WO2021161516A1 - 超音波プローブ操作システムおよび方法 - Google Patents

超音波プローブ操作システムおよび方法 Download PDF

Info

Publication number
WO2021161516A1
WO2021161516A1 PCT/JP2020/005822 JP2020005822W WO2021161516A1 WO 2021161516 A1 WO2021161516 A1 WO 2021161516A1 JP 2020005822 W JP2020005822 W JP 2020005822W WO 2021161516 A1 WO2021161516 A1 WO 2021161516A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
ultrasonic probe
ultrasonic
image
arrangement
Prior art date
Application number
PCT/JP2020/005822
Other languages
English (en)
French (fr)
Inventor
直史 吉田
泰弘 山下
敬典 平野
広将 齊藤
誠 西内
学 下神
史義 大島
Original Assignee
朝日インテック株式会社
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社, 株式会社Fuji filed Critical 朝日インテック株式会社
Priority to JP2022500186A priority Critical patent/JP7401645B2/ja
Priority to PCT/JP2020/005822 priority patent/WO2021161516A1/ja
Priority to EP20918681.6A priority patent/EP4104768A4/en
Publication of WO2021161516A1 publication Critical patent/WO2021161516A1/ja
Priority to US17/886,524 priority patent/US20220378396A1/en
Priority to JP2023206575A priority patent/JP2024015252A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • A61B8/4218Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M2025/0166Sensors, electrodes or the like for guiding the catheter to a target zone, e.g. image guided or magnetically guided
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52098Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging related to workflow protocols

Definitions

  • the present invention relates to an ultrasonic probe operation system and method.
  • a first operator presses an ultrasonic probe against the surface of the patient's body to acquire ultrasonic echo images of blood vessels and guide wires in the blood vessels
  • the second operator such as a doctor or technician
  • the doctor and the technician insert the guide wire into the blood vessel while checking the position of the blood vessel and the guide wire by looking at the ultrasonic echo image.
  • the position of the guide wire to be confirmed includes the position of the guide wire tip in the blood vessel axial direction and the position of the guide wire tip in the cross section in the blood vessel.
  • Patent Document 1 a method of giving an index for arranging an ultrasonic probe so as to intersect the central axis of a blood vessel, for example, an index of a change in blood vessel cross-sectional area synchronized with a heartbeat.
  • the conventional technique is a technique that only outputs an index related to the placement of the ultrasonic probe, and it is difficult to accurately detect the longitudinal cross section and the lateral cross section of the blood vessel, which is not convenient for doctors and engineers. Further, in the prior art, it is difficult to identify the position of the tip of the guide wire in the blood vessel at almost the same time in both the longitudinal and transverse cross sections of the blood vessel.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic probe operation system and a method capable of improving usability for a user.
  • the ultrasonic probe operation system is an ultrasonic probe operation system that operates an ultrasonic probe, and operates an ultrasonic probe that acquires an ultrasonic echo image of a blood vessel.
  • the sensor operation unit is provided with a control unit that controls the operation of the sensor operation unit. It may be switched with the second arrangement for acquiring an image of a cross section in the longitudinal direction of the blood vessel.
  • the operation unit may switch between the second arrangement and the first arrangement by rotating the ultrasonic probe around a predetermined rotation axis.
  • a display unit for displaying an ultrasonic echo image acquired by the ultrasonic probe is provided, and the control unit includes a first ultrasonic echo image acquired in the first arrangement and a second ultrasonic wave acquired in the second arrangement. It may be displayed on the display unit in association with the echo image.
  • the control unit selects the ultrasonic echo image corresponding to the current or past arrangement of the ultrasonic probe among the first ultrasonic echo image and the second ultrasonic echo image, and the ultrasonic echo corresponding to the other arrangement. It may be displayed on the display unit separately from the image.
  • the ultrasonic echo image also includes an image of a long medical device in a blood vessel, and the control unit controls the long medical device in the first ultrasonic echo image and / or the second ultrasonic echo image.
  • the amount of displacement between the device and the blood vessel may be calculated.
  • the control unit may display the calculated deviation amount on the display unit in association with the first ultrasonic echo image and / or the second ultrasonic echo image.
  • the control unit may output an alarm when the deviation amount reaches a predetermined threshold value.
  • the control unit detects the center position of the blood vessel in the first ultrasonic echo image at a plurality of points separated in the longitudinal direction of the blood vessel, and based on the distance between the center positions and the distance between the plurality of points, the blood vessel You may calculate the inclination in the longitudinal direction of.
  • the control unit detects the central position of the blood vessel in the first ultrasonic echo image by setting the ultrasonic probe in the first arrangement at a plurality of locations separated in the longitudinal direction of the blood vessel, and the distance between the central positions.
  • the inclination of the blood vessel in the longitudinal direction may be calculated based on the distance between the blood vessel and the distance between the plurality of points, and the deviation amount may be corrected based on the calculated inclination.
  • the control unit may acquire a second ultrasonic echo image as a longitudinal cross-sectional image passing through the center position of the blood vessel based on the calculated inclination of the blood vessel in the longitudinal direction.
  • the control unit may control the posture of the ultrasonic probe according to the calculated inclination of the blood vessel in the longitudinal direction.
  • the control unit tilts the ultrasonic probe according to the calculated inclination of the blood vessel in the longitudinal direction and presses it against the body surface to set the ultrasonic probe in the second arrangement, and the length of the blood vessel in the second ultrasonic echo image.
  • the image of the direction may be displayed horizontally.
  • the control unit may switch between the first arrangement and the second arrangement by tilting the ultrasonic probe and rotating it by a predetermined angle while pressing it against the body surface.
  • the control unit detects the center position of the blood vessel in the first ultrasonic echo image at a plurality of points separated in the longitudinal direction of the blood vessel, and based on the distance between the center positions and the distance between the plurality of points, the blood vessel Path may be detected.
  • the present invention may be grasped as an ultrasonic probe operation method.
  • the arrangement of the ultrasonic probe can be switched between the first arrangement for acquiring an image of the lateral cross section of the blood vessel and the second arrangement for acquiring the image of the longitudinal cross section of the blood vessel. Usability is improved.
  • Explanatory drawing which shows the outline of this embodiment.
  • the flowchart of the process which concerns on this embodiment Explanatory drawing which shows the structural example of an Example.
  • Explanatory drawing which shows the structural example of an Example.
  • Explanatory drawing which shows the state of detecting the cross section of a blood vessel by an ultrasonic probe.
  • Flow chart of the process of searching for blood vessels A flowchart showing a process of searching a longitudinal cross section of a blood vessel.
  • FIG. 5 is a flowchart of a process for searching a longitudinal cross section of a blood vessel according to the second embodiment.
  • FIG. 5 is a flowchart of a process for searching a longitudinal sectional view of a blood vessel according to a third embodiment.
  • FIG. 5 is a flowchart showing an operation process of an ultrasonic probe and a guide wire according to a fourth embodiment.
  • the flowchart following FIG. FIG. 5 is a flowchart showing a blood vessel search process according to the fifth embodiment.
  • the flowchart following FIG. FIG. 5 is a flowchart showing a blood vessel search process according to the sixth embodiment.
  • FIG. An explanatory view showing a screen corresponding to the operation of the ultrasonic probe and the guide wire according to the seventh embodiment.
  • Examples of the elongated medical device used in this embodiment include a guide wire, a guiding catheter, a microcatheter, a balloon catheter, a cutting balloon, and a stent delivery device.
  • the position of the blood vessel is detected by locating the ultrasonic probe in different directions with respect to the blood vessel.
  • the ultrasonic probe is switched between a first arrangement for acquiring an image of a lateral cross section of a blood vessel and a second arrangement for acquiring an image of a longitudinal cross section of a blood vessel. Detect the position.
  • Cross section of a blood vessel means a cross section of a blood vessel cut along a plane intersecting its central axis.
  • FIGS. 1 and 2 show an outline of the present embodiment and do not define the scope of the present invention.
  • the present invention may be configured from a part of the configurations disclosed in FIGS. 1 and 2, or the present invention may be configured including configurations not disclosed in FIGS. 1 and 2.
  • the ultrasonic probe operation system (hereinafter, probe operation system) according to the present embodiment includes, for example, a control unit 1, a display unit 2, an ultrasonic probe 111, and a robot 121.
  • the first arrangement unit 11, the second arrangement unit 12, the robot 121, and the robot control device 120 described later correspond to the example of the “sensor operation unit”.
  • an ultrasonic probe 111 is rotatably attached to the tip of a robot 121, which is a 6-axis robot.
  • the image (ultrasonic echo image) captured by the ultrasonic probe 111 is sent to the control unit 1 for processing.
  • the ultrasonic echo image may be abbreviated as an echo image or an image.
  • the control unit 1 includes, for example, a first arrangement unit 11, a second arrangement unit 12, an ultrasonic echo image processing unit 13, a calculation unit 14, and a warning unit 15.
  • the first arrangement unit 11 has a function of arranging the ultrasonic probe 111 in a direction crossing the blood vessel 4 so that a lateral cross section of the blood vessel 4 of the subject SU can be photographed.
  • the second arrangement portion 12 has a function of arranging the ultrasonic probe 111 along the longitudinal direction of the blood vessel 4 so that the cross section of the blood vessel 4 in the longitudinal direction can be photographed.
  • the cross section in the lateral direction of the blood vessel may be referred to as a first cross section (transverse cross section or cross section), and the cross section in the longitudinal direction of the blood vessel may be referred to as a second cross section (longitudinal cross section or longitudinal cross section).
  • the lateral direction of the blood vessel can also be referred to as the minor axis direction of the blood vessel, and the longitudinal direction of the blood vessel can also be referred to as the major axis direction of the blood vessel.
  • the ultrasonic echo image processing unit 13 has the first ultrasonic echo image from the ultrasonic probe 111 placed in the first arrangement by the first arrangement unit 11 and the ultrasonic echo image placed in the second arrangement by the second arrangement unit 12. It has a function of acquiring a second ultrasonic echo image from the sound wave probe 111.
  • the first ultrasonic echo image may be referred to as an image of the first cross section
  • the second ultrasonic echo image may be referred to as an image of the second cross section.
  • the calculation unit 14 has a function of analyzing the first ultrasonic echo image and the second ultrasonic echo image acquired from the ultrasonic echo image processing unit 13.
  • the calculation unit 14 has, for example, a function 16 for calculating the inclination of the blood vessel, a function 17 for calculating the amount of deviation, a function 18 for detecting the path of the blood vessel, and a function 19 for controlling the posture of the ultrasonic probe 111. ..
  • the function 16 for calculating the inclination of the blood vessel calculates the inclination of the blood vessel 4.
  • the function 16 for calculating the inclination of a blood vessel detects the center position of the blood vessel in the first ultrasonic echo image at a plurality of locations separated in the longitudinal direction of the blood vessel 4, and the distance between the center positions and a plurality of positions.
  • the longitudinal inclination of the blood vessel may be calculated based on the distance between the sites.
  • the inclination of the blood vessel can be calculated from the difference from the center position of the blood vessel detected first and the distance between the center positions of each blood vessel with reference to the center position of the first detected blood vessel.
  • the tilt of the line connecting the center positions of the two blood vessels from the coordinates of the center positions of the two different blood vessels in the three-dimensional space can be obtained by vector calculation.
  • the distance between the center positions of each blood vessel may be unknown.
  • the deviation amount calculation function 17 calculates the deviation amount (distance) between the center of the cross section of the blood vessel 4 and the tip of the guide wire 3 based on the calculated inclination of the blood vessel.
  • the function 18 for detecting the blood vessel route detects the route of the blood vessel 4 based on the calculated inclination of the blood vessel.
  • the function 18 for detecting the blood vessel path detects, for example, the center positions of blood vessels in the first ultrasonic echo image at a plurality of locations separated in the longitudinal direction of the blood vessel 4, and the distance between the center positions and the distance between the plurality of locations.
  • the route of the blood vessel may be detected based on the distance of.
  • the function 19 for controlling the posture of the ultrasonic probe is a function of following the posture of the ultrasonic probe 111 according to the inclination and path of the blood vessel based on the calculated inclination of the blood vessel 4.
  • the probe posture control function 19 sets the ultrasonic probe 111 to the second arrangement by, for example, tilting the ultrasonic probe 111 according to the calculated inclination of the blood vessel in the longitudinal direction and pressing the ultrasonic probe 111 against the body surface. 2
  • the image in the longitudinal direction of the blood vessel is displayed horizontally.
  • the image 22 may be processed so that the blood vessels 4 in the second ultrasonic echo image 22 are displayed horizontally instead of changing the posture of the ultrasonic probe 111.
  • the arrows connecting the functions 16 to 19 in the calculation unit 14 show an example.
  • the relationship between the functions 16 to 19 is not limited to the arrow shown in FIG. 1 or the direction of the arrow.
  • the warning unit 15 is a function of issuing a warning to the user when the calculation result by the calculation unit 14 reaches a predetermined threshold value. For example, when the deviation amount calculated by the deviation amount calculation function 17 reaches a predetermined threshold value, the warning unit 15 warns the user by an alarm, a warning message, or a combination thereof.
  • the warning unit 15 can warn not only the amount of displacement but also, for example, the inclination of the blood vessel, the path of the blood vessel, and the posture of the ultrasonic probe 111.
  • the predetermined threshold value may be arbitrarily set by the user, or a value calculated from the history data of the surgery may be used.
