plasma catalytic conversion of gaseous alkanes and a preparation method thereof, and to maximize the yield of liquid products and reduce the production of coke by optimizing the composition of the catalyst.
  • a method for preparing a catalyst for low-temperature plasma catalytic conversion of gaseous alkane includes the following steps:
  • a metal-containing precursor in deionized water to prepare a precursor solution, where the metal is a mixture of one or more of Ag, Pt, Pd, Ga, Zn and Ti;
  • step 2) Immerse the formed matrix material in the precursor solution in step 1), and rotate and immerse for at least 2 hours; then adjust the temperature of the rotary evaporator to perform vacuum distillation between 40-80°C until the water is completely evaporated;
  • step 2) The sample obtained in step 2) is dried at 80-120°C for 8-12h, then calcined at 550°C for 3-6h, and naturally cooled to room temperature to prepare a catalyst for low-temperature plasma catalytic conversion of gaseous alkane.
  • a further improvement of the present invention is that the loading amount of metal in step 1) is 0.1-10% of the mass of the base material.
  • a further improvement of the present invention is that the quality of the deionized water and the matrix material used in step 1) is (10-4):1.
  • the matrix material used in step 2) is one of molecular sieves, oxides, sulfides, activated carbon, and carbon nitride;
  • the molecular sieve models are ZSM-5, UZSM-5, and Y , Beta type, or A type;
  • the oxide is SiO 2 , Al 2 O 3 , TiO 2 , or ZrO 2 ;
  • the sulfide is MoS 2 , or ZrS 2 .
  • a further improvement of the present invention is that the hydrothermal synthesis method of molecular sieve UZSM-5 includes the following steps:
  • step b) Then a certain amount of organosilicon source is titrated into the homogeneous solution prepared in step 1), and stirring is continued until a gel is formed; wherein, the alumina precursor used in step a) and the organosilicon source used in step b)
  • the mass ratio of SiO 2 /Al 2 O 3 is determined by the molar ratio of SiO 2 /Al 2 O 3 , and the molar ratio of SiO 2 /Al 2 O 3 is 25-infinity;
  • step b) Transfer the gel formed in step b) to a hydrothermal synthesis kettle, and keep it at a constant temperature of 150-190°C for 3-5 days; then cool to room temperature, and perform centrifugal recovery to obtain a solid substance;
  • step c) The solid material obtained in step c) is dried at a constant temperature of 80-120°C for 8-16 hours, maintained at a constant temperature of 200-400°C for 1-2 hours, and calcined at 550-650°C for 3-5 hours to prepare a molecular sieve UZSM- Type 5.
  • a further improvement of the present invention is that the organic silicon source is selected from tetraethyl silicate or TEOS.
  • a further improvement of the present invention is that the molar ratio of SiO 2 /Al 2 O 3 in other types of molecular sieves is 23-infinity.
  • a catalyst for low-temperature plasma catalytic conversion of gaseous alkanes is prepared by adopting the above-mentioned preparation method.
  • the invention provides a method for preparing a catalyst for low-temperature plasma catalytic conversion of gaseous alkanes, which greatly improves the physical and chemical properties of the traditional commercial matrix material molecular sieve ZSM-5, and makes the catalyst prepared by the invention more uniform
  • the morphological characteristics of the particles and lower acidity are beneficial to inhibit the formation of coke.
  • the present invention provides a catalyst for low-temperature plasma catalytic conversion of gaseous alkanes, which can produce a synergistic catalytic effect when combined with plasma, and can convert gaseous alkanes into high value-added liquid alkanes under conditions close to normal temperature and normal pressure. And produce less carbon deposits.
  • the liquid product yield can be as high as 58.4%, and the generation rate of carbon deposits is reduced to less than 5%. At the same time greatly improve the quality of liquid products such that the liquid product selectivity of high value C 6 -C 9 paraffins of more than 95% branched.
  • the catalyst provided by the present invention can also maximize the use of the plasma's own energy and the UV or visible light energy released by the plasma for catalytic reactions, increase the conversion rate of gaseous alkanes by 5-10%, and increase the generation rate of liquid products by 10% above.
  • Figure 1 shows the GC-MS analysis spectrum of the liquid product obtained after the low-temperature plasma reaction of methane and propane.
  • Figure 2 shows the GC-MS analysis spectrum of the liquid product obtained after the low-temperature plasma reaction of propane and butane.
  • any of the catalysts involved in the present invention can be used to promote the reaction of gaseous light paraffins to generate C 6 -C 12 liquid fuels.
  • the catalyst is composed of molecular sieve as the base material carrier and noble metal or transition metal as the active component, so as to promote the CC coupling reaction to form more liquid products.
