WO2021161862A1 - 温度計 - Google Patents

温度計 Download PDF

Info

Publication number
WO2021161862A1
WO2021161862A1 PCT/JP2021/003868 JP2021003868W WO2021161862A1 WO 2021161862 A1 WO2021161862 A1 WO 2021161862A1 JP 2021003868 W JP2021003868 W JP 2021003868W WO 2021161862 A1 WO2021161862 A1 WO 2021161862A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
thermometer
housing
external space
measurement target
Prior art date
Application number
PCT/JP2021/003868
Other languages
English (en)
French (fr)
Inventor
中西 保之
直博 大須賀
雅夫 水田
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2022500344A priority Critical patent/JPWO2021161862A1/ja
Publication of WO2021161862A1 publication Critical patent/WO2021161862A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings

Definitions

  • the present invention relates to a thermometer that measures the temperature of a measurement target based on the intensity of infrared rays generated from the measurement target existing in the external space.
  • thermometer capable of measuring the temperature of a substance in a non-contact manner based on the intensity of infrared rays generated from an object.
  • This thermometer is called a radiation thermometer.
  • the radiation thermometer includes an infrared sensor that detects infrared rays generated from an object and a lens that allows the sensor to receive the infrared rays, and can easily measure the temperature without contact. Therefore, the radiation thermometer can be used to measure the temperature of plants cultivated in greenhouses, such as products manufactured in various plants.
  • the radiation thermometer can easily measure the temperature of the object to be measured without contact, it may not be able to measure the temperature accurately in a harsh environment such as a large temperature fluctuation in the external space where it is installed. Further, if water droplets (mist) are present in the external space and adhere to the lens surface of the radiation thermometer, the infrared sensor cannot properly receive the infrared rays emitted from the object to be measured. As a result, the temperature may not be measured accurately.
  • Patent Document 1 compressed gas is discharged to the window portion of the housing to remove dust adhering to the window portion. It is considered that the adhesion of water droplets to the window can be prevented by discharging the gas to the window in this way, but when the radiation thermometer is placed near the measurement target, the discharged gas is the measurement target. It hits the target and adversely affects the measurement target, or the gas that hits the measurement target cannot accurately measure the temperature of the measurement target.
  • the temperature of the infrared sensor itself also fluctuates due to the temperature fluctuation, and the signal output from the infrared sensor fluctuates according to this temperature fluctuation. As a result, a temperature different from the actual temperature of the external space may be output as the measurement result.
  • An object of the present invention is to accurately measure the temperature of a measurement object existing in an external space under a harsh environment based on infrared rays generated from the measurement object.
  • the thermometer measures the temperature of the measurement target based on the intensity of infrared rays generated from the measurement target existing in the external space.
  • This thermometer includes a radiation thermometer, a first housing, a first opening, and a temperature maintenance device.
  • the radiation thermometer has an infrared sensor that detects infrared rays and a lens that causes the infrared sensor to receive infrared rays.
  • the first housing houses the radiation thermometer in the internal space.
  • the first opening is provided in the first housing and allows the lens to penetrate the external space.
  • the temperature maintenance device stabilizes the temperature of the internal space of the first housing at a first temperature higher than the temperature upper limit of the temperature of the external space.
  • the air warmed in the internal space is discharged through the opening to prevent the intrusion of water droplets from the outside and to prevent the water droplets from entering the lens. Can be prevented from adhering.
  • the temperature of the internal space is kept almost constant, so that the signal output from the infrared sensor is prevented from fluctuating according to the temperature fluctuation of the external space. can.
  • the above thermometer can accurately measure the temperature of the object to be measured existing in the external space in a harsh environment.
  • the thermometer may further include a second housing and a second opening.
  • the second housing houses the first housing.
  • the second opening is provided at a position corresponding to the first opening in the second housing, and penetrates the lens and the external space together with the first opening. As a result, it is possible to prevent the temperature of the internal space of the first housing from being affected by the temperature fluctuation of the external space.
  • the thermometer may further include a cooling device for cooling the second housing. As a result, it is possible to prevent the temperature of the internal space of the first housing from being affected by the temperature of the external space.
  • the infrared sensor may have a light receiving member that receives infrared rays and generates heat, and a thermocouple that generates thermoelectromotive force according to the difference between the reference temperature and the temperature of the light receiving member.
  • the thermometer may further include a mounting member on which the radiation thermometer is mounted.
  • the temperature maintenance device is fixed to the mounting member. As a result, the temperature of the radiation thermometer can be more reliably maintained at the first temperature.
  • the thermometer may further include a stop device for stopping the temperature maintenance device when the temperature of the internal space of the first housing reaches the second temperature, which is a predetermined temperature higher than the first temperature.
  • the first housing may be made of metal or resin. As a result, deterioration of the first housing can be suppressed even in a harsh environment of the external space.
  • the thermometer may further include a limiting member that limits the movement of the object to be measured.
  • the external space may contain mist.
  • the pressure of the internal space of the first housing is made higher than the pressure of the external space, and the pressure of the external space is increased. It is possible to prevent the contained mist from entering the internal space of the first housing. As a result, it is possible to prevent water droplets from adhering to the lens of the radiation thermometer.
  • thermometer which concerns on 1st Embodiment is installed.
  • the figure which shows the structure of the thermometer which concerns on 2nd Embodiment The side view of the thermometer which concerns on 2nd Embodiment. Top view of the thermometer according to the second embodiment.
  • thermometer 100 is installed in a greenhouse G (vinyl house) as shown in FIG. 1, for example, at a place P where vegetables, fruits, etc. to be grown are planted.
  • the thermometer 100 measures the leaf temperature of vegetables, fruits and the like to be grown, and the temperature of fruits (fruits).
  • FIG. 1 is a diagram showing an example of a greenhouse in which a thermometer according to the first embodiment is installed.
  • Greenhouse G is provided with equipment for growing the above vegetables, fruits, etc. (for example, irrigation system, temperature control equipment, mist spraying device).
  • the greenhouse G of the present embodiment is for growing vegetables (for example, tomatoes) and fruits (for example, strawberries) that are difficult to grow in a high temperature area, and is sprayed with mist. Therefore, the thermometer 100 of the present embodiment has a configuration capable of appropriately measuring the leaf temperature and the fruit temperature even in an environment in which such a mist is present. In this way, measuring the leaf temperature and fruit temperature of vegetables and fruits grown in greenhouse G where mist exists is to grow high-quality vegetables and fruits with high sugar content. It's very important.
  • FIG. 2 is a perspective view of the thermometer according to the first embodiment.
  • FIG. 3 is an exploded view of the thermometer according to the first embodiment.
  • the thermometer 100 according to the present embodiment includes a radiation thermometer 1.
  • the radiation thermometer 1 measures the temperature of the measurement target M based on the intensity of the infrared IR (FIG. 4) generated from the measurement target M (for example, the fruit or leaf of a vegetable or fruit) (FIG. 4) existing in the external space. To measure.
  • the radiation thermometer 1 includes an infrared sensor 13 (FIG.
  • thermometer 1 that detects infrared rays generated from the measurement target M, and a lens 11 (FIG. 4) that causes the infrared sensor 13 to receive infrared rays.
  • the radiation thermometer 1 is mounted on a metal (for example, aluminum) mounting member 2 inside the thermometer 100.
  • the mounting member 2 is attached to the first bottom member 4a and the second bottom member 5a of the thermometer 100 by being fixed to the fixing member 2a.
  • a heater 3 (an example of a temperature maintaining device) is fixed to the bottom of the mounting member 2.
  • the mounting member 2 is provided with a temperature sensor (for example, a thermocouple) (not shown) for measuring the temperature of the mounting member 2.
  • the heater 3 is controlled by the temperature controller 3a while measuring the temperature of the mounting member 2 with the temperature sensor, thereby stabilizing the temperature of the mounting member 2 at a predetermined temperature set by the temperature controller 3a.
  • the temperature controller 3a outputs a control signal for adjusting the temperature to the heater drive unit 3b.
  • the heater drive unit 3b supplies electric power based on the control signal received from the temperature controller 3a to the heater 3.
  • the heater drive unit 3b is, for example, a device that adjusts and outputs electric power to the heater 3 such as an SSR (Solid State Relay).
  • the temperature of the radiation thermometer 1 can be stabilized at the predetermined temperature.