  • the display unit 2 presents an ultrasonic echo image to the user.
  • the display unit 2 provides the user by displaying either one or both of the first ultrasonic echo image 21 and the second ultrasonic echo image 22 on the screen.
  • the display unit 2 can display the raw image from the ultrasonic probe 111 on the screen as it is, or can display the result of performing image processing such as contour enhancement on the raw image on the screen.
  • the display unit 2 associates the first ultrasonic echo image 21 (first cross-sectional image) with the second ultrasonic echo image 22 (second cross-sectional image) (for example, the blood vessel 4 displayed in the image 21 and the blood vessel 4). (So that the blood vessels 4 displayed in the image 22 are arranged in a predetermined positional relationship).
  • the image 21 and the image 22 are arranged side by side along the left-right direction of the display unit 2.
  • the image 22 may be processed so that the blood vessels 4 in the second ultrasonic echo image 22 are displayed horizontally.
  • the image 22 is processed so that the sharp angle formed by the length direction of the blood vessel 4 in the second ultrasonic echo image 22 and the left-right direction of the image 22 becomes smaller, or the two directions coincide with each other. You may.
  • the image 21 and the image 22 can be arranged side by side along the vertical direction of the display unit 2.
  • the image 22 may be processed so that the blood vessels 4 in the image 22 are displayed vertically.
  • the image 22 is processed so that the sharp angle formed by the length direction of the blood vessel 4 in the second ultrasonic echo image 22 and the vertical direction of the image 22 becomes smaller, or the two directions coincide with each other. You may.
  • the display unit 2 displays a marker for distinguishing the image corresponding to the current arrangement of the ultrasonic probe 111 from the first ultrasonic echo image 21 and the second ultrasonic echo image 22.
  • the word "Live" is used as a marker.
  • the image corresponding to the current arrangement of the ultrasonic probe 111 may be distinguished by enclosing it in red or the like.
  • the image corresponding to the current arrangement of the ultrasonic probe 111 may be displayed larger than the other images to distinguish them.
  • the display unit 2 may display a marker for distinguishing the image corresponding to the past arrangement of the ultrasonic probe 111 from the first ultrasonic echo image 21 and the second ultrasonic echo image 22. can.
  • the second arrangement and the first arrangement are switched by rotating the ultrasonic probe around a predetermined rotation axis.
  • the predetermined rotation axis is, for example, an axis that rotates the ultrasonic probe 111 between the first arrangement and the second arrangement while keeping the lens center point CP at the tip of the ultrasonic probe 111 fixed at the current position. be.
  • Such an accurate operation is realized by using the robot 121.
  • simply by introducing the robot 121 into the ultrasonic diagnostic apparatus it is possible to reach a configuration in which the ultrasonic probe 111 is rotated between the first arrangement and the second arrangement without moving the center point CP. No.
  • the left side in FIG. 2 shows a process of switching the arrangement of the ultrasonic probe 111 to acquire an ultrasonic echo image
  • the right side in FIG. 2 operates the guide wire 3 using the acquired ultrasonic echo image. Indicates processing.
  • the control unit 1 sets the ultrasonic probe 111 to the first arrangement (S11) and acquires the first ultrasonic echo image (S12). Further, the control unit 11 switches the ultrasonic probe 111 from the first arrangement to the second arrangement (S13), and acquires a second ultrasonic echo image (S14).
  • the control unit 1 uses the first ultrasonic echo image and the second ultrasonic echo image as the first point of the blood vessel 4 at the first point out of the two points along the longitudinal direction of the blood vessel.
  • the center in the cross section (cross section) is detected (S21).
  • the control unit 1 moves the ultrasonic probe 111 in the longitudinal direction of the blood vessel 4 to position it at a second point (S22).
  • the control unit 1 detects the center of the blood vessel 4 in the first cross section at the second location (S23). By tracking the blood vessel in the ultrasonic echo image taken by the ultrasonic probe 111, the ultrasonic probe 111 can be moved along the longitudinal direction of the blood vessel.
  • the control unit 1 calculates the inclination of the blood vessel 4 based on the center of the blood vessel at the first location, the center of the blood vessel at the second location, and the moving distance of the ultrasonic probe 111 from the first location to the second location ( S24).
  • the position of the blood vessel center at the first location is used as a reference
  • the position of the blood vessel center at the second location is relatively obtained
  • the position of each blood vessel center and the distance between the first location and the second location are used.
  • the inclination of blood vessels can be calculated.
  • the inclination of the blood vessel can be obtained by calculation from the coordinates of the blood vessel center at the first location and the coordinates of the blood vessel center at the second location.
  • control unit 1 calculates the amount of deviation between the tip position of the guide wire 3 and the center of the blood vessel 4 in the first cross section (S25).
  • control unit 1 detects the path of the blood vessel 4 (in which direction the blood vessel extends) by analyzing each ultrasonic echo image (S26).
  • the user or the control unit 1 can control the posture of the ultrasonic probe 111 so as to follow the blood vessel according to the path and inclination of the blood vessel (S27).
  • the user or the control unit 1 operates the guide wire 3 based on the information obtained in steps S21 to S27 (S28).
  • FIG. 3 is an explanatory diagram showing a configuration example of an ultrasonic probe operation system for an ultrasonic diagnostic apparatus.
  • the probe operation system of this embodiment includes, for example, an ultrasonic diagnostic device 110, a robot control device 120, a robot 121, and a user interface (UI in the figure) device 200.
  • the ultrasonic diagnostic apparatus 110 is an apparatus for diagnosing based on an ultrasonic echo image taken by an ultrasonic probe 111.
  • the ultrasonic diagnostic apparatus 110 includes an ultrasonic echo image processing unit 112 that processes an ultrasonic echo image.
  • the robot control device 120 controls a robot 121 configured as, for example, a 6-axis robot.
  • the robot control device 120 can also output a signal for controlling imaging to the ultrasonic diagnostic device 110.
  • the robot control device 120 includes, for example, a microprocessor (CPU: Central Processing Unit) 124 in the figure, a memory 125, a storage device 126, a medium interface 127, and a communication unit 128.
  • the robot control device 120 may be a dedicated device including a dedicated circuit, or may be a general-purpose computer that executes a predetermined computer program. Further, the robot control device 120 may link a plurality of devices. For example, one or more robot control devices 120 may be generated by coordinating a plurality of computers.
  • the storage device 126 stores, for example, a computer program that realizes the display control unit 122, another computer program that realizes the drive control unit 123, an operating system (not shown), and the like.
  • the microprocessor 124 realizes each function as a probe operation system by reading the predetermined computer programs 122 and 123 stored in the storage device 126 into the memory 125 and executing the program.
  • the medium interface 127 is a circuit for communicating data with a storage medium MM such as a semiconductor memory or a hard disk. At least a part of the predetermined computer programs 122 and 123 can be stored in the storage medium MM, and the stored computer program can be installed from the storage medium MM to the storage device 126. Alternatively, at least a part of the predetermined computer programs 122 and 123 stored in the storage device 126 can be transferred to the storage medium MM and stored. Instead of the storage medium MM, the communication network CN connected to the communication unit 128 of the robot control device 120 can be used as the transmission medium of a predetermined computer program.
  • the user interface device 200 exchanges information between the ultrasonic diagnostic device 110 and the robot control device 120.
  • the user interface device 200 includes an information input device and an information output device.
  • the information input device and the information output device may be integrated.
  • Examples of the information input device include a keyboard, a push button, a voice input device, a touch panel, a pointing device such as a mouse, and the like.
  • Examples of the information output device include a monitor display, a printer, a voice synthesizer, a light, and the like.
  • the lower left of FIG. 3 shows the case where the ultrasonic probe 111 is set to the first arrangement
  • the lower right of FIG. 3 shows the case where the ultrasonic probe 111 is set to the second arrangement. ..
  • each part of the ultrasonic probe 111 is defined in order to explain the operation of the ultrasonic probe 111.
  • FIG. 4 (1) is a front view of the ultrasonic probe 111, and a center point CP is set at the center of the lens at the tip of the ultrasonic probe 111.
  • the ultrasonic probe 111 is switched between the first arrangement and the second arrangement while the center point CP is fixed.
  • FIG. 4 (2) is a perspective view of the ultrasonic probe 111.
  • the central axis in the minor axis direction of the ultrasonic probe 111 is referred to as the X axis
  • the central axis in the major axis direction of the ultrasonic probe 111 is referred to as the Y axis
  • the central axis in the depth direction of the ultrasonic probe 111 is referred to as the Z axis. ..
  • FIG. 4 (3) shows an ultrasonic echo image 20 taken by the ultrasonic probe 111, in which the horizontal direction of the image 20 is the width direction of the image 20 and the vertical direction of the image 20 is the depth direction of the image 20.
  • Image 20 is a concept including a first ultrasonic echo image 21 and a second ultrasonic echo image 22.
  • FIG. 5 (1) is a view of the ultrasonic probe 111 as viewed from above.
  • FIG. 5 (2) is a front view of the ultrasonic probe 111.
  • FIG. 5 (3) is a side view of the ultrasonic probe 111.
  • a state of detecting a cross section (cross section in the transverse direction, a cross section in the longitudinal direction) of the blood vessel 4 by operating the ultrasonic probe 111 will be described with reference to FIGS. 6 to 11.
  • the center of the cross section of the blood vessel 4 is obtained from the lateral echo image 21 of the blood vessel 4, and the tip of the guide wire 3 is recognized by this, and the guide wire 3 from the central axis of the blood vessel 4 is recognized.
  • a predetermined technique for determining the amount of deviation is disclosed.
  • the center of the cross section of the blood vessel 4 is detected from the lateral echo image 21 of the blood vessel 4 (cross section of the blood vessel 4), and the amount of deviation between the tip of the guide wire and the center of the blood vessel 4 is output. That is included.
  • the tip of the guide wire 3 is recognized by detecting the center of the cross section of the blood vessel 4 from the lateral echo image 21 of the blood vessel 4, and the guide wire 3 and the central axis of the blood vessel 4 are aligned with each other. It includes issuing a warning when the amount of deviation exceeds a predetermined threshold.
  • the inclination of the blood vessel 4 in the longitudinal direction is calculated from the lateral cross-sectional center of the blood vessel 4 and the amount of movement of the ultrasonic probe 111 at a plurality of (two) points, and the calculated inclination of the blood vessel 4 is calculated.
  • Compensating for the amount of deviation of the guide wire 3 from the center of the blood vessel based on the inclination in the longitudinal direction is included. That is, in this case, after obtaining the center of the cross section of the blood vessel 4 from the lateral echo image 21 of the blood vessel 4, the ultrasonic probe 111 is moved to a distant place, and the lateral echo image 21 of the blood vessel 4 is again displayed.
  • the center of the cross section of the blood vessel 4 is obtained, and the inclination of the blood vessel 4 in the longitudinal direction is calculated from the moving distance of the ultrasonic probe 111 and the position of each center.
  • the amount of deviation between the guide wire 3 and the center of the blood vessel can be corrected based on the calculated inclination of the blood vessel 4 in the longitudinal direction.
  • the predetermined technique includes calculating the amount of deviation between the guide wire 3 and the central axis of the blood vessel 4 from the lateral echo image of the blood vessel 4.
  • the subject SU having the blood vessel 4 and the ultrasonic probe 111 are viewed from the upper surface (from above) of the ultrasonic probe 111 in a certain state.
  • Schematic diagrams are shown side by side in a horizontal row.
  • the subject SU having the blood vessel 4 and the ultrasonic probe 111 are referred to as the subject SU having the blood vessel 4.
  • a schematic view of the ultrasonic probe 111 seen from the upper surface of the ultrasonic probe 111 (from above), a schematic view of the ultrasonic probe 111 seen from the side surface (from the side), and a schematic view of the ultrasonic echo image 20 are shown. ,It is shown.
  • the center of the cross section of the blood vessel 4 is obtained from the echo image 21 of the cross section of the blood vessel 4 in the lateral direction.
  • the echo image 22 in the longitudinal direction passing through the central axis of the blood vessel 4 is rotated by rotating the ultrasonic probe 111 around the position where the ultrasonic probe 111 is pressed against the subject SU. Is detected.
  • the ultrasonic probe 111 is tilted according to the inclination of the detected blood vessel, so that the echo image 22 passes through the central axis of the blood vessel 4 and has a longitudinal cross section horizontal to the echo image 20. Is detected. That is, in the echo image 22, the image in the longitudinal direction of the blood vessel 4 is displayed horizontally.
  • the center of the cross section of the blood vessel 4 is obtained from the echo image 21 of the cross section of the blood vessel 4 in the transverse direction, and the ultrasonic probe 111 is rotated around the detection position to pass through the central axis of the blood vessel.
  • An echo image 22 of a longitudinal cross section is acquired, and the inclination of the blood vessel 4 in the echo image 22 is detected.
  • the ultrasonic probe 111 is tilted in the Z-axis direction (depth direction of the ultrasonic probe).
  • the transverse cross section 21 of the blood vessel 4 is acquired by rotating the blood vessel 4 by a predetermined angle (for example, 90 degrees) as the center.
  • the center of the cross section of the blood vessel 4 is obtained from the echo image 21 of the cross section of the blood vessel 4 in the lateral direction.
  • the width of the blood vessel cross section in the echo image 21 is minimized by rotating the ultrasonic probe 111 around the current position where the ultrasonic probe 111 is pressed against the subject SU. Detects the probe position.