  • the preferred base material UZSM-5 has a uniform surface and particle size and is highly porous, and UZSM-5 can be prepared by hydrothermal synthesis.
  • alumina precursor to the tetrapropylammonium hydroxide (TPAOH) solution that is constantly stirred at room temperature, and then continuously add organic silica source (such as the original Tetraethyl silicate (TEOS)).
  • TPAOH tetrapropylammonium hydroxide
  • organic silica source such as the original Tetraethyl silicate (TEOS)
  • the mass ratio of the added alumina precursor and the organic silica source is determined by the required SiO 2 /Al 2 O 3 molar ratio, and the SiO 2 /Al 2 O 3 molar ratio can be 25 to infinity.
  • the solution of the alumina peroxide precursor and the organic silica source is continuously stirred until a gel is formed, and then transferred to the hydrothermal synthesis kettle. Then the kettle was placed at 170°C for 3 days at a constant temperature, and after cooling to room temperature, the solid was recovered by centrifugation. The obtained solid was dried at 90°C for 12 hours, then raised to 300°C at a rate of 5°C/min, and kept at 300°C for 1-2 hours, then heated to 600°C and calcined for 3-5 hours. After the obtained white solid was extruded into the powder, it was calcined in the air at 600° C. for 5 hours.
  • the preferred catalyst used in the present invention is UZSM-5 as the base material supporting active metal material.
  • the active metal supported on the UZSM-5 base material can be one or a mixture of Ag, Pt, Pd, Ga, Zn and Ti.
  • the loading amount of each active metal is 0.1-10% of the mass of the base material.
  • the loading of the active metal onto the UZSM-5 base material is done by dipping. First, a certain amount of metal precursor is dissolved in a certain amount of deionized water, and then the molded UZSM-5 matrix material is placed in the precursor solution. The ratio of the amount of deionized water to the mass of the matrix material is (10-4):1.
  • the preferred catalysts of the present invention can be used in dielectric barrier discharge reactors (DBD), parallel plate plasma reactors, glow discharge plasma reactors and other improved plasma reactor systems for catalytic conversion of gaseous alkanes.
  • DBD dielectric barrier discharge reactors
  • parallel plate plasma reactors parallel plate plasma reactors
  • glow discharge plasma reactors and other improved plasma reactor systems for catalytic conversion of gaseous alkanes.
  • a DBD low temperature plasma reactor is preferred.
  • Example 1 1%Ga/UZSM-5(80) (Note: The percentages in the following catalyst compositions are all mass percentages)
  • the preparation process is as follows:
  • TEOS tetraethyl silicate
  • step 3 The mixture prepared in step 2) is continuously stirred for 2 hours until a gel is formed. Then the obtained gel was transferred to a hydrothermal synthesis kettle and kept at a constant temperature of 170°C for 3 days. After being naturally cooled to room temperature, the resulting solid matter was recovered by centrifugation.
  • step 4) Wash the solid material in step 3) with deionized water 3 times, then dry it at 110°C for 12 hours, then heat it up to 300°C at a rate of 5°C/min, and keep it at 300°C for 1 hour, and finally heat it to 600 °C, calcined at 600°C for 6 hours.
  • the obtained white solid powder is UZSM-5.
  • Ga (NO 3) 3 ⁇ xH 2 O at a mass ratio of 1% Ga calculate the required Ga (NO 3) 3 ⁇ xH 2 O according to the amount of mass UZSM-5 base material, and dissolved
  • the precursor solution was prepared in deionized water.
  • the mass ratio of deionized water to the base material UZSM-5 is 6:1.
  • step 5) The UZSM-5 matrix material in step 5) is immersed in the precursor solution in step 6), and then placed on a rotary evaporator for 2 hours, followed by vacuum distillation at 60° C. until the water is completely evaporated.
  • step 8) After the UZSM-5 matrix material impregnated in step 7) is dried at 110°C for 12 hours, the temperature is raised to 550°C at 5°C/min, and then it is calcined in the air at a constant temperature for 3 hours to obtain 1% Ga/UZSM-5 (80°C). )catalyst.
  • the 1%Ga/UZSM-5(80) catalyst prepared according to the above method exhibits good catalytic activity in the low-temperature plasma reaction of gaseous alkanes.
  • Figure 1 and Figure 2 after the two sets of mixtures (methane and propane and propane and butane) undergo low-temperature plasma reaction, GC-MS analysis of liquid products, the results show that the liquid products mainly contain C 6 -C 12 heterogeneous Structured alkanes.
