WO2021162048A1 - 硬化性組成物及びその硬化物 - Google Patents

硬化性組成物及びその硬化物 Download PDF

Info

Publication number
WO2021162048A1
WO2021162048A1 PCT/JP2021/005026 JP2021005026W WO2021162048A1 WO 2021162048 A1 WO2021162048 A1 WO 2021162048A1 JP 2021005026 W JP2021005026 W JP 2021005026W WO 2021162048 A1 WO2021162048 A1 WO 2021162048A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
reactive silicon
carbon atoms
curable composition
Prior art date
Application number
PCT/JP2021/005026
Other languages
English (en)
French (fr)
Inventor
冬 張
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP21754530.0A priority Critical patent/EP4105262A4/en
Priority to JP2022500447A priority patent/JPWO2021162048A1/ja
Publication of WO2021162048A1 publication Critical patent/WO2021162048A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes

Definitions

  • the present invention relates to a curable composition containing an organic polymer having a reactive silicon group, and a cured product thereof.
  • Reactive silicon group-containing organic polymers are known as moisture-reactive polymers, are contained in many industrial products such as adhesives, sealants, coating agents, paints, and adhesives, and are used in a wide range of fields. There is.
  • a reactive silicon group-containing organic polymer various polymers such as a polyoxyalkylene polymer having a main chain skeleton, a saturated hydrocarbon polymer, and a (meth) acrylic acid ester copolymer are known. ing.
  • a curing catalyst (also referred to as a silanol condensation catalyst) for accelerating the curing reaction of the polymer is generally blended in the curable composition containing such a reactive silicon group-containing organic polymer. ..
  • an organotin catalyst having a carbon-tin bond such as dibutyltin bis (acetylacetonate)
  • dibutyltin bis acetylacetonate
  • Patent Documents 1 to 3 Techniques using an amine compound such as 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU) as such a non-organic tin catalyst have been reported (for example, Patent Documents 1 to 3). See). However, amine compounds such as DBU alone have low catalytic activity, and Patent Documents 1 and 2 disclose that good curability can be achieved by using an amine compound in combination with a Lewis acid such as boron trifluoride. Has been done. Further, in Patent Document 3, a reactive silicon group-containing organic polymer exhibiting rapid curability by introducing a specific substituent on a silicon atom in a reactive silicon group is prepared, and used as a curing catalyst for the polymer. It is disclosed to use an amine compound.
  • DBU 1,8-diazabicyclo [5,4,0] undec-7-ene
  • the present inventors have made an acid anhydride with respect to a non-organic tin-based curable composition containing an organic polymer having a specific reactive silicon group-containing structure and a specific amine compound.
  • bleed-out after curing can be suppressed while achieving good curability by blending a compound and / or a specific carboxylic acid, and have reached the present invention.
  • the present invention is an organic polymer having a reactive silicon group-containing structure represented by at least one of (A) general formulas (1) to (6).
  • the present invention relates to a non-organic tin-based curable composition containing (B) an amidine compound having a melting point of less than 23 ° C., and (C) an acid anhydride and / or a carboxylic acid having a pKa of 3 to 5.
  • R 1 represents a divalent bonding group which may contain a hetero atom.
  • R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • X represents a hydroxyl group or water.
  • R 1 , R 2 , and X are the same as above.
  • R 3 represents a hydrocarbon group having 1 to 5 carbon atoms and having an electron-withdrawing group on the carbon atom at the 1-position.
  • R 4 represents an unsubstituted hydrocarbon group having 1 to 5 carbon atoms.
  • A is 1 or 2
  • b is 0 or 1
  • c is 1 or 2.
  • R 5 represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may contain a hetero atom.
  • X is the same as above.
  • R 6 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon represents the hydrocarbon.
  • the hydrogen group may contain a heteroatom; d is 1, 2, or 3).
  • R 7 represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may contain a hetero atom.
  • R 8 and R 9 are independently hydrogen atoms, alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and 7 to 20 carbon atoms, respectively. Represents an aralkyl group or a silyl group.
  • R 10 represents a divalent linking group, and the two bonding hands of the R 10 are carbon atoms, oxygen atoms, nitrogen atoms, or sulfur atoms in the linking group, respectively. Is combined with.)
  • the general formulas (4) to (6) are represented by the general formulas (7) to (9), respectively.
  • the main chain skeleton of the organic polymer (A) is at least one selected from the group consisting of a polyoxyalkylene polymer, a saturated hydrocarbon polymer, and a (meth) acrylic acid ester polymer.
  • the amidine compound (B) is represented by the general formula (10).
  • R 11 N CR 12 -NR 13 2 (10) (In formula (10), R 11 , R 12 , and two R 13 independently represent a hydrogen atom or an organic group.
  • any two of R 11 , R 12 , and two R 13 One or more may be combined to form a cyclic structure.
  • the content of the amidine compound (B) is 0.1 to 15 parts by weight, and the content of the acid anhydride and / or the carboxylic acid (C) is 0. 1 to 15 parts by weight.
  • component (C) comprises an acid anhydride.
  • the present invention also relates to a cured product obtained by curing the non-organic tin-based curable composition. Further, the present invention is an organic polymer (A) having a reactive silicon group-containing structure represented by at least one of the general formulas (1) to (6), and an amidine compound (B) having a melting point of less than 23 ° C.
  • a method for suppressing bleed-out of the surface of a cured product which comprises mixing an acid anhydride and / or a carboxylic acid (C) having a pKa of 3 to 5 and then curing the mixture to obtain a cured product. Also related.
  • the present invention it is possible to provide a curable composition containing a reactive silicon group-containing organic polymer and an amine compound, which exhibits good curability and suppresses bleed-out after curing. Since the curable composition according to the present invention uses a reactive silicon group-containing organic polymer exhibiting fast curability, good curability can be achieved without adding Lewis acid.
  • the curable composition according to the present disclosure is an organic polymer (A) having a reactive silicon group as a curable resin (hereinafter, a reactive silicon group-containing organic polymer (A), or simply a polymer (A)). Also referred to as), and further contains an amidin compound (B) and an acid anhydride and / or a carboxylic acid (C).
  • the reactive silicon group-containing organic polymer (A) has a polymer skeleton composed of a plurality of repeating units and a terminal structure bonded to the end of the polymer skeleton.
  • the polymer skeleton refers to a polymer main chain composed of a plurality of repeating units.
  • the polymer skeleton of the polymer (A) may be linear or branched.
  • the linear polymer skeleton is preferable in that the cured product of the curable composition has high elongation, and the branched-chain polymer skeleton is preferable in that the cured product of the curable composition has high strength.
  • the linear polymer skeleton of the polymer (A) is a polyoxyalkylene polymer
  • the linear polymer skeleton is one or two in one molecule in the polymerization method for forming the polymer skeleton.
  • the branched polymer skeleton can be formed by using an initiator having 3 or more hydroxyl groups in one molecule.
  • the polymer skeleton is a polymer skeleton composed of only a plurality of repeating units linked to each other, or includes a structure derived from an initiator used at the time of polymerization in addition to the plurality of repeating units. It is preferable that the polymer skeleton is composed of only these.
  • the repeating unit refers to an oxyalkylene unit, for example, having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms. It refers to an oxyalkylene unit.
  • the terminal structure refers to a site that does not contain repeating units constituting the polymer skeleton and is bonded to the end of the polymer skeleton.
  • the terminal structure may be bonded to the oxyalkylene unit located at the end of the polymer skeleton via an oxygen atom.
  • the reactive silicon group contained in the polymer (A) and the reactive silicon group-containing structure described later are contained in the terminal structure.
  • each terminal structure may contain a reactive silicon group, or the terminal structure containing the reactive silicon group and the terminal structure not containing the reactive silicon group may coexist.
  • the reactive silicon group-containing organic polymer (A) preferably has a reactive silicon group at two or more ends of the polymer skeleton.
  • the polymer skeleton of the polymer (A) is linear, it can be said that the polymer (A) has reactive silicon groups at both ends of the polymer skeleton.
  • the polymer (A) is preferably a polymer component composed of a polymer molecule having two or more terminals of a reactive silicon group in the polymer skeleton, but the entire polymer (A) In the case where, in addition to the polymer molecule, a polymer molecule having a reactive silicon group at only one end of the polymer skeleton and / or a polymer molecule having no reactive silicon group is contained. There is also.
  • the number of reactive silicon groups per molecule of the reactive silicon group-containing organic polymer (A) is preferably more than 1, more preferably 1.1 or more, and more preferably 1.3 or more on average. More preferably, 1.5 or more are particularly preferable.
  • the upper limit is preferably 5 or less, and more preferably 4 or less.
  • the average ratio of the number of reactive silicon groups to the number of terminals of the polymer skeleton in one molecule of the organic polymer (A) is not particularly limited and may be 1.0 or less, or more than 1.0. There may be many.
  • the numerical value of the average ratio can be determined by the method described in the examples. In addition to the methods described in Examples, the numerical value of the average ratio can also be calculated from the results of GPC measurement and NMR measurement of the reactive silicon group-containing organic polymer (A).
  • the average ratio of the number of reactive silicon groups to the number of terminals of the polymer skeleton refers to the number of reactive silicon groups contained on average per terminal structure of the polymer skeleton. It is represented by the average number of reactive silicon groups in one molecule of the polymer / the number of terminals of the polymer skeleton in one molecule of the polymer.
  • the number of terminals of the polymer skeleton in one molecule of the polymer is 2 when all the polymer skeletons are linear, and 3 or more when all the polymer skeletons are branched chains. Further, when the polymer skeleton is a mixture of linear and branched chains, it can be between 2 and 3.
  • the organic polymer (A) has a reactive silicon group-containing structure represented by at least one of the general formulas (1) to (6). The following equation will be described below.
  • R 1 represents a divalent bonding group that may contain a heteroatom.
  • R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • X represents a hydroxyl group or a hydrolyzable group.
  • R 6 will be described later.
  • the R 2 preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferred.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
  • Examples of X include a hydroxyl group, a hydrogen atom, a halogen, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, an alkenyloxy group and the like.
  • an alkoxy group is preferable, a methoxy group and an ethoxy group are more preferable, and a methoxy group is particularly preferable, because the hydrolyzability is mild and easy to handle.
  • R 1 , R 2 , and X are the same as above.
  • R 3 represents a hydrocarbon group having 1 to 5 carbon atoms having an electron-withdrawing group on the carbon atom at the 1-position.
  • R 4 represents an unsubstituted hydrocarbon group having 1 to 5 carbon atoms.
  • a is 1 or 2
  • b is 0 or 1
  • c is 1 or 2.
  • a + b + c 3 is satisfied.
  • the number of carbon atoms of the hydrocarbon group represented by R 3 is preferably 1 to 4, more preferably 1 to 3, further preferably 1 or 2, and particularly preferably 1.
  • the hydrocarbon group represented by R 3 has an electron-withdrawing group on the carbon atom at the 1-position (that is, the carbon atom adjacent to the silicon atom shown in the formula (2)).
  • the electron-withdrawing group is not particularly limited, and for example, a halogen atom; an oxygen-based substituent such as an alkoxy group or an acyloxy group; a nitrogen-based substituent such as an amino group, an alkylamino group or a ureido group; an acyl group or an alkoxycarbonyl.
  • the electron-withdrawing group includes halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group, ethoxy group, 1-propoxy group, 2-propoxy group and 1-butoxy group.
  • Aalkoxy groups such as 2-butoxy group, tert-butyloxy group, octoxy group, lauryloxy group, phenoxy group and benzyloxy group; asyloxy group such as acetoxy group, propanoyloxy group and benzoyloxy group; amino group and methylamino group , Dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, diphenylamino group and other substituted amino groups; groups bonded by urethane bond or urea bond such as ureido group and carbamate group; acetyl group, Acyl groups such as propanoyl group, octanoyl group, lauriloyl group and benzoyl group; alkoxycarbonyl group such as methoxycarbonyl group and tert-butyloxycarbonyl group; nitro group, cyano group, isocyana
  • perfluoroalkyl group such as trifluoromethyl group, pentafluoroethyl group, perfluoropropyl group, perfluorohexyl group, perfluorooctyl group
  • electron-withdrawing aryl group such as difluorophenyl group and pentafluorophenyl group.
  • a halogen atom, an alkoxy group, a substituted or unsubstituted amino group and a trifluoromethyl group are preferable, and a halogen atom, an alkoxy group and a substituted group are used.
  • an unsubstituted amino group is more preferable.
  • R 3 are not particularly limited, and for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, chloromethyl group, dichloromethyl group, bromomethyl group, iodomethyl group, methoxymethyl group, ethoxymethyl group, phenoxy.
  • examples thereof include a methyl group, an aminomethyl group, an N-methylaminomethyl group, an N, N-dimethylaminomethyl group, an N-ethylaminomethyl group, an N, N-diethylaminomethyl group, an acetoxymethyl group, and a methylcarbamate group.
  • R 4 represents a hydrocarbon group having no substituent, and the number of carbon atoms thereof is 1 to 5, but 1 to 4 is preferable, 1 to 3 is more preferable, 1 or 2 is more preferable, and 1 is particularly preferable. preferable.
  • No particular limitation is imposed on the hydrocarbon group having 1 to 5 carbon atoms as R 4, for example, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, isobutyl group, sec- butyl group, Alkyl groups such as tert-butyl group, n-pentyl group; alkenyl groups such as vinyl group, 2-propenyl group, 3-butenyl group, and 4-pentenyl group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group Group etc. can be mentioned.
  • an alkyl group is preferable, a methyl group or an e
  • a is 1 or 2
  • b is 0 or 1
  • c is 1 or 2 (however, the total is 3), but the curability of the organic polymer (A) is high. It is preferable that a is 1, b is 0, and c is 2 because it is good.
  • R 5 represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may contain a hetero atom.
  • X is the same as above.
  • And -N (R 6 ) -C ( O) -N (R 6 )-represents a divalent group selected from the group.
  • R 6 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may contain a hetero atom.
  • d is 1, 2, or 3.
  • R 5 is a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group may be an unsubstituted hydrocarbon group or a hydrocarbon group having a substituent.
  • Good hetero-containing group which may have a hydrocarbon group as a substituent as R 5 is a group containing a hetero atom.
  • atoms other than carbon atoms and hydrogen atoms are referred to as heteroatoms.
  • Preferable examples of heteroatoms include N, O, S, P, Si, and halogen atoms.
  • the total number of carbon atoms and the number of hetero atoms is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • hetero-containing groups are hydroxyl groups; mercapto groups; halogen atoms such as Cl, Br, I, and F; nitro groups; cyano groups; methoxy groups, ethoxy groups, n-propyloxy groups, and isopropyloxy groups.
  • Alkoxy groups such as: methylthio groups, ethylthio groups, n-propylthio groups, and alkylthio groups such as isopropylthio groups; acyl groups such as acetyl groups, propionyl groups, and butanoyl groups; acetyloxy groups, propionyloxy groups, and butanoyl groups.
  • Acyloxy groups such as oxy groups; substituted or unsubstituted amino groups such as amino groups, methylamino groups, ethylamino groups, dimethylamino groups, and diethylamino groups; aminocarbonyl groups, methylaminocarbonyl groups, ethylaminocarbonyl groups, dimethyl Substituted or unsubstituted aminocarbonyl groups such as aminocarbonyl groups and diethylaminocarbonyl groups; cyano groups and the like.
  • R 5 is a hydrocarbon group substituted with a hetero-containing group
  • the total number of carbon atoms and hetero atoms in R 5 is preferably 2 to 30, more preferably 2 to 18, and further 2 to 10.
  • 2 to 6 are particularly preferable.
  • hydrocarbon group as R 5 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-pentyl group.
  • R 5 examples include, for example, alkyl groups such as methyl group and ethyl group; a phenyl group; a cycloalkyl group such as cyclohexyl group; an alkyl group having a hetero-containing group such as a chloromethyl group, and a methoxymethyl group Aryl groups such as benzyl group; aralkyl groups such as benzyl group; and the like.
  • the R 5, a methyl group, methoxymethyl group, and chloromethyl group is preferably a methyl group, and more preferably a methoxymethyl group, more preferably a methyl group.
  • R 6 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may contain a hetero atom.
  • the hydrocarbon group include the same ones as described above as R 5, for example, a methyl group, an ethyl group, n- propyl group, and an alkyl group such as isopropyl group, chloromethyl group, and a methoxymethyl group Examples thereof include an alkyl group having a hetero-containing group such as; a cycloalkyl group such as a cyclohexyl group; an aryl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group.
  • a hydrocarbon group having a hydrogen atom or a carbon atom number of 1 to 12 is preferable, a hydrocarbon group having a hydrogen atom or a carbon atom number of 1 to 6 is more preferable, and a hydrocarbon having a hydrogen atom or a carbon atom number of 1 to 3 is preferable. Groups are even more preferred.
  • d is 1, 2, or 3, but 2 or 3 is preferable from the viewpoint of curability.
  • R 7 represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may contain a heteroatom.
  • X is the same as above.
  • e is 1, 2, or 3.
  • R 8 and R 9 independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group. ..
  • R 10 represents a divalent linking group, and the two bonds of the R 10 are bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group, respectively.
  • R 7 is the same as R 5 mentioned above, the above description for R 5 apply.
  • R 8 and R 9 are independently any of a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and a silyl group. Is it?
  • the number of carbon atoms of the alkyl group is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 4.
  • the number of carbon atoms of the aryl group is preferably 6 to 12, more preferably 6 to 10.
  • the number of carbon atoms of the aralkyl group is preferably 7 to 12.
  • R 8 and R 9 include a hydrogen atom; an alkyl group such as a methyl group, an ethyl group, and a cyclohexyl group; an aryl group such as a phenyl group and a trill group; a benzyl group, a phenethyl group, and the like.
  • Aralkyl group; silyl group such as trimethylsilyl group can be mentioned.
  • a hydrogen atom, a methyl group, and a trimethylsilyl group are preferable, a hydrogen atom and a methyl group are more preferable, and a hydrogen atom is further preferable.
  • R 10 is a divalent linking group.
  • the two bonds of R 10 are bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group, respectively.
  • the fact that the two bonds of R 10 are bonded to the carbon atom, oxygen atom, nitrogen atom, or sulfur atom in the linking group means that the two bonds of R 10 are each bonded. It means that it exists on a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in a linking group.
  • R 6 is the same as above.
  • n an integer of 0 to 10, an integer of 0 to 5, is more preferable, an integer of 0 to 2 is further preferable, 0 or 1 is particularly preferable, and 1 is most preferable.
  • e is 1, 2, or 3, but 2 or 3 is preferable from the viewpoint of curability.
  • R 7 , X, and e are the same as the groups in formulas (4)-(6).
  • Specific examples of the reactive silicon group in the structure represented by the formulas (1) to (6) include a trimethoxysilyl group, a triethoxysilyl group, a tris (2-propenyloxy) silyl group, and a triacetoxysilyl group.
  • Dimethoxymethylsilyl group diethoxymethylsilyl group, dimethoxyethylsilyl group, (chloromethyl) dimethoxysilyl group, (chloromethyl) diethoxysilyl group, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group, Examples thereof include, but are not limited to, a (N, N-diethylaminomethyl) dimethoxysilyl group and a (N, N-diethylaminomethyl) diethoxysilyl group.
  • the main chain structure of the reactive silicon group-containing organic polymer (A) may be linear or may have a branched chain.
  • the main chain skeleton of the reactive silicon group-containing organic polymer (A) is not particularly limited.
  • the reactive silicon group-containing organic polymer (A) polymers having various main chain skeletons can be used.
  • Examples of the main chain skeleton of the reactive silicon group-containing organic polymer (A) include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and poly.
  • Polyoxyalkylene-based polymers such as oxypropylene-polyoxybutylene copolymer; ethylene-propylene-based copolymer, polyisobutylene, copolymer of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or butadiene and acrylonitrile Saturation of copolymers with and / or styrene, polybutadiene, isoprene, or copolymers of butadiene with acrylonitrile, styrene, etc., and hydrogenated polyolefin-based polymers obtained by hydrogenating these polyolefin-based polymers.
  • Hydrocarbon-based polymer Polyester-based polymer; (Meta) acrylic acid ester-based polymer obtained by radical polymerization of (meth) acrylic acid ester-based monomer such as ethyl (meth) acrylate and butyl (meth) acrylate, as well as Vinyl-based polymers such as polymers obtained by radical polymerization of (meth) acrylic acid-based monomers, vinyl acetate, acrylonitrile, and monomers such as styrene; grafts obtained by polymerizing vinyl monomers in the above-mentioned polymers.
  • Acrylic acid ester-based polymer obtained by radical polymerization of (meth) acrylic acid ester-based monomer such as ethyl (meth) acrylate and butyl (meth) acrylate
  • Vinyl-based polymers such as polymers obtained by radical polymerization of (meth) acrylic acid-based monomers, vinyl acetate, acrylonitrile, and monomers such as styrene; graft
  • organic polymers such as polymers; polysulfide-based polymers; polyamide-based polymers; polycarbonate-based polymers; diallylphthalate-based polymers;
  • organic polymers such as polymers; polysulfide-based polymers; polyamide-based polymers; polycarbonate-based polymers; diallylphthalate-based polymers;
  • Each of the above polymers may be mixed in a block shape, a graft shape, or the like.
  • saturated hydrocarbon-based polymers, polyoxyalkylene-based polymers, and (meth) acrylic acid ester-based polymers have a relatively low glass transition temperature, and the obtained cured product has excellent cold resistance. Therefore, a polyoxyalkylene polymer is more preferable, and polyoxypropylene is particularly preferable.
  • the reactive silicon group-containing organic polymer (A) may be a polymer having any one of the above-mentioned main chain skeletons, or a mixture of polymers having different main chain skeletons. Further, the mixture may be a mixture of polymers produced separately from each other, or a mixture produced at the same time so as to have an arbitrary mixed composition.