  • the ultrasonic probe 111 is used according to the inclination of the blood vessel 4. By tilting, it passes through the central axis of the blood vessel 4 and captures a horizontal longitudinal cross section in the echo image 22.
  • FIGS. 9 to 11 a plurality of echo images are acquired while moving the ultrasonic probe 111 in the longitudinal direction of the blood vessel 4, and the path of the blood vessel 4 is obtained from the echo images and the position of the ultrasonic probe 111.
  • the ultrasonic probe 111 is moved in the longitudinal direction of the blood vessel to acquire an echo image 21 of a lateral cross section at each position, and the position of the blood vessel 4 is displaced in the echo image 21. Is calculated.
  • FIGS. 9 (8) to 11 (11) disclose another method.
  • the center of the cross section of the blood vessel 4 is obtained from the echo image 21 of the cross section of the blood vessel 4 in the lateral direction.
  • the width of the blood vessel cross section in the echo image 21 is minimized by rotating the ultrasonic probe 111 around the current position where the ultrasonic probe 111 is pressed against the subject SU. Detects the probe position.
  • the ultrasonic probe 111 is moved in the direction intersecting the longitudinal direction of the blood vessel 4, and the blood vessel 4 is displayed at the center in the width direction of the echo image 21. To be done.
  • the ultrasonic probe 111 By tilting the ultrasonic probe 111 according to the inclination of the blood vessel 4 from the upper part of FIG. 10 (10) (lower part of FIG. 10 (9)), the ultrasonic probe 111 passes through the central axis of the blood vessel 4 and is horizontal in the echo image 22. Capture the longitudinal cross section.
  • the ultrasonic probe 111 is moved in the longitudinal direction of the blood vessel to acquire echo images 21 of the cross section in the transverse direction at each position, and these echoes.
  • the deviation of the position of the blood vessel 4 in the image 21 is calculated.
  • FIG. 12 is a flowchart showing a process of searching for a blood vessel.
  • the robot 121 may automatically operate the ultrasonic probe 111, or the robot 121 may be in charge of only a part of the operations and the user may be in charge of other operations.
  • the robot control device 120 will be mainly described as the subject of judgment, but the user may be the subject of judgment.
  • the operation of switching the ultrasonic probe 111 between the first arrangement and the second arrangement is executed by the robot control device 120.
  • the ultrasonic probe is abbreviated as a probe.
  • the echo image 21 of the transverse cross section of the blood vessel is referred to as the first cross section image 21
  • the echo image 22 of the longitudinal cross section is referred to as the second cross section image 22.
  • the cross section may be referred to as a cross section in a transverse direction or a cross section in a longitudinal direction.
  • the robot control device 120 installs the ultrasonic probe 111 in the vicinity of the inguinal region, perpendicular to the body surface, and in a direction (first arrangement) in which the lateral cross section of the blood vessel 4 can be photographed (S31). ..
  • the robot control device 120 moves the ultrasonic probe 111 until the common femoral artery is detected (S33: NO) (S32).
  • the robot control device 120 automatically rotates the direction of the ultrasonic probe 111 in order to accurately capture the transverse cross section of the common femoral artery (S34).
  • the robot control device 120 acquires the echo image 21 by sequentially rotating the direction of the ultrasonic probe 111, calculates the score of the echo image 21, and accurately determines the transverse cross section of the common femoral artery from the calculated score.
  • the position that can be copied to is detected (S34).
  • the robot control device 120 rotates the ultrasonic probe 111 to calculate the score of the transverse cross section until the transverse cross section of the common femoral artery is accurately detected (S35: NO) (S34).
  • the robot control device 120 When the robot control device 120 detects an accurate transverse cross section of the common femoral artery (S35: YES), the robot control device 120 switches the ultrasonic probe 111 to the second arrangement to photograph the longitudinal cross section of the common femoral artery (S36). ..
  • the robot control device 120 moves the ultrasonic probe 111 to the peripheral side of the common femoral artery in response to an instruction from the user (S37).
  • the user can instruct the robot control device 120 by voice or switch operation, for example.
  • the robot control device 120 determines whether or not a branch of the common femoral artery has been detected (S38). When the robot control device 120 determines that the branch of the common femoral artery has been detected (S38: YES), the robot control device 120 displays the path candidates of the ultrasonic probe 111 in the branch of the blood vessel on the screen of the user interface device 200, and waits for the user to select. (S39).
  • the robot control device 120 moves the ultrasonic probe 111 along a path selected by the user (S40) to reach the affected area 41 (or a predetermined part of a blood vessel to be diagnosed or treated by a long medical device). It is determined whether or not it has been done (S41). When the robot control device 120 determines that the ultrasonic probe 111 has reached the affected area 41 (S41: YES), the robot control device 120 alternately switches the ultrasonic probe 111 between the first arrangement and the second arrangement, and shifts the central axis of the femoral artery. Attempts to detect a cross section in the longitudinal direction through which it passes (S42).
  • FIG. 13 is a flowchart showing a process of searching a cross section in the longitudinal direction of a blood vessel at the tip of the blood vessel under observation. This process can be used, for example, in steps S36 and S42 described in FIG. Note that FIGS. 13 to 15 schematically show the relationship between the position of the ultrasonic probe 111 and the image for some steps.
  • the robot control device 120 detects a probe position capable of photographing a target blood vessel (S51), presses the ultrasonic probe 111 against the body surface at the detected position, and rotates the ultrasonic probe 111 in the Z-axis direction.
  • An echo image 21 (first cross-sectional image 21) of a lateral cross section of a target blood vessel (hereinafter, blood vessel) is acquired (S52).
  • the robot control device 120 detects the center position of the blood vessel cross section from the plurality of first cross-sectional images 21 acquired in step S52 (S53).
  • the robot control device 120 obtains an echo image 22 (second cross-sectional image 22) of a longitudinal cross section passing through the central axis of the blood vessel by rotating the ultrasonic probe 111 around the center position detected in step S53. (S54).
  • the ultrasonic probe 111 by switching the ultrasonic probe 111 between the first arrangement and the second arrangement, the position of the blood vessel can be detected accurately and easily, which is convenient for the user. Is improved.
  • the robot 121 since the user and the robot 121 (and the robot control device 120) cooperate to operate the ultrasonic probe 111, for example, whether the path at the branch of the blood vessel is selected or the affected portion 41 is reached. While it is up to the user to make an advanced judgment as to whether or not it is possible, the robot can be left to perform accurate operations such as switching between the first arrangement and the second arrangement while the center point CP of the tip lens of the ultrasonic probe 111 is fixed. Therefore, according to this embodiment, the burden on the user can be reduced and the blood vessel can be easily searched by the ultrasonic probe 111.
  • the second embodiment will be described with reference to FIG. In each of the following examples including this embodiment, the differences from the first embodiment will be mainly described.
  • FIG. 14 is a flowchart showing a process of searching a cross section in the longitudinal direction of a blood vessel at the tip of the blood vessel under observation.
  • the robot control device 120 detects a probe position capable of photographing a target blood vessel (S61), presses the ultrasonic probe 111 against the body surface at the detected position, and rotates the ultrasonic probe 111 in the Z-axis direction. Acquires an echo image of the blood vessel cross section at each position (S62).
  • the robot control device 120 selects the echo image 22 of the longitudinal section of the blood vessel from the plurality of echo images acquired in step S62 based on the length of the cross section of the blood vessel along the width direction WL of the echo image (S63). ).
  • the robot control device 120 echoes the second cross-sectional image of the blood vessel by rotating (tilting) the ultrasonic probe 111 about the center in the X-axis direction while keeping the center point CP of the tip lens of the ultrasonic probe 111 fixed. Horizontalize in image 22 (S64).
  • the robot control device 120 rotates the ultrasonic probe 111 by 90 degrees around the Z-axis direction while keeping the center point CP of the tip lens of the ultrasonic probe 111 fixed, sets it in the first arrangement, and sets it to the side of the blood vessel.
  • the echo image 21 (first cross-sectional image 21) of the directional cross section is acquired (S65).
  • the robot control device 120 obtains an accurate first cross-sectional image 21 by rotating the ultrasonic probe 111 about the X-axis direction while keeping the center point CP of the tip lens of the ultrasonic probe 111 fixed. (S66). That is, the robot control device 120 finely adjusts the position of the ultrasonic probe 111 in order to acquire the correct first cross-sectional image 21.
  • the robot control device 120 rotates the ultrasonic probe 111 by 90 degrees around the Z-axis direction to set the second arrangement while keeping the center point CP of the tip lens of the ultrasonic probe 111 fixed, and sets the ultrasonic probe 111 in the longitudinal direction of the blood vessel.
  • a second cross-sectional image 22 which is a cross section is acquired (S67).
  • the robot control device 120 moves the ultrasonic probe 111 in the Y-axis direction to further acquire a second cross-sectional image of the blood vessel (S68).
  • This embodiment configured in this way also has the same effect as that of the first embodiment.
  • FIG. 15 is a flowchart showing a process of searching a cross section in the longitudinal direction of a blood vessel at the tip of the blood vessel under observation.
  • the robot control device 120 detects a probe position capable of photographing a target blood vessel (S71), presses the ultrasonic probe 111 against the body surface at the detected position, and rotates the ultrasonic probe 111 in the Z-axis direction. Acquires an echo image of the blood vessel cross section at each position (S72).
  • the robot control device 120 is an echo image 21 (first cross-sectional image) of a lateral cross section of a blood vessel based on the length of the cross-section of the blood vessel along the width direction WL of the echo image from the plurality of echo images acquired in step S72. ) Is selected, and the center point of the selected first cross-sectional image is detected (S73).
  • a method of selecting one echo image from a plurality of echo images for example, a method of selecting the first cross-sectional image having the maximum length of the blood vessel cross section along the width direction WL, and the first cross section having the maximum area value.
  • There are a method of selecting an image a method of selecting a first cross-sectional image in consideration of both the length of the cross-section of the blood vessel and the area of the cross-section of the blood vessel, and the like.
  • the robot control device 120 moves the ultrasonic probe 111 in the X-axis direction to detect the center point of another blood vessel cross section (S74).
  • the blood vessel cross section detected in steps S73 and S74 is elliptical.
  • the robot control device 120 calculates the inclination of the blood vessel from the respective positions of the center points of the two blood vessel cross sections and the moving distance of the ultrasonic probe 111 (S75).
  • the robot control device 120 adjusts the posture of the ultrasonic probe 111 to the inclination of the blood vessel while keeping the center point CP of the tip lens of the ultrasonic probe 111 fixed (S76).
  • the robot control device 120 rotates the ultrasonic probe 111 by 90 degrees around the Z-axis direction while keeping the center point CP of the tip lens of the ultrasonic probe 111 fixed, sets it in the second arrangement, and sets the length of the blood vessel.
  • the echo image 22 of the directional cross section is acquired (S75).
  • This embodiment configured in this way also has the same effect as that of the first embodiment.
  • the fourth embodiment will be described with reference to FIGS. 16 and 17.
  • the operation of the ultrasonic probe 111 and the operation of the guide wire 3 will be described.
  • the operation of the ultrasonic probe 111 is handled by the engineer as the first user, and the instruction regarding the operation of the ultrasonic probe 111 is handled by the doctor as the second user.
  • the doctor is also in charge of operating the guide wire 3.
  • the robot control device 120 assists in determining the lateral cross section and the longitudinal cross section of the blood vessel.
  • the engineer places the ultrasonic probe 111 at a predetermined position on the body surface of the subject SU (S81).
  • the predetermined position here is, for example, a position near the inguinal region where the lateral cross section of the blood vessel can be photographed with respect to the body surface.
  • the engineer moves the ultrasonic probe 111 so that the first blood vessel, which is the target blood vessel, is reflected on the ultrasonic probe 111 (S82).
  • the first blood vessel is, for example, the common femoral artery.
  • the engineer moves the ultrasonic probe 111 on the body surface until the femoral artery as the first blood vessel is reflected on the ultrasonic probe 111 (S83: NO) (S82).
  • the engineer rotates the direction of the ultrasonic probe 111 in order to correctly detect the lateral cross section of the femoral artery (S84).
  • a plurality of echo images can be obtained by sequentially rotating the directions of the ultrasonic probe 111, and the score of each echo image is automatically calculated.
  • the score is an index for knowing whether or not the cross section is close to an accurate cross section, and is displayed on the screen of the user interface device 200.
  • the engineer changes the direction of the ultrasonic probe 111 with reference to the score, and accurately captures the transverse cross section of the common femoral artery (S84).
  • the technician selects the function to switch the ultrasonic probe 111 from the first placement to the second placement and photographs the longitudinal cross-section of the common femoral artery. (S86).
  • the instruction of the engineer is transmitted to the robot control device 120 by voice operation, switch operation, or the like.
  • the technician moves the ultrasonic probe 111 to the peripheral side of the common femoral artery and searches until a branch of the common femoral artery is found (S87, S88).
  • S88 YES
  • the technician moves the ultrasonic probe 111 to the peripheral side along the femoral artery on the side of the bifurcation of the common femoral artery near the body surface (S89). ).
  • the engineer detects the transverse cross section of the common femoral artery with reference to the score of each echo image obtained by sequentially rotating the direction of the ultrasonic probe 111.
  • the robot control device 120 is instructed to set the ultrasonic probe 111 in the second arrangement (S91).
  • the technician switches the ultrasonic probe 111 to the first arrangement at any time according to the doctor's instruction. After confirming that the guide wire 3 passes through the center of the blood vessel in the transverse cross section, the doctor advances the guide wire 3 to the end of the image 22 in the longitudinal cross section (S93).