  • Example 2 Catalytic conversion of methane and propane with low-temperature plasma on different matrix materials
  • Example 3 Catalytic conversion of methane and propane in low-temperature plasma after UZSM-5 (80) loaded with different active metals
  • Example 4 Low-temperature plasma catalytic conversion of propane and butane on different matrix materials
  • Example 5 Catalytic conversion of propane and butane in UZSM-5 (80) loaded with different active metals in low-temperature plasma
  • the loading of Ga can promote the reaction of propane and butane to generate more liquid products, while the loading of Pt or Ti promotes the reaction to generate more gas products. This may be because the Pt load generates more C 2 hydrocarbons, which leads to a decrease in the liquid products produced, while the Ti load generates more coke.
  • the loading of Ga allows more C 2 to be converted into liquid products, thereby increasing the yield of liquid products.
  • Co-loading Ga and Ti on UZSM-5(80) increases the conversion rates of propane and butane. This may be because the Ti load can absorb the energy of UV or visible light generated by the plasma, thereby improving the energy utilization efficiency , So more energy is used for the conversion of propane and butane.
  • Example 6 Catalytic conversion of different gas alkanes on 1%Ga/UZSM-5(80) in low-temperature plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法。该催化剂是由具有活性位点的金属和提供酸性位点以及孔道结构的基体材料构成,其中基体材料为分子筛(HZSM-5,UZSM-5),氧化物(SiO 2,Al 2O 3,TiO 2,ZrO 2),硫化物(MoS 2),活性炭,氮化碳(C 3N 4)。具有活性位点的金属是Ag,Pt,Pd,Ga,Zn和Ti的一种或多种的混合物,每种金属在基体材料上的负载量是基体材料质量的0.1-10%。制备的催化剂能够在低温及常压下实现气态烷烃(C1-C5单体或两种及以上的混合物)的低温等离子体催化转化成为液态烷烃(C6-C12含有支链的烷烃)或高附加值的化学品,同时生产较少的焦炭。

Description

一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法 【技术领域】
本发明属于天然气,页岩气,液化石油气等气态烷烃的深度加工,特别涉及一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法。
【背景技术】
全球能源需求的增加和人口的增长激发了对替代燃料来源的探索。随着岩石碎裂技术和钻井技术的飞速发展以及巨大储藏量的页岩气的发现,引发了对将甲烷等气态烷烃化合物直接转化为液态燃料的研究兴趣。目前天然气,液化石油气等气态烷烃化合物主要用于住宅取暖,烹饪和发电,然而气态烷烃的巨大储藏量远远超过了市场的需求。
气态烷烃特别是甲烷化学结构稳定,使其化学活性相对较低,活化较为困难。气态烷烃的催化转化往往需要很高的反应温度,这会促进热力学上有利但价值低的产物的生成,例如CO 2或焦炭。因此,控制气态烷烃中C-H键或者C-C的活化对于将其转化为液体化学品(如汽油范围的烷烃)至关重要。低温等离子体是一种很有前景的技术,能够在低温和常压条件下实现气态烷烃的催化转化,具有很大的商业化潜力。利用低温等离子体一步法实现气态烷烃转化成为C 6-C 9支链烷烃并具有很高选择性具有很大的挑战性。只有少数报道通过γ-Al 2O 3催化剂低温等离子体能把气态烷烃直接转化为高附加值含氧化合物,比如甲醇,乙醇,丙酮等。但是关于将气态烷烃直接转化为液态烷烃(例如C 6-C 9支链烷烃)的催化剂几乎没有报到。鉴于上述背景下,开发一种催化剂实现在低温和常压的条件下将气态烷烃转成为液体燃料或者高附加值化学品,并控制焦炭的生成,是非常具 有商业化的应用前景。