  • the number average molecular weight of the reactive silicon group-containing organic polymer (A) is not particularly limited, but the polystyrene-equivalent molecular weight in GPC is preferably 3,000 to 100,000, more preferably 3,000 to 50,000. Especially preferably 3,000 to 30,000.
  • the number average molecular weight is within the above range, the amount of reactive silicon groups introduced is appropriate, so that the production cost is kept within an appropriate range, and the reactive silicon has a viscosity that is easy to handle and is excellent in workability. It is easy to obtain the group-containing organic polymer (A).
  • the polymer precursor before the introduction of the reactive silicon group is used as a method for measuring the hydroxyl value of JIS K 1557 and as specified in JIS K 0070.
  • the end group concentration by titration analysis based on the principle of the measurement method of, and indicate it by the end group equivalent molecular weight obtained in consideration of the structure of the polymer (the degree of branching determined by the polymerization initiator used). You can also do it.
  • the terminal group-equivalent molecular weight of the reactive silicon group-containing organic polymer (A) For the terminal group-equivalent molecular weight of the reactive silicon group-containing organic polymer (A), a calibration line of the number average molecular weight obtained by general GPC measurement of the polymer precursor and the terminal group-equivalent molecular weight was prepared, and the reactive silicon was prepared. It is also possible to convert the number average molecular weight of the group-containing organic polymer (A) obtained by GPC into the terminal group equivalent molecular weight.
  • the molecular weight distribution (Mw / Mn) of the reactive silicon group-containing organic polymer (A) is not particularly limited, but is preferably narrow. Specifically, it is preferably less than 2.0, more preferably 1.6 or less, further preferably 1.5 or less, and particularly preferably 1.4 or less.
  • the molecular weight distribution of the reactive silicon group-containing organic polymer (A) can be obtained from the number average molecular weight and the weight average molecular weight obtained by GPC measurement.
  • the reactive silicon group-containing organic polymer (A) can be produced by introducing a reactive silicon group into a precursor polymer capable of introducing a reactive silicon group.
  • various aspects of the method for producing the reactive silicon group-containing organic polymer (A) when the main chain is a polyoxyalkylene-based polymer will be described in detail, but the reactive silicon group-containing organic polymer (A) will be described in detail. ) Is not limited to the following description.
  • the main chain is a polyoxyalkylene polymer and the general formula (1) or (2), or (4).
  • the organic polymer (A) having the reactive silicon group-containing structure represented by any of (6) to (6) has a hydroxyl group reactivity with respect to the polyoxyalkylene polymer (D) having a hydroxyl group at the terminal.
  • the polymer skeleton of the polyoxyalkylene polymer can be formed by polymerizing an epoxy compound with an initiator having a hydroxyl group by a conventionally known method, whereby the polyoxyalkylene polymer having a hydroxyl group at the terminal is formed. (D) is obtained.
  • the specific polymerization method is not particularly limited, but since a hydroxyl group-terminated polymer having a small molecular weight distribution (Mw / Mn) can be obtained, a polymerization method using a composite metal cyanide complex catalyst such as a zinc hexacyanocobaltate glyme complex. Is preferable.
  • the initiator having a hydroxyl group is not particularly limited, and for example, ethylene glycol, propylene glycol, glycerin, pentaerythritol, low molecular weight polyoxypropylene glycol, low molecular weight polyoxypropylene triol, butanol, allyl alcohol, and low molecular weight poly.
  • examples thereof include oxypropylene monoallyl ether and low molecular weight polyoxypropylene monoalkyl ether.
  • the epoxy compound is not particularly limited, and examples thereof include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and butyl glycidyl ether. Propylene oxide is preferable.
  • reaction with alkali metal salt In introducing a carbon-carbon unsaturated bond into a polyoxyalkylene-based polymer (D) having a hydroxyl group at the terminal, first, an alkali metal salt is allowed to act on the polyoxyalkylene-based polymer (D) to cause the terminal end. It is preferable to convert the hydroxyl group into a metaloxy group. Further, a composite metal cyanide complex catalyst can be used instead of the alkali metal salt. As a result, the metaloxy group-terminated polyoxyalkylene polymer (E) is formed.
  • the alkali metal salt is not particularly limited, and examples thereof include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide. From the viewpoint of ease of handling and solubility, sodium hydroxide, sodium methoxide, sodium methoxide, sodium tert-butoxide, potassium hydroxide, potassium methoxide, potassium ethoxide, potassium tert-butoxide are preferable, and sodium methoxide and sodium tert are preferable. -Butoxide is more preferred. Sodium methoxide is preferred in terms of availability.
  • the alkali metal salt may be subjected to the reaction in a state of being dissolved in a solvent.
  • reaction with electrophile (F) By allowing an electrophile (F) having a carbon-carbon unsaturated bond to act on the metaloxy group-terminated polyoxyalkylene polymer (E) obtained as described above, a metaloxy group can be converted into carbon. -Can be converted to a structure containing carbon unsaturated bonds. As a result, a polyoxyalkylene polymer (G) having a carbon-carbon unsaturated bond is formed in the terminal structure.
  • the electrophilic agent (F) having a carbon-carbon unsaturated bond reacts with the metaloxy group of the polyoxyalkylene-based polymer (E) to form a carbon-carbon unsaturated bond in the polyoxyalkylene-based polymer.
  • the compound is not particularly limited as long as it can be introduced, and examples thereof include an organic halide having a carbon-carbon unsaturated bond (F1) and an epoxy compound having a carbon-carbon unsaturated bond (F2).
  • An organic halide (F1) having a carbon-carbon unsaturated bond which is one aspect of the electrophile (F), reacts with the metaloxy group by a halogen substitution reaction to form an ether bond to form a polyoxy.
  • a structure containing a carbon-carbon unsaturated bond can be introduced as the terminal structure of the alkylene polymer.
  • the organic halide (F1) having a carbon-carbon unsaturated bond is preferably a halogenated hydrocarbon compound having a carbon-carbon double bond.
  • the polyoxyalkylene polymer (G) obtained by reacting the compound has a carbon-carbon double bond at the end of the polymer skeleton.
  • a reactive silicon group is introduced into such a polymer (G)
  • a reactive silicon group-containing structure represented by the general formula (1) or (2) can be formed.
  • R 1 in the formula (1) or (2) is an oxygen atom.
  • the halogenated hydrocarbon compound having a carbon-carbon double bond is not particularly limited, and examples thereof include allyl chloride, allyl chloride, allyl bromide, allyl bromide, allyl iodide, and metalyl iodide. Allyl chloride and methallyl chloride are preferable from the viewpoint of ease of handling. Further, since the average ratio of the number of reactive silicon groups to the number of terminals of the polymer skeleton is improved, metallyl chloride, metallic bromide, and metallic iodide are preferable.
  • the organic halide (F1) having a carbon-carbon unsaturated bond may be a halogenated hydrocarbon compound having a carbon-carbon triple bond.
  • the polyoxyalkylene polymer (G) obtained by reacting the compound has a carbon-carbon triple bond at the end of the polymer skeleton.
  • a reactive silicon group is introduced into such a polymer (G)
  • the atom adjacent to the reactive silicon group has a carbon-carbon double bond
  • the general formulas (4) to (4) to ( A reactive silicon group-containing structure represented by any of 6) can be formed.
  • the halogenated hydrocarbon compound having a carbon-carbon triple bond is not particularly limited, but for example, propargyl chloride, 1-chloro-2-butyne, 4-chloro-1-butyne, 1-chloro-2-octyne, 1 -Chloro-2-pentyne, 1,4-dichloro-2-butyne, 5-chloro-1-pentyne, 6-chloro-1-hexine, propargyl bromide, 1-bromo-2-butyne, 4-bromo-1 -Butin, 1-bromo-2-octyne, 1-bromo-2-pentyne, 1,4-dibromo-2-butyne, 5-bromo-1-pentyne, 6-bromo-1-hexine, propargyl iodide, 1 -Iodo-2-butyne, 4-iodo-1-butyne, 1-iodo-2-oct
  • propargyl chloride propargyl bromide, and propargyl iodide are more preferred.
  • the halogenated hydrocarbon compound having a carbon-carbon double bond described above may be used at the same time as the halogenated hydrocarbon compound having a carbon-carbon triple bond.
  • an epoxy compound (F2) having a carbon-carbon unsaturated bond reacts with the metal oxy group by a cycloaddition reaction of an epoxy group to form an ether bond.
  • a structure containing a carbon-carbon unsaturated bond and a hydroxyl group can be introduced as the terminal structure of the polyoxyalkylene polymer.
  • one or more epoxy compounds (F2) are added to one metal oxy group by adjusting the amount of the epoxy compound (F2) used for the metal oxy group and the reaction conditions. Can be made to.
  • the epoxy compound (F2) having a carbon-carbon unsaturated bond is not particularly limited, but an epoxy compound having a carbon-carbon double bond is preferable, for example, allyl glycidyl ether, metallicyl glycidyl ether, glycidyl acrylate, glycidyl. Methacrylate and butadiene monooxide are more preferable from the viewpoint of reaction activity, and allyl glycidyl ether is particularly preferable.
  • a hydrosilylation reaction of a hydrosilane compound (H) having a reactive silicon group is carried out with a polyoxyalkylene polymer (G) (precursor polymer) having a carbon-carbon unsaturated bond in the terminal structure obtained as described above.
  • G polyoxyalkylene polymer
  • the main chain is a polyoxyalkylene polymer and has a reactive silicon group-containing structure represented by any of the general formulas (1) or (2) or (4) to (6).
  • the organic polymer (A) can be produced.
  • a hydrosilane having a reactive silicon group is formed.
  • Compound (H) may be appropriately selected.
  • hydrosilane compound (H) having a reactive silicon group examples include trichlorosilane, dichloromethylsilane, chlorodimethylsilane, dichlorophenylsilane, (chloromethyl) dichlorosilane, (dichloromethyl) dichlorosilane, and bis (chloromethyl).
  • Halosilanes such as chlorosilane, (methoxymethyl) dichlorosilane, (dimethoxymethyl) dichlorosilane, bis (methoxymethyl) chlorosilane; trimethoxysilane, triethoxysilane, dimethoxymethylsilane, diethoxymethylsilane, dimethoxyphenylsilane, ethyl Dimethoxysilane, methoxydimethylsilane, ethoxydimethylsilane, (chloromethyl) methylmethoxysilane, (chloromethyl) dimethoxysilane, (chloromethyl) diethoxysilane, bis (chloromethyl) methoxysilane, (methoxymethyl) methylmethoxysilane, (Methoxymethyl) dimethoxysilane, bis (methoxymethyl) methoxysilane, (methoxymethyl) diethoxysilane, (ethoxymethyl) diethoxysi
  • Alkoxysilanes Alkoxysilanes; Asyloxysilanes such as diacetoxymethylsilane and diacetoxyphenylsilane; Ketoximatesilanes such as bis (dimethylketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane, triisopropeniloxisilane , (Chloromethyl) diisopropenyloxysilane, (methoxymethyl) diisopropenyloxysilane and other isopropenyloxysilanes (deacetone type) and the like.
  • the hydrosilylation reaction is preferably carried out in the presence of a hydrosilylation catalyst in order to promote the reaction.
  • a hydrosilylation catalyst a known one can be appropriately used.
  • the polyoxyalkylene polymer (D) precursor polymer having a hydroxyl group at the terminal is reacted in one molecule.
  • a method of introducing a reactive silicon group by allowing a compound (I) having a sex silicon group and an isocyanate group to act to form a urethane bond can also be applied.
  • the organic polymer (A) having a reactive silicon group-containing structure represented by any of the general formulas (1) to (3) can be produced.
  • Examples of the compound (I) having a reactive silicon group and an isocyanate group in one molecule include an isocyanate group capable of a urethanization reaction with a hydroxyl group of the polyoxyalkylene polymer (D) and a reactive silicon group.
  • the compound is not particularly limited as long as it is a compound contained in the molecule, but specific examples thereof include (3-isocyanatepropyl) trimethoxysilane, (3-isocyanatepropyl) dimethoxymethylsilane, (3-isocyanatepropyl) triethoxysilane, and (3-isocyanatepropyl) triethoxysilane.
  • Examples thereof include 3-isocyanatepropyl) diethoxymethylsilane, (isocyanatemethyl) trimethoxysilane, (isocyanatemethyl) triethoxysilane, (isocyanatemethyl) dimethoxymethylsilane, and (isocyanatemethyl) diethoxymethylsilane.
  • the urethanization reaction may be carried out without using a urethanization catalyst, but may be carried out in the presence of a urethanization catalyst for the purpose of improving the reaction rate or the reaction rate.
  • a urethanization catalyst examples include Polyurethanes: Chemistry and Technology, Part I, Table 30, Chapter 4, Sanders and Frisch, Interscience Publicly known catalysts such as Polyurethane 19 A catalyst can be used. Specific examples thereof include, but are not limited to, organic tin compounds, bismuth compounds, base catalysts such as organic amines, and the like.
  • an excess polyisocyanate compound (J) is reacted with the polyoxyalkylene polymer (D) having a hydroxyl group at the terminal.
  • a polymer having an isocyanate group at the terminal is obtained, and then a compound having a group that reacts with the isocyanate group (for example, an amino group, a hydroxyl group, etc.) and a reactive silicon group with respect to the precursor polymer.
  • a method of reacting (K) can also be applied.
  • the organic polymer (A) having a reactive silicon group-containing structure represented by any of the general formulas (1) to (3) can be produced.
  • polyisocyanate compound (J) examples include aromatic polyisocyanates such as toluene (tolylen) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; and aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate.
  • aromatic polyisocyanates such as toluene (tolylen) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate
  • aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate.
  • Examples of the compound (K) having a group that reacts with an isocyanate group and a reactive silicon group include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyldimethoxymethylsilane, ⁇ -aminopropyltriethoxysilane, and N- ( ⁇ ).
  • the polyoxyalkylene-based polymer (G) precursor polymer having a carbon-carbon unsaturated bond in the terminal structure is used.
  • a method in which a compound (L) having a reactive silicon group and a mercaptan group is allowed to act in one molecule to form a sulfide bond by adding a mercaptan group to a carbon-carbon unsaturated bond to introduce a reactive silicon group. Can also be applied.
  • the organic polymer (A) having a reactive silicon group-containing structure represented by any of the general formulas (1) to (3) can be produced.
  • R 1 in the formula (1) or (2) and Y in the formula (3) are sulfur atoms.
  • the compound (L) having a reactive silicon group and a mercaptan group in one molecule is reactive with a mercaptan group capable of an addition reaction to a carbon-carbon unsaturated bond of a polyoxyalkylene polymer (G).
  • the compound is not particularly limited as long as it has a silicon group in one molecule, but specific examples thereof include (3-mercaptopropyl) methyldimethoxysilane, (3-mercaptopropyl) trimethoxysilane, and (3-mercaptopropyl) methyl.
  • Examples thereof include diethoxysilane, (3-mercaptopropyl) triethoxysilane, (mercaptomethyl) methyldimethoxysilane, (mercaptomethyl) trimethoxysilane, (mercaptomethyl) methyldiethoxysilane, and (mercaptomethyl) triethoxysilane. ..
  • the addition reaction of the mercaptan group to the carbon-carbon unsaturated bond may be carried out without using a radical initiator, but in the presence of a radical initiator for the purpose of improving the reaction rate or the reaction rate. It may be carried out at.
  • a radical initiator conventionally known ones can be used. Specific examples thereof include, but are not limited to, an azo-based initiator and a peroxide-based initiator.
  • a catalyst having low activity with respect to the reactive silicon group is preferable, and from this viewpoint, 2,2'-azobis (isobutyronitrile) (AIBN) and 2,2'-azobis (2).
  • Azo-based initiators such as -methylbutyronitrile) (V-59) and 2,2'-azobis (1-methylcyclohexanecarbonitrile) (V-40) are particularly preferred.
  • ((Meta) acrylic acid ester polymer) When the main chain of the reactive silicon group-containing organic polymer (A) is a (meth) acrylic acid ester-based polymer, the method for producing the reactive silicon group-containing organic polymer (A) is (I). Obtained after copolymerizing a compound having a polymerizable unsaturated group and a reactive functional group (for example, acrylic acid, 2-hydroxyethyl acrylate) with a monomer having a (meth) acrylic structure to obtain a polymer.
  • a reactive functional group for example, acrylic acid, 2-hydroxyethyl acrylate
  • a carbon-carbon unsaturated bond is introduced at the end of the obtained polymer, and then carbon-carbon is subjected to a hydrosilylation reaction. Examples thereof include a method of adding a reactive silicon group-containing hydrosilane compound to a carbon unsaturated bond.
  • the method for producing the reactive silicon group-containing organic polymer (A) includes ethylene, propylene, and 1-. After polymerizing an olefin compound having 2 to 6 carbon atoms such as butene and isobutylene as a main monomer to obtain a polymer, a carbon-carbon unsaturated bond is introduced at the end of the obtained polymer, and then a carbon-carbon unsaturated bond is introduced. Examples thereof include a method of adding a reactive silicon group-containing hydrosilane compound to a carbon-carbon unsaturated bond by a hydrosilylation reaction.
  • amidine compound (B) is a compound having a melting point of less than 23 ° C., that is, a compound liquid at 23 ° C.
  • the curable composition can achieve practical curability.
  • an amidine compound that is liquid at 23 ° C. is generally prone to bleed-out over time after curing, but bleed-out can be suppressed by using it in combination with the component (C) described later. ..
  • the amidine compound (B) can be represented by the general formula (10).
  • R 11 N CR 12 -NR 13 2 (10)
  • R 11 , R 12 , and two R 13 each independently represent a hydrogen atom or an organic group. Any two or more of R 11 , R 12 , and two R 13 may be combined to form a cyclic structure.
  • R 11 enhances the curability of the reactive silicon group-containing organic polymer (A), it is preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and a carbon atom (carbon atom adjacent to the nitrogen atom). It is more preferable that the carbon atom at the ⁇ -position) is a hydrocarbon group having no unsaturated bond.
  • the number of carbon atoms of R 11 is preferably 1 to 10 and more preferably 1 to 6 because it is easily available.
  • R 12 since increasing the curing of the reactive silicon group-containing organic polymer (A), is preferably in the is an organic group represented by hydrogen or -NR 14 2, an organic group represented by -NR 14 2 Is more preferable.
  • the two R 14s independently represent a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • R 12 is an organic group represented by -NR 14 2
  • amidine compounds represented by the general formula (10) is called the guanidine compound.
  • R 14 is a hydrocarbon having a hydrogen atom or a carbon atom number of 1 to 20. Those represented by groups are preferable, and those represented by hydrogen atoms or hydrocarbon groups having 1 to 10 carbon atoms are more preferable.
  • the amidine compound represented by the general formula (10) is called a biguanide compound.
  • the biguanide compound when R 12 is represented by -NR 15 -C ( NR 16) -NR 17 2, obtained is easy, and, from the adhesiveness of the cured product obtained be good, R It is preferable that 15 , R 16 and two R 17 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. Furthermore, since the adhesiveness of the obtained cured product is further improved, one or more of R 11 , two R 13 , R 15 , R 16 and two R 17 may represent an aryl group. Especially preferable.
  • the number of carbon atoms contained in the amidine compound (B) is preferably 2 or more, more preferably 6 or more, and particularly preferably 7 or more. When the number of carbon atoms of the amidine compound (B) is less than 2, the volatility of the compound tends to increase and the working environment tends to deteriorate.
  • the upper limit of the number of carbon atoms contained in the amidine compound (B) is not particularly limited, but is preferably 10,000 or less.
  • the molecular weight of the amidine compound (B) is preferably 60 or more, more preferably 120 or more, and particularly preferably 130 or more, for the same reason as described above.
  • the upper limit of the molecular weight of the amidine compound (B) is not particularly limited, but is generally preferably 100,000 or less.
  • the amidin compound (B) is not particularly limited, and is, for example, pyrimidine, 2-aminopyrimidine, 6-amino-2,4-dimethylpyrimidine, 2-amino-4,6-dimethylpyrimidine, 1,4,5,6.
  • Amidine compounds such as nona-1,3,5,7-tetraene, 6- (dibutylamino) -1,8-diazabicyclo [5,4,0] undecene-7 (DBA-DBU); Guanidin, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, 1,1-dimethylguanidine, 1,3-dimethylguanidine, 1,2- -Diphenylguanidine, 1,1,2-trimethylguanidine, 1,2,3-trimethylguanidine, 1,1,3,3-tetramethylguanidine, 1,1,2,3,3-pentamethylguanidine, 2- Ethyl-1,1,3,3-tetramethylguanidine, 1,1,3,3-tetramethyl-2-n-propylguanidine, 1,1,3,3-tetramethyl-2-isopropylguanidine
  • the content of the amidine compound (B) in the curable composition is not particularly limited, but is preferably 0.1 to 15 parts by weight with respect to 100 parts by weight of the reactive silicon group-containing organic polymer (A). Within this range, the curable composition can suppress bleed-out after curing while having a practical curing rate. It is more preferably 0.3 to 10 parts by weight, and even more preferably 0.5 to 5 parts by weight.
  • the component (C) is an acid anhydride or a carboxylic acid. Further, an acid anhydride and a carboxylic acid may be used in combination. By using the component (C) in combination with the amidine compound (B), bleed-out after curing can be suppressed while having good curability of the curable composition.
  • the component (C) preferably contains an acid anhydride because the curability becomes better.
  • the acid anhydride a carboxylic acid anhydride is preferable.
  • the acid anhydride may be a compound having a cyclic structure or a compound having no cyclic structure. Further, it may be a compound having a carbon-carbon double bond or a compound having no carbon-carbon double bond.
  • acetic anhydride, cis-1,2-cyclohexanedicarboxylic acid anhydride, benzoic anhydride, maleic anhydride, phthalic anhydride, pyromellitic anhydride, 4,4-biphthalic anhydride, 4,4 -Oxydiphthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl humic anhydride, nadicic anhydride, trimellitic anhydride, trialkylphthalic anhydride, Phthalic anhydride, methylnadic anhydride, chlorendic anhydride and the like can be mentioned.
  • the carboxylic acid is preferably a carboxylic acid having a pKa of 3 to 5.
  • the pKa of the carboxylic acid is within the above range, both good curability and suppression of bleed-out after curing can be achieved at the same time. If the pKa of the carboxylic acid is less than 3, the curability tends to be insufficient, and if it exceeds 5, the suppression of bleed-out becomes insufficient.
  • the carboxylic acid showing the two pKa values corresponds to the carboxylic acid having the pKa value of 3 to 5 when the lower pKa value is in the range of 3 to 5.
  • the lower limit of pKa of the carboxylic acid is preferably 3.0, more preferably 3.2, and even more preferably 3.4.
  • the content of the acid anhydride and / or the carboxylic acid (C) in the curable composition is not particularly limited, but is 0. in total with respect to 100 parts by weight of the reactive silicon group-containing organic polymer (A). 1 to 15 parts by weight is preferable. Within this range, the curable composition can suppress bleed-out after curing while having a practical curing rate. It is more preferably 0.3 to 10 parts by weight, and even more preferably 0.5 to 5 parts by weight.