  • the doctor determines whether the guide wire 3 has passed the end of the affected area 41 (S95). When the guide wire 3 passes through the end of the affected area 41 (S95: YES), this process ends.
  • the doctor stops feeding the guide wire 3 and orders the technician to move the ultrasonic probe 111 to the peripheral side of the common femoral artery (S95: NO). S96).
  • the technician switches the ultrasonic probe 111 to the first arrangement at any time according to the doctor's instruction, confirms that the guide wire 3 passes through the center of the blood vessel in the transverse cross section, and the doctor sets the guide wire 3 in the longitudinal cross section. Proceed to the edge of image 22 (S97).
  • This embodiment configured in this way also has the same effect as that of the first embodiment.
  • the robot control device 120 is in charge of operating the ultrasonic probe 111, and the doctor is in charge of instructing the operation of the ultrasonic probe 111.
  • the doctor is also in charge of operating the guide wire 3.
  • the robot control device 120 assists in determining the lateral cross section and the longitudinal cross section of the blood vessel.
  • the robot control device 120 places the ultrasonic probe 111 at a predetermined position on the body surface of the subject SU (S101).
  • the robot control device 120 moves the ultrasonic probe 111 so that the first blood vessel (femoral artery), which is the target blood vessel, is captured by the ultrasonic probe 111 (S102).
  • the robot control device 120 moves the ultrasonic probe 111 on the body surface until the femoral artery as the first blood vessel is reflected on the ultrasonic probe 111 (S103: NO) (S102).
  • the robot control device 120 detects the femoral artery by the ultrasonic probe 111 (S103: YES)
  • the doctor instructs the robot control device 120 to take a cross section in the transverse direction (S104).
  • the robot control device 120 which has been instructed by a doctor, rotates the direction of the ultrasonic probe 111 in order to correctly detect the lateral cross section of the femoral artery (S105).
  • the robot control device 120 acquires a plurality of echo images by sequentially rotating the orientation of the ultrasonic probe 111, changes the orientation of the ultrasonic probe 111 based on the score of each echo image, and cross-sectionally a cross section of the common femoral artery. Is accurately captured (S105).
  • the robot control device 120 asks the doctor to confirm whether the lateral cross section of the common femoral artery is accurately photographed. Upon confirmation by the doctor (S106: YES), the robot control device 120 switches the ultrasonic probe 111 from the first arrangement to the second arrangement and photographs the longitudinal cross section of the common femoral artery (S107). The request from the robot control device 120 to the doctor can be executed via the user interface device 200.
  • the robot control device 120 moves the ultrasonic probe 111 to the peripheral side of the common femoral artery according to the instruction from the doctor (S108).
  • the doctor moves the ultrasonic probe 111 until a bifurcation of the common femoral artery is found (S109: NO).
  • the robot control device 120 displays a candidate path of the ultrasonic probe 111 at the branch on the screen of the user interface device 200 (S110).
  • the physician chooses a course to move the ultrasonic probe 111 to the peripheral side along the femoral artery on the side of the bifurcation of the common femoral artery near the body surface (S110).
  • the doctor issues a movement instruction to the robot control device 120 (S112) until the ultrasonic probe 111 reaches the affected area 41 (S111: NO).
  • the robot control device 120 alternately switches the ultrasonic probe 111 between the first arrangement and the second arrangement, captures a longitudinal cross section (second cross section) passing through the central axis of the femoral artery, and displays it on the user interface device 200. (S113).
  • the position of the ultrasonic probe 111 is corrected (S115) until the ultrasonic probe 111 accurately captures the longitudinal cross section (S114: NO).
  • the robot control device 120 moves the ultrasonic probe 111 according to the doctor's instruction to obtain the lateral cross section of the femoral artery at the tip of the guide wire 3.
  • Display (S116) the amount of deviation between the position of the tip of the guide wire 3 and the center of the blood vessel of the femoral artery is calculated and provided to the doctor together with the cross-sectional image in the lateral direction.
  • the doctor advances the guide wire 3 to the end of the image 22 in the longitudinal cross section while checking the amount of deviation (S116).
  • the doctor determines whether the guide wire 3 has passed the end of the affected area 41 (S118). When the guide wire 3 passes through the end of the affected area 41 (S118: YES), this process ends.
  • the doctor stops feeding the guide wire 3 and commands the robot control device 120 to place the ultrasonic probe 111 on the peripheral side of the common femoral artery. Move (S119).
  • the robot control device 120 displays on the user interface device 200 the first cross-sectional image of the femoral artery and the amount of deviation between the center of the blood vessel of the femoral artery and the tip of the guide wire 3 as described in step S116.
  • the doctor advances the guide wire 3 toward the affected area 41 while checking the display (S120).
  • This embodiment configured in this way also has the same effect as that of the first embodiment.
  • the ultrasonic probe 111 is operated by the robot control device 120, and the robot control device 120 is in charge of the operation of the ultrasonic probe 111 under the confirmation of a doctor.
  • the operation of the guide wire 3 is performed by a doctor.
  • the robot control device 120 places the ultrasonic probe 111 at a predetermined position on the body surface of the subject SU (S131).
  • the robot control device 120 moves the ultrasonic probe 111 so that the first blood vessel (femoral artery), which is the target blood vessel, is captured by the ultrasonic probe 111 (S132).
  • the robot control device 120 moves the ultrasonic probe 111 until the femoral artery as the first blood vessel is reflected on the ultrasonic probe 111 (S133: NO) (S132).
  • the robot control device 120 When the robot control device 120 detects the femoral artery by the ultrasonic probe 111 (S133: YES), the robot control device 120 rotates the direction of the ultrasonic probe 111 in order to correctly detect the transverse cross section of the femoral artery (S134). ). The robot control device 120 acquires a plurality of echo images by sequentially rotating the orientation of the ultrasonic probe 111, changes the orientation of the ultrasonic probe 111 based on the score of each echo image, and cross-sectionally a cross section of the common femoral artery. Accurately capture (S134).
  • the robot control device 120 asks the doctor to confirm whether the lateral cross section of the common femoral artery is accurately photographed. Upon confirmation by the doctor (S135: YES), the robot control device 120 switches the ultrasonic probe 111 from the first arrangement to the second arrangement and photographs the longitudinal cross section of the common femoral artery (S136).
  • the robot control device 120 moves the ultrasonic probe 111 to the peripheral side of the common femoral artery according to the instruction from the doctor (S137).
  • the doctor moves the ultrasonic probe 111 until a bifurcation of the common femoral artery is found (S138: NO).
  • the robot control device 120 displays a candidate path of the ultrasonic probe 111 at the branch on the screen of the user interface device 200 (S139).
  • the physician chooses a course to move the ultrasonic probe 111 to the peripheral side along the femoral artery on the side of the bifurcation of the common femoral artery near the body surface (S139).
  • the doctor issues a movement instruction to the robot control device 120 (S141) until the ultrasonic probe 111 reaches the affected area 41 (S140: NO).
  • the robot control device 120 alternately switches the ultrasonic probe 111 between the first arrangement and the second arrangement, captures a longitudinal cross section (second cross section) passing through the central axis of the femoral artery, and displays it on the user interface device 200. (S142).
  • the position of the ultrasonic probe 111 is corrected (S144) until the ultrasonic probe 111 accurately captures the longitudinal cross section (S143: NO).
  • the robot control device 120 moves the ultrasonic probe 111 and displays the lateral cross section of the femoral artery at the tip of the guide wire 3 (S145). ).
  • step S145 the amount of deviation between the position of the tip of the guide wire 3 and the center of the blood vessel of the femoral artery is calculated and provided to the doctor together with the cross-sectional image in the lateral direction. The doctor advances the guide wire 3 to the end of the image 22 in the longitudinal cross section while checking the amount of deviation (S145).
  • the doctor determines whether the guide wire 3 has passed the end of the affected area 41 (S147). When the guide wire 3 passes through the end of the affected area 41 (S147: YES), this process ends.
  • the doctor stops feeding the guide wire 3 and commands the robot control device 120 to place the ultrasonic probe 111 on the peripheral side of the common femoral artery. Move (S148).
  • the robot control device 120 displays the first cross-sectional image of the femoral artery and the amount of deviation between the blood vessel center of the femoral artery and the tip of the guide wire 3 on the user interface device 200.
  • the doctor advances the guide wire 3 toward the affected area 41 while checking the display (S149).
  • This embodiment configured in this way also has the same effect as that of the first embodiment.
  • the seventh embodiment will be described with reference to FIGS. 22 to 27.
  • an example of the relationship between the operation of the ultrasonic probe 111 and the screens 21 and 22 will be described.
  • a plurality of echo images obtained by the ultrasonic probe 111 are displayed on separate screens.
  • the other one of the plurality of echo images is an image 21 of a cross section in the lateral direction for determining the amount of deviation of the tip of the guide wire from the center of the blood vessel.
  • the image 21 of the cross-sectional direction is a cross-sectional image passing through the center of the blood vessel in the lateral direction (minor axis direction).
  • One of the plurality of echo images is, for example, an image 22 of a longitudinal cross section for moving the tip of the guide wire 3 in the blood vessel.
  • the image 22 of the longitudinal cross section is a cross-sectional image passing through the center of the blood vessel in the longitudinal direction (major axis direction).
  • the echo image corresponding to the current position of the ultrasonic probe 111 is distinguished from other echo images.
  • the word "Live” is used in this example as a marker for distinction.
  • the Live image among the plurality of echo images can be switched according to the operation of the ultrasonic probe 111 or the guide wire 3.
  • the ultrasonic probe 111 even if the position of the ultrasonic probe 111 is moved, it can be immediately returned to the original position. It is possible to instantly switch between the image 22 of the longitudinal cross section.
  • the doctor or the like is a patient (subject). It becomes easier to check the state of SU).
  • FIG. 22 (1) shows a basic example of each image 21 and 22.
  • the ultrasonic probe 111 is oriented in the vicinity of the inguinal region so as to draw a cross section of the blood vessel perpendicular to the body surface.
  • the ultrasonic probe 111 is rotated 90 degrees to photograph a longitudinal cross section of the common femoral artery.
  • the ultrasonic probe 111 is moved to the peripheral side of the common femoral artery to search for a branch of the common femoral artery.
  • the ultrasonic probe 111 is advanced to the peripheral side along the superficial femoral artery on the shallow side near the body surface of the bifurcation of the common femoral artery.
  • the ultrasonic probe 111 when the ultrasonic probe 111 reaches the affected area, the ultrasonic probe 111 is rotated to alternately check the transverse cross section and the longitudinal cross section, and capture the longitudinal cross section passing through the central axis of the artery. ..
  • the guide wire 3 is advanced to the edge of the screen while the longitudinal cross section passing through the central axis of the artery is fixed.
  • FIG. 26 (10) the guide wire 3 is advanced toward the end of the screen while fixing the longitudinal cross section passing through the central axis of the artery again. Similarly, FIGS. 26 (9) and 26 (10) are repeated until the affected area is reached.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is also possible to replace a part of the configuration of one embodiment with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. In addition, other configurations can be added / deleted / replaced with respect to a part of the configurations of each embodiment.
  • the present invention is not limited to an object called a guide wire at the time of the present application.
  • the present invention can be applied to an object that is inserted into a tube and moves and whose position needs to be detected.
  • the present invention can be applied to a technique for obtaining the center of a cross section of a blood vessel from an echo image in the longitudinal direction of the blood vessel and obtaining the amount of deviation of a long medical device from the central axis of the blood vessel.
  • the present invention is applied to a technique for obtaining the inner wall surface (inner edge) of a blood vessel from an echo image in the lateral direction (or longitudinal direction) of the blood vessel and obtaining the amount of deviation of a long medical device from the inner wall surface (inner edge) of the blood vessel. can do.