【发明内容】
本发明的目的提供一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法,并通过对催化剂组成的优化来实现液体产物的产率最大化和减少焦炭的生成。
本发明采用如下技术方案来实现的:
一种用于气态烷烃低温等离子体催化转化的催化剂的制备方法,包括以下步骤:
1)将含有金属的前驱体溶于去离子水中制得前驱体溶液,其中金属为Ag,Pt,Pd,Ga,Zn和Ti的一种或多种的混合物;
2)将成型后的基体材料浸渍于步骤1)中的前驱体溶液中,旋转浸渍至少2h以上;然后调节旋转蒸发仪的温度在40-80℃之间进行减压蒸馏直到水分完全蒸干;
3)将步骤2)中所得到的样品在80-120℃下干燥8-12h,然后在550℃下煅烧3-6h,自然冷却到室温后制得气态烷烃低温等离子体催化转化的催化剂。
本发明进一步的改进在于,步骤1)中金属的负载量为基体材料质量的0.1-10%。
本发明进一步的改进在于,步骤1)中所用去离子水与基体材料的质量为(10-4):1。
本发明进一步的改进在于,步骤2)中所用基体材料为分子筛,氧化物,硫化物,活性炭,氮化碳中的一种;其中分子筛的型号为ZSM-5型,UZSM-5型, Y型,Beta型,或A型;氧化物为SiO 2,Al 2O 3,TiO 2,或ZrO 2;硫化物为MoS 2,或ZrS 2
本发明进一步的改进在于,分子筛UZSM-5型的水热合成方法包括以下步骤:
a)将氧化铝前体在室温下加到不断搅拌的氢氧化四丙基铵中,继续搅拌至氧化铝前体完全溶解得到均一溶液;
b)再将一定量的有机硅源滴定到步骤1)所制得的均一溶液中,继续搅拌直到形成凝胶;其中,步骤a)所用的氧化铝前体与步骤b)所用的有机硅源的质量比由SiO 2/Al 2O 3摩尔比决定,且SiO 2/Al 2O 3的摩尔比为25-无穷大;
c)将步骤b)所形成的凝胶转移至水热合成釜中,在150-190℃下恒温保持3-5天;然后冷却至室温,进行离心回收得到固体物质;
d)将步骤c)所得到的固体物质,在80-120℃下恒温干燥8-16h,200-400℃下恒温保持1-2h,550-650℃下煅烧3-5h,制得分子筛UZSM-5型。
本发明进一步的改进在于,有机硅源选用硅酸四乙酯或TEOS。
本发明进一步的改进在于,其他型号的分子筛中SiO 2/Al 2O 3的摩尔比为23-无穷大。
一种用于气态烷烃低温等离子体催化转化的催化剂,采用上述的制备方法制备得到。
本发明至少具有如下有益的技术效果:
本发明提供的一种用于气态烷烃低温等离子体催化转化的催化剂的制备方法,极大地改进了传统的商业化的基体材料分子筛ZSM-5的物理化学性能,使得本发明制备的催化剂具有更加均一的颗粒形貌特性以及更低的酸性,有利于抑制焦炭的生成。通过共负载具有光催化效果的助催化剂成分能够最大化地将低温 等离子体能量用于催化反应从而提高气态烷烃的转化率以及液态产物的收率。
本发明提供的一种用于气态烷烃低温等离子体催化转化的催化剂,结合等离子体可产生协同催化效应,能够实现在接近常温和常压的条件下,将气态烷烃转化成为高附加值的液态烷烃并产生较少的积碳。液体产物收率可高达58.4%,积碳的生成率减少到低于5%。同时大大提高液体产物的质量,使得液体产物中高附加值的C 6-C 9支链烷烃的选择性达到95%以上。本发明提供的催化剂还能够最大化地将等离子体的本身能量以及等离子体释放的UV或可见光的能量用于催化反应,提高气态烷烃的转化率5-10%,增加液体产物的生成率10%以上。
【附图说明】
图1为甲烷和丙烷进行低温等离子体反应后所得液体产品的GC-MS分析图谱。
图2为丙烷和丁烷进行低温等离子体反应后所得液体产品的GC-MS分析图谱。
【具体实施方式】
以下结合附图和实施例对本发明进行进一步地详细说明。
任何一种本发明中所涉及的催化剂都可用于促进气态轻烷烃反应生成C 6-C 12液态燃料。优选地,催化剂是由分子筛为基体材料载体和贵金属或过渡金属为活性组分来组成,从而促进C-C偶联反应以形成更多的液体产物。
本发明中优选基体材料UZSM-5具有均一表面和颗粒尺寸以及高度多孔,UZSM-5可以通过水热合成来制备。首先将适量的氧化铝前驱体加到在室温下不断搅拌的氢氧化四丙基铵(TPAOH)溶液中,然后向溶有氧化铝前驱体的溶液中不断滴加有机二氧化硅源(如原硅酸四乙酯(TEOS))。所添加的氧化铝前驱体 和有机二氧化硅源的质量比是由所需要的SiO 2/Al 2O 3摩尔比来决定,SiO 2/Al 2O 3摩尔比可以是25到无穷大。添加过氧化铝前驱体和有机二氧化硅源的溶液继续搅拌直到形成凝胶,然后转移至水热合成釜中。然后将釜置于170℃下恒温保持3天,冷却至室温后,离心回收固体。所得固体在90℃下干燥12h,然后以5℃/min的速度升至300℃,并在300℃恒温保持1-2小时,之后升温至600℃并煅烧3-5h。所得到的白色固体将粉末挤压成型之后,置于空气中在600℃下煅烧5h。
用于本发明优选催化剂是UZSM-5为基体材料负载活性金属物质的催化剂。UZSM-5基体材料上负载的活性金属种类可以是Ag,Pt,Pd,Ga,Zn和Ti的一种或多种的混合物。每一种活性金属的负载量是基体材料质量的0.1-10%。活性金属负载到UZSM-5基体材料是通过浸渍法来完成的。首先将一定量的金属前驱体溶解在一定量的去离子水中,然后将成型后的UZSM-5基体材料置于前驱体溶液中。去离子水的用量与基体材料的质量之比为(10-4):1。然后置于旋转蒸发仪上旋转浸渍至少2h,再调节旋转蒸发仪的温度在40-80℃之间进行减压蒸馏直到水分完全蒸干。浸渍过的催化剂在80-120℃下干燥8-12h,然后以5℃/min加热到550℃进行煅烧3-6h。自然冷却到室温后制得气态烷烃低温等离子体催化转化的催化剂。