  • the content ratio of the amidine compound (B) to the acid anhydride and / or the carboxylic acid (C) is also not particularly limited, but from the viewpoint of achieving both good curability and suppression of bleed-out after curing, the amidine compound (B) is used.
  • the ratio of the number of moles of the carboxy group contained in the component (C) to the number of moles is preferably 0.1 to 10, more preferably 0.5 to 5, and 0.7 to 1.5. Is even more preferable.
  • the component (C) is an acid anhydride
  • the number of moles of the carboxy group is twice the number of moles of the acid anhydride.
  • Curable composition Since the curable composition contains a reactive silicon group-containing organic polymer (A) exhibiting fast curability, the amidine compound (B) is used as the curing catalyst instead of the organic tin compound. However, good curability can be achieved.
  • the curable composition has good curability even if it does not contain a Lewis acid such as a metal halide or boron halide disclosed as a component for improving curability in Patent Documents 1 and 2.
  • the curable composition may be one that does not contain Lewis acid. Since Lewis acid requires special handling, it is preferable that the curable composition does not contain Lewis acid.
  • the curable composition contains various additives, if necessary. May include.
  • the additive include silanol condensation catalysts other than the components (B) and (C), fillers, adhesive-imparting agents, plasticizers, sagging inhibitors, antioxidants, light stabilizers, ultraviolet absorbers, and physical property adjustment. Examples thereof include agents, epoxy group-containing compounds, photocurable substances, oxygen-curable substances, and resins other than the reactive silicon group-containing organic polymer (A).
  • additives other than the above may be added to the curable composition, if necessary.
  • additives include tackifier resins, solvents, diluents, epoxy resins, surface improvers, foaming agents, curability modifiers, flame retardants, silicates, radical bans, and metal-free.
  • activators include ozone deterioration inhibitors, phosphorus-based peroxide decomposing agents, lubricants, pigments, and antifungal agents.
  • typical additives will be described.
  • a silanol condensation catalyst other than the components (B) and (C) may be used in the curable composition.
  • the silanol condensation catalyst other than the component (B) and the component (C) include an organotin compound, a carboxylic acid metal salt, an amine compound other than the component (B), a carboxylic acid other than the component (C), and an alkoxy metal. Can be mentioned.
  • organic tin compound examples include dibutyl tin dilaurate, dibutyl tin dioctanoate, dibutyl tin bis (butyl maleate), dibutyl tin diacetate, dibutyl tin oxide, dibutyl tin bis (acetylacetonate), and dioctyl tin bis (acetylacetate).
  • the metal carboxylate salt examples include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, and iron carboxylate.
  • carboxylic acid metal salt a salt in which the following carboxylic acid and various metals are combined can be used.
  • amine compounds other than the component (B) include amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine; amino group-containing silane coupling agents; and ketimine compounds.
  • alkoxy metals include titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), and diisopropoxytitanium bis (ethylacetatete), aluminum tris (acetylacetonate), and diisopropoxy.
  • titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), and diisopropoxytitanium bis (ethylacetatete), aluminum tris (acetylacetonate), and diisopropoxy.
  • aluminum compounds such as aluminum ethyl acetoacetate and zirconium compounds such as zirconium tetrakis (acetylacetonate).
  • fluorine anion-containing compounds As other silanol condensation catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
  • the amount used is based on 100 parts by weight of the reactive silicon group-containing organic polymer (A). It is preferably 0.001 to 10 parts by weight, more preferably 0.001 to 5 parts by weight, further preferably 0.001 to 1 part by weight, and particularly preferably 0.001 to 0.5 parts by weight.
  • the curable composition does not substantially contain an organic tin compound.
  • the content of the organotin compound with respect to 100 parts by weight of the reactive silicon group-containing organic polymer (A) is preferably 0 to 0.5 parts by weight, and 0 to 0. .1 part by weight is more preferable, and 0 to 0.01 part by weight is further preferable.
  • the curable composition may contain a compound having a Si—F bond, but may not substantially contain the compound. It is known that the compound having a Si—F bond can act as a curing catalyst for a reactive silicon group-containing organic polymer.
  • the curable composition according to the present disclosure can suppress bleed-out after curing while exhibiting good curability even if it does not substantially contain a compound having a Si—F bond.
  • the compound having a Si—F bond include a small molecule compound having a fluorosilyl group, an organic polymer having a fluorosilyl group, and the like.
  • the fact that the curable composition does not substantially contain a compound having a Si—F bond means that the amount of the compound having a Si—F bond to 100 parts by weight of the reactive silicon group-containing organic polymer (A) is blended. However, it means that it is 0 parts by weight or more and less than 0.1 parts by weight, preferably 0 to 0.01 parts by weight.
  • fillers can be added to the curable composition.
  • fillers heavy calcium carbonate, collagen carbonate, magnesium carbonate, siliceous soil, clay, talc, kaolin, silitin, and calcined silitin, titanium oxide, fumed silica, precipitated silica, crystalline silica, molten silica, etc.
  • examples thereof include silicic anhydride, hydrous silicic acid, carbon black, ferric oxide, fine aluminum powder, zinc oxide, active zinc white, PVC powder, PMMA powder, glass fiber and filament.
  • the amount of the filler used is preferably 1 to 300 parts by weight, particularly preferably 10 to 250 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • a balloon such as an organic balloon and an inorganic balloon may be added for the purpose of reducing the weight (reducing the specific gravity) of the cured product formed by using the curable composition.
  • the balloon is a spherical filler having a hollow inside.
  • the balloon material include inorganic materials such as glass, shirasu, and silica, and organic materials such as phenol resin, urea resin, polystyrene, and saran.
  • the amount of the balloon used is preferably 0.1 to 100 parts by weight, particularly preferably 1 to 20 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • An adhesiveness-imparting agent can be added to the curable composition.
  • a silane coupling agent and a reaction product of the silane coupling agent can be added.
  • Specific examples of the silane coupling agent include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, and N- ⁇ -aminoethyl- ⁇ -.
  • Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, and (2-aminoethyl) aminomethyltrimethoxysilane; ⁇ -isocyanatepropyltrimethoxysilane, ⁇ -isocyanatepropyl Isocyanate group-containing silanes such as triethoxysilane, ⁇ -isocyanatepropylmethyldimethoxysilane, ⁇ -isocyanatemethyltrimethoxysilane, and ⁇ -isocyanatemethyldimethoxymethylsilane; ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxy.
  • Mercapto group-containing isocyanates such as silanes and ⁇ -mercaptopropylmethyldimethoxysilanes; epoxy group-containing isocyanates such as ⁇ -glycidoxypropyltrimethoxysilanes and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilanes. , Can be mentioned.
  • the adhesive-imparting agent may be used alone or in combination of two or more.
  • reactants of various silane coupling agents can also be used as adhesive imparting agents.
  • the amount of the silane coupling agent used is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • plasticizer can be added to the curable composition.
  • specific examples of the plasticizer include phthalate compounds such as dibutylphthalate, diisononylphthalate (DINP), diheptylphthalate, di (2-ethylhexyl) phthalate, diisodecylphthalate (DIDP), and butylbenzylphthalate; bis (2-).
  • Ethylhexyl) -1,4-benzenedicarboxylate and other terephthalate compounds 1,2-cyclohexanedicarboxylic acid diisononyl ester and other non-phthalate compounds; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate , And aliphatic polyvalent carboxylic acid ester compounds such as tributyl acetylcitrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetylricinolate; alkyl sulfonic acid phenyl ester; phosphoric acid ester compound; trimellitic acid ester compound.
  • Examples include chlorinated paraffins; hydrocarbon-based oils such as alkyldiphenyl and partially hydrogenated thalate; process oils; epoxidized soybean oil, and epoxy plasticants such as benzyl epoxystearate.
  • the plasticizer may be used alone or in combination of two or more.
  • a polymer plasticizer can be used.
  • the polymer plasticizer include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more, and the hydroxy groups of these polyether polyols are ester groups and ether groups.
  • examples thereof include polyethers such as derivatives converted into the above; polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
  • the amount of the plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, particularly preferably 20 to 100 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A). ..
  • An anti-sagging agent may be added to the curable composition, if necessary, in order to prevent sagging and improve workability.
  • the sagging preventive agent is not particularly limited.
  • examples of the sagging inhibitor include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. These anti-sauce agents may be used alone or in combination of two or more.
  • the amount of the sagging inhibitor used is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • Antioxidants can be used in the curable composition.
  • the use of antioxidants can enhance the weather resistance of the cured product.
  • examples of the antioxidant include hindered phenol-based, monophenol-based, bisphenol-based, diarylamine-based, and polyphenol-based. Specific examples of the antioxidant are described in, for example, JP-A-4-283259 and JP-A-9-194731.
  • the amount of the antioxidant used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • a light stabilizer can be used for the curable composition.
  • the use of a light stabilizer can prevent photooxidation deterioration of the cured product.
  • the light stabilizer include benzotriazole-based compounds, hindered amine-based compounds, and benzoate-based compounds.
  • a hindered amine type is particularly preferable.
  • the amount of the light stabilizer used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • UV absorber can be used for the curable composition.
  • the use of UV absorbers can enhance the surface weather resistance of the cured product.
  • examples of the ultraviolet absorber include benzophenone-based, benzotriazole-based, salicylate-based, substituted trill-based, and metal chelate-based compounds.
  • a benzotriazole type is particularly preferable.
  • Preferable specific examples of the benzotriazole-based UV absorber include the commercially available names Tinubin P, Tinubin 213, Tinubin 234, Tinubin 326, Tinubin 327, Tinubin 328, Tinubin 329, and Tinubin 571 (all manufactured by BASF). ..
  • the amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • a physical characteristic adjusting agent for adjusting the tensile properties of the produced cured product may be added to the curable composition.
  • the physical property adjusting agent is not particularly limited.
  • Physical property modifiers include, for example, alkylalkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane, and the like.
  • Arylalkoxysilanes alkylisopropenoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, and ⁇ -glycidoxypropylmethyldiisopropenoxysilane; tris (trimethylsilyl) borate, and tris (triethyl). Examples thereof include trialkylsilylborates such as silyl) borate; silicone varnishes; and polysiloxanes.
  • the physical property adjusting agent By using the physical property adjusting agent, the hardness of the cured product of the curable composition can be increased, or conversely, the hardness can be decreased to obtain elongation at break.
  • the physical property adjusting agent may be used alone or in combination of two or more.
  • a compound that produces a compound having a monovalent silanol group in the molecule by hydrolysis has an action of lowering the modulus of the cured product without aggravating the stickiness of the surface of the cured product.
  • a compound that produces trimethylsilanol is preferable.
  • Compounds that produce compounds having a monovalent silanol group in the molecule by hydrolysis are derivatives of alcohols such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are silanes by hydrolysis. Silicon compounds that produce monools can be mentioned. Specific examples thereof include phenoxytrimethylsilane and tris ((trimethylsiloxy) methyl) propane.
  • the amount of the physical property adjusting agent used is preferably 0.1 to 10 parts by weight, particularly preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • a compound containing an epoxy group can be used.
  • the use of a compound containing an epoxy group can enhance the resilience of the cured product.
  • the compound containing an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, bis (2-ethylhexyl) -4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxyoctyl stearate, and epoxy. Examples include butyl stearate.
  • the amount of the epoxy compound used is preferably 0.5 to 50 parts by weight with respect to 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • a photocurable substance can be used in the curable composition.
  • a photocurable substance When a photocurable substance is used, a film of the photocurable substance is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved.
  • Many substances of this type are known, such as organic monomers, oligomers, resins, and compositions containing them.
  • a monomer having one or several acrylic or methacrylic unsaturated groups, an unsaturated acrylic compound which is an oligomer or a mixture thereof, vinyl polysilicate dermatates, an azide resin and the like can be used.
  • the amount of the photocurable substance used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • Oxygen curable substances can be used in the curable composition.
  • the oxygen-curable substance include unsaturated compounds that can react with oxygen in the air.
  • the oxygen-curable substance reacts with oxygen in the air to form a cured film near the surface of the cured product, and acts to prevent the surface from stickiness and the adhesion of dust and dirt to the surface of the cured product.
  • oxygen-curable substance examples include drying oil typified by diene oil and linseed oil, and various alkyd resins obtained by modifying the compound; acrylic polymers, epoxy resins, silicon resins and the like. Modifications of the resin by drying oil; 1,2-polybutadiene, 1,4-polybutadiene, and C5 to obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, and 1,3-pentadiene. Examples thereof include a liquid polymer such as a polymer of C8 diene. These may be used alone or in combination of two or more.
  • the amount of the oxygen-curable substance used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the reactive silicon group-containing organic polymer (A).
  • the oxygen-curable substance is preferably used in combination with the photo-curable substance.
  • the curable composition can be prepared as a one-component type in which all the compounding components are previously compounded, sealed and stored, and then cured by the humidity in the air after construction. Further, as the curing agent, components (B), (C), other silanol condensation catalysts, fillers, plasticizers, water and the like are separately blended, and the curing agent and the reactive silicon group are contained. It can also be prepared as a two-component type in which the main agent containing the organic polymer (A) is mixed before use. From the viewpoint of workability, the one-component type is preferable.
  • the moist-containing compounding components are either dehydrated and dried in advance before use, or dehydrated by decompression during compounding kneading. It is preferable to be done.
  • Storage stability is further improved by adding a silicon compound that can react with water, such as trimethoxysilane, as a dehydrating agent.
  • the amount of a silicon compound that can react with water is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the reactive silicon group-containing organopolymer (A). More preferably, 0.5 to 10 parts by weight.
  • the curable composition is shaped into a desired shape by a method such as coating, casting, or filling prior to curing.
  • the curable composition which has been coated, cast, or filled and shaped, can be cured at room temperature or under heating.
  • the curable composition can be used as an adhesive, a sealing material for sealing construction in buildings, ships, automobiles, roads, etc., a molding agent, an adhesive, a paint, a spraying agent, and the like.
  • the cured product obtained by curing the curable composition is suitably used as a waterproof material, a coating film waterproof material, a vibration-proof material, a vibration-damping material, a sound-proof material, a foam material, and the like. Since the obtained cured product is excellent in flexibility and adhesiveness, it is more preferable that the curable composition is used as a sealant or an adhesive among the above-mentioned applications.
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
  • Liquid transfer system Tosoh HLC-8220GPC Column: TSKgel SuperH series manufactured by Tosoh Solvent: THF Molecular weight: Polystyrene conversion Measurement temperature: 40 ° C
  • the hydroxyl value is determined by the measuring method of JIS K 1557, and the iodine value is determined by the measuring method of JIS K 0070, and the structure of the organic polymer (the degree of branching determined by the polymerization initiator used) is determined. It is the molecular weight obtained in consideration.
  • the average number of silyl groups per terminal or molecule of the polymer shown in the examples was calculated by NMR measurement.
  • polyoxypropylene (A-1) having a trimethoxysilyl group at the terminal and having a number average molecular weight of 19,900. rice field. It was found that the polymer (A-1) had an average of 0.6 trimethoxysilyl groups at one terminal.
  • the polymer (A-1) has a reactive silicon group-containing structure represented by at least one of the general formulas (4) to (6) at the end of the polymer skeleton.
  • the obtained unpurified allyl group-terminated polyoxypropylene is mixed with n-hexane and water, and then the water is removed by centrifugation, and hexane is devolatile from the obtained hexane solution under reduced pressure to form a polymer.
  • the metal salt was removed.
  • polyoxypropylene (Q-2) having an allyl group at the terminal site was obtained.
  • Q-2 polyoxypropylene having an allyl group at the terminal site was obtained.
  • a platinum divinyldisiloxane complex 3 wt% isopropanol solution in terms of platinum
  • 8.7 g of methoxymethyldimethoxysilane were added to carry out a hydrosilylation reaction. After reacting at 90 ° C.
  • polyoxypropylene (A-2) having a number average molecular weight of 19,900 having a methoxymethyldimethoxysilyl group at the terminal.
  • the polymer (A-2) had an average of 0.7 methoxymethyldimethoxysilyl groups at one terminal.
  • the polymer (A-2) has a reactive silicon group-containing structure represented by the general formula (2) at the end of the polymer skeleton.
  • polystyrene resin To 500 g of the obtained polymer (Q-3), 50 ⁇ L of a platinum divinyldisiloxane complex solution (3 wt% isopropanol solution in terms of platinum) was added, and 8.5 g of trimethoxysilane was slowly added dropwise with stirring. .. After reacting at 100 ° C. for 2 hours, unreacted trimethoxysilane was distilled off under reduced pressure to obtain polyoxypropylene (A-3) having a trimethoxysilyl group at the terminal and having a number average molecular weight of 26,200. rice field. It was found that the polymer (A-3) had an average of 0.7 trimethoxysilyl groups at one terminal and an average of 2.1 in one molecule.
  • the polymer (A-3) has a reactive silicon group-containing structure represented by the general formula (1) at the end of the polymer skeleton.
  • the obtained unpurified allyl group-terminated polyoxypropylene is mixed with n-hexane and water, and then the water is removed by centrifugation, and hexane is devolatile from the obtained hexane solution under reduced pressure to form a polymer.
  • the metal salt was removed.
  • polyoxypropylene (Q-4) having an allyl group at the terminal site was obtained.
  • 50 ⁇ L of a platinum divinyldisiloxane complex (3 wt% isopropanol solution in terms of platinum) and 6.5 g of dimethoxymethylsilane were added to carry out a hydrosilylation reaction. After reacting at 90 ° C.
  • polyoxypropylene (N-1) having a dimethoxymethylsilyl group at the terminal and having a number average molecular weight of 19,900. rice field. It was found that the polymer (N-1) had an average of 0.7 dimethoxymethylsilyl groups at one terminal.
  • the polymer (N-1) is a comparative polymer having a reactive silicon group-containing structure that does not correspond to any of the general formulas (1) to (6).
  • Examples 1 to 12 Comparative Examples 1 to 6
  • 100 parts by weight of the organic polymer having a reactive silicon group obtained in each synthesis example or the commercially available organic polymer having a reactive silicon group is subjected to surface-treated collagen calcium carbonate.
  • a silane coupling agent having a vinyl group as a dehydrating agent (manufactured by Momentive, trade name: A-171), adhered at a ratio (parts by weight) shown in Table 1 to the main agent.
  • a silane coupling agent having an amino group as an imparting agent (manufactured by Toray Douconing Co., Ltd., trade name: A-1110), a silane coupling agent having an epoxy group (manufactured by Toray Douconing Co., Ltd., trade name: A- 187) and acid anhydride are added respectively, and then DBU (Tokyo Kasei Kogyo Co., Ltd., 1,8-diazabicyclo [5,4,0] undecene, which is an amidine compound having a melting point of less than 23 ° C. as a curing catalyst, is added. -7) was added.
  • a curable composition was prepared by kneading with a spatula for 2 minutes and defoaming the bubbles in the formulation well.
  • silane coupling agent having a vinyl group as a dehydrating agent (manufactured by Momentive, trade name: A-171), adhered at a ratio (parts by weight) shown in Table 2 to the main agent.
  • a silane coupling agent having an amino group as an imparting agent (manufactured by Toray Douconing Co., Ltd., trade name: A-1110), a silane coupling agent having an epoxy group (manufactured by Toray Douconing Co., Ltd., trade name: A- 187) and carboxylic acid are added, respectively, and then DBU (Tokyo Kasei Kogyo Co., Ltd., 1,8-diazabicyclo [5,4,0] undecene-, which is an amidine compound having a melting point of less than 23 ° C. as a curing catalyst, is added. 7) was added.
  • DBU Tokyo Kasei Kogyo Co., Ltd., 1,8-diazabicyclo [5,4,0] undecene-, which is an amidine compound having a melting point of less than 23 ° C. as a curing catalyst
  • a curable composition was prepared by kneading with a spatula for 2 minutes and defoaming the bubbles in the formulation well. Using the prepared curable composition, the skinning time was measured and the bleed-out was evaluated in the same manner as described above. The results are shown in Table 2.
  • Example 14 using the same polymer (A-2) was used. Compared with 17 and Comparative Example 8, the curability was significantly reduced. Similarly, in Comparative Example 13 in which the carboxylic acid (C) having a pKa in the range of 3 to 5 was not used and the carboxylic acid having a pKa of less than 3 was used, the same polymer (A-3) was used. The curability was significantly reduced as compared with Example 18 and Comparative Example 9, and it did not cure even after 3 hours had passed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)特定一般式(1)~(6)のうち少なくとも1つで表される反応性ケイ素基含有構造を有する有機重合体、(B)融点が23℃未満のアミジン化合物、並びに(C)酸無水物、及び/又は、pKaが3~5を示すカルボン酸を含む、非有機錫系硬化性組成物。有機重合体(A)100重量部に対して、アミジン化合物(B)の含有量が0.1~15重量部、酸無水物及び/又はカルボン酸(C)の含有量が0.1~15重量部であることが好ましい。