  • Control unit 2 Display unit 3: Guide wire 4: Blood vessel, 11: First arrangement unit, 12: Second arrangement unit, 13: Ultrasonic echo image processing unit, 14: Calculation unit, 15: Warning Unit, 16: Blood vessel inclination calculation unit, 17: Deviation amount calculation unit, 18: Blood vessel route detection unit, 19: Ultrasonic probe posture control unit, 21: First ultrasonic echo image (image of cross section of blood vessel) , 22: Second ultrasonic echo image 22 (image of longitudinal cross section of blood vessel), 110: Ultrasonic diagnostic device, 120: Robot control unit, 200: User interface device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

ユーザにとっての使い勝手を改善できるようにした超音波プローブ操作システムおよび方法を提供すること。 超音波プローブ111を操作するシステムであって、血管4の超音波エコー画像21,22を取得する超音波プローブを操作するセンサ操作部11,12と、センサ操作部の動作を制御する制御部1とを備え、制御部は、センサ操作部により超音波プローブの配置を、血管の横方向の断面の画像を取得する第1配置と血管の長手方向の断面の画像を取得する第2配置とで切り替えてもよい。

Description

超音波プローブ操作システムおよび方法
 本発明は、超音波プローブ操作システムおよび方法に関する。
 カテーテルを用いる治療では、第1操作者(医師または技師など)が超音波プローブを患者の体表面に押し当て、血管及び血管内のガイドワイヤの超音波エコー画像を取得し、第2操作者(医師、手技者)は超音波エコー画像を見て血管とガイドワイヤの位置を確認しながら、ガイドワイヤを血管内へ挿入していく。確認すべきガイドワイヤの位置には、血管軸方向におけるガイドワイヤ先端の位置と、血管内の断面におけるガイドワイヤ先端の位置とが含まれる。
 ガイドワイヤを血管の所定位置へ適切かつ速やかに送るためには、超音波プローブの操作とガイドワイヤの操作とが連携している必要があるが、第1操作者と第2操作者の二人が息を合わせて微妙な操作を実行するのは難しく、各操作者の負担が大きい。
 従来技術には、血管の中心軸に交差するように超音波プローブを配置するための指標、例えば、心拍に同期した血管断面積の変化という指標を与える方法が知られている(特許文献1)。
特開2004-229823号
 従来技術では、超音波プローブの配置に関する指標を出力するだけの技術であり、血管の長手方向の断面と横方向の断面とを正確に検出することは難しく、医師や技師などにとって使い勝手が低い。さらに、従来技術では、血管内におけるガイドワイヤ先端の位置を血管の長手方向の断面および横方向の断面の両方でほぼ同時に特定することは難しい。
 本発明は、以上の課題に鑑みてなされたものであり、その目的は、ユーザにとっての使い勝手を改善できるようにした超音波プローブ操作システムおよび方法を提供することにある。
 上記課題を解決すべく、本発明の一つの観点に従う超音波プローブ操作システムは、超音波プローブを操作する超音波プローブ操作システムであって、血管の超音波エコー画像を取得する超音波プローブを操作するセンサ操作部と、センサ操作部の動作を制御する制御部とを備え、制御部は、センサ操作部により超音波プローブの配置を、血管の横方向の断面の画像を取得する第1配置と血管の長手方向の断面の画像を取得する第2配置とで切り替えてもよい。
 操作部は、所定の回転軸を中心に超音波プローブを回転させることにより、第2配置と第1配置とを切り替えてもよい。
 さらに、超音波プローブにより取得される超音波エコー画像を表示する表示部を備え、制御部は、第1配置で取得される第1超音波エコー画像と第2配置で取得される第2超音波エコー画像とを対応付けて表示部に表示させてもよい。
 制御部は、第1超音波エコー画像と第2超音波エコー画像とのうちで、超音波プローブの現在又は過去の配置に対応する超音波エコー画像を、それ以外の配置に対応する超音波エコー画像と区別して表示部に表示させてもよい。
 超音波エコー画像には、血管内の長尺状医療用デバイスの画像も含まれており、制御部は、第1超音波エコー画像及び/又は第2超音波エコー画像において、長尺状医療用デバイスと血管のとの間のずれ量を算出してもよい。
 制御部は、算出されたずれ量を第1超音波エコー画像及び/又は第2超音波エコー画像に対応付けて表示部に表示させてもよい。
 制御部は、ずれ量が所定の閾値に達した場合に警報を出力してもよい。
 制御部は、血管の長手方向に離間する複数の箇所において第1超音波エコー画像中の血管の中心位置を検出し、それら中心位置間の距離と複数の箇所間の距離とに基づいて、血管の長手方向の傾きを算出してもよい。
 制御部は、血管の長手方向に離間する複数の箇所において超音波プローブを第1配置に設定することにより、第1超音波エコー画像中の血管の中心位置を検出し、それら中心位置間の距離と複数の箇所間の距離とに基づいて、血管の長手方向の傾きを算出し、算出された傾きに基づいてずれ量を補正してもよい。
 制御部は、算出された血管の長手方向の傾きに基づいて、血管の中心位置を通る縦断面画像として第2超音波エコー画像を取得してもよい。
 制御部は、算出された血管の長手方向の傾きに応じて、超音波プローブの姿勢を制御してもよい。
 制御部は、算出された血管の長手方向の傾きに応じて超音波プローブを傾けて体表面に押し当てることにより超音波プローブを第2配置に設定し、第2超音波エコー画像において血管の長手方向の画像を水平に表示させてもよい。
 制御部は、超音波プローブを傾けて体表面に押し当てたまま所定角度回転させることにより、第1配置と第2配置とを切り替えてもよい。
 制御部は、血管の長手方向に離間する複数の箇所において第1超音波エコー画像中の血管の中心位置を検出し、それら中心位置間の距離と複数の箇所間の距離とに基づいて、血管の経路を検出してもよい。
 本発明は、超音波プローブ操作方法として把握されてもよい。
 本発明によれば、超音波プローブの配置を、血管の横方向の断面の画像を取得する第1配置と血管の長手方向の断面の画像を取得する第2配置とで切り替えることができ、ユーザにとっての使い勝手が向上する。
本実施形態の概要を示す説明図。 本実施形態に係る処理のフローチャート。 実施例の構成例を示す説明図。 超音波プローブの操作を説明するための基本図。 超音波プローブの上面図、正面図および側面図。 超音波プローブによって血管の断面を検出する様子を示す説明図。 図6に続く説明図。 図7に続く説明図。 図8に続く説明図。 図9に続く説明図。 図10に続く説明図。 血管を探索する処理のフローチャート。 血管の長手方向断面を探す処理を示すフローチャート。 第2実施例に係り、血管の長手方向断面を探す処理のフローチャート。 第3実施例に係り、血管の長手方向断面図を探す処理のフローチャート。 第4実施例に係り、超音波プローブおよびガイドワイヤの操作処理を示すフローチャート。 図16に続くフローチャート。 第5実施例に係り、血管探索処理を示すフローチャート。 図18に続くフローチャート。 第6実施例に係り、血管探索処理を示すフローチャート。 図20に続くフローチャート。 第7実施例に係り、超音波プローブおよびガイドワイヤの操作に応じた画面を示す説明図。 図22に続く説明図。 図23に続く説明図。 図24に続く説明図。 図25に続く説明図。
 本実施形態に用いられる長尺状医療デバイスの例としては、ガイドワイヤ、ガイディングカテーテル、マイクロカテーテル、バルーンカテーテル、カッティングバルーン、およびステントデリバリーデバイスが挙げられる。
 以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明に長尺状医療用デバイスが用いられる実施の形態については、長尺状医療デバイスがガイドワイヤである場合を一例として、説明する。本実施形態では、超音波診断装置用の超音波プローブを操作する場合を例に挙げて説明するが、超音波診断装置以外の装置で使用される超音波プローブにも適用することができる。
 本実施形態では、超音波プローブを血管に対して異なる方向に位置させることにより、血管の位置を検出する。一例として、本実施形態では、超音波プローブを、血管の横方向の断面の画像を取得する第1配置と血管の長手方向の断面の画像を取得する第2配置とで切り替えることにより、血管の位置を検出する。「血管の横方向の断面」とは、血管をその中心軸に交差する平面に沿って切断した断面を意味する。
 図1および図2を用いて、本実施形態の概要を説明する。本実施形態に含まれる複数の実施例については、図を改めて後述する。図1および図2は、本実施形態の概要を示しており、本発明の範囲を規定するものではない。図1および図2に開示された構成の一部から本発明が構成されてもよいし、図1および図2に開示されていない構成を含んで本発明が構成されてもよい。
 本実施形態に係る超音波プローブ操作システム(以下、プローブ操作システム)は、例えば、制御部1と、表示部2と、超音波プローブ111と、ロボット121とを含む。第1配置部11と第2配置部12とロボット121と後述するロボット制御装置120とは、「センサ操作部」の例に該当する。
 例えば6軸ロボットであるロボット121の先端には、超音波プローブ111が回動可能に取り付けられている。超音波プローブ111で撮影された画像(超音波エコー画像)は、制御部1に送られて処理される。以下では、超音波エコー画像をエコー画像または画像と省略する場合がある。
 制御部1は、例えば、第1配置部11と、第2配置部12と、超音波エコー画像処理部13と、演算部14と、警告部15とを含む。
 第1配置部11は、被検体SUの血管4の横方向の断面を撮影できるように、超音波プローブ111を、血管4を横切る方向に配置させる機能を有する。第2配置部12は、血管4の長手方向の断面を撮影できるように、超音波プローブ111を血管4の長手方向に沿って配置させる機能を有する。
 以下、血管の横方向の断面を第1断面(横方向断面または横断面)と、血管の長手方向の断面を第2断面(長手方向断面または縦断面)と呼ぶ場合がある。血管の横方向を血管の短軸方向と、血管の長手方向を血管の長軸方向と呼ぶこともできる。
 超音波エコー画像処理部13は、第1配置部11により第1配置に置かれた超音波プローブ111からの第1超音波エコー画像と、第2配置部12により第2配置に置かれた超音波プローブ111からの第2超音波エコー画像とを取得する機能を有する。以下の説明では、第1超音波エコー画像を第1断面の画像と、第2超音波エコー画像を第2断面の画像と呼ぶ場合がある。
 演算部14は、超音波エコー画像処理部13から取得された第1超音波エコー画像および第2超音波エコー画像を解析する機能を有する。演算部14は、例えば、血管の傾きを算出する機能16と、ずれ量を算出する機能17と、血管の経路を検出する機能18と、超音波プローブ111の姿勢を制御する機能19とを有する。
 血管の傾きを算出する機能16は、血管4の傾きを算出する。例えば、血管の傾きを算出する機能16は、血管4の長手方向に離間する複数の箇所において第1超音波エコー画像中の血管の中心位置をそれぞれ検出し、それら中心位置間の距離と複数の箇所間の距離とに基づいて、血管の長手方向の傾きを算出してもよい。最初に検出された血管の中心位置を基準とし、次に検出された血管の中心位置との差異と各血管の中心位置間の距離とから、血管の傾きを算出することができる。これに代えて、超音波プローブを操作する三次元空間を最初に定義することにより、異なる二つの血管の中心位置の前記三次元空間における座標から、それら二つの血管の中心位置を結ぶ線の傾き(方向)をベクトル計算により求めることができる。この場合、各血管の中心位置間の距離は不明でもよい。
 ずれ量算出機能17は、算出された血管の傾きに基づいて、血管4の横断面の中心とガイドワイヤ3の先端とのずれ量(距離)を算出する。
 血管経路を検出する機能18は、算出された血管の傾きに基づいて、血管4の経路を検出する。血管経路を検出する機能18は、例えば、血管4の長手方向に離間する複数の箇所において第1超音波エコー画像中の血管の中心位置を検出し、それら中心位置間の距離と複数の箇所間の距離とに基づいて、血管の経路を検出してもよい。
 超音波プローブの姿勢を制御する機能19は、算出された血管4の傾きに基づき、血管の傾きおよび経路に合わせて超音波プローブ111の姿勢を追従させる機能である。
 プローブ姿勢制御機能19は、例えば、算出された血管の長手方向の傾きに応じて超音波プローブ111を傾けて体表面に押し当てさせることにより、超音波プローブ111を第2配置に設定し、第2超音波エコー画像22において血管の長手方向の画像を水平に表示させる。なお、超音波プローブ111の姿勢を変化させるのではなく、第2超音波エコー画像22中の血管4が水平に表示されるように、画像22を処理してもよい。
 なお、演算部14内の各機能16~19を結ぶ矢印は、一例を示したものである。各機能16~19の関係は、図1に示す矢印、あるいは矢印の向きに限定されない。
 警告部15は、演算部14による演算結果が所定の閾値に達した場合に、ユーザに向けて警告を発する機能である。警告部15は、例えば、ずれ量算出機能17により算出されたずれ量が所定の閾値に達した場合に、警報、警告メッセージあるいはこれらの組合せにより、ユーザへ警告する。警告部15は、ずれ量に限らず、例えば、血管の傾き、血管の経路、超音波プローブ111の姿勢についても警告可能である。所定の閾値は、ユーザが任意に設定してもよいし、手術の履歴データから算出された値を用いてもよい。