本发明优选的催化剂可以使用在电介质阻挡放电反应器(DBD),平行板等离子体反应器,辉光放电等离子体反应器和其他改进的等离子体反应器系统中进行气态烷烃的催化转化。在本发明中优选DBD低温等离子体反应器。
实施例1:1%Ga/UZSM-5(80)(注:以下催化剂组成中的百分号均为质量百分比)
其制备过程如下:
1)将Al(NO 3) 3·9H 2O溶解在氢氧化四丙基铵(TPAOH,浓度1.0M)中,在室温下不断搅拌直到Al(NO 3) 3·9H 2O完全溶解。
2)滴加硅酸四乙酯(TEOS)到步骤1)制得溶液中,并不断搅拌。其中Al 2O 3:SiO 2:TPAOH:H 2O的摩尔比为1:80:21:943。
3)步骤2)所制备的混合物继续搅拌2小时,直到形成凝胶。然后将所得凝胶转移到水热合成釜中,在170℃下恒温保持3天。自然冷却到室温后,离心回收生成的固体物质。
4)用去离子水洗涤步骤3)中的固体物质3次,然后在110℃下干燥12h,之后以5℃/min的速率升温至300℃,并在300℃下保持1h,最后升温至600℃,在600℃下煅烧6小时。所得白色固体粉末为UZSM-5。
5)将步骤4)所制得的UZSM-5粉末挤出成型,干燥后置于600℃下和空气中煅烧5h。煅烧后的样品切成直径为2mm,长度为5-10mm,即为成型的UZSM-5基体材料。
6)将Ga(NO 3) 3·xH 2O按照1%Ga的质量比,依据UZSM-5基体材料的质量计算所需的Ga(NO 3) 3·xH 2O用量,并将其溶于去离子水中制得前驱体溶液。去离子水与基体材料UZSM-5的质量比为6:1。
7)将步骤5)中的UZSM-5基体材料浸渍于步骤6)中的前驱体溶液中,然后置于旋转蒸发仪上旋转浸渍2h,之后于60℃下进行减压蒸馏直到水分完全蒸发。
8)将步骤7)中浸渍过的UZSM-5基体材料在110℃下干燥12h后,以5℃/min升温至550℃,在空气中恒温煅烧3h制得1%Ga/UZSM-5(80)催化剂。
依据上述方法制备出的催化剂1%Ga/UZSM-5(80)在气态烷烃的低温等离子体反应中表现出很好的催化活性。如图1和图2所示,两组混合物(甲烷和丙烷以及丙烷和丁烷)经过低温等离子反应后,GC-MS分析液体产物,其结果均表明液体产物中主要含有C 6-C 12异构化的烷烃。
实施例2:甲烷和丙烷在不同基体材料上的低温等离子体的催化转化
表1 甲烷和丙烷在不同基体材料上的低温等离子体反应性能
Figure PCTCN2020089257-appb-000001
从表1可以看出,在基体材料SiO 2或γ-Al 2O 3上没有观察到液体产物的生成,但在具有高比表面积的分子筛催化剂(HZSM-5,UZSM-5)上观察到液体产物,这个结果表明低比表面积的集体材料可能不利于液体产物的形成。同时也观察到在具有较高酸度的HZSM-5(30)上会形成更多液体产物和较少的焦炭。
表2 甲烷和丙烷在具有不同酸度的UZSM-5基体材料上的低温等离子体反应性能
Figure PCTCN2020089257-appb-000002
Figure PCTCN2020089257-appb-000003
从表2中可以看出,增加基体材料UZSM-5的酸度将生成更多的焦炭,降低UZSM-5的酸度能够增加液体产品(C 6-C 9碳氢化合物)的收率。当UZSM-5的酸度降低到零时,即UZSM-5(∞),液体产物收率将会降低,气体产物收率反而增加,这表明酸度对于液体产物生成至关重要。
实施例3:甲烷和丙烷在UZSM-5(80)负载不同活性金属后的低温等离子体的催化转化
表3 甲烷和丙烷在UZSM-5(80)负载单金属后的低温等离子体反应性能
Figure PCTCN2020089257-appb-000004
Figure PCTCN2020089257-appb-000005
从表3中可以看出,除了1%Pd/UZSM-5(80),液体产物分布在其他催化剂上没有显着差异。在1%Pd/UZSM-5(80)上甲烷和丙烷的低温等离子体反应生成了更多的长链化合物,例如C 9和C 10。1%Ga/UZSM-5(80)的液体产品收率最高,说明引入过渡金属可能有利于形成具有高碳数的碳氢化合物。贵金属Pd和Pt的负载降低了焦炭和氢气的生成,这可能是因为贵金属倾向于促进丙烷的C-C而不是C-H的分解,形成较多的C 2产物和甲烷,因而导致C 2气体产物的收率增加,甲烷的转化率降低。
表4 甲烷和丙烷在UZSM-5(80)负载两种金属后的低温等离子体反应性能
Figure PCTCN2020089257-appb-000006
Figure PCTCN2020089257-appb-000007
从表4中可以看出,在UZSM-5(80)上同时负载Ga和Pt或者Pd与单一负载Pt或者Pd表现出相似的反应性能,均产生了较多的C 2碳氢化合物。Ga的负载量从1%增加5%使得液体的收率降低,并生成更多的焦炭。与5%Ga/UZSM-5(80)相比,5%Zn/UZSM-5(80)产生了较少的气体产物和较多的液体产品。当共同负载Ti和Ga在UZSM-5(80)上时,甲烷转化率和焦炭产率变化较小,但是丙烷的转化率提高了11.2%,液体产物(C 6-C 9)的收率从37.9C%提高到58.4C%。
实施例4:丙烷和丁烷在不同基体材料上的低温等离子体的催化转化
表5 丙烷和丁烷在不同基体材料上的低温等离子体反应性能