  • the temperature of the first internal space S1 in which the radiation thermometer 1 is housed can be stabilized.
  • a thermostat 3c (an example of a stop device) is fixed to the mounting member 2.
  • the thermostat 3c prevents the temperature of the mounting member 2 from becoming excessive. Specifically, the thermostat 3c stops the power supply from the heater drive unit 3b to the heater 3 when the temperature of the mounting member 2 becomes the second temperature T2 (for example, 60 ° C.) or higher. As a result, the temperature of the mounting member 2 becomes excessive, and the failure of the radiation thermometer 1 can be prevented.
  • the thermometer 100 includes a first lid member 4b.
  • the first lid member 4b has a hollow three-dimensional shape with an open bottom, and is fixed to the first bottom member 4a at the bottom.
  • the first housing 4 having the first internal space S1 is formed. That is, the first housing 4 houses the radiation thermometer 1 in the first internal space S1.
  • the first housing 4 (first lid member 4b) has a first opening O1 at a position corresponding to the lens 11 of the radiation thermometer 1.
  • the first bottom member 4a and the first lid member 4b (first housing 4) are made of, for example, a material such as metal or resin. As a result, deterioration of the first housing 4 can be suppressed even in a harsh environment of the external space.
  • the thermometer 100 includes a second lid member 5b.
  • the second lid member 5b has a hollow three-dimensional shape with an open bottom, and is fixed to the second bottom member 5a at the bottom.
  • the second housing 5 having the second internal space S2 is formed. That is, the second housing 5 houses the first housing 4 (and the radiation thermometer 1) in the second internal space S2.
  • the second housing 5 (second lid member 5b) has a second opening O2 at a position corresponding to the lens 11 of the radiation thermometer 1.
  • the second bottom member 5a and the second lid member 5b (second housing 5) are made of aluminum. As a result, the weight of the thermometer 100 can be reduced.
  • a tripod fixing portion 6 is provided at the bottom of the second housing 5 (second lid member 5b).
  • the tripod is fixed to the tripod fixing portion 6 and the installation height of the thermometer 100 can be adjusted.
  • the radiation thermometer 1 is housed in the first internal space S1 of the first housing 4, and the temperature of the first internal space S1 is stabilized by the heater 3. Be transformed.
  • the temperature of the first internal space S1 is kept substantially constant, so that the radiation thermometer 1 is not affected by the temperature fluctuation of the external space and the temperature is stable. It can operate in the first internal space S1 that has been converted. As a result, it is possible to prevent the signal output from the infrared sensor 13 of the radiation thermometer 1 from fluctuating according to the temperature fluctuation in the external space.
  • the first housing 4 and the radiation thermometer 1 are housed in the second internal space S2 of the second housing 5. That is, the radiation thermometer 1 is housed in the first internal space S1 which is the innermost part of the "nested" double structure of the first housing 4 and the second housing 5. As a result, the temperature of the first internal space S1 of the first housing 4 can be further suppressed from being affected by the temperature fluctuation of the external space.
  • FIG. 4 is a diagram showing the configuration of a radiation thermometer.
  • FIG. 5 is a diagram showing a configuration of an infrared sensor.
  • the radiation thermometer 1 is a device that receives infrared rays generated from the measurement target M and measures the temperature of the measurement target M based on the intensity of the received infrared rays.
  • the radiation thermometer 1 includes a lens 11, an infrared sensor 13, a signal converter 15, and a calculation unit 17.
  • the lens 11 causes the light receiving member 131 (FIG. 5) of the infrared sensor 13 to receive the infrared IR generated from the measurement target M. Specifically, the lens 11 collects infrared IR on the surface of the light receiving member 131.
  • the infrared sensor 13 detects the infrared IR focused by the lens 11 and outputs a signal based on the intensity of the received infrared IR.
  • the infrared sensor 13 is, for example, a thermopile and has a configuration as shown in FIG. That is, the infrared sensor 13 has a light receiving member 131, a thermocouple 133, and an output terminal 135.
  • the surface of the light receiving member 131 is irradiated with infrared IR focused by the lens 11.
  • the light receiving member 131 is a member that generates heat according to the intensity of the infrared IR irradiated on the surface.
  • the surface of the light receiving member 131 irradiated with infrared IR is coated with a substance (for example, fine gold particles) that easily absorbs infrared IR.
  • the thermocouple 133 outputs a thermoelectromotive force based on the difference between the temperature of the light receiving member 131 and the reference temperature (the temperature of the cold contact CP).
  • the thermocouple 133 has a plurality of first metal members 133a and a plurality of second metal members 133b. One end of each first metal member 133a and each second metal member 133b is connected to each other in the light receiving member 131. On the other hand, the other ends of each first metal member 133a and each second metal member 133b are connected to each other at a cold contact CP (for example, the main body of the radiation thermometer 1).
  • thermocouple 133 the thermocouple composed of one first metal member 133a and one second metal member 133b measures the difference between the temperature of the light receiving member 131 and the temperature of the cold contact CP. .. Further, in the thermocouple 133, a thermocouple composed of one first metal member 133a and one second metal member 133b is connected in series. With such a configuration, the thermocouple 133 can sensitively detect the change in the light receiving intensity of the infrared IR and improve the sensitivity of the temperature measurement of the radiation thermometer 1.
  • the output terminal 135 is connected to both ends of the thermocouple 133 and is a terminal for taking out the thermoelectromotive force generated by the thermocouple 133 to the outside. Therefore, the signal converter 15 is connected to the output terminal 135.
  • the signal converter 15 of the radiation thermometer 1 converts the thermoelectromotive force (analog signal) generated by the thermocouple 133 into a digital signal.
  • the signal converter 15 is, for example, an A / D converter.
  • the arithmetic unit 17 is, for example, a computer system composed of a CPU, a storage device (RAM, ROM, etc.), and various interfaces. Further, the calculation unit 17 may be a SoC (System on Chip) having these configurations. The calculation unit 17 calculates the temperature of the measurement target M based on the digital signal input from the signal converter 15, that is, the thermoelectromotive force value measured by the thermocouple 133 of the infrared sensor 13. Further, the calculation unit 17 executes general control of the radiation thermometer 1 and the thermometer 100. The calculation of the temperature of the measurement target M and the control of the radiation thermometer 1 and the thermometer 100 in the calculation unit 17 may be executed by a computer program stored in the storage device of the calculation unit 17. Further, a part or all of the above calculation and / or control may be realized by hardware.
  • SoC System on Chip
  • thermometer 100 is installed in the vicinity of the measurement target M.
  • the measurement target M is a leaf of a vegetable being grown in the greenhouse G, for example, as shown in FIG. 6, the tripod 300 is fixed to the tripod fixing portion 6 and the temperature is set to the height of the leaf which is the measurement target M.
  • the total 100 is fixed, and the second opening O2 (first opening O1) of the thermometer 100 is brought close to the measurement target M.
  • FIG. 6 is a diagram showing an example of the installation state of the thermometer.
  • the tripod is an example, and for example, a fixing method using a fixing frame can also be used.
  • the heater 3 is operated by the temperature controller 3a.
  • the set temperature of the temperature controller 3a is set so that the temperature of the mounting member 2 controlled by the heater 3 becomes the first temperature T1 which is higher than the maximum temperature of the greenhouse G. That is, the first temperature T1 is a temperature higher than the upper limit temperature of the greenhouse G.
  • the temperature is set to be about 10 ° C higher than the maximum temperature of the greenhouse G (for example, 45 ° C).
  • the first temperature T1 can be appropriately changed depending on the usage environment of the thermometer 100 and the like.
  • the temperature of the mounting member 2 is stabilized at the first temperature T1 by the control of the heater 3 during the temperature measurement of the measurement target M, and the radiation thermometer 1 is the first housing 4 and the second housing.
  • the temperature of the radiation thermometer 1 is almost constant during temperature measurement without being affected by the temperature fluctuation of the external space (household G). Be stabilized. Since the temperature of the radiation thermometer 1 is kept almost constant during the temperature measurement without being affected by the temperature fluctuation of the external space, the temperature fluctuation of the cold contact CP of the infrared sensor 13 disappears and the temperature is output from the infrared sensor 13.
  • the thermoelectric power does not fluctuate according to the temperature fluctuation in the external space. As a result, the radiation thermometer 1 can accurately measure the temperature of the measurement target M without being affected by the temperature fluctuation of the external space (greenhouse G).
  • the temperature of the mounting member 2 becomes higher than the upper limit temperature (maximum temperature) of the temperature of the external space
  • the air in the first internal space S1 is heated by the mounting member 2, and the first internal space is heated.