 表示部2は、超音波エコー画像をユーザに提示する。表示部2は、第1超音波エコー画像21および第2超音波エコー画像22のいずれか一つまたは両方を画面に表示することにより、ユーザへ提供する。表示部2は、超音波プローブ111からの生画像をそのまま画面表示させることもできるし、生画像に輪郭強調などの画像処理を施した結果を画面表示させることもできる。
 表示部2は、第1超音波エコー画像21(第1断面画像)と第2超音波エコー画像22(第2断面画像)とを対応付けて(例えば、画像21に表示される血管4と、画像22に表示される血管4とが、所定の位置関係に配置されるように)表示する。
 図1において、画像21と画像22とは、表示部2の左右方向に沿って並べて配置されている。第2超音波エコー画像22中の血管4が水平に表示されるように、画像22を処理してもよい。第2超音波エコー画像22中の血管4の長さ方向と画像22の左右方向とにより形成される鋭角が小さくなるように、あるいは前記の両者の方向が一致するように、画像22を処理してもよい。
 画像21と画像22とは、表示部2の上下方向に沿って並べて配置することもできる。画像22中の血管4が垂直に表示されるように、画像22を処理してもよい。第2超音波エコー画像22中の血管4の長さ方向と画像22の上下方向とにより形成される鋭角が小さくなるように、あるいは前記の両者の方向が一致するように、画像22を処理してもよい。
 さらに、表示部2は、第1超音波エコー画像21と第2超音波エコー画像22とのうち、超音波プローブ111の現在の配置に対応する画像を区別するための標識を表示する。一例として、図1では「Live」という単語を標識として用いる。単語などの文字に限らず、色彩、画面サイズなどを標識として用いてもよい。例えば、超音波プローブ111の現在の配置に対応する画像を赤色などで囲うことにより、区別してもよい。あるいは、超音波プローブ111の現在の配置に対応する画像を他の画像よりも大きく表示することにより、区別してもよい。同様に、表示部2は、第1超音波エコー画像21と第2超音波エコー画像22とのうち、超音波プローブ111の過去の配置に対応する画像を区別するための標識を表示することもできる。
 本実施形態では、後述のように、所定の回転軸を中心に超音波プローブを回転させることにより、第2配置と第1配置とを切り替える。所定の回転軸とは、例えば、超音波プローブ111の先端のレンズ中心点CPを現在位置に固定したままで、超音波プローブ111を第1配置と第2配置との間で回動させる軸である。このような正確な操作は、ロボット121を用いることにより実現される。ただし、単に超音波診断装置にロボット121を導入しただけでは、超音波プローブ111を、中心点CPを動かさずに第1配置と第2配置との間で回動させるという構成に到達することはない。
 図2のフローチャートを用いて、本実施形態に係るプローブ操作システムにより実行される処理の例を説明する。図2中の左側は、超音波プローブ111の配置を切り替えて超音波エコー画像を取得する処理を示し、図2中の右側は取得された超音波エコー画像を利用してガイドワイヤ3を操作する処理を示す。
 超音波エコー画像取得処理では、制御部1は、超音波プローブ111を第1配置に設定させて(S11)、第1超音波エコー画像を取得する(S12)。さらに、制御部11は、超音波プローブ111を第1配置から第2配置に切り替えさせて(S13)、第2超音波エコー画像を取得する(S14)。
 画像利用処理では、制御部1は、第1超音波エコー画像および第2超音波エコー画像に基づいて、血管の長手方向に沿った2箇所の点のうち第1箇所において、血管4の第1断面(横断面)における中心を検出する(S21)。制御部1は、超音波プローブ111を血管4の長手方向に移動させて第2箇所の点に位置させる(S22)。制御部1は、第2箇所において、血管4の第1断面における中心を検出する(S23)。超音波プローブ111により撮影された超音波エコー画像に写っている血管を追跡させることにより、血管の長手方向に沿って超音波プローブ111を移動させることができる。
 制御部1は、第1箇所における血管の中心と第2箇所における血管の中心と第1箇所から第2箇所までの超音波プローブ111の移動距離とに基づいて、血管4の傾きを算出する(S24)。上述の通り、第1箇所における血管中心の位置を基準とし、第2箇所における血管中心の位置を相対的に求め、これら各血管中心の位置と第1箇所と第2箇所との距離とから、血管の傾きを算出することができる。これに代えて、定義された三次元空間において、第1箇所での血管中心の座標と第2箇所での血管中心の座標とから、血管の傾きを演算により求めることもできる。
 さらに、制御部1は、ガイドワイヤ3の先端位置と血管4の第1断面における中心とのずれ量を算出する(S25)。
 さらに、制御部1は、各超音波エコー画像を解析することにより、血管4の経路(どの方向に血管が延びているか)を検出する(S26)。
 ユーザまたは制御部1は、血管の経路や傾きに応じて、血管に追従するように超音波プローブ111の姿勢を制御することができる(S27)。
 ユーザまたは制御部1は、ステップS21~S27で得られた情報に基づいて、ガイドワイヤ3を操作する(S28)。
 このように構成される本実施形態によれば、正確に血管を検出することができ、ユーザにとっての使い勝手が向上する。
 図3~図13を用いて第1実施例を説明する。図3は、超音波診断装置用超音波プローブ操作システムの構成例を示す説明図である。
 本実施例のプローブ操作システムは、例えば、超音波診断装置110と、ロボット制御装置120と、ロボット121と、ユーザインターフェース(図中、UI)装置200とを含む。
 超音波診断装置110は、超音波プローブ111により撮影された超音波エコー画像に基づいて診断する装置である。超音波診断装置110は、超音波エコー画像を処理する超音波エコー画像処理部112を備える。
 ロボット制御装置120は、例えば6軸ロボットとして構成されるロボット121を制御する。ロボット制御装置120は、超音波診断装置110に対して撮影を制御するための信号を出力することもできる。
 ロボット制御装置120は、例えば、マイクロプロセッサ(図中CPU:Central Processing Unit)124と、メモリ125と、記憶装置126と、媒体インターフェース127と、通信部128とを含む。ロボット制御装置120は、専用回路を備える専用装置でもよいし、所定のコンピュータプログラムを実行させる汎用計算機でもよい。さらに、ロボット制御装置120は、複数の装置を連携させてもよい。例えば、複数の計算機を協調させることにより、一つまたは複数のロボット制御装置120を生成してもよい。
 記憶装置126は、例えば、表示制御部122を実現するコンピュータプログラムと、駆動制御部123を実現する他のコンピュータプログラムと、オペレーティングシステム(不図示)などを格納する。
 マイクロプロセッサ124は、記憶装置126に格納された所定のコンピュータプログラム122,123をメモリ125に読み込んで実行することにより、プローブ操作システムとしての各機能を実現させる。
 媒体インターフェース127は、例えば、半導体メモリまたはハードディスクなどの記憶媒体MMとの間でデータを通信する回路である。所定のコンピュータプログラム122,123の少なくとも一部を記憶媒体MMに格納しておき、その記憶されたコンピュータプログラムを記憶媒体MMから記憶装置126へインストールさせることができる。あるいは、記憶装置126に格納された所定のコンピュータプログラム122,123の少なくとも一部を記憶媒体MMに転送して格納させることもできる。なお、記憶媒体MMに代えて、ロボット制御装置120の通信部128に接続された通信ネットワークCNを所定のコンピュータプログラムの伝送媒体として用いることもできる。
 ユーザインターフェース装置200は、超音波診断装置110およびロボット制御装置120との間で情報を交換する。ユーザインターフェース装置200は、情報入力装置と情報出力装置とを含む。情報入力装置と情報出力装置とが一体化されてもよい。情報入力装置としては、例えば、キーボード、押釦、音声入力装置、タッチパネル、マウスなどのポインティングデバイスなどがある。情報出力装置としては、例えば、モニタディスプレイ、プリンタ、音声合成装置、ライトなどがある。
 図3中の左下には超音波プローブ111が第1配置に設定された場合が、図3中の右下には超音波プローブ111が第2配置に設定された場合が、それぞれ示されている。
 図4および図5を用いて、超音波プローブ111の操作を説明するために、超音波プローブ111の各部を定義する。
 図4(1)は、超音波プローブ111を正面から見た図であり、超音波プローブ111の先端のレンズの中央部には中心点CPが設定される。本実施例では、この中心点CPを固定したままで、超音波プローブ111を第1配置と第2配置との間で切り替える。
 図4(2)は、超音波プローブ111の斜視図である。超音波プローブ111の短軸方向の中心軸をX軸と、超音波プローブ111の長軸方向の中心軸をY軸と、超音波プローブ111の深さ方向の中心軸をZ軸と、それぞれ呼ぶ。
 図4(3)は、超音波プローブ111で撮影された超音波エコー画像20を示し、画像20の水平方向を画像20の幅方向と、画像20の垂直方向を画像20の深さ方向と、それぞれ呼ぶ。画像20は、第1超音波エコー画像21と第2超音波エコー画像22を含む概念である。
 図5(1)は、超音波プローブ111を上面から見た図である。図5(2)は、超音波プローブ111を正面から見た図である。図5(3)は、超音波プローブ111を側面から見た図である。
 図6~図11を用いて、超音波プローブ111を操作することにより血管4の断面(横方向断面、長手方向断面)を検出する様子を説明する。
 図6~図11には、血管4の横方向のエコー画像21から血管4の断面の中心を求め、これによりガイドワイヤ3の先端部を認識し、血管4の中心軸からのガイドワイヤ3のずれ量を求める所定の技術が開示されている。
 所定の技術には、血管4の横方向のエコー画像21(血管4の横断面)から血管4の断面の中心を検出し、ガイドワイヤの先端部と血管4の中心とのずれ量を出力すること、が含まれる。
 所定の技術には、血管4の横方向のエコー画像21から血管4の断面の中心を検出することにより、ガイドワイヤ3の先端部を認識して、ガイドワイヤ3と血管4の中心軸とのずれ量が所定の閾値を越えたら警告を発すること、が含まれている。
 所定の技術には、複数の(2つの)箇所における血管4の横方向の断面中心と超音波プローブ111の移動量とから、血管4の長手方向の傾きを算出し、算出された血管4の長手方向の傾きに基づいて、ガイドワイヤ3の血管中心からのずれ量を補正すること、が含まれている。すなわち、この場合、血管4の横方向のエコー画像21から血管4の断面の中心を求めた後で、超音波プローブ111を離れた箇所に移動させ、血管4の横方向のエコー画像21を再び取得して血管4の断面の中心を求め、超音波プローブ111の移動距離と各中心の位置とから、血管4の長手方向の傾きを算出する。算出された血管4の長手方向の傾きに基づいて、ガイドワイヤ3と血管中心とのずれ量を補正できる。
 所定の技術には、血管4の横方向のエコー画像から、ガイドワイヤ3と血管4の中心軸とのずれ量を算出すること、が含まれる。
 図6~図11に示す(1)~(11)の上段には、血管4を有する被検体SUと超音波プローブ111とを、ある状態の超音波プローブ111の上面から(上方から)見た模式図と、その超音波プローブ111の側面から(側方から)見た模式図と、そのときに得られる超音波エコー画像(第1超音波エコー画像21または第2超音波エコー画像22)の模式図とが横一列に並んで示されている。
 そして、それら上段に示す一連の模式図の下側には、超音波プローブ111を所定操作した場合において、血管4を有する被検体SUと超音波プローブ111とを、血管4を有する被検体SUと超音波プローブ111とを、超音波プローブ111の上面から(上方から)見た模式図と超音波プローブ111の側面から(側方から)見た模式図と超音波エコー画像20の模式図とが、示されている。
 図6(1)の上段では、血管4の横方向断面のエコー画像21から血管4の断面の中心を求めている。図6(1)の下段では、超音波プローブ111を被検体SUに押し当てている位置を中心に超音波プローブ111を回転させることにより、血管4の中心軸を通った長手方向のエコー画像22を検出する。
 図6(2)の上段では、血管4の中心軸を通った長手方向断面のエコー画像22内での血管4の傾きを求める。図6(2)の下段では、検出された血管の傾きに応じて、超音波プローブ111を傾けることにより、血管4の中心軸を通り、かつエコー画像20に水平な長手方向断面のエコー画像22を検出する。すなわち、エコー画像22において、血管4の長手方向の画像を水平に表示させる。
 図7(3)の上段では、血管4の横方向断面のエコー画像21から血管4の断面の中心を求め、その検出位置を中心に超音波プローブ111を回転させることにより血管の中心軸を通った長手方向断面のエコー画像22を取得し、そのエコー画像22内での血管4の傾きを検出する。図7(3)の下段では、検出された血管4の傾きに応じて超音波プローブ111を所定角度だけ傾けた後に、超音波プローブ111を、Z軸方向(超音波プローブの深さ方向)を中心として所定角度(例えば90度)回転させることにより、血管4の横方向断面21を取得する。
 図7(4)の上段では、血管4の横方向断面のエコー画像21から血管4の断面の中心を求める。図7(4)の下段では、超音波プローブ111を被検体SUに押し当てている現在の位置を中心に超音波プローブ111を回転させることにより、エコー画像21内の血管断面の幅が最小となるプローブ位置を検出する。
 図8(5)の上段に示す血管断面の幅が最小となる位置から、図8(5)の下段に示すように、超音波プローブ111をさらに所定角度(例えば90度)回転させることにより、血管4の長手方向断面のエコー画像22を検出する。
 図8(6)上段では、血管4の中心軸を通った長手方向断面のエコー画像22中での傾きを求め、図8(6)下段では、血管4の傾きに応じて超音波プローブ111を傾けることにより、血管4の中心軸を通り、かつエコー画像22内で水平な長手方向断面を捉えている。
 図9~図11では、超音波プローブ111を血管4の長手方向に移動させながら複数のエコー画像を取得し、それらエコー画像と超音波プローブ111の位置とから血管4の経路を求める。
 図9(7)では、超音波プローブ111を血管の長手方向に移動させて、それぞれの位置での横方向断面のエコー画像21を取得し、それらエコー画像21内での血管4の位置のずれを算出する。