Figure PCTCN2020089257-appb-000008
Figure PCTCN2020089257-appb-000009
从表5可以看出,具有酸性的催化剂例如HZSM-5(80)和UZSM-5(80)有利于液体产品的生成。在UZSM-5(80)上反应生成的焦炭较少且表现出对C 6-C 8异构化烷烃的高选择性。
实施例5:丙烷和丁烷在UZSM-5(80)负载不同活性金属后的低温等离子体的催化转化
表6 丙烷和丁烷在UZSM-5(80)负载不同活性金属后的低温等离子体的催化转化
Figure PCTCN2020089257-appb-000010
Figure PCTCN2020089257-appb-000011
从表6中可以看出,Ga的负载能够促进丙烷和丁烷的反应生成较多的液体产物,而Pt或者Ti的负载促进反应生成较多的气体产品。这可能是因为Pt负载生成了更多的C 2碳氢化合物从而导致生成的液态产品减少,而Ti的负载生成了较多的焦炭。Ga的负载使得较多的C 2转化为液体产物从而增加了液体产物收率。共同负载Ga和Ti在UZSM-5(80)上使得丙烷和丁烷的转化率都增加,这可能是因为Ti的负载能够吸收等离子体产生的UV或可见光的能量,从而提高了能量的利用效率,因此将更多的能量用于丙烷和丁烷的转化。同时也观察到Ga和Ti的共同负载可进一步减少C 2气体产物的生成,大大提高液体产物的收率。不同金属的负载对于液体产物的分布影响较小,都显示出对C 6-C 9异构化烷烃的高选择性。与纯丙烷或纯丁烷进料相比,两者的混合进料能够提高液体产物的收率。
实施例6:不同气体烷烃在1%Ga/UZSM-5(80)上的低温等离子体的催化转化
表7 不同气体烷烃在1%Ga/UZSM-5(80)上的低温等离子体的催化转化
Figure PCTCN2020089257-appb-000012
从表7中可以看出,碳原子数高的气态烷烃(如C 4H 10)进行低温等离子反应时可生成更多的液体产物(>=C 6的异构化烷烃)。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (8)

  1. 一种用于气态烷烃低温等离子体催化转化的催化剂的制备方法,其特征在于,包括以下步骤:
    1)将含有金属的前驱体溶于去离子水中制得前驱体溶液,其中金属为Ag,Pt,Pd,Ga,Zn和Ti的一种或多种的混合物;
    2)将成型后的基体材料浸渍于步骤1)中的前驱体溶液中,旋转浸渍至少2h以上;然后调节旋转蒸发仪的温度在40-80℃之间进行减压蒸馏直到水分完全蒸干;
    3)将步骤2)中所得到的样品在80-120℃下干燥8-12h,然后在550℃下煅烧3-6h,自然冷却到室温后制得气态烷烃低温等离子体催化转化的催化剂。
  2. 根据权利要求1所述的一种用于气态烷烃低温等离子体催化转化的催化剂的制备方法,其特征在于,步骤1)中金属的负载量为基体材料质量的0.1-10%。
  3. 根据权利要求1所述的一种用于气态烷烃低温等离子体催化转化的催化剂的制备方法,其特征在于,步骤1)中所用去离子水与基体材料的质量为(10-4):1。
  4. 根据权利要求1所述的一种用于气态烷烃低温等离子体催化转化的催化剂的制备方法,其特征在于,步骤2)中所用基体材料为分子筛,氧化物,硫化物,活性炭,氮化碳中的一种;其中分子筛的型号为ZSM-5型,UZSM-5型,Y型,Beta型,或A型;氧化物为SiO 2,Al 2O 3,TiO 2,或ZrO 2;硫化物为MoS 2,或ZrS 2
  5. 根据权利要求1所述的一种用于气态烷烃低温等离子体催化转化的催化剂的制备方法,其特征在于,分子筛UZSM-5型的水热合成方法包括以下步骤:
    a)将氧化铝前体在室温下加到不断搅拌的氢氧化四丙基铵中,继续搅拌至氧化铝前体完全溶解得到均一溶液;
    b)再将一定量的有机硅源滴定到步骤1)所制得的均一溶液中,继续搅拌直到形成凝胶;其中,步骤a)所用的氧化铝前体与步骤b)所用的有机硅源的质量比由SiO 2/Al 2O 3摩尔比决定,且SiO 2/Al 2O 3的摩尔比为25-无穷大;
    c)将步骤b)所形成的凝胶转移至水热合成釜中,在150-190℃下恒温保持3-5天;然后冷却至室温,进行离心回收得到固体物质;
    d)将步骤c)所得到的固体物质,在80-120℃下恒温干燥8-16h,200-400℃下恒温保持1-2h,550-650℃下煅烧3-5h,制得分子筛UZSM-5型。
  6. 根据权利要求5所述的一种用于气态烷烃低温等离子体催化转化的催化剂的制备方法,其特征在于,有机硅源选用硅酸四乙酯或TEOS。
  7. 根据权利要求5所述的一种用于气态烷烃低温等离子体催化转化的催化剂的制备方法,其特征在于,其他型号的分子筛中SiO 2/Al 2O 3的摩尔比为23-无穷大。
  8. 一种用于气态烷烃低温等离子体催化转化的催化剂,其特征在于,采用权利要求1至7中任一项所述的制备方法制备得到。
PCT/CN2020/089257 2020-02-21 2020-05-08 一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法 WO2021164135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010109007.2 2020-02-21
CN202010109007.2A CN111250149A (zh) 2020-02-21 2020-02-21 一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2021164135A1 true WO2021164135A1 (zh) 2021-08-26