  • the temperature inside S1 is also higher than the maximum temperature in the external space. Since the first internal space S1 is connected to the external space by the first opening O1 and the second opening O2, the temperature of the first internal space S1 becomes higher than the maximum temperature of the external space, so that the first internal space S1 An air flow to the external space occurs. That is, the air warmed in the first internal space S1 is discharged through the first opening O1 and the second opening O2.
  • the first opening O1 and the second opening O2 are provided so as to correspond to the lens 11 of the radiation thermometer 1, that is, to penetrate the lens 11 and the external space, the first internal space S1 described above The air flow to the external space occurs in the vicinity of the lens 11. As a result, it is possible to prevent the air in the external space from reaching the lens 11. As a result, even if the air in the external space contains mist, it is possible to prevent the mist (water droplets) and the like from adhering to the lens 11.
  • thermometer 100 of the present embodiment Since water hardly transmits infrared rays, if water droplets are attached to the lens 11, the infrared IR from the measurement target M is blocked by the water droplets, and the temperature of the measurement target M cannot be accurately measured by the radiation thermometer 1. ..
  • the thermometer 100 of the present embodiment as described above, even if the mist is sprayed in the external space and the air in the external space contains the mist, the lens 11 is being measured during the temperature measurement of the measurement target M. The structure is such that water droplets do not adhere to the surface. As a result, the thermometer 100 of the present embodiment can accurately measure the temperature of the measurement target M.
  • the air flow generated by raising the temperature of the first internal space S1 to be higher than the maximum temperature of the external space is large enough to prevent the air in the external space from reaching the lens 11, while measuring. It is small enough not to affect the temperature of the target M. That is, by configuring the temperature of the first internal space S1 to be higher than the maximum temperature of the external space, the thermometer 100 of the present embodiment does not adhere water droplets to the lens 11, but does not affect the temperature of the measurement target M. It is possible to accurately measure the temperature of the measurement target M existing in the external space of a harsh environment such as containing mist by generating an air flow having an optimum flow rate in the vicinity of the lens 11.
  • thermometer 100 of the present embodiment When the thermometer 100 of the present embodiment is actually used to measure the leaf temperature of tomatoes grown in the greenhouse G sprayed with mist (that is, the measurement target M is a tomato leaf), as shown in FIG. In addition, the thermometer 100 showed a measurement result close to the actual leaf temperature. In FIG. 7, the solid line is the measurement result of the leaf temperature by the thermometer 100.
  • FIG. 7 is a diagram showing an example of the actual measurement result of the temperature of the object to be measured by the thermometer.
  • thermometer 100 is a predetermined position (leaves, fruits, etc.) of vegetables (tomatoes) and fruits (strawberry) being grown in greenhouse G where mist is sprayed.
  • the temperature can be measured accurately.
  • temperature measurement using a plant such as a vegetable or fruit as the measurement target M it may be desired to measure the temperature at a specific position of the measurement target M as much as possible. That is, there is a case where it is desired to fix the relative position between the thermometer 100 and the measurement target M.
  • the measurement location As a method of specifying the measurement location, there is a method of indicating the measurement location with the light emitted from the laser marker or the LED.
  • the sunlight is too strong under the sunlight in the daytime, and the marker is very difficult to see or the marker cannot be seen.
  • the laser marker cannot be constantly irradiated, it is necessary to irradiate the laser marker every time the measurement location is confirmed. When the operation of irradiating the laser marker is performed every time the measurement location is confirmed, the measurement location may shift.
  • the thermometer 200 further includes a limiting member 20 that limits the movement of the measurement target M in order to fix the position relative to the measurement target M as much as possible.
  • a total of three limiting members 20 are provided on the left and right side surfaces and the upper surface of the second housing 5 of the thermometer 200.
  • the position of the pair of limiting members 20 provided on the left and right side surfaces of the second housing 5 in the height direction is preferably the position where the second opening O2 (first opening O1) is provided.
  • FIG. 8 is a diagram showing a configuration of a thermometer according to the second embodiment.
  • thermometer 200 according to the second embodiment has the same configuration and function as the thermometer 100 according to the first embodiment, except that the limiting member 20 is fixed to the second housing 5. Therefore, the description other than the limiting member 20 will be omitted here.
  • the limiting member 20 is provided with a plurality of scales 21a to 21d. Specifically, one scale 21a is attached at a position corresponding to the front end (second opening O2) of the second housing 5. The other scales 21b to 21d are provided at equal intervals in the direction away from the front end of the second housing 5.
  • FIG. 9A is a side view of the thermometer according to the second embodiment.
  • FIG. 9B is a top view of the thermometer according to the second embodiment.
  • the number of scales 21a to 21d attached to the limiting member 20 is 4, but this number can be arbitrary depending on the usage conditions of the thermometer 200 and the like. Further, the distance between the two scales can be made arbitrary depending on the usage conditions of the thermometer 200 and the like.
  • the thermometer 200 By providing the limiting member 20 as shown in FIGS. 8 to 9B, the thermometer 200 according to the second embodiment accommodates the measurement target M inside the limiting member 20 as shown in FIGS. 9A and 9B. , The range in which the relative movement is possible with respect to the second housing 5 can be limited. As a result, the thermometer 200 can continuously measure the temperature at a specific position of the measurement target M. Further, by attaching the scales 21a to 21d to the limiting member 20, the distance between the measurement target M and the second opening O2 (that is, the lens 11 of the radiation thermometer 1) can be visually recognized. As a result, for example, it is possible to visually confirm whether the distance between the measurement target M and the lens 11 is within the temperature measurable range. Further, for example, the size (area) of the temperature measuring region of the measurement target M can be adjusted by adjusting the distance between the measurement target M and the lens 11 using the scales 21a to 21d in the temperature measurable range. ..
  • the limiting member 20 is a rod-shaped member.
  • the present invention is not limited to this, and the limiting member 20 can have an arbitrary shape (for example, a circular shape) as long as the measurement target can be held.
  • thermometers 100 and 200 described in the first and second embodiments described above generate steam (mist-like water droplets) in, for example, a food factory in addition to the greenhouse G on which the mist is sprayed. It can also be used for purposes such as measuring the temperature of a product in a production plant where the temperature fluctuates sharply.
  • thermometers 100 and 200 described in the first embodiment and the second embodiment are transmitted from the calculation unit 17 to another device, for example, in order to control the device. It may be used.
  • the temperature measurement results of vegetables and fruits measured by thermometers 100 and 200 can be used to control other devices in the greenhouse G to adjust the growing conditions of the vegetables and fruits.
  • a cooling device for example, a Perche element can be used.
  • the second housing 5 may be heated by the external space, and the temperature of the second internal space S2 may rise.
  • the temperature of the first internal space S1 becomes the temperature of the second internal space S2 even if the temperature of the first internal space S1 is adjusted to be constant by the heater 3. Can be affected by temperature. Therefore, by providing the cooling device in the second housing 5, it is possible to prevent the temperature of the first internal space from being affected by the temperature of the external space.
  • (D) For example, when the air in the external space flows in even if the temperature of the first internal space S1 is higher than the temperature of the external space, and / or, the air is sent from the first internal space S1 to the external space at a large flow rate. If it is difficult to affect the temperature of the measurement target M even if it flows out, the back side of the first housing 4 and / or the second housing 5 (the side provided with the first opening O1 and the second opening O2). A device for generating a gas flow such as a fan may be provided on the opposite side), and the air may flow out from the first internal space S1 to the external space by the device.
  • a device for generating a gas flow such as a fan may be provided on the opposite side
  • the present invention can be widely applied to a thermometer that measures the temperature of a measurement target based on the intensity of infrared rays generated from the measurement target existing in the external space.
  • Thermometer 1 Radiation thermometer 11 Lens 13 Infrared sensor 131
  • Light receiving member 133 Thermocouple 133a First metal member 133b Second metal member 135 Output terminal CP Cold contact 15
  • Signal converter 17 Calculation unit 2 Mounting member 2a Fixing member 3 Heater 3a Temperature controller 3b Heater drive unit 3c
  • Thermometer 4 First housing 4a First bottom member 4b First lid member S1 First internal space T1 First temperature O1 First opening 5 Second housing 5a Second bottom member 5b 2nd lid member S2 2nd internal space T2 2nd temperature O2 2nd opening 6
  • Tripod fixing part 20
  • Restricting member 21a, 21b, 21c, 21d Scale 300 Tripod G Greenhouse P Place M Measurement target IR Infrared