 図9(8)~図11(11)では、別の方法を開示する。図9(8)の上段では、血管4の横方向断面のエコー画像21から血管4の断面の中心を求める。図9(8)の下段では、超音波プローブ111を被検体SUに押し当てている現在の位置を中心に超音波プローブ111を回転させることにより、エコー画像21内の血管断面の幅が最小となるプローブ位置を検出する。
 図10(9)の上段(図9(8)の下段)から、超音波プローブ111を血管4の長手方向と交差する方向に移動させて、エコー画像21の幅方向の中心に血管4が表示されるようにする。
図10(10)の上段(図10(9)の下段)から、血管4の傾きに応じて超音波プローブ111を傾けることにより、血管4の中心軸を通り、かつエコー画像22内で水平な長手方向断面を捉える。
図11(11)の上段(図10(10)の下段)から、超音波プローブ111を血管の長手方向に移動させて、それぞれの位置での横方向断面のエコー画像21を取得し、それらエコー画像21内での血管4の位置のずれを算出する。
 図12は、血管を探索する処理を示すフローチャートである。ここでは、脚の血管を探索する場合を例に挙げて説明する。この処理では、ロボット121が自動的に超音波プローブ111を操作してもよいし、一部の操作だけをロボット121が担当し、それ以外の操作をユーザが担当してもよい。ここでは、ロボット121とユーザとが協働して血管を探索する場合を説明する。以下の説明では、主にロボット制御装置120を判断の主体として説明するが、ユーザが判断の主体であってもよい。判断の主体がロボット制御装置120またはユーザのいずれである場合でも、超音波プローブ111を第1配置と第2配置とで切り替える操作はロボット制御装置120により実行される。図中では、超音波プローブをプローブと略記する。フローチャート中では、ステップの内容を簡潔に表現するために、血管の横方向断面のエコー画像21を第1断面画像21と、長手方向断面のエコー画像22を第2断面画像22とそれぞれ呼ぶが、フローチャートについての以下の説明では、理解のしやすさを優先し、横方向断面、長手方向断面と呼ぶ場合がある。
 ロボット制御装置120は、超音波プローブ111を、鼠径部付近であって体表に対して垂直であり、かつ血管4の横方法断面を撮影可能な向き(第1配置)に設置させる(S31)。
 ロボット制御装置120は、総大腿動脈が検出されるまで(S33:NO)、超音波プローブ111を移動させる(S32)。ロボット制御装置120は、総大腿動脈が検出されると(S33:YES)、総大腿動脈の横方向断面を正確に撮影させるべく、超音波プローブ111の向きを自動的に回転させる(S34)。
 すなわち、ロボット制御装置120は、超音波プローブ111の向きを順次回転させてエコー画像21を取得し、そのエコー画像21のスコアを算出し、算出されたスコアから総大腿動脈の横方向断面を正確に写せる位置を検出する(S34)。ロボット制御装置120は、総大腿動脈の横方向断面を正確に検出するまで(S35:NO)、超音波プローブ111を回転させて横方向断面のスコアを算出する(S34)。
 ロボット制御装置120は、総大腿動脈の正確な横方向断面を検出すると(S35:YES)、超音波プローブ111を第2配置に切り替えて、総大腿動脈の長手方向の断面を撮影させる(S36)。
 ロボット制御装置120は、ユーザからの指示に応じて、超音波プローブ111を総大腿動脈の抹消側へ移動させる(S37)。ユーザは、例えば音声やスイッチ操作により、ロボット制御装置120に指示することができる。
 ロボット制御装置120は、総大腿動脈の分岐を検出したか判定する(S38)。ロボット制御装置120は、総大腿動脈の分岐を検出したと判定すると(S38:YES)、血管の分岐における超音波プローブ111の進路候補をユーザインターフェース装置200の画面へ表示させ、ユーザによる選択を待つ(S39)。
 ロボット制御装置120は、ユーザにより選択された進路上で超音波プローブ111を移動させ(S40)、患部41(あるいは長尺状医療用デバイスによる診断又は治療の対象となる血管の所定部位)へ到達したか判定する(S41)。ロボット制御装置120は、超音波プローブ111が患部41へ到達したと判定すると(S41:YES)、超音波プローブ111を第1配置と第2配置とで交互に切り替えながら、大腿動脈の中心軸を通る長手方向の断面の検出を試みる(S42)。
 ロボット制御装置120は、総大腿動脈の中心軸を通る長手方向の断面を検出すると(S43:YES)、本処理を終了する。ロボット制御装置120は、総大腿動脈の中心軸を通る長手方向の断面を検出できない場合(S43:NO)、超音波プローブ111の位置を補正し(S44)、ステップS43へ戻る。
 図13は、観察中の血管の先にある血管の長手方向の断面を探索する処理を示すフローチャートである。本処理は、例えば、図12で述べたステップS36,S42で使用することができる。なお、図13~図15では、一部のステップについて超音波プローブ111の位置と画像の関係を模式的に示す。
 ロボット制御装置120は、対象の血管を撮影可能なプローブ位置を検出し(S51)、検出された位置で超音波プローブ111を体表面へ押し当て、超音波プローブ111のZ軸方向に回転させ、対象の血管(以下、血管)の横方向断面のエコー画像21(第1断面画像21)を取得する(S52)。
 ロボット制御装置120は、ステップS52で取得された複数の第1断面画像21から、血管断面の中心位置を検出する(S53)。
 ロボット制御装置120は、ステップS53で検出された中心位置を回転中心として超音波プローブ111を回転させることにより、血管の中心軸を通る長手方向断面のエコー画像22(第2断面画像22)を得る(S54)。
 このように構成される本実施例によれば、超音波プローブ111を第1配置と第2配置とで切り替えることにより、血管の位置を正確かつ容易に検出することができるため、ユーザにとっての使い勝手が向上する。
 さらに、本実施例では、ユーザとロボット121(およびロボット制御装置120)が協働して超音波プローブ111を操作するため、例えば、血管の分岐における進路を選択したか、患部41へ到達したか否かといった高度な判断はユーザに委ねる一方、超音波プローブ111の先端レンズの中心点CPを固定したままで第1配置と第2配置を切り替えるといった正確な操作はロボットに委ねることができる。したがって、本実施例によれば、ユーザの負担を軽減して超音波プローブ111による血管の探索を容易に行うことができる。
 図14を用いて第2実施例を説明する。本実施例を含む以下の各実施例では、第1実施例との相違を中心に説明する。
 図14は、観察中の血管の先にある血管の長手方向の断面を探索する処理を示すフローチャートである。
 ロボット制御装置120は、対象の血管を撮影可能なプローブ位置を検出し(S61)、検出された位置で超音波プローブ111を体表面へ押し当て、超音波プローブ111のZ軸方向に回転させることにより、血管断面のエコー画像をそれぞれの位置で取得する(S62)。
 ロボット制御装置120は、ステップS62で取得された複数のエコー画像から、エコー画像の幅方向WLに沿った血管断面の長さに基づいて、血管の長手方向断面のエコー画像22を選択する(S63)。
 ロボット制御装置120は、超音波プローブ111の先端レンズの中心点CPを固定したままで、超音波プローブ111をX軸方向中心に回動(傾動)させることにより、血管の第2断面画像をエコー画像22内で水平にする(S64)。
 ロボット制御装置120は、超音波プローブ111の先端レンズの中心点CPを固定したままで、超音波プローブ111を、Z軸方向を中心に90度回転させ、第1配置に設定し、血管の横方向断面のエコー画像21(第1断面画像21)を取得する(S65)。
 ロボット制御装置120は、超音波プローブ111の先端レンズの中心点CPを固定したままで、超音波プローブ111を、X軸方向を中心に回動せしめることにより、正確な第1断面画像21を得る(S66)。すなわち、ロボット制御装置120は、正しい第1断面画像21を取得するために、超音波プローブ111の位置を微調整する。
 ロボット制御装置120は、超音波プローブ111の先端レンズの中心点CPを固定したままで、Z軸方向を中心に超音波プローブ111を90度回転せしめて第2配置に設定し、血管の長手方向断面である第2断面画像22を取得する(S67)。
 ロボット制御装置120は、超音波プローブ111をY軸方向へ移動させて、血管の第2断面画像をさらに取得する(S68)。
 このように構成される本実施例も第1実施例と同様の作用効果を奏する。
 図15を用いて第3実施例を説明する。図15は、観察中の血管の先にある血管の長手方向の断面を探索する処理を示すフローチャートである。
 ロボット制御装置120は、対象の血管を撮影可能なプローブ位置を検出し(S71)、検出された位置で超音波プローブ111を体表面へ押し当て、超音波プローブ111のZ軸方向に回転させることにより、血管断面のエコー画像をそれぞれの位置で取得する(S72)。
 ロボット制御装置120は、ステップS72で取得された複数のエコー画像から、エコー画像の幅方向WLに沿った血管断面の長さに基づいて、血管の横方向断面のエコー画像21(第1断面画像)を選択し、選択した第1断面画像の中心点を検出する(S73)。複数のエコー画像の中から一つのエコー画像を選択方法としては、例えば、幅方向WLに沿った血管断面の長さが最大の第1断面画像を選択する方法、面積値が最大の第1断面画像を選択する方法、血管断面の長さと血管断面の面積とのいずれも考慮して第1断面画像を選択する方法などがある。
 ロボット制御装置120は、超音波プローブ111をX軸方向へ移動させて、別の血管断面の中心点を検出する(S74)。ステップS73,S74で検出される血管断面は楕円形である。
 ロボット制御装置120は、2つの血管断面の中心点のそれぞれの位置と超音波プローブ111の移動距離とから、血管の傾きを算出する(S75)。
 ロボット制御装置120は、超音波プローブ111の先端レンズの中心点CPを固定したままで、超音波プローブ111の姿勢を血管の傾きに合わせる(S76)。
 ロボット制御装置120は、超音波プローブ111の先端レンズの中心点CPを固定したままで、超音波プローブ111を、Z軸方向を中心に90度回転させ、第2配置に設定し、血管の長手方向断面のエコー画像22を取得する(S75)。
 このように構成される本実施例も第1実施例と同様の作用効果を奏する。
 図16および図17を用いて第4実施例を説明する。本実施例では、超音波プローブ111の操作とガイドワイヤ3の操作について述べる。本実施例では、超音波プローブ111の操作は第1ユーザとしての技師が担当し、超音波プローブ111の操作についての指示は第2ユーザとしての医師が担当する。ガイドワイヤ3の操作も医師が担当する。血管の横方向断面および縦方向断面の判定は、ロボット制御装置120が支援する。
 技師は、超音波プローブ111を被検体SUの体表面の所定位置に置く(S81)。ここでの所定位置は、例えば、鼠径部付近であって、体表面に対して血管の横方向断面を撮影可能な位置である。
 技師は、対象の血管である第1血管が超音波プローブ111に写るように、超音波プローブ111を移動させる(S82)。第1血管は、例えば、総大腿動脈である。
 技師は、第1血管としての大腿動脈が超音波プローブ111に写るまで(S83:NO)、超音波プローブ111を体表面上で移動させる(S82)。技師は、大腿動脈が超音波プローブ111に写ると(S83:YES)、大腿動脈の横方向断面を正しく検出すべく、超音波プローブ111の向きを回転させる(S84)。超音波プローブ111の向きを順次回転することにより複数のエコー画像を得ることができ、各エコー画像のスコアは自動的に算出される。ここでスコアとは、正確な横方向断面に近いか否かを知るための指標であり、ユーザインターフェース装置200の画面に表示される。技師は、そのスコアを参考にしながら超音波プローブ111の向きを変え、総大腿動脈の横方向断面を正確に捉える(S84)。
 総大腿動脈の横方向断面が正確に捉えられると(S85:YES)、技師は、超音波プローブ111を第1配置から第2配置へ切り替える機能を選択し、総大腿動脈の長手方向断面を撮影する(S86)。技師の指示は、音声操作またはスイッチ操作などでロボット制御装置120に伝達される。
 技師は、超音波プローブ111を総大腿動脈の抹消側へ移動させ、総大腿動脈の分岐が見つかるまで探索する(S87,S88)。総大腿動脈の分岐が検出されると(S88:YES)、技師は、総大腿動脈の分岐の、体表面に近い側の大腿動脈に沿って、抹消側へ超音波プローブ111を移動させる(S89)。
 超音波プローブ111が患部41へ到達すると(S90:YES)、技師は、超音波プローブ111の向きを順次回転して得られる各エコー画像のスコアを参考に総大腿動脈の横方向断面を検出し、横方向断面が正確に検出されたら、ロボット制御装置120に指示して超音波プローブ111を第2配置に設定する(S91)。
 第2配置に設定された超音波プローブ111により総大腿動脈の長手方向断面が検出されると(S92:YES)、技師は、医師の指示により超音波プローブ111を随時第1配置に切り替えて、横方向断面における血管中心をガイドワイヤ3が通っていることを確認し、医師はガイドワイヤ3を長手方向断面の画像22の端まで進める(S93)。
 ガイドワイヤ3が画面22の端まで進むと(S94:YES)、医師は、ガイドワイヤ3が患部41の終端を通過したか判定する(S95)。ガイドワイヤ3が患部41の終端を通過した場合(S95:YES)、本処理は終了する。
 ガイドワイヤ3が患部41の終端を通過していない場合(S95:NO)、医師はガイドワイヤ3の送り込みを停止し、技師に命じて超音波プローブ111を総大腿動脈の末梢側に移動させる(S96)。
 技師は、医師の指示により超音波プローブ111を随時第1配置に切り替えて、横方向断面における血管中心をガイドワイヤ3が通っていることを確認し、医師は、ガイドワイヤ3を長手方向断面の画像22の端まで進める(S97)。
 このように構成される本実施例も第1実施例と同様の作用効果を奏する。
 図18および図19を用いて第5実施例を説明する。本実施例では、超音波プローブ111の操作はロボット制御装置120が担当し、超音波プローブ111の操作についての指示は医師が担当する。ガイドワイヤ3の操作も医師が担当する。血管の横方向断面および縦方向断面の判定は、ロボット制御装置120が支援する。