Description

硬化性組成物及びその硬化物
 本発明は、反応性ケイ素基を有する有機重合体を含む硬化性組成物、及び、その硬化物に関する。
 反応性ケイ素基含有有機重合体は、湿分反応性ポリマーとして知られており、接着剤、シーリング剤、コーティング剤、塗料、粘着剤等の多くの工業製品に含まれ、幅広い分野で利用されている。このような反応性ケイ素基含有有機重合体としては、主鎖骨格がポリオキシアルキレン系重合体、飽和炭化水素系重合体や(メタ)アクリル酸エステル系共重合体などの各種重合体が知られている。
 このような反応性ケイ素基含有有機重合体を含む硬化性組成物には、該重合体の硬化反応を促進するための硬化触媒(シラノール縮合触媒ともいう)が配合されることが一般的である。
 硬化触媒としては、ジブチル錫ビス(アセチルアセトナート)などの、炭素-錫結合を有する有機錫系触媒が広く使用されている。しかしながら、近年、有機錫系化合物はその毒性が指摘されており、非有機錫系触媒の開発が求められている。
 そのような非有機錫系触媒として、1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン(DBU)などのアミン化合物を用いる技術が報告されている(例えば、特許文献1~3を参照)。
 しかしながら、DBUなどのアミン化合物は単独では触媒活性が低く、特許文献1及び2では、アミン化合物と、三フッ化ホウ素等のルイス酸を併用することで、良好な硬化性を達成することが開示されている。
 また、特許文献3では、反応性ケイ素基中のケイ素原子上に特定の置換基を導入することで速硬化性を示す反応系ケイ素基含有有機重合体を調製し、当該重合体の硬化触媒としてアミン化合物を用いることが開示されている。
特開2006-199730号公報 国際公開第2008/099858号 特開2013-213229号公報
 特許文献3で記載されている通り、速硬化性を示す反応性ケイ素基含有有機重合体にアミン化合物を配合すると、ルイス酸を併用しなくとも、良好な硬化性を達成することができる。
 しかしながら、発明者らの検討によって、DBUなどのアミン化合物を硬化触媒として用いて反応性ケイ素基含有有機重合体の硬化物を作製すると、硬化後時間が経過するにつれて硬化物表面に液状の物質が現れてブリードアウトの問題が生じることが判明した。
 本発明は、上記現状に鑑み、反応性ケイ素基含有有機重合体とアミン化合物を含み、良好な硬化性を示しながら、硬化後のブリードアウトが抑制された硬化性組成物を提供することを目的とする。
 本発明者らは、上記課題を解決するために検討した結果、特定の反応性ケイ素基含有構造を有する有機重合体と特定のアミン化合物を含む非有機錫系硬化性組成物に対し、酸無水物及び/又は特定のカルボン酸を配合することで、良好な硬化性を達成しながら、硬化後のブリードアウトを抑制できることを見出し、本発明に至った。
 すなわち本発明は、(A)一般式(1)~(6)のうち少なくとも1つで表される反応性ケイ素基含有構造を有する有機重合体、
(B)融点が23℃未満のアミジン化合物、並びに
(C)酸無水物、及び/又は、pKaが3~5を示すカルボン酸
を含む、非有機錫系硬化性組成物に関する。
Figure JPOXMLDOC01-appb-C000010
 
(式(1)中、Rは、ヘテロ原子を含んでよい2価の結合基を表す。Rは、水素原子または炭素原子数1~5の炭化水素基を表す。Xは水酸基または加水分解性基を表す。)
Figure JPOXMLDOC01-appb-C000011
 
(式(2)中、R、R、及びXは上記に同じ。Rは、1位の炭素原子上に電子吸引性基を有する、炭素原子数1~5の炭化水素基を表す。Rは、非置換の、炭素原子数1~5の炭化水素基を表す。aは1または2であり、bは0または1であり、cは1または2である。但し、a+b+c=3を満たす。)
Figure JPOXMLDOC01-appb-C000012
 
(式(3)中、Rは、炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。Xは上記に同じ。Yは、-O-、-S-、-N(R)-、-O-C(=O)-N(R)-、-N(R)-C(=O)-O-、及び-N(R)-C(=O)-N(R)-からなる群より選択される二価の基を表す。Rは、水素原子または炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。dは1、2、または3である。)
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
(式(4)-(6)中、Rは、炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。Xは上記に同じ。eは1、2、または3である。R、およびRは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基、またはシリル基を表す。R10は2価の連結基を表し、前記R10が有する2つの結合手は、それぞれ、前記連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合している。)
 好ましくは、一般式(4)~(6)が、それぞれ、一般式(7)~(9)で表される。
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
(式(7)-(9)中、R、X、およびeは式(4)-(6)中の各基と同じである。)
 好ましくは、有機重合体(A)の主鎖骨格が、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、および、(メタ)アクリル酸エステル系重合体からなる群より選択される少なくとも1つである。
 好ましくは、アミジン化合物(B)が、一般式(10)で表される。
11N=CR12-NR13   (10)
(式(10)中、R11、R12、及び2個のR13は、それぞれ独立に、水素原子または有機基を表す。R11、R12、および2個のR13のうち任意の2つ以上が結合して環状構造を形成してもよい。)
 好ましくは、有機重合体(A)100重量部に対して、アミジン化合物(B)の含有量が0.1~15重量部、酸無水物及び/又はカルボン酸(C)の含有量が0.1~15重量部である。
 好ましくは、(C)成分が酸無水物を含む。
 また本発明は、前記非有機錫系硬化性組成物を硬化させてなる硬化物にも関する。
 さらに本発明は、前記一般式(1)~(6)のうち少なくとも1つで表される反応性ケイ素基含有構造を有する有機重合体(A)、融点が23℃未満のアミジン化合物(B)、並びに、酸無水物、及び/又は、pKaが3~5を示すカルボン酸(C)を混合した後、硬化させて硬化物を得ることを含む、硬化物表面のブリードアウトを抑制する方法にも関する。
 本発明によれば、反応性ケイ素基含有有機重合体とアミン化合物を含み、良好な硬化性を示しながら、硬化後のブリードアウトが抑制された硬化性組成物を提供することができる。本発明に係る硬化性組成物は、速硬化性を示す反応性ケイ素基含有有機重合体を用いたものであるため、ルイス酸を配合しなくとも、良好な硬化性を達成し得る。
 以下に本発明の実施形態を具体的に説明する。
 本開示に係る硬化性組成物は、硬化性樹脂として、反応性ケイ素基を有する有機重合体(A)(以下では反応性ケイ素基含有有機重合体(A)、又は、単に重合体(A)ともいう)を含有し、さらに、アミジン化合物(B)、並びに、酸無水物及び/又はカルボン酸(C)を含有する。
 <<反応性ケイ素基含有有機重合体(A)>>
 反応性ケイ素基含有有機重合体(A)は、複数の繰り返し単位から構成される重合体骨格と、該重合体骨格の末端に結合した末端構造を有する。前記重合体骨格とは、複数の繰り返し単位から構成される重合体主鎖のことをいう。重合体(A)の重合体骨格は、直鎖状のものであってもよいし、分岐鎖状のものであってもよい。直鎖状の重合体骨格は、硬化性組成物の硬化物の伸びが高い点で好ましく、分岐鎖状の重合体骨格は、硬化性組成物の硬化物の強度が高い点で好ましい。重合体(A)の重合体骨格がポリオキシアルキレン系重合体である場合、直鎖状の重合体骨格は、重合体骨格を形成するための重合方法において、1分子中に1個又は2個の水酸基を有する開始剤を使用することによって形成でき、分岐鎖状の重合体骨格は、1分子中に3個又はそれ以上の水酸基を有する開始剤を使用することによって形成できる。
 前記重合体骨格は、互いに連結した複数の繰り返し単位のみから構成される重合体骨格であるか、または、当該複数の繰り返し単位に加えて、重合時に使用される開始剤に由来する構造も含み、これらのみから構成される重合体骨格であることが好ましい。重合体(A)の重合体骨格がポリオキシアルキレン系重合体である場合、前記繰り返し単位とは、オキシアルキレン単位を指し、例えば、炭素原子数2~6、好ましくは炭素原子数2~4のオキシアルキレン単位のことをいう。
 前記末端構造とは、重合体骨格を構成する繰り返し単位を含まない部位であって、前記重合体骨格の末端に結合した部位を指す。重合体(A)の重合体骨格がポリオキシアルキレン系重合体である場合、前記末端構造は、酸素原子を介して、前記重合体骨格の端に位置するオキシアルキレン単位に結合していることが好ましい。また、重合体(A)が有する反応性ケイ素基、及び、後述する反応性ケイ素基含有構造は、末端構造中に含まれていることが好ましい。この時、各末端構造がそれぞれ反応性ケイ素基を含むものであってもよいし、反応性ケイ素基を含む末端構造と、反応性ケイ素基を含まない末端構造が併存してもよい。
 反応性ケイ素基含有有機重合体(A)は、反応性ケイ素基を、重合体骨格の2個以上の末端に有することが好ましい。重合体(A)の重合体骨格が直鎖状である場合、重合体(A)は反応性ケイ素基を重合体骨格の両末端に有するということができる。この時、重合体(A)は、重合体骨格の2個以上の末端に反応性ケイ素基を有する重合体分子から構成される重合体成分であることが好ましいが、重合体(A)全体のなかには、前記重合体分子に加えて、重合体骨格の1個の末端にのみ反応性ケイ素基を有する重合体分子、及び/又は、反応性ケイ素基を有しない重合体分子が含まれている場合もある。
 反応性ケイ素基含有有機重合体(A)の1分子あたりの反応性ケイ素基の数は、平均して1個を超えることが好ましく、1.1個以上がより好ましく、1.3個以上がさらに好ましく、1.5個以上が特に好ましい。上限は、5個以下が好ましく、4個以下がより好ましい。
 また、有機重合体(A)1分子における重合体骨格の末端の数に対する反応性ケイ素基の数の平均比率は、特に限定されず、1.0以下であってもよいし、1.0より多くてもよい。該平均比率の数値は、実施例で記載した方法により決定することができる。また、実施例で記載した方法以外でも、前記平均比率の数値は、反応性ケイ素基含有有機重合体(A)のGPC測定及びNMR測定の結果から算出することもできる。
 本願明細書において、前記重合体骨格の末端の数に対する反応性ケイ素基の数の平均比率とは、重合体骨格の末端構造1個あたりに平均して含まれる反応性ケイ素基の数を指し、重合体1分子中の反応性ケイ素基の平均数/重合体1分子中の重合体骨格の末端の数で表される。重合体1分子中の重合体骨格の末端の数は、重合体骨格が全て直鎖状の場合、2となり、重合体骨格が全て分岐鎖状の場合、3又はそれ以上となる。また、重合体骨格が直鎖状と分岐鎖状の混合物である場合には、2から3の間にもなり得る。
 <反応性ケイ素基含有構造>
 有機重合体(A)は、一般式(1)~(6)のうち少なくとも1つで表される反応性ケイ素基含有構造を有する。以下、下記式について説明する。
Figure JPOXMLDOC01-appb-C000019
 