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

過酷な環境下に存在する測定対象の温度を正確に測定する。温度計(100、200)は、放射温度計(1)と、第1筐体(4)と、第1開口(O1)と、ヒーター(3)と、を備える。放射温度計(1)は、赤外線(IR)を検出する赤外線センサー(13)と、赤外線センサー(13)に赤外線(IR)を受光させるレンズ(11)と、を有する。第1筐体(4)は、放射温度計(1)を第1内部空間(S1)に収納する。第1開口(O1)は、第1筐体(4)に設けられ、レンズ(11)と外部空間とを貫通させる。ヒーター(3)は、第1筐体(4)の第1内部空間(S1)の温度を、外部空間の温度よりも高い第1温度(T1)に維持する。

Description

温度計
 本発明は、外部空間に存在する測定対象から発生する赤外線の強度に基づいて、測定対象の温度を測定する温度計に関する。
 従来、物体から発生する赤外線の強度に基づいて、当該物質の温度を非接触にて測定できる温度計が知られている(例えば、特許文献1を参照)。この温度計は、放射温度計と呼ばれている。放射温度計は、物体から発生する赤外線を検出する赤外線センサーと、当該赤外線をセンサーに受光させるレンズと、を備え、非接触にて容易に温度を測定できる。このため、放射温度計は、例えば、各種プラントにて製造されている製品等、温室で栽培されている植物等の温度を測定するために使用できる。
特開2016-130599号公報
 放射温度計は、非接触にて容易に測定対象物の温度が測定できる一方、設置される外部空間の温度変動が大きいなどの過酷な環境下では、温度を正確に測定できなくなることがある。
 また、外部空間に水滴(ミスト)が存在し、これが放射温度計のレンズ表面に付着すると、測定対象物から放出される赤外線を適切に赤外センサーに受光できなくなる。その結果、温度が正確に測定できなくなることがある。
 特許文献1では、ハウジングの窓部に圧縮気体を排出して、この窓部に付着したダストを除去している。このように窓部に気体を排出すれば、窓部への水滴の付着を防止できるとも考えられるが、放射温度計が測定対象の近傍に配置された場合には、排出された気体が測定対象に当たってしまい、測定対象に対して悪影響を与えるか、測定対象に当たった気体が測定対象の温度を正確に測定できなくする。
 また、外部空間の温度変動が大きいと、当該温度変動により赤外線センサー自体の温度も変動し、赤外線センサーから出力される信号がこの温度変動に従って変動する。その結果、外部空間の実際の温度とは異なる温度を測定結果として出力することがある。
 本発明の目的は、過酷な環境下の外部空間に存在する測定対象の温度を、当該測定対象から発生する赤外線に基づいて正確に測定することにある。
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係る温度計は、外部空間に存在する測定対象から発生する赤外線の強度に基づいて、測定対象の温度を測定する。この温度計は、放射温度計と、第1筐体と、第1開口と、温度維持装置と、を備える。
 放射温度計は、赤外線を検出する赤外線センサーと、赤外線センサーに赤外線を受光させるレンズと、を有する。第1筐体は、放射温度計を内部空間に収納する。第1開口は、第1筐体に設けられ、レンズと外部空間とを貫通させる。温度維持装置は、第1筐体の内部空間の温度を、外部空間の温度で上限となる温度よりも高い第1温度で安定させる。
 これにより、第1筐体の内部空間から過剰な流量の気体が排出されるのを回避しつつ、内部空間で暖められた空気が開口を通して排出され、外部からの水滴の浸入を防ぎレンズに水滴が付着することを防止できる。また、上記の温度計では、外部空間の温度が変動しても、内部空間の温度がほぼ一定に保たれるので、赤外線センサーから出力される信号が外部空間の温度変動に従って変動することを回避できる。これらの結果、上記の温度計は、過酷な環境下の外部空間に存在する測定対象の温度を正確に測定できる。
 温度計は、第2筐体と第2開口をさらに備えてもよい。第2筐体は、第1筐体を収納する。第2開口は、第2筐体において第1開口に対応する位置に設けられ、第1開口と共にレンズと外部空間とを貫通させる。
 これにより、第1筐体の内部空間の温度が、外部空間の温度変動の影響を受けることを抑制できる。
 温度計は、第2筐体を冷却する冷却装置をさらに備えてもよい。これにより、外部空間の温度により、第1筐体の内部空間の温度が影響を受けることを抑制できる。
 赤外線センサーは、赤外線を受光して熱を発生する受光部材と、基準温度と受光部材の温度の差分に応じた熱起電力を発生する熱電対と、を有してもよい。
 第1筐体の内部空間の温度を第1温度に維持することにより、上記基準温度の温度変動を抑制し、測定対象の温度を正確に測定できる。
 温度計は、放射温度計を載置する載置部材をさらに備えてもよい。この場合、温度維持装置は、載置部材に固定される。
 これにより、より確実に放射温度計の温度を第1温度に維持できる。
 温度計は、第1筐体の内部空間の温度が第1温度よりも所定の温度だけ高い第2温度になったら、温度維持装置を停止させる停止装置をさらに備えてもよい。
 これにより、第1筐体の内部空間の温度が第2温度以上と高温になることを抑制して、赤外線センサーにて異常が発生することを抑制できる。
 第1筐体は、金属又は樹脂にて構成されてもよい。これにより、外部空間が過酷な環境であっても、第1筐体が劣化することを抑制できる。
 温度計は、測定対象の動きを制限する制限部材をさらに備えてもよい。これにより、放射温度計と測定対象との位置関係を固定して、測定対象の特定部分の温度を連続して測定できる。
 外部空間はミストを含んでもよい。第1筐体の内部空間の温度を、外部空間の温度よりも高い第1温度に維持することにより、第1筐体の内部空間の圧力を外部空間の圧力よりも高くして、外部空間に含まれるミストが第1筐体の内部空間に侵入することを抑制できる。その結果、放射温度計のレンズに水滴が付着することを抑制できる。
 外部空間の大気の進入を抑制して放射温度計のレンズ表面に水滴が付着するのを抑制しつつ、赤外線センサーが外部空間の温度変動の影響を受けることを抑制できる。これらの結果、過酷な環境下の外部空間に存在する測定対象の温度を正確に測定できる。
第1実施形態に係る温度計が設置される温室の一例を示す図。 第1実施形態に係る温度計の斜視図。 第1実施形態に係る温度計の分解図。 放射温度計の構成を示す図。 赤外線センサーの構成を示す図。 温度計の設置状態の一例を示す図。 温度計による測定対象の温度の実測結果の一例を示す図。 第2実施形態に係る温度計の構成を示す図 第2実施形態に係る温度計の側面図。 第2実施形態に係る温度計の上面図。
1.第1実施形態
(1)温度計の概略説明