Family

ID=70949441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089257 WO2021164135A1 (zh) 2020-02-21 2020-05-08 一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN111250149A (zh)
WO (1) WO2021164135A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107199035A (zh) * 2017-06-05 2017-09-26 中国科学院福建物质结构研究所 一种常压气相催化合成甲酸甲酯用催化剂及其制备方法
CN107418619A (zh) * 2017-05-23 2017-12-01 山东京博石油化工有限公司 一种芳烃油的制备方法
CN109289841A (zh) * 2018-10-30 2019-02-01 中国科学院宁波城市环境观测研究站 一种二氧化钛复合贵金属催化剂及其制备方法和应用
CN110295057A (zh) * 2018-03-22 2019-10-01 中国石油化工股份有限公司 一种采用等离子体对馏分油进行加氢的工艺
US20190321799A1 (en) * 2018-04-18 2019-10-24 California Institute Of Technology Dielectric barrier discharge reactor for catalytic nonthermal plasma production of hydrogen from methane

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180058C (zh) * 2000-12-22 2004-12-15 天津大学 采用等离子体转化甲烷和二氧化碳制备汽油的方法
WO2008157044A1 (en) * 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing higher hydrocarbons from methane
CN101143335B (zh) * 2007-10-11 2011-01-26 福州大学 等离子体反应器催化剂及其制备方法和用途
US10308885B2 (en) * 2014-12-03 2019-06-04 Drexel University Direct incorporation of natural gas into hydrocarbon liquid fuels
CN105541530B (zh) * 2016-02-23 2019-04-02 安徽理工大学 一种生物甲烷光催化活化制备高碳烃的方法
CN105669343B (zh) * 2016-03-08 2018-10-26 安徽理工大学 一种甲烷等离子体活化无氧芳构化制备芳烃的方法
CN109420517B (zh) * 2017-08-30 2020-09-04 北京化工大学 一种甲烷低温转化制备高级烃的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107418619A (zh) * 2017-05-23 2017-12-01 山东京博石油化工有限公司 一种芳烃油的制备方法
CN107199035A (zh) * 2017-06-05 2017-09-26 中国科学院福建物质结构研究所 一种常压气相催化合成甲酸甲酯用催化剂及其制备方法
CN110295057A (zh) * 2018-03-22 2019-10-01 中国石油化工股份有限公司 一种采用等离子体对馏分油进行加氢的工艺
US20190321799A1 (en) * 2018-04-18 2019-10-24 California Institute Of Technology Dielectric barrier discharge reactor for catalytic nonthermal plasma production of hydrogen from methane
CN109289841A (zh) * 2018-10-30 2019-02-01 中国科学院宁波城市环境观测研究站 一种二氧化钛复合贵金属催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JARVIS JACK S., HARRHY JONATHAN H., HE PENG, WANG AIGUO, LIU LIJIA, SONG HUA: "Highly selective aromatization and isomerization of n -alkanes from bimetallic Pt–Zn nanoparticles supported on a uniform aluminosilicate", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 55, no. 23, 14 March 2019 (2019-03-14), UK, pages 3355 - 3358, XP055838476, ISSN: 1359-7345, DOI: 10.1039/C9CC00338J *