 式(1)中、Rは、ヘテロ原子を含んでよい2価の結合基を表す。Rは、水素原子または炭素原子数1~5の炭化水素基を表す。Xは水酸基または加水分解性基を表す。
 Rとしては、特に限定されないが、例えば、-O-、-S-、-N(R)-、-O-C(=O)-N(R)-、-N(R)-C(=O)-O-、及び-N(R)-C(=O)-N(R)-が挙げられる。Rについては後述する。
 Rとしては、水素原子または炭素原子数1~4のアルキル基が好ましく、水素原子または炭素原子数1~3のアルキル基がより好ましい。該アルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。Rとしては、水素原子、メチル基、エチル基が好ましく、水素原子、メチル基がより好ましい。
 Xとしては、例えば、水酸基、水素原子、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、およびアルケニルオキシ基等が挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことから、アルコキシ基が好ましく、メトキシ基、エトキシ基がより好ましく、メトキシ基が特に好ましい。
Figure JPOXMLDOC01-appb-C000020
 
 式(2)中、R、R、及びXは上記に同じ。Rは、1位の炭素原子上に電子吸引性基を有する、炭素原子数1~5の炭化水素基を表す。Rは、非置換の、炭素原子数1~5の炭化水素基を表す。aは1または2であり、bは0または1であり、cは1または2である。但し、a+b+c=3を満たす。
 Rによって表される炭化水素基の炭素原子数は1~4が好ましく、1~3がより好ましく、1又は2がさらに好ましく、1が特に好ましい。
 Rによって表される炭化水素基は、1位の炭素原子(即ち、式(2)中に示したケイ素原子に隣接する炭素原子)上に電子吸引性基を有する。該電子吸引性基としては特に限定されず、例えば、ハロゲン原子;アルコキシ基、アシロキシ基などの酸素系置換基;アミノ基、アルキルアミノ基、ウレイド基などの窒素系置換基;アシル基、アルコキシカルボニル基、ニトロ基、シアノ基、イソシアナト基、スルホニル基、ペルフルオロアルキル基、電子吸引性アリール基等が挙げられる。
 前記電子吸引性基として、より具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基、1-プロポキシ基、2-プロポキシ基、1-ブトキシ基、2-ブトキシ基、tert-ブチルオキシ基、オクトキシ基、ラウリルオキシ基、フェノキシ基、ベンジルオキシ基などのアルコキシ基;アセトキシ基、プロパノイルオキシ基、ベンゾイルオキシ基などのアシロキシ基;アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、ジフェニルアミノ基などの置換アミノ基;ウレイド基、カルバメート基などのウレタン結合やウレア結合で結合した基;アセチル基、プロパノイル基、オクタノイル基、ラウリロイル基、ベンゾイル基などのアシル基;メトキシカルボニル基、tert-ブチルオキシカルボニル基などのアルコキシカルボニル基;ニトロ基、シアノ基、イソシアナト基;メチルスルホニル基、トルエンスルホニル基などのスルホニル基;トリフルオロメチル基、ペンタフルオロエチル基、ペルフルオロプロピル基、ペルフルオロヘキシル基、ペルフルオロオクチル基などのペルフルオロアルキル基;ジフルオロフェニル基、ペンタフルオロフェニル基などの電子吸引性アリール基等が挙げられる。
 前記電子吸引性基としては、重合体(A)が高い硬化性を示すことから、ハロゲン原子、アルコキシ基、置換または非置換のアミノ基、トリフルオロメチル基が好ましく、ハロゲン原子、アルコキシ基、置換または非置換のアミノ基がより好ましい。
 Rの具体例としては特に限定されず、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、ブロモメチル基、ヨードメチル基、メトキシメチル基、エトキシメチル基、フェノキシメチル基、アミノメチル基、N-メチルアミノメチル基、N,N-ジメチルアミノメチル基、N-エチルアミノメチル基、N,N-ジエチルアミノメチル基、アセトキシメチル基、メチルカルバメート基等が挙げられる。
 Rは、置換基を持たない炭化水素基を表し、その炭素原子数は1~5であるが、1~4が好ましく、1~3がより好ましく、1又は2がさらに好ましく、1が特に好ましい。
 Rとしての炭素原子数1~5の炭化水素基としては特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基などのアルキル基;ビニル基、2-プロペニル基、3-ブテニル基、および4-ペンテニル基などのアルケニル基;シクロプロピル基、シクロブチル基、シクロペンチル基などのシクロアルキル基等が挙げられる。中でも、アルキル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が特に好ましい。
 式(2)中、aは1または2であり、bは0または1であり、cは1または2である(但し、合計は3である)が、有機重合体(A)の硬化性が良好となることから、aは1であり、bは0であり、cは2であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 
 式(3)中、Rは、炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。Xは上記に同じ。Yは、-O-、-S-、-N(R)-、-O-C(=O)-N(R)-、-N(R)-C(=O)-O-、及び-N(R)-C(=O)-N(R)-からなる群より選択される二価の基を表す。Rは、水素原子または炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。dは1、2、または3である。
 Rは、炭素原子数1~20の炭化水素基である。Rとしての炭化水素基の炭素原子数としては、1~12が好ましく、1~6がより好ましく、1~4が特に好ましい。該炭化水素基は、無置換の炭化水素基であってもよいし、置換基を有する炭化水素基であってもよい。
 Rとしての炭化水素基が置換基として有してもよいヘテロ含有基は、ヘテロ原子を含む基である。ここで、炭素原子および水素原子以外の原子をヘテロ原子とする。
 ヘテロ原子の好適な例としては、N、O、S、P、Si、およびハロゲン原子が挙げられる。ヘテロ含有基について、炭素原子数とヘテロ原子数との合計は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。
 ヘテロ含有基の好適な例としては、水酸基;メルカプト基;Cl、Br、I、およびFなどのハロゲン原子;ニトロ基;シアノ基;メトキシ基、エトキシ基、n-プロピルオキシ基、およびイソプロピルオキシ基などのアルコキシ基;メチルチオ基、エチルチオ基、n-プロピルチオ基、およびイソプロピルチオ基などのアルキルチオ基;アセチル基、プロピオニル基、およびブタノイル基などのアシル基;アセチルオキシ基、プロピオニルオキシ基、およびブタノイルオキシ基などのアシルオキシ基;アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、およびジエチルアミノ基などの置換または非置換のアミノ基;アミノカルボニル基、メチルアミノカルボニル基、エチルアミノカルボニル基、ジメチルアミノカルボニル基、およびジエチルアミノカルボニル基などの置換または非置換のアミノカルボニル基;シアノ基などが挙げられる。
 Rがヘテロ含有基で置換された炭化水素基である場合、Rにおける炭素原子数とヘテロ原子数との合計は、2~30が好ましく、2~18がより好ましく、2~10がさらに好ましく、2~6が特に好ましい。
 Rとしての炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチル-n-ヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-オクタデシル基、n-ノナデシル基、およびn-イコシル基などのアルキル基;ビニル基、2-プロペニル基、3-ブテニル基、および4-ペンテニル基などのアルケニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、およびシクロオクチル基などのシクロアルキル基;フェニル基、ナフタレン-1-イル基、ナフタレン-2-イル基、o-フェニルフェニル基、m-フェニルフェニル基、およびp-フェニルフェニル基などのアリール基;ベンジル基、フェネチル基、ナフタレン-1-イルメチル基、およびナフタレン-2-イルメチル基などのアラルキル基が挙げられる。
 これらの炭化水素基が、前述のヘテロ含有基で置換された基も、Rとして好ましい。
 Rの好適な例としては、例えば、メチル基、およびエチル基などのアルキル基;クロロメチル基、およびメトキシメチル基などのヘテロ含有基を有するアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などのアリール基;ベンジル基などのアラルキル基;などを挙げることができる。Rとしては、メチル基、メトキシメチル基、およびクロロメチル基が好ましく、メチル基、およびメトキシメチル基がより好ましく、メチル基がさらに好ましい。
 Yは、-O-、-S-、-N(R)-、-O-C(=O)-N(R)-、-N(R)-C(=O)-O-、及び-N(R)-C(=O)-N(R)-からなる群より選択される二価の基を表す。Yとしては、-S-、又は、-O-C(=O)-N(R)-が好ましく、-O-C(=O)-N(R)-がより好ましい。
 Rは、水素原子または炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。当該炭化水素基としては、Rとして上述したものと同様のものが挙げられ、例えば、メチル基、エチル基、n-プロピル基、およびイソプロピル基などのアルキル基、クロロメチル基、およびメトキシメチル基などのヘテロ含有基を有するアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基、およびナフチル基などのアリール基、ベンジル基などのアラルキル基等が挙げられる。Rとしては、水素原子または炭素原子数1~12の炭化水素基が好ましく、水素原子または炭素原子数1~6の炭化水素基がより好ましく、水素原子または炭素原子数1~3の炭化水素基がさらに好ましい。なお、-N(R)-C(=O)-N(R)-中に含まれる2個のRは、同一でもよいし、異なってもよい。
 式(3)中、dは1、2、または3であるが、硬化性の観点から、2または3が好ましい。
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
 式(4)-(6)中、Rは、炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。Xは上記に同じ。eは1、2、または3である。R、およびRは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基、またはシリル基を表す。R10は2価の連結基を表し、前記R10が有する2つの結合手は、それぞれ、前記連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合している。
 Rは、前述したRと同様であり、Rについて上述した記載が適用される。
 R、およびRは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基、およびシリル基のいずれかである。アルキル基の炭素原子数は、1~12が好ましく、1~6がより好ましく、1~4が特に好ましい。アリール基の炭素原子数は、6~12が好ましく、6~10がより好ましい。アラルキル基の炭素原子数は、7~12が好ましい。
 R、およびRとしては、具体的には、水素原子;メチル基、エチル基、およびシクロヘキシル基などのアルキル基;フェニル基、およびトリル基などのアリール基;ベンジル基、およびフェネチル基などのアラルキル基;トリメチルシリル基などのシリル基が挙げられる。これらの中では、水素原子、メチル基、およびトリメチルシリル基が好ましく、水素原子、およびメチル基がより好ましく、水素原子がさらに好ましい。
 R10は2価の連結基である。R10が有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合している。
 ここで、R10が有する2つの結合手が、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合しているとは、R10が有する2つの結合手が、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子上に存在することを意味する。
 前記2価の連結基の具体例としては、-(CH-、-O-(CH-、-S-(CH-、-N(R)-(CH-、-O-C(=O)-N(R)-(CH-、-N(R)-C(=O)-N(R)-(CH-、等が挙げられる。これらの中では、-O-(CH-、-O-C(=O)-N(R)-(CH-、-N(R)-C(=O)-N(R)-(CH-が好ましく、-O-CH-が原料が入手しやすいためより好ましい。Rは上記と同じである。nとしては、0~10の整数が好ましく、0~5の整数がより好ましく、0~2の整数がさらに好ましく、0または1が特に好ましく、1が最も好ましい。
 式(4)-(6)中、eは1、2、または3であるが、硬化性の観点から、2または3が好ましい。
 式(4)-(6)は、それぞれ、一般式(7)-(9)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
 式(7)-(9)中、R、X、およびeは式(4)-(6)中の各基と同じである。
 式(1)-(6)で表される構造中の反応性ケイ素基の具体例としては、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、および(N,N-ジエチルアミノメチル)ジエトキシシリル基等が挙げられるが、これらに限定されない。
 <主鎖構造>
 反応性ケイ素基含有有機重合体(A)の主鎖構造は、直鎖状であってもよいし、分岐鎖を有していてもよい。
 反応性ケイ素基含有有機重合体(A)の主鎖骨格には特に制限はない。反応性ケイ素基含有有機重合体(A)としては、各種の主鎖骨格を持つ重合体を使用することができる。反応性ケイ素基含有有機重合体(A)の主鎖骨格としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、およびポリオキシプロピレン-ポリオキシブチレン共重合体などのポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンなどとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレンなどとの共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレンなどとの共重合体、ならびにこれらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体などの飽和炭化水素系重合体;ポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸エステル系モノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体、ならびに(メタ)アクリル酸系モノマー、酢酸ビニル、アクリロニトリル、およびスチレンなどのモノマーをラジカル重合して得られる重合体などのビニル系重合体;前述の重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体;などの有機重合体が挙げられる。上記各重合体はブロック状、グラフト状などに混在していてもよい。これらの中でも、飽和炭化水素系重合体、ポリオキシアルキレン系重合体、および(メタ)アクリル酸エステル系重合体が、比較的ガラス転移温度が低いことと、得られる硬化物が耐寒性に優れることから好ましく、ポリオキシアルキレン系重合体がより好ましく、ポリオキシプロピレンが特に好ましい。
 反応性ケイ素基含有有機重合体(A)は、上記した各種主鎖骨格のうち、いずれか1種の主鎖骨格を有する重合体でもよく、異なる主鎖骨格を有する重合体の混合物でもよい。また、混合物については、それぞれ別々に製造された重合体の混合物でもよいし、任意の混合組成になるように同時に製造された混合物でもよい。
 反応性ケイ素基含有有機重合体(A)の数平均分子量は、特に限定されないが、GPCにおけるポリスチレン換算分子量として、3,000~100,000が好ましく、3,000~50,000がより好ましく、3,000~30,000が特に好ましい。数平均分子量が上記の範囲内であると、反応性ケイ素基の導入量が適度であることにより、製造コストを適度な範囲内に抑えつつ、扱いやすい粘度を有し作業性に優れる反応性ケイ素基含有有機重合体(A)を得やすい。
 反応性ケイ素基含有有機重合体(A)の分子量としては、反応性ケイ素基導入前の重合体前駆体を、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたよう素価の測定方法の原理に基づいた滴定分析により、直接的に末端基濃度を測定し、重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた末端基換算分子量で示すことも出来る。反応性ケイ素基含有有機重合体(A)の末端基換算分子量は、重合体前駆体の一般的なGPC測定により求めた数平均分子量と上記末端基換算分子量の検量線を作成し、反応性ケイ素基含有有機重合体(A)のGPCにより求めた数平均分子量を末端基換算分子量に換算して求めることも可能である。
 反応性ケイ素基含有有機重合体(A)の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましい。具体的には2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。反応性ケイ素基含有有機重合体(A)の分子量分布はGPC測定により得られる数平均分子量と重量平均分子量から求めることが出来る。
 <反応性ケイ素基含有有機重合体(A)の製造方法>
 次に反応性ケイ素基含有有機重合体(A)を製造する方法について説明する。反応性ケイ素基含有有機重合体(A)は、反応性ケイ素基を導入することが可能な前駆重合体に対し、反応性ケイ素基を導入することで製造できる。
 以下では、主鎖がポリオキシアルキレン系重合体である場合の反応性ケイ素基含有有機重合体(A)を製造する方法の各種態様を詳述するが、反応性ケイ素基含有有機重合体(A)を製造する方法は以下の記載に限定されるものではない。
 反応性ケイ素基含有有機重合体(A)を製造する方法の第一の態様によると、主鎖がポリオキシアルキレン系重合体であって、かつ一般式(1)若しくは(2)、又は(4)~(6)のいずれかで表される反応性ケイ素基含有構造を有する有機重合体(A)は、末端に水酸基を有するポリオキシアルキレン系重合体(D)に対し、水酸基の反応性を利用して炭素-炭素不飽和結合を導入して、炭素-炭素不飽和結合を有する前駆重合体を得た後、該前駆重合体に、該炭素-炭素不飽和結合との反応性を有する反応性ケイ素基含有化合物を反応させて反応性ケイ素基を導入することで製造できる。
 (重合)
 ポリオキシアルキレン系重合体の重合体骨格は、従来公知の方法によって、水酸基を有する開始剤にエポキシ化合物を重合させることで形成することができ、これによって末端に水酸基を有するポリオキシアルキレン系重合体(D)が得られる。具体的な重合方法としては特に限定されないが、分子量分布(Mw/Mn)の小さい水酸基末端重合体が得られることから、亜鉛ヘキサシアノコバルテートグライム錯体等の複合金属シアン化物錯体触媒を用いた重合方法が好ましい。
 水酸基を有する開始剤としては特に限定されないが、例えば、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、低分子量のポリオキシプロピレングリコール、低分子量のポリオキシプロピレントリオール、ブタノール、アリルアルコール、低分子量のポリオキシプロピレンモノアリルエーテル、低分子量のポリオキシプロピレンモノアルキルエーテルなどが挙げられる。
 前記エポキシ化合物としては特に限定されないが、例えば、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイド類、メチルグリシジルエーテル、ブチルグリシジルエーテル等のグリシジルエーテル類等が挙げられる。好ましくはプロピレンオキサイドである。
 (アルカリ金属塩との反応)
 末端に水酸基を有するポリオキシアルキレン系重合体(D)に対し炭素-炭素不飽和結合を導入するにあたっては、まず、ポリオキシアルキレン系重合体(D)に対しアルカリ金属塩を作用させて末端の水酸基をメタルオキシ基に変換することが好ましい。また、アルカリ金属塩の代わりに、複合金属シアン化物錯体触媒を用いることもできる。以上によって、メタルオキシ基末端ポリオキシアルキレン系重合体(E)が形成される。
 前記アルカリ金属塩としては特に限定されないが、例えば、例えば、水酸化ナトリウム、ナトリウムアルコキシド、水酸化カリウム、カリウムアルコキシド、水酸化リチウム、リチウムアルコキシド、水酸化セシウム、セシウムアルコキシド等が挙げられる。取り扱いの容易さと溶解性から、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、水酸化カリウム、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシドが好ましく、ナトリウムメトキシド、ナトリウムtert-ブトキシドがより好ましい。入手性の点で、ナトリウムメトキシドが好ましい。アルカリ金属塩は溶剤に溶解した状態で反応に供してもよい。
 (求電子剤(F)との反応)
 以上のようにして得られたメタルオキシ基末端ポリオキシアルキレン系重合体(E)に対し、炭素-炭素不飽和結合を有する求電子剤(F)を作用させることで、メタルオキシ基を、炭素-炭素不飽和結合を含む構造に変換することができる。これにより、末端構造中に炭素-炭素不飽和結合を有するポリオキシアルキレン系重合体(G)が形成される。
 炭素-炭素不飽和結合を有する求電子剤(F)としては、ポリオキシアルキレン系重合体(E)が有する前記メタルオキシ基と反応し、ポリオキシアルキレン系重合体に炭素-炭素不飽和結合を導入できる化合物であれば特に限定されないが、例えば、炭素-炭素不飽和結合を有する有機ハロゲン化物(F1)や、炭素-炭素不飽和結合を有するエポキシ化合物(F2)等が挙げられる。
 求電子剤(F)の一態様である、炭素-炭素不飽和結合を有する有機ハロゲン化物(F1)は、ハロゲンの置換反応によって前記メタルオキシ基と反応してエーテル結合を形成して、ポリオキシアルキレン系重合体の末端構造として炭素-炭素不飽和結合を含む構造を導入することができる。
 炭素-炭素不飽和結合を有する有機ハロゲン化物(F1)は、炭素-炭素二重結合を有するハロゲン化炭化水素化合物であることが好ましい。当該化合物を反応させて得られたポリオキシアルキレン系重合体(G)は、重合体骨格の末端に、炭素-炭素二重結合を有する。このような重合体(G)に対して反応性ケイ素基の導入を行うと、前記一般式(1)又は(2)で表される反応性ケイ素基含有構造が形成され得る。この時、式(1)又は(2)中のRは酸素原子である。
 前記炭素-炭素二重結合を有するハロゲン化炭化水素化合物としては特に限定されないが、例えば、塩化アリル、塩化メタリル、臭化アリル、臭化メタリル、ヨウ化アリル、ヨウ化メタリル等が挙げられる。取り扱いの容易さから、塩化アリル、塩化メタリルが好ましい。また、重合体骨格の末端の数に対する反応性ケイ素基の数の平均比率が向上することから、塩化メタリル、臭化メタリル、ヨウ化メタリルが好ましい。
 また、炭素-炭素不飽和結合を有する有機ハロゲン化物(F1)は、炭素-炭素三重結合を有するハロゲン化炭化水素化合物であってもよい。当該化合物を反応させて得られたポリオキシアルキレン系重合体(G)は、重合体骨格の末端に、炭素-炭素三重結合を有する。このような重合体(G)に対して反応性ケイ素基の導入を行うと、反応性ケイ素基に隣接する原子は炭素-炭素二重結合を有することになり、前記一般式(4)~(6)のいずれかで表される反応性ケイ素基含有構造が形成され得る。
 前記炭素-炭素三重結合を有するハロゲン化炭化水素化合物としては特に限定されないが、例えば、塩化プロパルギル、1-クロロ-2-ブチン、4-クロロ-1-ブチン、1-クロロ-2-オクチン、1-クロロ-2-ペンチン、1,4-ジクロロ-2-ブチン、5-クロロ-1-ペンチン、6-クロロ-1-ヘキシン、臭化プロパルギル、1-ブロモ-2-ブチン、4-ブロモ-1-ブチン、1-ブロモ-2-オクチン、1-ブロモ-2-ペンチン、1,4-ジブロモ-2-ブチン、5-ブロモ-1-ペンチン、6-ブロモ-1-ヘキシン、ヨウ化プロパルギル、1-ヨード-2-ブチン、4-ヨード-1-ブチン、1-ヨード-2-オクチン、1-ヨード-2-ペンチン、1,4-ジヨード-2-ブチン、5-ヨード-1-ペンチン、および6-ヨード-1-ヘキシン等が挙げられる。これらの中では、塩化プロパルギル、臭化プロパルギル、およびヨウ化プロパルギルがより好ましい。また、炭素-炭素三重結合を有するハロゲン化炭化水素化合物と同時に、上述した炭素-炭素二重結合を有するハロゲン化炭化水素化合物を使用してもよい。
 求電子剤(F)の別の態様である、炭素-炭素不飽和結合を有するエポキシ化合物(F2)は、エポキシ基の開環付加反応によって前記メタルオキシ基と反応してエーテル結合を形成して、ポリオキシアルキレン系重合体の末端構造として炭素-炭素不飽和結合と水酸基を含む構造を導入することができる。前記開環付加反応においては、前記メタルオキシ基に対するエポキシ化合物(F2)の使用量や反応条件を調節することで、1つのメタルオキシ基に対して、単数又は複数のエポキシ化合物(F2)を付加させることができる。
 前記炭素-炭素不飽和結合を有するエポキシ化合物(F2)としては、特に限定されないが、炭素-炭素二重結合を有するエポキシ化合物が好ましく、例えば、アリルグリシジルエーテル、メタリルグリシジルエーテル、グリシジルアクリレート、グリシジルメタクリレート、ブタジエンモノオキシドが反応活性の点からより好ましく、アリルグリシジルエーテルが特に好ましい。
 以上のようにメタルオキシ基末端ポリオキシアルキレン系重合体(E)に対し炭素-炭素不飽和結合を有するエポキシ化合物(F2)を作用させると、エポキシ基の開環によって新たにメタルオキシ基が生成する。そのため、該エポキシ化合物(F2)を作用させた後、連続的に、前述した炭素-炭素二重結合を有するハロゲン化炭化水素化合物を作用させることもできる。この態様で用いる炭素-炭素二重結合を有するハロゲン化炭化水素化合物としては、前述したものと同じ化合物を使用することができる。この方法は、重合体への炭素-炭素不飽和結合の導入量、および反応性ケイ素基の導入量をより高めることができるため好ましい。
 (反応性ケイ素基の導入)