 以下、第1実施形態に係る温度計100を説明する。本実施形態に係る温度計100は、例えば図1に示すような温室G(ビニールハウス)において、育成対象の野菜、果物等が植えられた場所Pに設置される。温度計100は、育成対象の野菜、果物等の葉温、実(果実)の温度を測定する。図1は、第1実施形態に係る温度計が設置される温室の一例を示す図である。
 温室Gには、上記野菜、果物等を育成するための設備(例えば、潅水システム、温調設備、ミスト噴霧装置)が設けられている。本実施形態の温室Gは、例えば、高温地帯では育成が困難な野菜(例えば、トマト)や果物(例えば、いちご)を育成するためのものであり、ミスト噴霧がなされる。従って、本実施形態の温度計100は、このようなミストが存在する環境においても葉温や実の温度を適切に測定できる構成を有している。このように、ミストが存在する温室Gにて育成されている野菜、果物等の葉温や実の温度を測定することは、糖度が高いなどの高品質の野菜、果物などを育成するために非常に重要である。
(2)温度計の具体的構成
 以下、図2及び図3を用いて、本実施形態に係る温度計100の具体的構成を説明する。図2は、第1実施形態に係る温度計の斜視図である。図3は、第1実施形態に係る温度計の分解図である。
 本実施形態に係る温度計100は、放射温度計1を備えている。放射温度計1は、外部空間に存在する測定対象M(例えば、野菜又は果物の実、葉)(図4)から発生する赤外線IR(図4)の強度に基づいて、当該測定対象Mの温度を測定する。放射温度計1は、測定対象Mから発生する赤外線を検出する赤外線センサー13(図4)と、赤外線センサー13に赤外線を受光させるレンズ11(図4)と、を有する。なお、放射温度計1のより詳細な構成については、後ほど説明する。
 放射温度計1は、温度計100の内部において金属(例えば、アルミニウム)製の載置部材2に載置されている。載置部材2は、固定部材2aに固定されることで、温度計100の第1底部材4a及び第2底部材5aに取り付けられる。また、この載置部材2の底部にはヒーター3(温度維持装置の一例)が固定されている。さらに、載置部材2には、載置部材2の温度を測定するための温度センサー(例えば、熱電対)(図示せず)が設けられる。
 ヒーター3は、上記温度センサーにて載置部材2の温度を測定しつつ温度コントローラ3aにより制御されることで、載置部材2の温度を、温度コントローラ3aで設定した所定の温度で安定させる。温度コントローラ3aは、ヒーター駆動部3bに対して温度を調整する制御信号を出力する。ヒーター駆動部3bは、温度コントローラ3aから受信した制御信号に基づいた電力を、ヒーター3に供給する。ヒーター駆動部3bは、例えば、SSR(Solid State Relay)などのヒーター3への電力を調整して出力する装置である。
 載置部材2の温度を所定の温度で安定させることで、放射温度計1の温度を当該所定の温度で安定とできる。それと同時に、載置部材2の温度を安定させることで、放射温度計1を収納した第1内部空間S1の温度を安定にできる。
 載置部材2には、サーモスタット3c(停止装置の一例)が固定されている。サーモスタット3cは、載置部材2の温度が過大となることを防止する。具体的には、サーモスタット3cは、載置部材2の温度が第2温度T2(例えば、60°C)以上となったときに、ヒーター駆動部3bからヒーター3への電力供給を停止する。これにより、載置部材2の温度が過大となり、放射温度計1の故障を防ぐことができる。
 温度計100は、第1蓋部材4bを備える。第1蓋部材4bは、底部が開口した中空の立体形状を有しており、当該底部において第1底部材4aに固定される。第1底部材4aに第1蓋部材4bが固定されることにより、第1内部空間S1を有する第1筐体4が形成される。すなわち、第1筐体4は、第1内部空間S1に放射温度計1を収納する。また、第1筐体4(第1蓋部材4b)は、放射温度計1のレンズ11に対応する位置に第1開口O1を有している。
 本実施形態において、第1底部材4a及び第1蓋部材4b(第1筐体4)は、例えば、金属、樹脂等の材料で構成される。これにより、外部空間が過酷な環境であっても、第1筐体4が劣化することを抑制できる。
 温度計100は、第2蓋部材5bを備える。第2蓋部材5bは、底部が開口した中空の立体形状を有しており、当該底部において第2底部材5aに固定される。第2底部材5aに第2蓋部材5bが固定されることにより、第2内部空間S2を有する第2筐体5が形成される。すなわち、第2筐体5は、第2内部空間S2に第1筐体4(及び放射温度計1)を収納する。また、第2筐体5(第2蓋部材5b)は、放射温度計1のレンズ11に対応する位置に第2開口O2を有している。
 本実施形態において、第2底部材5a及び第2蓋部材5b(第2筐体5)は、アルミニウム製である。これにより、温度計100の重量を軽くできる。
 なお、第2筐体5(第2蓋部材5b)の底部には、三脚固定部6が設けられている。温度計100を所定の高さに固定して使用する場合には、この三脚固定部6に三脚を固定して、温度計100の設置高さを調整できる。
 上記構成を有することにより、本実施形態に係る温度計100では、放射温度計1が第1筐体4の第1内部空間S1に収納され、当該第1内部空間S1の温度はヒーター3により安定化される。これにより、外部空間の温度が変動しても、第1内部空間S1の温度はほぼ一定に保たれるので、放射温度計1は、外部空間の温度変動に影響されず、かつ、温度が安定化された第1内部空間S1中で動作できる。その結果、放射温度計1の赤外線センサー13から出力される信号が、外部空間の温度変動に従って変動することを回避できる。
 また、第1筐体4及び放射温度計1は、第2筐体5の第2内部空間S2に収納されている。すなわち、放射温度計1は、第1筐体4と第2筐体5とによる「入れ子」状の二重構造の最も内側である第1内部空間S1内に収納されている。これにより、第1筐体4の第1内部空間S1の温度が、外部空間の温度変動の影響を受けることをさらに抑制できる。
(3)放射温度計の構成
 次に、図4及び図5を用いて、第1内部空間S1に収納される放射温度計1の具体的な構成を説明する。図4は、放射温度計の構成を示す図である。図5は、赤外線センサーの構成を示す図である。放射温度計1は、測定対象Mから発生する赤外線を受光し、受光した赤外線の強度に基づいて、測定対象Mの温度を測定する装置である。
 放射温度計1は、レンズ11と、赤外線センサー13と、信号変換器15と、演算部17と、を有する。レンズ11は、測定対象Mから発生する赤外線IRを、赤外線センサー13の受光部材131(図5)に受光させる。具体的には、レンズ11は、赤外線IRを受光部材131の表面に集光させる。
 赤外線センサー13は、レンズ11により集光された赤外線IRを検出し、受光した赤外線IRの強度に基づいた信号を出力する。赤外線センサー13は、例えばサーモパイルであり、図5に示すような構成を有する。すなわち、赤外線センサー13は、受光部材131と、熱電対133と、出力端子135と、を有する。