JARVIS JACK, JACK: "Catalytic Aromatization of Paraffin-Rich Oil under Methane Environment", SCHULICH SCHOOL OF ENGINEERING, 1 January 2018 (2018-01-01), XP055838478, Retrieved from the Internet <URL:https://prism.ucalgary.ca/bitstream/handle/1880/107758/ucalgary_2018_jarvis_jack.pdf?sequence=2&isAllowed=y> [retrieved on 20210907], DOI: 10.11575/prism/32934 *

Also Published As

Publication number Publication date
CN111250149A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
Sun et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation
CN108786849B (zh) 一种硫化锡/二氧化钛复合材料的制备和应用
WO2006011568A1 (ja) 芳香族炭化水素と水素の製造方法
CN110711582B (zh) 一种调控甲烷和一氧化碳选择性的催化剂制备方法及其应用
CN113441159B (zh) 一种镍/碳化钛光热催化材料及其制备方法和应用
WO2015058636A1 (zh) 一种甲烷直接转化制芳烃的方法
Shao et al. Preparation of a ZnIn 2 S 4–ZnAlO x nanocomposite for photoreduction of CO 2 to CO
CN103232382A (zh) 一种乙基咔唑的加氢方法及其产物的脱氢方法
Wang et al. Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation
Yan et al. Insight into the performance of different Pt/KL catalysts for n-alkane (C6–C8) aromatization: catalytic role of zeolite channels
Wang et al. Controlling reaction pathways via selective CO activation for highly efficient biomass oriented-upgrading
WO2021164135A1 (zh) 一种用于气态烷烃低温等离子体催化转化的催化剂及其制备方法
CN113600162A (zh) 多孔二氧化钛纳米材料、金属纳米粒子修饰多孔二氧化钛的光催化材料及其制备方法和应用
Meng et al. Efficient-selective-catalytic aromatization of methanol over Zn-HZSM-5/SAPO-34: Action mechanism of Zn
CN1640812A (zh) 制备氢气的方法和制备氢气的装置
KR101636005B1 (ko) 알루미나 담체에 화학적으로 고정화된 니켈 촉매, 그 제조 방법 및 상기 촉매를 이용한 액화천연가스의 수증기 개질 반응에 의한 수소 가스 제조 방법
Qin et al. Ni/MgO catalyst prepared using atmospheric high-frequency discharge plasma for CO2 reforming of methane
CN115282961A (zh) 一种以氧化铟为载体负载银的光催化剂及其制备方法和应用
Wang et al. Mercaptosilane-assisted synthesis of highly dispersed and stable Pt nanoparticles on HL zeolites for enhancing hydroisomerization of n-hexane
CN108636405B (zh) 一种用于催化重整的高选择性双原子催化剂的制备方法
CN109529911B (zh) 一种丙烷无氧脱氢用铂锡基介孔催化剂及其制备和应用
CN112547107A (zh) 一种α-Fe2O3/Ni@2D g-C3N4催化剂的制备方法
CN112791735A (zh) 一种用于光催化醇无氧脱氢的硫化镉材料及制备和应用
CN113304761B (zh) 一种PtCu3金属间化合物及其制备方法和作为脱氢催化剂的应用
Zhang et al. An active and stable catalyst of Zn modified Pt nanoparticles encapsulated within silicalite-1 zeolite for dehydrogenation of ethane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920172

Country of ref document: EP

Kind code of ref document: A1