 以上によって得られた末端構造中に炭素-炭素不飽和結合を有するポリオキシアルキレン系重合体(G)(前駆重合体)に対し、反応性ケイ素基を有するヒドロシラン化合物(H)をヒドロシリル化反応させることで、重合体に反応性ケイ素基を導入することができる。これにより、主鎖がポリオキシアルキレン系重合体であって、かつ一般式(1)若しくは(2)、又は(4)~(6)のいずれかで表される反応性ケイ素基含有構造を有する有機重合体(A)が製造され得る。この時、一般式(1)で表される反応性ケイ素基含有構造、又は、一般式(2)で表される反応性ケイ素基含有構造を形成する際には、反応性ケイ素基を有するヒドロシラン化合物(H)を適宜選択すればよい。
 前記反応性ケイ素基を有するヒドロシラン化合物(H)の具体例としては、トリクロロシラン、ジクロロメチルシラン、クロロジメチルシラン、ジクロロフェニルシラン、(クロロメチル)ジクロロシラン、(ジクロロメチル)ジクロロシラン、ビス(クロロメチル)クロロシラン、(メトキシメチル)ジクロロシラン、(ジメトキシメチル)ジクロロシラン、ビス(メトキシメチル)クロロシランなどのハロシラン類;トリメトキシシラン、トリエトキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジメトキシフェニルシラン、エチルジメトキシシラン、メトキシジメチルシラン、エトキシジメチルシラン、(クロロメチル)メチルメトキシシラン、(クロロメチル)ジメトキシシラン、(クロロメチル)ジエトキシシラン、ビス(クロロメチル)メトキシシラン、(メトキシメチル)メチルメトキシシラン、(メトキシメチル)ジメトキシシラン、ビス(メトキシメチル)メトキシシラン、(メトキシメチル)ジエトキシシラン、(エトキシメチル)ジエトキシシラン、(3,3,3-トリフルオロプロピル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジエトキシシラン、[(クロロメチル)ジメトキシシリルオキシ]ジメチルシラン、[(クロロメチル)ジエトキシシリルオキシ]ジメチルシラン、[(メトキシメチル)ジメトキシシリルオキシ]ジメチルシラン、[(メトキシメチル)ジエメトキシシリルオキシ]ジメチルシラン、[(ジエチルアミノメチル)ジメトキシシリルオキシ]ジメチルシラン、[(3,3,3-トリフルオロプロピル)ジメトキシシリルオキシ]ジメチルシラン等のアルコキシシラン類;ジアセトキシメチルシラン、ジアセトキシフェニルシラン等のアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランなどのケトキシメートシラン類、トリイソプロペニロキシシラン、(クロロメチル)ジイソプロペニロキシシラン、(メトキシメチル)ジイソプロペニロキシシラン等のイソプロペニロキシシラン類(脱アセトン型)等が挙げられる。
 ヒドロシリル化反応は、反応促進のため、ヒドロシリル化触媒の存在下で実施することが好ましい。具体的なヒドロシリル化触媒としては、公知のものを適宜使用することができる。
 反応性ケイ素基含有有機重合体(A)を製造する方法の第二の態様によると、末端に水酸基を有するポリオキシアルキレン系重合体(D)(前駆重合体)に対し、一分子中に反応性ケイ素基およびイソシアネート基を有する化合物(I)を作用させて、ウレタン結合を形成させて反応性ケイ素基を導入する方法も適用することができる。この態様によると、一般式(1)~(3)のいずれかで表される反応性ケイ素基含有構造を有する有機重合体(A)を製造できる。この時、式(1)又は(2)中のR、及び、式(3)中のYは、上述した-O-C(=O)-N(R)-であり得る。
 一分子中に反応性ケイ素基およびイソシアネート基を有する化合物(I)としては、ポリオキシアルキレン系重合体(D)が有する水酸基とのウレタン化反応が可能なイソシアネート基と、反応性ケイ素基を一分子中に併せ有する化合物であれば特に限定されないが、具体例としては、(3-イソシアネートプロピル)トリメトキシシラン、(3-イソシアネートプロピル)ジメトキシメチルシラン、(3-イソシアネートプロピル)トリエトキシシラン、(3-イソシアネートプロピル)ジエトキシメチルシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)トリエトキシシラン、(イソシアネーメチル)ジメトキシメチルシラン、(イソシアネートメチル)ジエトキシメチルシラン等が挙げられる。
 ウレタン化反応は、ウレタン化触媒を使用せずに実施してもよいが、反応速度を向上させたり反応率を向上させる目的で、ウレタン化触媒の存在下で実施してもよい。このようなウレタン化触媒としては、例えば、Polyurethanes: Chemistry and Technology,Part I,Table 30,Chapter 4,Saunders and Frisch,Interscience Publishers,New York,1963に列挙されている触媒など、従来公知のウレタン化触媒を使用できる。具体的には、有機錫化合物、ビスマス化合物、有機アミン等の塩基触媒等が挙げられるが、これらに限定されない。
 反応性ケイ素基含有有機重合体(A)を製造する方法の第三の態様によると、末端に水酸基を有するポリオキシアルキレン系重合体(D)に対し、過剰のポリイソシアネート化合物(J)を反応させて、末端にイソシアネート基を有する重合体(前駆重合体)とした後、該前駆重合体に対し、イソシアネート基と反応する基(例えば、アミノ基、水酸基など)および反応性ケイ素基を有する化合物(K)を反応させる方法も適用することができる。この態様によると、一般式(1)~(3)のいずれかで表される反応性ケイ素基含有構造を有する有機重合体(A)を製造できる。この時、式(1)又は(2)中のR、及び、式(3)中のYは、上述した-N(R)-C(=O)-N(R)-や、-N(R)-C(=O)-O-等であり得る。
 ポリイソシアネート化合物(J)としては、例えば、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネート等が挙げられる。
 イソシアネート基と反応する基および反応性ケイ素基を有する化合物(K)としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルジメトキシメチルシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルジメトキシメチルシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-(N-フェニル)アミノプロピルトリメトキシシラン、γ-(N-フェニル)アミノプロピルジメトキシメチルシラン、N-エチルアミノイソブチルトリメトキシシラン、N-エチルアミノイソブチルジメトキシメチルシラン、N-シクロヘキシルアミノメチルトリメトキシシラン、N-シクロヘキシルアミノメチルジメトキシメチルシラン等のアミノ基含有シラン類;γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルジメトキシメチルシラン等のヒドロキシ基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルジメトキシメチルシラン等のメルカプト基含有シラン類;等が挙げられる。
 反応性ケイ素基含有有機重合体(A)を製造する方法の第四の態様によると、末端構造中に炭素-炭素不飽和結合を有するポリオキシアルキレン系重合体(G)(前駆重合体)に対し、一分子中に反応性ケイ素基およびメルカプタン基を有する化合物(L)を作用させて、炭素-炭素不飽和結合に対するメルカプタン基の付加によりスルフィド結合を形成させて反応性ケイ素基を導入する方法も適用することができる。この態様によると、一般式(1)~(3)のいずれかで表される反応性ケイ素基含有構造を有する有機重合体(A)を製造できる。この時、式(1)又は(2)中のR、及び、式(3)中のYは、硫黄原子である。
 一分子中に反応性ケイ素基およびメルカプタン基を有する化合物(L)としては、ポリオキシアルキレン系重合体(G)が有する炭素-炭素不飽和結合への付加反応が可能なメルカプタン基と、反応性ケイ素基を一分子中に併せ有する化合物であれば特に限定されないが、具体例としては、(3-メルカプトプロピル)メチルジメトキシシラン、(3-メルカプトプロピル)トリメトキシシラン、(3-メルカプトプロピル)メチルジエトキシシラン、(3-メルカプトプロピル)トリエトキシシラン、(メルカプトメチル)メチルジメトキシシラン、(メルカプトメチル)トリメトキシシラン、(メルカプトメチル)メチルジエトキシシラン、(メルカプトメチル)トリエトキシシラン等が挙げられる。
 炭素-炭素不飽和結合へのメルカプタン基の付加反応は、ラジカル開始剤を使用せずに実施してもよいが、反応速度を向上させたり反応率を向上させる目的で、ラジカル開始剤の存在下で実施してもよい。このようなラジカル開始剤としては、従来公知のものを使用できる。具体的には、アゾ系開始剤、過酸化物系開始剤が挙げられるが、これらに限定されない。
 公知のラジカル開始剤の中でも、反応性ケイ素基に対して活性の低い触媒が好ましく、この観点から、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(2-メチルブチロニトリル)(V-59)、2,2’-アゾビス(1-メチルシクロヘキサンカルボニトリル)(V-40)などのアゾ系開始剤が特に好ましい。
 ((メタ)アクリル酸エステル系重合体)
 反応性ケイ素基含有有機重合体(A)の主鎖が(メタ)アクリル酸エステル系重合体である場合には、反応性ケイ素基含有有機重合体(A)の製造方法としては、(I)重合性不飽和基と反応性官能基を有する化合物(例えば、アクリル酸、アクリル酸2-ヒドロキシエチル)を、(メタ)アクリル構造を有するモノマーとともに共重合して重合体を得た後、得られた重合体の末端に炭素-炭素不飽和結合を導入し、次いで、ヒドロシリル化反応により炭素-炭素不飽和結合に反応性ケイ素基含有ヒドロシラン化合物を付加させる方法、(II)原子移動ラジカル重合などのリビングラジカル重合法によって(メタ)アクリル構造を有するモノマーを重合して重合体を得た後、得られた重合体の末端に炭素-炭素不飽和結合を導入し、次いで、ヒドロシリル化反応により炭素-炭素不飽和結合に反応性ケイ素基含有ヒドロシラン化合物を付加させる方法などが挙げられる。
 (飽和炭化水素系重合体)
 反応性ケイ素基含有有機重合体(A)の主鎖が飽和炭化水素系重合体である場合には、反応性ケイ素基含有有機重合体(A)の製造方法としては、エチレン、プロピレン、1-ブテン、およびイソブチレンなどの炭素原子数2~6のオレフィン系化合物を主モノマーとして重合させて重合体を得た後、得られた重合体の末端に炭素-炭素不飽和結合を導入し、次いで、ヒドロシリル化反応により炭素-炭素不飽和結合に反応性ケイ素基含有ヒドロシラン化合物を付加させる方法などが挙げられる。
 <<アミジン化合物(B)>>
 アミジン化合物(B)は、融点が23℃未満のもの、即ち23℃で液状の化合物である。反応性ケイ素基含有有機重合体(A)に対しアミジン化合物(B)を配合することで、前記硬化性組成物は実用的な硬化性を達成することができる。また、23℃で液状であるアミジン化合物は一般的には、硬化後の経時的なブリードアウトが生じやすいが、後述する(C)成分と併用することによってブリードアウトを抑制することが可能となる。
 アミジン化合物(B)は、一般式(10)で表すことができる。
11N=CR12-NR13   (10)
 式(10)中、R11、R12、及び2個のR13は、それぞれ独立に、水素原子または有機基を表す。R11、R12、および2個のR13のうち任意の2つ以上が結合して環状構造を形成してもよい。
 R11は、反応性ケイ素基含有有機重合体(A)の硬化性を高めることから、水素原子または炭素原子数1~20の炭化水素基であることが好ましく、窒素原子に隣接する炭素原子(α位の炭素原子)が不飽和結合を有さない炭化水素基であることがより好ましい。R11の炭素原子数は、入手が容易なことから、1~10が好ましく、1~6がより好ましい。
 R12は、反応性ケイ素基含有有機重合体(A)の硬化性を高めることから、水素原子または-NR14 で示される有機基であることが好ましく、-NR14 で示される有機基であることがより好ましい。但し、2個のR14は、それぞれ独立に、水素原子または炭素原子数1~20の有機基を表す。
 R12が-NR14 で示される有機基である場合、一般式(10)で表されるアミジン化合物は、グアニジン化合物と呼ばれる。グアニジン化合物としては、入手が容易なこと、及び、反応性ケイ素基含有有機重合体(A)の硬化性を高める効果が大きいことから、R14が水素原子または炭素原子数1~20の炭化水素基で表されるものが好ましく、水素原子または炭素原子数1~10の炭化水素基で表されるものがより好ましい。
 R12は、得られる硬化物の接着性が良好なことから、-NR15-C(=NR16)-NR17 (但し、R15、R16および2個のR17は、それぞれ独立に、水素原子または炭素原子数1~6の有機基を表す。)、または、-N=C(NR18 )-NR19 (但し、2個のR18および2個のR19は、それぞれ独立に、水素原子または炭素原子数1~6の有機基を表す。)で示される有機基であることが好ましい。この時、一般式(10)で表されるアミジン化合物は、ビグアニド化合物と呼ばれる。
 R12が-NR15-C(=NR16)-NR17 で表される時のビグアニド化合物としては、入手が容易なこと、及び、得られる硬化物の接着性が良好なことから、R15、R16および2個のR17が、それぞれ独立に、水素原子または炭素原子数1~6の炭化水素基を表すことが好ましい。さらに、得られる硬化物の接着性がより改善されることから、R11、2個のR13、R15、R16および2個のR17のうち1つ以上は、アリール基を表すことが特に好ましい。
 R12が-N=C(NR18 )-NR19 で表される時のビグアニド化合物としては、入手が容易なこと、及び、得られる硬化物の接着性が良好なことから、R11、2個のR13、R18、および2個のR19は、それぞれ独立に、水素原子または炭素原子数1~6の炭化水素基を表すことが好ましい。
 一般式(10)中の2個のR13は、入手が容易なこと、及び、反応性ケイ素基含有有機重合体(A)の硬化性を高めることから、水素原子または炭素原子数1~20の炭化水素基を表すことが好ましく、水素原子または炭素原子数1~10の炭化水素基を表すことがより好ましい。
 アミジン化合物(B)に含まれる炭素原子数は、2以上であることが好ましく、6以上であることがより好ましく、7以上であることが特に好ましい。アミジン化合物(B)の炭素原子数が2未満であると、該化合物の揮発性が増し、作業環境が悪化する傾向がある。アミジン化合物(B)に含まれる炭素原子数の上限については、特に限定されないが、10,000以下が好ましい。また、アミジン化合物(B)の分子量は、前記と同様の理由により、60以上であることが好ましく、120以上がより好ましく、130以上が特に好ましい。アミジン化合物(B)の分子量の上限については特に限定されないが、一般的に100,000以下が好ましい。
 アミジン化合物(B)としては特に限定されないが、例えば、ピリミジン、2-アミノピリミジン、6-アミノ-2,4-ジメチルピリミジン、2-アミノ-4,6-ジメチルピリミジン、1,4,5,6-テトラヒドロピリミジン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1-エチル-2-メチル-1,4,5,6-テトラヒドロピリミジン、1,2-ジエチル-1,4,5,6-テトラヒドロピリミジン、1-n-プロピル-2-メチル-1,4,5,6-テトラヒドロピリミジン、2-ヒドロキシ-4,6-ジメチルピリミジン、1,3-ジアザナフタレン、2-ヒドロキシ-4-アミノピリミジンなどのピリミジン化合物;
2-イミダゾリン、2-メチル-2-イミダゾリン、2-エチル-2-イミダゾリン、2-プロピル-2-イミダゾリン、2-ビニル-2-イミダゾリン、1-(2-ヒドロキシエチル)-2-メチル-2-イミダゾリン、1,3-ジメチル-2-イミノイミダゾリジン、1-メチル-2-イミノイミダゾリジン-4-オンなどのイミダゾリン化合物;
1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、2,9-ジアザビシクロ[4.3.0]ノナ-1,3,5,7-テトラエン、6-(ジブチルアミノ)-1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBA-DBU)などのアミジン化合物;
グアニジン、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、1,1-ジメチルグアニジン、1,3-ジメチルグアニジン、1,2-ジフェニルグアニジン、1,1,2-トリメチルグアニジン、1,2,3-トリメチルグアニジン、1,1,3,3-テトラメチルグアニジン、1,1,2,3,3-ペンタメチルグアニジン、2-エチル-1,1,3,3-テトラメチルグアニジン、1,1,3,3-テトラメチル-2-n-プロピルグアニジン、1,1,3,3-テトラメチル-2-イソプロピルグアニジン、2-n-ブチル-1,1,3,3-テトラメチルグアニジン、2-tert-ブチル-1,1,3,3-テトラメチルグアニジン、1,2,3-トリシクロヘキシルグアニジン、1-ベンジル-2,3-ジメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-エチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-n-プロピル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-イソプロピル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-n-ブチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-シクロヘキシル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-n-オクチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンなどのグアニジン化合物;
ビグアニド、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-(2-エチルヘキシル)ビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド、1-モルホリノビグアニド、1-n-ブチル-N2-エチルビグアニド、1,1’-エチレンビスビグアニド、1,5-エチレンビグアニド、1-[3-(ジエチルアミノ)プロピル]ビグアニド、1-[3-(ジブチルアミノ)プロピル]ビグアニド、N’,N’’-ジヘキシル-3,12-ジイミノ-2,4,11,13-テトラアザテトラデカンジアミジンなどのビグアニド化合物;等が挙げられる。中でも、硬化性が良好なことから、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)が好ましい。
 前記硬化性組成物中のアミジン化合物(B)の含有量は、特に限定されないが、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~15重量部が好ましい。この範囲であると、前記硬化性組成物は、実用的な硬化速度を有しながら、硬化後のブリードアウトを抑制することができる。より好ましくは、0.3~10重量部であり、さらに好ましくは、0.5~5重量部である。
 <<酸無水物及び/又はカルボン酸(C)>>
 (C)成分は、酸無水物、又は、カルボン酸である。また、酸無水物とカルボン酸を組み合わせて用いてもよい。(C)成分をアミジン化合物(B)と併用することで、前記硬化性組成物の良好な硬化性を有しつつ、硬化後のブリードアウトを抑制することができる。硬化性がより良好となることから、(C)成分は酸無水物を含むことが好ましい。
 前記酸無水物としては、カルボン酸無水物が好ましい。前記酸無水物は、環状の構造を有する化合物であってもよいし、環状の構造を持たない化合物であってもよい。また、炭素-炭素二重結合を有する化合物であってもよいし、炭素-炭素二重結合を持たない化合物であってもよい。具体的には、無水酢酸、cis-1,2-シクロヘキサンジカルボン酸無水物、無水安息香酸、無水マレイン酸、無水フタル酸、ピロメリット酸無水物、4,4-ビフタル酸無水物、4,4-オキシジフタル酸無水物、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ナジック酸、無水トリメリット酸、トリアルキル系無水フタル酸、無水ドデシルコハク酸、無水メチルナジック酸、無水クロレンディック酸等が挙げられる。
 前記カルボン酸としては、pKaが3~5を示すカルボン酸であることが好ましい。カルボン酸のpKaが上記範囲内にあると、良好な硬化性と、硬化後のブリードアウト抑制を両立することができる。カルボン酸のpKaが3未満であると、硬化性が不足する傾向があり、5を超えると、ブリードアウトの抑制が不十分となる。なお、2つのpKa値を示すカルボン酸は、低いほうのpKa値が3~5の範囲内にある時、前記pKaが3~5を示すカルボン酸に該当するものとする。前記カルボン酸のpKaの下限値は、3.0であることが好ましく、3.2がより好ましく、3.4がさらに好ましい。
 pKaが3~5を示すカルボン酸としては特に限定されないが、例えば、ギ酸(pKa=3.8);酢酸(pKa=4.8)、プロピオン酸(pKa=4.9)、酪酸(pKa=4.8)、2-エチルヘキサン酸(pKa=4.9)等の脂肪酸や、安息香酸(pKa=4.2)等の芳香族カルボン酸、りんご酸(pKa1=3.4、pKa2=5.1)等のヒドロキシ酸等が挙げられる。
 前記硬化性組成物中の酸無水物及び/又はカルボン酸(C)の含有量は、特に限定されないが、反応性ケイ素基含有有機重合体(A)100重量部に対して、合計で0.1~15重量部が好ましい。この範囲であると、前記硬化性組成物は、実用的な硬化速度を有しながら、硬化後のブリードアウトを抑制することができる。より好ましくは、0.3~10重量部であり、さらに好ましくは、0.5~5重量部である。
 アミジン化合物(B)と酸無水物及び/又はカルボン酸(C)の含有比率についても特に限定されないが、良好な硬化性と硬化後のブリードアウト抑制を両立する観点から、アミジン化合物(B)のモル数に対する(C)成分に含まれるカルボキシ基のモル数の比率が0.1~10であることが好ましく、0.5~5であることがより好ましく、0.7~1.5であることがさらに好ましい。なお、カルボキシ基のモル数は、(C)成分が酸無水物である場合、酸無水物のモル数の2倍である。
 <<硬化性組成物>>
 前記硬化性組成物は速硬化性を示す反応性ケイ素基含有有機重合体(A)を含有するものであるため、硬化触媒として有機錫系化合物ではなくアミジン化合物(B)を使用するにも関わらず、良好な硬化性を達成できるものである。前記硬化性組成物は、特許文献1及び2で硬化性を改善する成分として開示されているハロゲン化金属やハロゲン化ホウ素などのルイス酸を含有しなくても良好な硬化性を有するため、前記硬化性組成物はルイス酸を含有しないものであってよい。ルイス酸は特殊な取り扱いを要するため、前記硬化性組成物はルイス酸を含有しないことが好ましい。
 前記硬化性組成物は、反応性ケイ素基含有有機重合体(A)、アミジン化合物(B)、並びに酸無水物及び/又はカルボン酸(C)以外に、必要に応じて、種々の添加剤を含んでよい。
 当該添加剤としては、(B)成分及び(C)成分以外のシラノール縮合触媒、充填剤、接着性付与剤、可塑剤、タレ防止剤、酸化防止剤、光安定剤、紫外線吸収剤、物性調整剤、エポキシ基を含有する化合物、光硬化性物質、酸素硬化性物質、および、反応性ケイ素基含有有機重合体(A)以外の樹脂などが挙げられる。
 また、硬化性組成物または硬化物の諸物性の調整を目的として、硬化性組成物には、必要に応じて上記以外の他の添加剤が添加されてもよい。このような他の添加剤の例としては、例えば、粘着付与樹脂、溶剤、希釈剤、エポキシ樹脂、表面性改良剤、発泡剤、硬化性調整剤、難燃剤、シリケート、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤などが挙げられる。
 以下、代表的な添加剤について、それぞれ説明する。
 <シラノール縮合触媒>
 硬化性組成物には(B)成分及び(C)成分以外のシラノール縮合触媒を使用してもよい。
 (B)成分及び(C)成分以外のシラノール縮合触媒としては、例えば有機錫化合物、カルボン酸金属塩、(B)成分以外のアミン化合物、(C)成分以外のカルボン酸、およびアルコキシ金属などが挙げられる。
 有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジオクチル錫ビス(アセチルアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジオクチル錫ビス(トリエトキシシリケート)等のジオクチル錫オキサイドとシリケート化合物との反応物、およびジブチル錫オキサイドとフタル酸エステルとの反応物などが挙げられる。
 カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、およびカルボン酸鉄などが挙げられる。また、カルボン酸金属塩としては下記のカルボン酸と各種金属を組み合わせた塩を用いることができる。
 (B)成分以外のアミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、およびステアリルアミンなどのアミン類;アミノ基含有シランカップリング剤;ケチミン化合物などが挙げられる。
 アルコキシ金属の具体例としては、テトラブチルチタネート、チタンテトラキス(アセチルアセトナート)、およびジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物類や、アルミニウムトリス(アセチルアセトナート)、およびジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類や、ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。
 その他のシラノール縮合触媒として、フッ素アニオン含有化合物、光酸発生剤、および光塩基発生剤も使用できる。
 (B)成分及び(C)成分以外のシラノール縮合触媒は使用しなくてもよいが、使用する場合、その使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.001~10重量部が好ましく、0.001~5重量部がより好ましく、0.001~1重量部がさらに好ましく、0.001~0.5重量部が特に好ましい。
 但し、前記硬化性組成物は、有機錫化合物を実質的に含有しないものであることが好ましい。具体的には、前記硬化性組成物中、反応性ケイ素基含有有機重合体(A)100重量部に対する有機錫化合物の含有量は0~0.5重量部であることが好ましく、0~0.1重量部であることがより好ましく、0~0.01重量部であることがさらに好ましい。