 受光部材131の表面には、レンズ11にて集光された赤外線IRが照射される。受光部材131は、表面に照射された赤外線IRの強度に応じた熱を発生する部材である。なお、受光部材131の赤外線IRが照射される表面には、赤外線IRを吸収しやすい物質(例えば、金の微粒子)が塗布されている。
 熱電対133は、受光部材131の温度と基準温度(冷接点CPの温度)との差分に基づく熱起電力を出力する。具体的には、熱電対133は、複数の第1金属部材133aと複数の第2金属部材133bとを有する。各第1金属部材133a及び各第2金属部材133bの一端が受光部材131において互いに接続されている。一方、各第1金属部材133a及び各第2金属部材133bの他端が冷接点CP(例えば、放射温度計1の本体)において互いに接続されている。
 すなわち、熱電対133においては、1つの第1金属部材133aと1つの第2金属部材133bにより構成される熱電対が、受光部材131の温度と冷接点CPの温度との差分を測定している。また、熱電対133においては、1つの第1金属部材133aと1つの第2金属部材133bにより構成される熱電対が、直列接続されている。このような構成により、熱電対133は、赤外線IRの受光強度の変化を敏感に検出して、放射温度計1の温度測定の感度を向上できる。
 出力端子135は、熱電対133の両端に接続され、熱電対133にて発生した熱起電力を外部に取り出すための端子である。従って、出力端子135には、信号変換器15が接続される。
 図4に戻り、放射温度計1の信号変換器15は、熱電対133にて発生した熱起電力(アナログ信号)を、デジタル信号に変換する。信号変換器15は、例えば、A/D変換器である。
 演算部17は、例えば、CPU、記憶装置(RAM、ROMなど)、各種インタフェースと、により構成されるコンピュータシステムである。また、演算部17は、これら構成を有するSoC(System on Chip)であってもよい。演算部17は、信号変換器15から入力したデジタル信号、すなわち、赤外線センサー13の熱電対133にて測定された熱起電力値に基づいて、測定対象Mの温度を算出する。また、演算部17は、放射温度計1及び温度計100の全般的な制御を実行する。
 なお、演算部17における測定対象Mの温度の算出、放射温度計1及び温度計100の制御は、演算部17の記憶装置に記憶されたコンピュータプログラムにより実行されてもよい。また、上記の算出及び/又は制御の一部又は全部が、ハードウェア的に実現されてもよい。
(4)温度計を用いた測定対象の温度測定方法
 以下、上記にて説明した構成を有する温度計100を用いて、ミストが散布される温室G内(外部空間の一例)の測定対象Mの温度を測定する方法を説明する。
 最初に、測定対象Mの近傍に温度計100を設置する。測定対象Mが温室Gで育成中の野菜の葉である場合には、例えば、図6に示すように、三脚固定部6に三脚300を固定して測定対象Mである葉の高さに温度計100を固定し、測定対象Mに温度計100の第2開口O2(第1開口O1)を近づける。図6は、温度計の設置状態の一例を示す図である。なお、三脚は一例であり、例えば、固定用の枠を用いた固定方法も使用できる。
 温度計100を設置後、温度コントローラ3aによりヒーター3を動作させる。このとき、温度コントローラ3aの設定温度を、ヒーター3により制御される載置部材2の温度が、温室Gの最高温度よりも高い第1温度T1となるよう設定する。つまり、第1温度T1は、温室Gの温度で上限となる温度よりも高い温度である。例えば、温室Gの最高温度よりも約10°C程度高い温度(例えば、45°C)に設定する。なお、この第1温度T1は、温度計100の使用環境等により適宜変更できる。
 載置部材2の温度が第1温度T1にて安定後、放射温度計1を用いて、測定対象Mの温度測定を開始する。
 上記のように、測定対象Mの温度測定中にヒーター3の制御により載置部材2の温度が第1温度T1で安定され、また、放射温度計1が第1筐体4及び第2筐体5による二重構造の第1内部空間S1内に収納されることにより、放射温度計1の温度が、温度測定中において、外部空間(温室G)の温度変動の影響を受けることなくほぼ一定で安定化される。
 温度測定中に放射温度計1の温度が外部空間の温度変動の影響を受けることなくほぼ一定に保たれることで、赤外線センサー13の冷接点CPの温度変動がなくなり、赤外線センサー13から出力される熱起電力が外部空間の温度変動に従って変動しなくなる。その結果、放射温度計1は、外部空間(温室G)の温度変動に影響を受けることなく、測定対象Mの温度を正確に測定できる。
 また、載置部材2の温度が外部空間の温度で上限となる温度(最高温度)よりも高くなることにより、第1内部空間S1内の空気が載置部材2により加熱され、第1内部空間S1内の温度も、外部空間の最高温度よりも高くなる。
 第1内部空間S1は第1開口O1及び第2開口O2により外部空間とつながっているので、第1内部空間S1の温度が外部空間の最高温度よりも高くなることにより、第1内部空間S1から外部空間への空気の流れが生じる。すなわち、第1内部空間S1で暖められた空気が、第1開口O1及び第2開口O2を通じて排出される。
 また、第1開口O1及び第2開口O2が放射温度計1のレンズ11に対応するよう、つまり、レンズ11と外部空間とを貫通させるよう設けられているので、上記の第1内部空間S1から外部空間への空気の流れは、レンズ11の近傍に生じる。これにより、外部空間の空気がレンズ11に到達することを回避できる。その結果、外部空間の空気がミストを含んでいたとしても、レンズ11にミスト(水滴)等が付着することを防止できる。
 水は赤外線をほとんど透過しないので、レンズ11に水滴が付着していると、測定対象Mからの赤外線IRが当該水滴で遮られ、放射温度計1により測定対象Mの温度を正確に測定できなくなる。その一方で、本実施形態の温度計100は、上記のように、例えば外部空間でミストが噴霧されており外部空間の空気がミストを含んでいても、測定対象Mの温度測定中にレンズ11に水滴が付着しない構成となっている。その結果、本実施形態の温度計100は、測定対象Mの温度を正確に測定することができる。
 さらに、第1内部空間S1の温度を外部空間の最高温度よりも高くすることで発生する空気の流れは、レンズ11に外部空間の空気が到達しないようにできる程度の大きさを有する一方、測定対象Mの温度に影響を与えない程度に小さい。
 すなわち、第1内部空間S1の温度を外部空間の最高温度よりも高くする構成により、本実施形態の温度計100は、レンズ11に水滴を付着させない一方、測定対象Mの温度に影響を与えない程度の最適な流量の空気の流れをレンズ11の近傍に生じさせて、ミストを含むなどの厳しい環境の外部空間に存在する測定対象Mの温度を正確に測定できる。
 ミストを噴霧する温室Gにて育成されるトマトの葉温(すなわち、測定対象Mがトマトの葉)を測定するために本実施形態の温度計100を実際に用いた場合、図7に示すように、温度計100は、実際の葉温に近い測定結果を示していた。なお、図7において、実線が温度計100による葉温の測定結果である。
 図7は、温度計による測定対象の温度の実測結果の一例を示す図である。
2.第2実施形態
 上記にて説明した第1実施形態に係る温度計100は、ミストが噴霧される温室Gで育成中の野菜(トマト)や果物(いちご)の所定位置(葉、実など)の温度を正確に測定できる。野菜や果物など植物を測定対象Mとする温度測定において、できうる限り、測定対象Mの特定の位置の温度を測定したい場合がある。つまり、温度計100と測定対象Mとの相対的な位置を固定したい場合がある。
 測定場所の特定をする方法としては、レーザーマーカー又はLEDから照射された光で測定場所を示す方法がある。しかし、この方法は、日中の太陽光の下では太陽光が強すぎ、マーカが非常に見づらいか、又は、マーカが見えない。
 また、レーザーマーカーは常時照射することができないので、測定場所を確認する毎にレーザーマーカーを照射する必要がある。測定場所を確認する毎にレーザーマーカーを照射する操作をするときに、測定場所がずれる可能性がある。
 そこで、第2実施形態に係る温度計200は、測定対象Mとの相対的な位置をできうる限り固定するために、測定対象Mの動きを制限する制限部材20をさらに備える。具体的には、図8に示すように、温度計200の第2筐体5の左右側面と上面に合計3つの制限部材20が設けられる。なお、第2筐体5の左右側面に設けられた一対の制限部材20の高さ方向の位置は、第2開口O2(第1開口O1)が設けられた位置とすることが好ましい。図8は、第2実施形態に係る温度計の構成を示す図である。
 なお、第2実施形態に係る温度計200は、第2筐体5に制限部材20が固定される以外は、第1実施形態に係る温度計100と同じ構成及び機能を有する。従って、ここでは、制限部材20以外の説明は省略する。
 また、図9A及び図9Bに示すように、制限部材20には、複数の目盛り21a~21dが付されている。具体的には、1つの目盛り21aが、第2筐体5の前端(第2開口O2)に対応する位置に付されている。他の目盛り21b~21dは、第2筐体5の前端から離れる方向に等間隔に付されている。図9Aは、第2実施形態に係る温度計の側面図である。図9Bは、第2実施形態に係る温度計の上面図である。
 なお、図9A及び図9Bに示す例では、制限部材20に付する目盛り21a~21dの数は4であるが、温度計200の使用条件等によりこの数は任意とできる。また、2つの目盛りの間隔は温度計200の使用条件等により任意とできる。
 図8~図9Bに示すような制限部材20を設けることにより、第2実施形態に係る温度計200は、図9A及び図9Bに示すように、制限部材20の内側に測定対象Mを収めて、第2筐体5に対して相対移動可能な範囲を制限できる。その結果、温度計200は、測定対象Mの特定の位置の温度を継続して測定できる。
 また、制限部材20に目盛り21a~21dを付することにより、測定対象Mと第2開口O2(すなわち、放射温度計1のレンズ11)との間の距離を視覚的に認識できる。その結果、例えば、測定対象Mとレンズ11との間の距離が温度測定可能な範囲にあるかを視覚的に確認できる。また、例えば、温度測定可能な範囲において、目盛り21a~21dを用いて測定対象Mとレンズ11との距離を調整することで、測定対象Mの温度測定する領域の大きさ(面積)を調整できる。
 なお、図8~図9Bに示すように、上記の第2実施形態では、制限部材20は棒状の部材である。しかし、これに限られず、制限部材20は、測定対象を保持できれば任意の形状(例えば、円形など)とできる。
3.他の実施形態
 以上、本発明の複数の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 (A)上記の第1実施形態及び第2実施形態で説明した温度計100、200は、ミストが噴霧される温室G以外にも、例えば食品工場などの湯気(ミスト状の水滴)が発生するか、及び/又は、温度変動が激しい生産プラントにおいて、製品の温度を測定するなどの目的に使用することもできる。
 (B)上記の第1実施形態及び第2実施形態で説明した温度計100、200の温度の測定結果は、例えば、演算部17から他の装置へと送信され、当該装置を制御するために用いられてもよい。例えば、温度計100、200で測定した野菜や果物などの温度の測定結果を温室Gの他の装置を制御するために用いて、当該野菜や果物の育成条件を調整できる。
 (C)上記の第1実施形態及び第2実施形態で説明した温度計100、200の第2筐体5(特に、第2蓋部材5b)の内側(放射温度計1が収納される側)に、第2筐体5を冷却する冷却装置を設けてもよい。この冷却装置としては、例えば、ペルチェ素子を使用できる。
 例えば、外部空間の温度が非常に高温となると、第2筐体5が外部空間により熱せられ、第2内部空間S2の温度が上昇することがある。第2内部空間S2の温度が外部空間の影響を受けると、ヒーター3により第1内部空間S1の温度を一定に調整していても、第1内部空間S1の温度が、第2内部空間S2の温度の影響を受けうる。従って、第2筐体5に冷却装置を設けることで、外部空間の温度により、第1内部空間の温度が影響を受けることを抑制できる。
 (D)例えば、第1内部空間S1の温度を外部空間の温度よりも高くしても外部空間の空気が流入する場合、及び/又は、第1内部空間S1から外部空間へ大きな流量で空気を流出させても測定対象Mの温度に影響を与えにくい場合などには、第1筐体4及び/又は第2筐体5の背後側(第1開口O1、第2開口O2が設けられた側とは反対側)にファンなどのガス流を発生させる装置を設け、当該装置により第1内部空間S1から外部空間へ空気を流出させてもよい。
 本発明は、外部空間に存在する測定対象から発生する赤外線の強度に基づいて、測定対象の温度を測定する温度計に広く適用できる。
100、200       温度計
1     放射温度計
11   レンズ
13   赤外線センサー
131 受光部材
133 熱電対
133a      第1金属部材
133b      第2金属部材
135 出力端子
CP   冷接点
15   信号変換器
17   演算部
2     載置部材
2a   固定部材
3     ヒーター
3a   温度コントローラ
3b   ヒーター駆動部
3c   サーモスタット
4     第1筐体
4a   第1底部材
4b   第1蓋部材
S1   第1内部空間
T1   第1温度
O1   第1開口
5     第2筐体
5a   第2底部材
5b   第2蓋部材
S2   第2内部空間
T2   第2温度
O2   第2開口
6     三脚固定部
20   制限部材
21a、21b、21c、21d            目盛り
300 三脚
G     温室
P     場所
M     測定対象
IR   赤外線