 また、前記硬化性組成物は、Si-F結合を有する化合物を含有するものであってもよいが、実質的に含有しないものであってもよい。該Si-F結合を有する化合物は、反応性ケイ素基含有有機重合体に対して硬化触媒として作用し得ることが知られている。本開示に係る硬化性組成物は、Si-F結合を有する化合物を実質的に含有しなくても、良好な硬化性を示しながら、硬化後のブリードアウトを抑制することができる。Si-F結合を有する化合物としては、フルオロシリル基を有する低分子化合物や、フルオロシリル基を有する有機重合体等が挙げられる。ここで、前記硬化性組成物がSi-F結合を有する化合物を実質的に含有しないとは、反応性ケイ素基含有有機重合体(A)100重量部に対するSi-F結合を有する化合物の配合量が、0重量部以上0.1重量部未満、好ましくは0~0.01重量部であることを意味する。
 <充填剤>
 硬化性組成物には、種々の充填剤を配合することができる。充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、タルク、カオリン、シリチン、及び焼成シリチン、酸化チタン、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメントなどが挙げられる。
 充填剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、1~300重量部が好ましく、10~250重量部が特に好ましい。
 硬化性組成物を用いて形成される硬化物の軽量化(低比重化)の目的で、有機バルーン、および無機バルーンなどのバルーン(中空充填剤)を添加してもよい。バルーンは、球状体充填剤で内部が中空のものである。バルーンの材料としては、ガラス、シラス、およびシリカなどの無機系の材料、ならびに、フェノール樹脂、尿素樹脂、ポリスチレン、およびサランなどの有機系の材料が挙げられる。
 バルーンの使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~100重量部が好ましく、1~20重量部が特に好ましい。
 <接着性付与剤>
 硬化性組成物には、接着性付与剤を添加することができる。接着性付与剤としては、シランカップリング剤、シランカップリング剤の反応物を添加することができる。
 シランカップリング剤の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、および(2-アミノエチル)アミノメチルトリメトキシシランなどのアミノ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、およびα-イソシアネートメチルジメトキシメチルシランなどのイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、およびγ-メルカプトプロピルメチルジメトキシシランなどのメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、およびβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有シラン類、が挙げられる。上記接着性付与剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。また、各種シランカップリング剤の反応物も接着性付与剤として使用できる。
 シランカップリング剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部が特に好ましい。
 <可塑剤>
 硬化性組成物には、可塑剤を添加することができる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、およびブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、およびアセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、およびアセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、および部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、およびエポキシステアリン酸ベンジルなどのエポキシ可塑剤などを挙げることができる。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。
 また、高分子可塑剤を使用することができる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコールなどのポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体などのポリエーテル類;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、およびポリクロロプレンなどが挙げられる。
 可塑剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、5~150重量部が好ましく、10~120重量部がより好ましく、20~100重量部が特に好ましい。
 <タレ防止剤>
 硬化性組成物には、タレを防止し、作業性を良くするためにタレ防止剤を、必要に応じて添加してもよい。タレ防止剤としては特に限定されない。タレ防止剤としては、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、およびステアリン酸バリウムなどの金属石鹸類などが挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
 タレ防止剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~20重量部が好ましい。
 <酸化防止剤>
 硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐候性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ジアリールアミン系、およびポリフェノール系が例示できる。酸化防止剤の具体例は、例えば、特開平4-283259号公報や特開平9-194731号公報に記載されている。
 酸化防止剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部が特に好ましい。
 <光安定剤>
 硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、およびベンゾエート系化合物などが例示できる。光安定剤として、特にヒンダードアミン系が好ましい。
 光安定剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部が特に好ましい。
 <紫外線吸収剤>
 硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換トリル系、および金属キレート系化合物などを例示できる。紫外線吸収剤としては、特にベンゾトリアゾール系が好ましい。ベンゾトリアゾール系の紫外線吸収剤の好適な具体例としては、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、およびチヌビン571(以上、BASF製)が挙げられる。
 紫外線吸収剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部が特に好ましい。
 <物性調整剤>
 硬化性組成物には、必要に応じて、生成する硬化物の引張特性を調整する物性調整剤を添加してもよい。物性調整剤としては特に限定されない。物性調整剤としては、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、およびn-プロピルトリメトキシシランなどのアルキルアルコキシシラン類;ジフェニルジメトキシシラン、およびフェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、およびγ-グリシドキシプロピルメチルジイソプロペノキシシランなどのアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、およびトリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類などが挙げられる。物性調整剤を用いることにより、硬化性組成物の硬化物の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。物性調整剤は単独で用いてもよく、2種以上併用してもよい。
 特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は、硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、フェノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、およびソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。具体的には、フェノキシトリメチルシラン、トリス((トリメチルシロキシ)メチル)プロパン等が挙げられる。
 物性調整剤の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~10重量部が好ましく、0.5~5重量部が特に好ましい。
 <エポキシ基を含有する化合物>
 硬化性組成物においてはエポキシ基を含有する化合物を使用できる。エポキシ基を含有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を含有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、およびエピクロルヒドリン誘導体に示す化合物およびそれらの混合物などが例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカルボキシレート(E-PS)、エポキシオクチルステアレート、およびエポキシブチルステアレートなどが挙げられる。
 エポキシ化合物の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.5~50重量部が好ましい。
 <光硬化性物質>
 硬化性組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の物質としては、有機単量体、オリゴマー、樹脂あるいはそれらを含む組成物など多くの物質が知られている。代表的な物質としては、アクリル系またはメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマーあるいはそれらの混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂などが使用できる。
 光硬化性物質の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。
 <酸素硬化性物質>
 硬化性組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示できる。酸素硬化性物質は、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用を奏する。
 酸素硬化性物質の具体例には、キリ油、およびアマニ油などで代表される乾性油や、該化合物を変性して得られる各種アルキッド樹脂;アクリル系重合体、エポキシ系樹脂、およびシリコン樹脂などの樹脂の乾性油による変性物;ブタジエン、クロロプレン、イソプレン、および1,3-ペンタジエンなどのジエン系化合物を重合または共重合させて得られる1,2-ポリブタジエン、1,4-ポリブタジエン、およびC5~C8ジエンの重合体などの液状重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
 酸素硬化性物質の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して0.1~20重量部が好ましく、0.5~10重量部がより好ましい。特開平3-160053号公報に記載されているように、酸素硬化性物質は光硬化性物質と併用されるのが好ましい。
 <<硬化性組成物の調製>>
 前記硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することが可能である。また、硬化剤として、別途(B)成分、(C)成分、他のシラノール縮合触媒、充填材、可塑剤、および水などの成分を配合しておき、該硬化剤と、反応性ケイ素基含有有機重合体(A)を含む主剤を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
 硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用されるか、または、配合混練中に減圧などにより脱水されるのが好ましい。また、脱水乾燥法に加えて、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、およびγ-グリシドキシプロピルトリメトキシシランなどの水と反応し得るケイ素化合物を脱水剤として添加することにより、さらに貯蔵安定性は向上する。
 脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、反応性ケイ素基含有有機重合体(A)100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。
 <<硬化物の製造方法>>
 前記硬化性組成物は、硬化に先だって、塗布、注型、または充填などの方法によって、所望の形状に整えられる。塗布、注型、または充填され、形状を整えられた前記硬化性組成物は、常温又は加熱下で硬化させることができる。
 <<用途>>
 前記硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などにおけるシーリング施工用のシーリング材、型取剤、接着剤、塗料、および吹付剤などに使用できる。また、前記硬化性組成物を硬化して得られる硬化物は、防水材、塗膜防水材、防振材、制振材、防音材、および発泡材料などとして好適に使用される。得られる硬化物が柔軟性および接着性に優れることから、前記硬化性組成物は、上記の用途の中でも、シーリング材または接着剤として用いられることがより好ましい。
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
  送液システム:東ソー製HLC-8220GPC
  カラム:東ソー製TSKgel SuperHシリーズ
  溶媒:THF
  分子量:ポリスチレン換算
  測定温度:40℃
 実施例中の末端基換算分子量は、水酸基価をJIS K 1557の測定方法により、ヨウ素価をJIS K 0070の測定方法により求め、有機重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた分子量である。
 実施例に示す重合体の末端1個あたり、または1分子あたりのシリル基の平均数はNMR測定により算出した。
 (合成例1)A-1
 数平均分子量が約4,500のポリオキシプロピレングリコールと数平均分子量が約4,500のポリオキシプロピレントリオールの重量比60%、40%の混合物を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量17,300、分子量分布Mw/Mn=1.28のポリオキシプロピレン(P-1)を得た。
 得られた水酸基末端ポリオキシプロピレン(P-1)の水酸基に対して1.1モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、さらに1.2モル当量の臭化プロパルギルを添加して末端の水酸基をプロパルギル基に変換した。未反応の臭化プロパルギルを減圧脱揮により除去した。得られた未精製のプロパルギル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にプロパルギル基を有するポリオキシプロピレン(Q-1)を得た。
 この重合体(Q-1)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)50μL、およびトリメトキシシラン8.0gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、末端にトリメトキシシリル基を有する数平均分子量19,900のポリオキシプロピレン(A-1)を得た。重合体(A-1)はトリメトキシシリル基を1つの末端に平均0.6個有することが分かった。重合体(A-1)は、一般式(4)~(6)の少なくとも1つで表される反応性ケイ素基含有構造を重合体骨格の末端に有するものである。
 (合成例2)A-2
 合成例1で得られた重合体(P-1)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にアリル基を有するポリオキシプロピレン(Q-2)を得た。
 この重合体(Q-2)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppm、およびメトキシメチルジメトキシシラン8.7gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のメトキシメチルジメトキシシランを減圧下留去する事により、末端にメトキシメチルジメトキシシリル基を有する数平均分子量19,900のポリオキシプロピレン(A-2)を得た。重合体(A-2)はメトキシメチルジメトキシシリル基を1つの末端に平均0.7個有することが分かった。重合体(A-2)は、一般式(2)で表される反応性ケイ素基含有構造を重合体骨格の末端に有するものである。
 (合成例3)A-3
 数平均分子量が約4,500のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量24,600(末端基換算分子量17,400)、分子量分布Mw/Mn=1.31のポリオキシプロピレン(P-2)を得た。
 得られた水酸基末端ポリオキシプロピレン(P-2)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-2)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-3)を得た。
 得られた重合体(Q-3)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μLを加え、撹拌しながら、トリメトキシシラン8.5gをゆっくりと滴下した。100℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去する事により、末端にトリメトキシシリル基を有する数平均分子量26,200のポリオキシプロピレン(A-3)を得た。重合体(A-3)はトリメトキシシリル基を1つの末端に平均0.7個、1分子中に平均2.1個有することが分かった。重合体(A-3)は、一般式(1)で表される反応性ケイ素基含有構造を重合体骨格の末端に有するものである。
 (合成例4)N-1
 合成例1で得られた重合体(P-1)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にアリル基を有するポリオキシプロピレン(Q-4)を得た。
 この重合体(Q-4)500gに対して、白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)50μL、およびジメトキシメチルシラン6.5gを添加し、ヒドロシリル化反応を実施した。90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量19,900のポリオキシプロピレン(N-1)を得た。重合体(N-1)はジメトキシメチルシリル基を1つの末端に平均0.7個有することが分かった。重合体(N-1)は、一般式(1)~(6)のいずれにも該当しない反応性ケイ素基含有構造を有する、比較用の重合体である。
 (実施例1~12、比較例1~6)
 表1に示した組成に従って、各合成例で得られた反応性ケイ素基を有する有機重合体、又は、市販の反応性ケイ素基を有する有機重合体100重量部に対して、表面処理膠質炭酸カルシウム(白石工業(株)製、商品名:ホワイトンSB)50重量部、表面未処理重質炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)50重量部、タレ防止剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部を計量し、3本ペイントロールを用いてよく分散させた後、120℃で2時間減圧脱水を行い主剤とした。
 23℃50%の恒温恒湿条件下で、主剤に対し表1に示す割合(重量部)で、脱水剤としてビニル基を有するシランカップリング剤(Momentive製、商品名:A-171)、接着付与剤としてアミノ基を有するシランカップリング剤(東レ・ダウーコニング(株)製、商品名:A-1110)、エポキシ基を有するシランカップリング剤(東レ・ダウーコニング(株)製、商品名:A-187)、及び、酸無水物をそれぞれ添加し、次に硬化触媒として融点が23℃未満のアミジン化合物であるDBU(東京化成工業(株)、1,8-ジアザビシクロ[5,4,0]ウンデセン-7)を添加した。スパチュラを用いて2分間混練し、配合物中の気泡をよく脱泡することで硬化性組成物を作製した。
 (市販の反応性ケイ素基を有する有機重合体)
 重合体(A-4):ワッカー・ケミー社製、商品名 GENIOSIL STP-E10:末端にメチルジメトキシシリルメチルカーバメート(ウレタン結合)を有するポリオキシアルキレン(式(3)で表される反応性ケイ素基含有構造を重合体骨格の末端に有する重合体)
 重合体(A-5):ワッカー・ケミー社製、商品名 GENIOSIL STP-E35:末端にトリメトキシシリルプロピルカーバメート(ウレタン結合)を有するポリオキシアルキレン(式(1)で表される反応性ケイ素基含有構造を重合体骨格の末端に有する重合体)
 (酸無水物)
 無水酢酸 東京化成工業(株)
 cis-1,2-シクロヘキサンジカルボン酸無水物 東京化成工業(株)
 無水安息香酸 東京化成工業(株)
 無水マレイン酸 東京化成工業(株)
 無水フタル酸 東京化成工業(株)
 ピロメリット酸無水物 東京化成工業(株)
 4,4-ビフタル酸無水物 東京化成工業(株)
 4,4-オキシジフタル酸無水物 東京化成工業(株)
 (皮張り時間)
 23℃50%の恒温恒湿条件下で、得られた硬化性組成物をポリエチレンシート上に塗布し、厚みが3mmになるように伸ばして表面を平滑に整えた時間を硬化開始時間とし、表面をスパチュラで触り、スパチュラに硬化性組成物が付着しなくなった時間を皮張り時間として硬化時間の測定を行った。結果を表1に示す。
 (ブリードアウト)
 得られた硬化性組成物をポリエチレンシート上に塗布し、厚みが3mmになるように伸ばして表面を平滑に整え、硬化物を作製した。硬化物を23℃50%の恒温恒湿条件下で、各表に記載の日数放置した後、硬化物表面を指で触ったときに液状化合物が手につかなかった場合をブリードアウト「無」、液状化合物が手についた場合をブリードアウト「有」とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 表1から明らかなように、一般式(1)~(6)の少なくとも1つで表される反応性ケイ素基含有構造を有する有機重合体(A)、融点が23℃未満のアミジン化合物(B)、及び、酸無水物(C)を使用した実施例1~12では、硬化性が良好であり、硬化物表面への液状化合物のブリードアウトが見られなかった。一方、酸無水物を使用しないことは各実施例と同じ比較例1~5では、硬化性は良好であったが、硬化物表面への液状化合物のブリードアウトが発生した。また、一般式(1)~(6)のいずれにも該当しない反応性ケイ素基含有構造を有する有機重合体(N-1)とアミジン化合物(B)を使用した比較例6では、硬化性が不足しており、48時間経過後も硬化しなかった。
 (実施例13~20、比較例7~14)
 表2に示した組成に従って、各合成例で得られた反応性ケイ素基を有する有機重合体、又は、市販の反応性ケイ素基を有する有機重合体100重量部に対して、表面処理膠質炭酸カルシウム(白石工業(株)製、商品名:ホワイトンSB)50重量部、表面未処理重質炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)50重量部、タレ防止剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部を計量し、3本ペイントロールを用いてよく分散させた後、120℃で2時間減圧脱水を行い主剤とした。
 23℃50%の恒温恒湿条件下で、主剤に対し表2に示す割合(重量部)で、脱水剤としてビニル基を有するシランカップリング剤(Momentive製、商品名:A-171)、接着付与剤としてアミノ基を有するシランカップリング剤(東レ・ダウーコニング(株)製、商品名:A-1110)、エポキシ基を有するシランカップリング剤(東レ・ダウーコニング(株)製、商品名:A-187)、及び、カルボン酸をそれぞれ添加し、次に硬化触媒として融点が23℃未満のアミジン化合物であるDBU(東京化成工業(株)、1,8-ジアザビシクロ[5,4,0]ウンデセン-7)を添加した。スパチュラを用いて2分間混練し、配合物中の気泡をよく脱泡することで硬化性組成物を作製した。
 作製した硬化性組成物を用いて、上記と同様に皮張り時間の測定とブリードアウトの評価を行った。結果を表2に示す。
 (カルボン酸)
DL-りんご酸(50重量%メタノール溶液):pKa1(in HO)=3.4、pKa2(in HO)=5.1 東京化成工業(株)
酢酸:pKa(in HO)=4.76 東京化成工業(株)
プロピオン酸:pKa(in HO)=4.88 東京化成工業(株)
サリチル酸:pKa(in HO)=2.98 キシダ化学(株)
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 表2から明らかなように、一般式(1)~(6)の少なくとも1つで表される反応性ケイ素基含有構造を有する有機重合体(A)、融点が23℃未満のアミジン化合物(B)、及び、pKaが3~5の範囲にあるカルボン酸(C)を使用した実施例13~20では、硬化性が良好であり、硬化物表面への液状化合物のブリードアウトが見られなかった。一方、カルボン酸を使用しないこと以外は各実施例と同じ比較例7~11では、硬化性は良好であったが、硬化物表面への液状化合物のブリードアウトが発生した。pKaが3~5の範囲にあるカルボン酸(C)を使用せずに、pKaが3未満を示すカルボン酸を使用した比較例12では、同じ重合体(A-2)を使用した実施例14~17及び比較例8と比較すると、硬化性が大幅に低下した。同様に、pKaが3~5の範囲にあるカルボン酸(C)を使用せずに、pKaが3未満を示すカルボン酸を使用した比較例13では、同じ重合体(A-3)を使用した実施例18及び比較例9と比較して硬化性が大幅に低下し、3時間経過後も硬化しなかった。一般式(1)~(6)のいずれにも該当しない反応性ケイ素基含有構造を有する有機重合体(N-1)とアミジン化合物(B)を使用した比較例14では、硬化性が不足しており、48時間経過後も硬化しなかった。
 

Claims (8)

  1. (A)一般式(1)~(6)のうち少なくとも1つで表される反応性ケイ素基含有構造を有する有機重合体、
    (B)融点が23℃未満のアミジン化合物、並びに
    (C)酸無水物、及び/又は、pKaが3~5を示すカルボン酸
    を含む、非有機錫系硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、Rは、ヘテロ原子を含んでよい2価の結合基を表す。Rは、水素原子または炭素原子数1~5の炭化水素基を表す。Xは水酸基または加水分解性基を表す。)
    Figure JPOXMLDOC01-appb-C000002
     
    (式(2)中、R、R、及びXは上記に同じ。Rは、1位の炭素原子上に電子吸引性基を有する、炭素原子数1~5の炭化水素基を表す。Rは、非置換の、炭素原子数1~5の炭化水素基を表す。aは1または2であり、bは0または1であり、cは1または2である。但し、a+b+c=3を満たす。)
    Figure JPOXMLDOC01-appb-C000003
     
    (式(3)中、Rは、炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。Xは上記に同じ。Yは、-O-、-S-、-N(R)-、-O-C(=O)-N(R)-、-N(R)-C(=O)-O-、及び-N(R)-C(=O)-N(R)-からなる群より選択される二価の基を表す。Rは、水素原子または炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。dは1、2、または3である。)
    Figure JPOXMLDOC01-appb-C000004
     
    Figure JPOXMLDOC01-appb-C000005
     
    Figure JPOXMLDOC01-appb-C000006
     
    (式(4)-(6)中、Rは、炭素原子数1~20の炭化水素基を表し、当該炭化水素基は、ヘテロ原子を含んでもよい。Xは上記に同じ。eは1、2、または3である。R、およびRは、それぞれ独立に、水素原子、炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基、またはシリル基を表す。R10は2価の連結基を表し、前記R10が有する2つの結合手は、それぞれ、前記連結基内の炭素原子、酸素原子、窒素原子、または硫黄原子に結合している。)
  2.  一般式(4)~(6)が、それぞれ、一般式(7)~(9)で表される、請求項1に記載の非有機錫系硬化性組成物。
    Figure JPOXMLDOC01-appb-C000007
     
    Figure JPOXMLDOC01-appb-C000008
     
    Figure JPOXMLDOC01-appb-C000009
     
    (式(7)-(9)中、R、X、およびeは式(4)-(6)中の各基と同じである。)
  3.  有機重合体(A)の主鎖骨格が、ポリオキシアルキレン系重合体、飽和炭化水素系重合体、および、(メタ)アクリル酸エステル系重合体からなる群より選択される少なくとも1つである、請求項1又は2に記載の非有機錫系硬化性組成物。
  4.  アミジン化合物(B)が、一般式(10)で表される、請求項1~3のいずれか1項に記載の非有機錫系硬化性組成物。
    11N=CR12-NR13   (10)
    (式(10)中、R11、R12、及び2個のR13は、それぞれ独立に、水素原子または有機基を表す。R11、R12、および2個のR13のうち任意の2つ以上が結合して環状構造を形成してもよい。)
  5.  有機重合体(A)100重量部に対して、アミジン化合物(B)の含有量が0.1~15重量部、酸無水物及び/又はカルボン酸(C)の含有量が0.1~15重量部である、請求項1~4のいずれか1項に記載の非有機錫系硬化性組成物。
  6.  (C)成分が酸無水物を含む、請求項1~5のいずれか1項に記載の非有機錫系硬化性組成物。
  7.  請求項1~6のいずれか1項に記載の非有機錫系硬化性組成物を硬化させてなる硬化物。
  8.  請求項1~6のいずれか1項に規定の一般式(1)~(6)のうち少なくとも1つで表される反応性ケイ素基含有構造を有する有機重合体(A)、融点が23℃未満のアミジン化合物(B)、並びに、酸無水物、及び/又は、pKaが3~5を示すカルボン酸(C)を混合した後、硬化させて硬化物を得ることを含む、硬化物表面のブリードアウトを抑制する方法。
     
PCT/JP2021/005026 2020-02-13 2021-02-10 硬化性組成物及びその硬化物 WO2021162048A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21754530.0A EP4105262A4 (en) 2020-02-13 2021-02-10 CURDABLE COMPOSITION AND HARDENED PRODUCT THEREOF
JP2022500447A JPWO2021162048A1 (ja) 2020-02-13 2021-02-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-022499 2020-02-13
JP2020022499 2020-02-13

Publications (1)

Publication Number Publication Date
WO2021162048A1 true WO2021162048A1 (ja) 2021-08-19

Family

ID=77291844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005026 WO2021162048A1 (ja) 2020-02-13 2021-02-10 硬化性組成物及びその硬化物

Country Status (3)

Country Link
EP (1) EP4105262A4 (ja)
JP (1) JPWO2021162048A1 (ja)
WO (1) WO2021162048A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166696A1 (ja) * 2023-02-08 2024-08-15 株式会社カネカ 硬化性組成物、及びその製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160053A (ja) 1989-11-16 1991-07-10 Kanegafuchi Chem Ind Co Ltd 室温硬化性組成物
JPH04283259A (ja) 1991-03-11 1992-10-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH09194731A (ja) 1996-01-23 1997-07-29 Asahi Glass Co Ltd 硬化性組成物
JP2006199730A (ja) 2005-01-18 2006-08-03 Konishi Co Ltd 硬化性樹脂組成物及び湿気硬化型接着剤
WO2008053875A1 (fr) * 2006-11-01 2008-05-08 Kaneka Corporation Polymère organique durcissable, procédé de fabrication de celui-ci, et composition durcissable contenant le polymère
WO2008099858A1 (ja) 2007-02-13 2008-08-21 Kaneka Corporation 硬化性組成物
JP2014114434A (ja) * 2012-11-14 2014-06-26 Kaneka Corp 硬化性組成物
WO2016114376A1 (ja) * 2015-01-16 2016-07-21 株式会社カネカ 硬化性組成物およびその硬化物
WO2018105704A1 (ja) * 2016-12-07 2018-06-14 株式会社カネカ 液状樹脂組成物
WO2019189491A1 (ja) * 2018-03-30 2019-10-03 株式会社カネカ 反応性ケイ素基含有重合体、および硬化性組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160053A (ja) 1989-11-16 1991-07-10 Kanegafuchi Chem Ind Co Ltd 室温硬化性組成物
JPH04283259A (ja) 1991-03-11 1992-10-08 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH09194731A (ja) 1996-01-23 1997-07-29 Asahi Glass Co Ltd 硬化性組成物
JP2006199730A (ja) 2005-01-18 2006-08-03 Konishi Co Ltd 硬化性樹脂組成物及び湿気硬化型接着剤
WO2008053875A1 (fr) * 2006-11-01 2008-05-08 Kaneka Corporation Polymère organique durcissable, procédé de fabrication de celui-ci, et composition durcissable contenant le polymère
JP2013213229A (ja) 2006-11-01 2013-10-17 Kaneka Corp 硬化性有機重合体を含有する硬化性組成物
WO2008099858A1 (ja) 2007-02-13 2008-08-21 Kaneka Corporation 硬化性組成物
JP2014114434A (ja) * 2012-11-14 2014-06-26 Kaneka Corp 硬化性組成物
WO2016114376A1 (ja) * 2015-01-16 2016-07-21 株式会社カネカ 硬化性組成物およびその硬化物
WO2018105704A1 (ja) * 2016-12-07 2018-06-14 株式会社カネカ 液状樹脂組成物
WO2019189491A1 (ja) * 2018-03-30 2019-10-03 株式会社カネカ 反応性ケイ素基含有重合体、および硬化性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4105262A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166696A1 (ja) * 2023-02-08 2024-08-15 株式会社カネカ 硬化性組成物、及びその製造方法

Also Published As

Publication number Publication date
EP4105262A1 (en) 2022-12-21
EP4105262A4 (en) 2024-03-06
JPWO2021162048A1 (ja) 2021-08-19

Similar Documents

Publication Publication Date Title
JP5841055B2 (ja) 硬化性組成物
JP6714515B2 (ja) 硬化性組成物およびその硬化物
JP7249998B2 (ja) 反応性ケイ素基含有重合体、および硬化性組成物
JP7285247B2 (ja) 反応性ケイ素基含有重合体、および硬化性組成物
JP7073167B2 (ja) 硬化性組成物
WO2021162048A1 (ja) 硬化性組成物及びその硬化物
JP2024009271A (ja) ポリオキシアルキレン系重合体及び硬化性組成物
US20230027947A1 (en) Mixture of polyoxyalkylene polymers and curable composition
WO2018199270A1 (ja) 硬化性組成物
JP2021055013A (ja) 反応性ケイ素基含有重合体及び硬化性組成物
JP7469875B2 (ja) 硬化性組成物及びその硬化物
JP2021055017A (ja) 硬化性組成物
WO2021162049A1 (ja) 加熱硬化性組成物及びその硬化物
JP7461338B2 (ja) 硬化性組成物、及び硬化物
JP2021055010A (ja) 硬化性組成物
WO2023171425A1 (ja) ポリオキシアルキレン系重合体の混合物および硬化性組成物
WO2021261383A1 (ja) 加熱硬化型の硬化性組成物及びその硬化物
JP2013147575A (ja) 室温硬化性組成物
JP2021055011A (ja) 硬化性組成物
JP2024114082A (ja) 硬化性組成物
WO2024190202A1 (ja) 硬化性組成物
JP2021055016A (ja) 硬化性組成物
JP2022135365A (ja) 有機重合体の製造方法、並びに、有機重合体、硬化性組成物、及び硬化物
WO2021182118A1 (ja) 有機重合体、硬化性組成物、及び硬化物
JP2023149911A (ja) 加水分解性シリル基含有ポリオキシアルキレン系重合体及びその製造方法、並びにその組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021754530

Country of ref document: EP

Effective date: 20220913