Claims (9)

  1.  外部空間に存在する測定対象から発生する赤外線の強度に基づいて前記測定対象の温度を測定する温度計であって、
     前記赤外線を検出する赤外線センサーと、前記赤外線センサーに前記赤外線を受光させるレンズと、を有する放射温度計と、
     前記放射温度計を内部空間に収納する第1筐体と、
     前記第1筐体に設けられ、前記レンズと前記外部空間とを貫通させる第1開口と、
     前記第1筐体の内部空間の温度を、前記外部空間の温度で上限となる温度よりも高い第1温度で安定させる温度維持装置と、
     を備える、温度計。
  2.  前記第1筐体を収納する第2筐体と、
     前記第2筐体において前記第1開口に対応する位置に設けられ、前記第1開口と共に前記レンズと前記外部空間とを貫通させる第2開口と、
     をさらに備える、請求項1に記載の温度計。
  3.  前記第2筐体を冷却する冷却装置をさらに備える、請求項2に記載の温度計。
  4.  前記赤外線センサーは、
     前記赤外線を受光して熱を発生する受光部材と、
     基準温度と前記受光部材の温度との差分に応じた熱起電力を発生する熱電対と、
     を有する、請求項1~3のいずれかに記載の温度計。
  5.  前記放射温度計を載置する載置部材をさらに備え、
     前記温度維持装置は前記載置部材に固定される、請求項1~4のいずれかに記載の温度計。
  6.  前記第1筐体の内部空間の温度が前記第1温度よりも所定の温度だけ高い第2温度になったら、前記温度維持装置を停止させる停止装置をさらに備える、請求項1~5のいずれかに記載の温度計。
  7.  前記第1筐体は金属又は樹脂にて構成される、請求項1~6のいずれかに記載の温度計。
  8.  前記測定対象の動きを制限する制限部材をさらに備える、請求項1~7のいずれかに記載の温度計。
  9.  前記外部空間はミストを含む、請求項1~8のいずれかに記載の温度計。
PCT/JP2021/003868 2020-02-12 2021-02-03 温度計 WO2021161862A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022500344A JPWO2021161862A1 (ja) 2020-02-12 2021-02-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-021813 2020-02-12
JP2020021813 2020-02-12

Publications (1)

Publication Number Publication Date
WO2021161862A1 true WO2021161862A1 (ja) 2021-08-19

Family

ID=77293051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003868 WO2021161862A1 (ja) 2020-02-12 2021-02-03 温度計

Country Status (2)

Country Link
JP (1) JPWO2021161862A1 (ja)
WO (1) WO2021161862A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435326A (en) * 1987-07-31 1989-02-06 Chino Corp Temperature detector
US4904090A (en) * 1986-11-29 1990-02-27 Thorn Emi Plc Temperature sensing arrangement
JPH06341906A (ja) * 1993-06-03 1994-12-13 Aichi Keiso Kk 低温物体の非接触高速温度測定方法及び装置
JPH10281864A (ja) * 1997-04-03 1998-10-23 Nikon Corp 熱型赤外線カメラ
JP2001318003A (ja) * 2000-05-11 2001-11-16 Japan Science & Technology Corp 熱物性値測定装置
JP2001317996A (ja) * 2000-05-08 2001-11-16 Mitsubishi Electric Corp 赤外線カメラハウジング
JP2003035601A (ja) * 2001-07-24 2003-02-07 Fuji Xerox Co Ltd 温度検知装置及びこれを用いた定着装置
JP2012177556A (ja) * 2011-02-25 2012-09-13 Chino Corp 放射温度計センサ素子の均熱構造
KR102017003B1 (ko) * 2018-04-03 2019-10-21 한양대학교 산학협력단 노크 코드 기반의 인증 방법 및 인증 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904090A (en) * 1986-11-29 1990-02-27 Thorn Emi Plc Temperature sensing arrangement
JPS6435326A (en) * 1987-07-31 1989-02-06 Chino Corp Temperature detector
JPH06341906A (ja) * 1993-06-03 1994-12-13 Aichi Keiso Kk 低温物体の非接触高速温度測定方法及び装置
JPH10281864A (ja) * 1997-04-03 1998-10-23 Nikon Corp 熱型赤外線カメラ
JP2001317996A (ja) * 2000-05-08 2001-11-16 Mitsubishi Electric Corp 赤外線カメラハウジング
JP2001318003A (ja) * 2000-05-11 2001-11-16 Japan Science & Technology Corp 熱物性値測定装置
JP2003035601A (ja) * 2001-07-24 2003-02-07 Fuji Xerox Co Ltd 温度検知装置及びこれを用いた定着装置
JP2012177556A (ja) * 2011-02-25 2012-09-13 Chino Corp 放射温度計センサ素子の均熱構造
KR102017003B1 (ko) * 2018-04-03 2019-10-21 한양대학교 산학협력단 노크 코드 기반의 인증 방법 및 인증 장치

Also Published As

Publication number Publication date
JPWO2021161862A1 (ja) 2021-08-19

Similar Documents

Publication Publication Date Title
JP5959524B2 (ja) 光吸収ガスセンサの温度校正方法と装置、およびこれにより校正される光吸収ガスセンサ
US7530942B1 (en) Remote sensing infant warmer
EP0420896B1 (en) Controller for agricultural sprays
EP3365660B1 (en) Water content of a part of plant evaluation method and water content of a part of plant evaluation apparatus
WO2017192566A1 (en) System and method for advanced horticultural lighting
JP6634728B2 (ja) 環境制御システム
WO2021161862A1 (ja) 温度計
NL1031466C2 (nl) Inrichting voor het beïnvloeden van de groei van in een ruimte dan wel op een perceel opgestelde gewassen.
Balendonck et al. Using a wireless sensor network to determine climate heterogeneity of a greenhouse environment
KR20160088019A (ko) 특용작물 재배를 위한 식물공장 시스템
JP3138407B2 (ja) 青果物の栽培管理装置
WO2011135183A1 (en) Atmospheric humidity or temperature or cloud height measuring method and apparatus
KR100441801B1 (ko) 곡류의 품질을 추정하는 방법 및 장치
Mahajan et al. Mathematical model for transpiration rate at 100% humidity for designing modified humidity packaging
JP2020095034A (ja) 植物の代謝生成物の非破壊計測装置及び非破壊計測方法、並びにこれを用いた植物の栽培システム及び栽培方法
JP2015021828A (ja) ガスセンサ
WO2007105946A2 (en) Sensors for controlling lightinng
JP6807169B2 (ja) 植物栽培装置及び植物栽培方法
JP5309410B2 (ja) 気孔開度のモニタリング方法及び装置
WO2019123933A1 (ja) 農業用ハウス
WO2022176611A1 (ja) 環境情報取得装置
Hoffmann et al. Small Peltier element to detect real-time heat flux between apple and environment during postharvest storage
JP6677946B2 (ja) 栽培中作物の生育状態測定装置
GB2532741A (en) Method and apparatus for monitoring fog density
US11895953B2 (en) Plant health monitoring apparatus and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500344

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754467

Country of ref document: EP

Kind code of ref document: A1