 ロボット制御装置120は、超音波プローブ111を被検体SUの体表面の所定位置に置く(S101)。
 ロボット制御装置120は、対象の血管である第1血管(大腿動脈)が超音波プローブ111に写るように、超音波プローブ111を移動させる(S102)。
 ロボット制御装置120は、第1血管としての大腿動脈が超音波プローブ111に写るまで(S103:NO)、超音波プローブ111を体表面上で移動させる(S102)。ロボット制御装置120が超音波プローブ111により大腿動脈を検出すると(S103:YES)、医師はロボット制御装置120に対して、横方向断面を撮影するように指示する(S104)。
 医師の指示を受けたロボット制御装置120は、大腿動脈の横方向断面を正しく検出すべく、超音波プローブ111の向きを回転させる(S105)。
 ロボット制御装置120は、超音波プローブ111の向きを順次回転することにより複数のエコー画像を取得し、各エコー画像のスコアに基づいて超音波プローブ111の向きを変え、総大腿動脈の横方向断面を正確に捉える(S105)。
 ロボット制御装置120は、総大腿動脈の横方向断面が正確に撮影されているかを医師に対して確認を求める。医師による確認が得られると(S106:YES)、ロボット制御装置120は、超音波プローブ111を第1配置から第2配置へ切り替え、総大腿動脈の長手方向断面を撮影する(S107)。ロボット制御装置120から医師への要求は、ユーザインターフェース装置200を介して実行することができる。
 ロボット制御装置120は、医師からの指示に従い、超音波プローブ111を総大腿動脈の抹消側へ移動させる(S108)。医師は、総大腿動脈の分岐が見つかるまで超音波プローブ111を移動させる(S109:NO)。
 総大腿動脈の分岐が検出されると(S109:YES)、ロボット制御装置120は、その分岐における超音波プローブ111の進路の候補をユーザインターフェース装置200の画面に表示させる(S110)。医師は、総大腿動脈の分岐の、体表面に近い側の大腿動脈に沿って、抹消側へ超音波プローブ111を移動させるように進路を選択する(S110)。
 医師は、超音波プローブ111が患部41へ到達するまで(S111:NO)、ロボット制御装置120に対して移動指示を出す(S112)。
 ロボット制御装置120は、超音波プローブ111を第1配置と第2配置とで交互に切り替えて、大腿動脈の中心軸を通る長手方向断面(第2断面)を撮影してユーザインターフェース装置200へ表示する(S113)。
 超音波プローブ111が長手方向断面を正確に捉えるまで(S114:NO)、超音波プローブ111の位置が補正される(S115)。
 超音波プローブ111が長手方向断面を正確に捉えると(S114:YES)、ロボット制御装置120は、医師の指示により超音波プローブ111を移動させ、ガイドワイヤ3先端での大腿動脈の横方向断面を表示する(S116)。このステップS116では、ガイドワイヤ3の先端の位置と大腿動脈の血管中心とのずれ量が算出され、横方向断面画像と一緒に医師へ提供される。医師は、ずれ量を確認しながらガイドワイヤ3を長手方向断面の画像22の端まで進める(S116)。
 ガイドワイヤ3が画面22の端まで進むと(S117:YES)、医師は、ガイドワイヤ3が患部41の終端を通過したか判定する(S118)。ガイドワイヤ3が患部41の終端を通過した場合(S118:YES)、本処理は終了する。
 ガイドワイヤ3が患部41の終端を通過していない場合(S118:NO)、医師はガイドワイヤ3の送り込みを停止し、ロボット制御装置120に命じて超音波プローブ111を総大腿動脈の末梢側に移動させる(S119)。
 ロボット制御装置120は、ステップS116で述べたと同様に、大腿動脈の第1断面画像と大腿動脈の血管中心とガイドワイヤ3先端とのずれ量とをユーザインターフェース装置200に表示する。医師は、その表示を確認しながらガイドワイヤ3を患部41へ向けて進めていく(S120)。
 このように構成される本実施例も第1実施例と同様の作用効果を奏する。
 図20および図21を用いて第6実施例を説明する。本実施例では、超音波プローブ111はロボット制御装置120が操作し、超音波プローブ111の操作は、医師の確認の下でロボット制御装置120が担当する。ガイドワイヤ3の操作は医師が行う。
 ロボット制御装置120は、超音波プローブ111を被検体SUの体表面の所定位置に置く(S131)。
 ロボット制御装置120は、対象の血管である第1血管(大腿動脈)が超音波プローブ111に写るように、超音波プローブ111を移動させる(S132)。
 ロボット制御装置120は、第1血管としての大腿動脈が超音波プローブ111に写るまで(S133:NO)、超音波プローブ111を移動させる(S132)。
 ロボット制御装置120が超音波プローブ111により大腿動脈を検出すると(S133:YES)、ロボット制御装置120は、大腿動脈の横方向断面を正しく検出すべく、超音波プローブ111の向きを回転させる(S134)。ロボット制御装置120は、超音波プローブ111の向きを順次回転することにより複数のエコー画像を取得し、各エコー画像のスコアに基づいて超音波プローブ111の向きを変え、総大腿動脈の横方向断面を正確に捉える(S134)。
 ロボット制御装置120は、総大腿動脈の横方向断面が正確に撮影されているかを医師に対して確認を求める。医師による確認が得られると(S135:YES)、ロボット制御装置120は、超音波プローブ111を第1配置から第2配置へ切り替え、総大腿動脈の長手方向断面を撮影する(S136)。
 ロボット制御装置120は、医師からの指示に従い、超音波プローブ111を総大腿動脈の抹消側へ移動させる(S137)。医師は、総大腿動脈の分岐が見つかるまで超音波プローブ111を移動させる(S138:NO)。
 総大腿動脈の分岐が検出されると(S138:YES)、ロボット制御装置120は、その分岐における超音波プローブ111の進路の候補をユーザインターフェース装置200の画面に表示させる(S139)。医師は、総大腿動脈の分岐の、体表面に近い側の大腿動脈に沿って、抹消側へ超音波プローブ111を移動させるように進路を選択する(S139)。
 医師は、超音波プローブ111が患部41へ到達するまで(S140:NO)、ロボット制御装置120に対して移動指示を出す(S141)。
 ロボット制御装置120は、超音波プローブ111を第1配置と第2配置とで交互に切り替えて、大腿動脈の中心軸を通る長手方向断面(第2断面)を撮影してユーザインターフェース装置200へ表示する(S142)。
 超音波プローブ111が長手方向断面を正確に捉えるまで(S143:NO)、超音波プローブ111の位置が補正される(S144)。
 超音波プローブ111が長手方向断面を正確に捉えると(S143:YES)、ロボット制御装置120は、超音波プローブ111を移動させ、ガイドワイヤ3先端での大腿動脈の横方向断面を表示する(S145)。このステップS145では、ガイドワイヤ3の先端の位置と大腿動脈の血管中心とのずれ量が算出され、横方向断面画像と一緒に医師へ提供される。医師は、ずれ量を確認しながらガイドワイヤ3を長手方向断面の画像22の端まで進める(S145)。
 ガイドワイヤ3が画面22の端まで進むと(S146:YES)、医師は、ガイドワイヤ3が患部41の終端を通過したか判定する(S147)。ガイドワイヤ3が患部41の終端を通過した場合(S147:YES)、本処理は終了する。
 ガイドワイヤ3が患部41の終端を通過していない場合(S147:NO)、医師はガイドワイヤ3の送り込みを停止し、ロボット制御装置120に命じて超音波プローブ111を総大腿動脈の末梢側に移動させる(S148)。
 ロボット制御装置120は、大腿動脈の第1断面画像と大腿動脈の血管中心とガイドワイヤ3先端とのずれ量とをユーザインターフェース装置200に表示する。医師は、その表示を確認しながらガイドワイヤ3を患部41へ向けて進めていく(S149)。
 このように構成される本実施例も第1実施例と同様の作用効果を奏する。
 図22~図27を用いて第7実施例を説明する。本実施例では、超音波プローブ111の操作と各画面21,22の関係の例を説明する。
 本実施例では、上述の通り、超音波プローブ111により得られる複数のエコー画像をそれぞれ別々の画面に表示させる。
 複数のエコー画像の他の一つは、ガイドワイヤ先端の血管中心からのずれ量を判定するための、横方向断面の画像21である。横方向断面の画像21は、血管の横方向(短軸方向)の中心を通る断面画像である。複数のエコー画像の一つは、例えば、ガイドワイヤ3の先端を血管内で移動させるための、長手方向断面の画像22である。長手方向断面の画像22は、血管の長手方向(長軸方向)の中心を通る断面画像である。
 本実施例では、上述の通り、複数のエコー画像のうち、現在の超音波プローブ111の位置に対応するエコー画像を他のエコー画像と区別する。区別のための標識として、本実施例では「Live」という単語を使用する。
 本実施例では、超音波プローブ111またはガイドワイヤ3の操作に応じて、複数のエコー画像のうちLive画像を切り替えることができる。これにより、超音波プローブ111の位置を動かしてもすぐに元の位置に復帰させることができるので、超音波プローブ111を回転または移動させて、Live画像を「横方向断面の画像21」と「長手方向断面の画像22」との間で瞬時に切り替えることができる。
 さらに、医師や技師がユーザインターフェース装置200のモニタ画面や超音波プローブ111の位置から目を離したとしても、容易に再現することができ、不都合は全く生じないため、医師などは患者(被検体SU)の様子を確認しやすくなる。
 図22(1)は、各画像21,22の基本例を示す。図22(2)では、超音波プローブ111を、鼠径部付近で、体表面に対して垂直かつ血管の横方向断面を描画するような向きにおく。
 図23(3)では、総大腿動脈を検出したら、超音波プローブ111の向きを回転させて、動脈の横方向断面を正確に捉える。
 図23(4)では、超音波プローブ111を90度回転させて、総大腿動脈の長手方向断面を撮影する。
 図24(5)では、超音波プローブ111を総大腿動脈の抹消側に移動させて、総大腿動脈の分岐を探す。
 図24(6)では、総大腿動脈の分岐の体表面に近く浅い側の浅大腿動脈に沿って、抹消側に超音波プローブ111を進める。
 図25(7)では、超音波プローブ111が患部に到達したら、超音波プローブ111を回転させて横方向断面と長手方向断面を交互に確認しながら、動脈の中心軸を通る長手方向断面を捉える。
 図25(8)では、動脈の中心軸を通る長手方向断面を固定したままで、ガイドワイヤ3を画面の端まで進めていく。
 図26(9)では、ガイドワイヤ3の送り込みを停止し、超音波プローブ111を血管の抹消側に移動させる。
 図26(10)では、再び動脈の中心軸を通る長手方向断面を固定したまま、ガイドワイヤ3を画面の端のほうまで進めていく。以下同様に、図26(9)および(10)を患部に到達するまで繰り返す。
 なお、本発明は上述の実施形態に限定されず、様々な変形例が含まれる。上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることもできる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の構成を追加・削除・置換することもできる。
 本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれる。さらに特許請求の範囲に記載された構成は、特許請求の範囲で明示している組合せ以外にも組み合わせることができる。上述した各実施例は、任意に組合せ可能である。
 なお、ガイドワイヤを例に挙げて説明したが、本発明は、本出願の時点でガイドワイヤと呼ばれる物体に限定されない。管の内部に挿入されて移動する物体であって、その位置の検出が必要とされる物体であれば、本発明を適用可能である。
 前記の説明では、血管の横方向のエコー画像から血管の断面の中心を求め、血管の中心軸からの長尺状医療用デバイスのずれ量を求める所定の技術について説明した。本発明は、血管の長手方向のエコー画像から血管の断面の中心を求め、血管の中心軸からの長尺状医療用デバイスのずれ量を求める技術に適用することができる。本発明は、血管の横方向(または長手方向)のエコー画像から血管の内壁面(内縁)を求め、血管の内壁面(内縁)からの長尺状医療用デバイスのずれ量を求める技術に適用することができる。
 1:制御部、2:表示部、3:ガイドワイヤ、4:血管、11:第1配置部、12:第2配置部、13:超音波エコー画像処理部、14:演算部、15:警告部、16:血管の傾き算出部、17:ずれ量算出部、18:血管経路検出部、19:超音波プローブ姿勢制御部、21:第1超音波エコー画像(血管の横方向断面の画像)、22:第2超音波エコー画像22(血管の長手方向断面の画像)、110:超音波診断装置、120:ロボット制御部、200:ユーザインターフェース装置

Claims (20)

  1.  超音波プローブを操作する超音波プローブ操作システムであって、
     血管の超音波エコー画像を取得する超音波プローブを操作するセンサ操作部と、
     前記センサ操作部の動作を制御する制御部とを備え、
     前記制御部は、前記センサ操作部により前記超音波プローブの配置を、血管の横方向の断面の画像を取得する第1配置と血管の長手方向の断面の画像を取得する第2配置とで切り替える、
    超音波プローブ操作システム。
  2.  前記操作部は、所定の回転軸を中心に前記超音波プローブを回転させることにより、前記第2配置と前記第1配置とを切り替える、
    請求項1に記載の超音波プローブ操作システム。
  3.  さらに、前記超音波プローブにより取得される超音波エコー画像を表示する表示部を備え、
     前記制御部は、前記第1配置で取得される第1超音波エコー画像と前記第2配置で取得される第2超音波エコー画像とを対応付けて前記表示部に表示させる、
    請求項2に記載の超音波プローブ操作システム。
  4.  前記制御部は、前記第1超音波エコー画像と前記第2超音波エコー画像とのうちで、前記超音波プローブの現在又は過去の配置に対応する超音波エコー画像を、それ以外の配置に対応する超音波エコー画像と区別して前記表示部に表示させる、
    請求項3に記載の超音波プローブ操作システム。
  5.  前記超音波エコー画像には、血管内の長尺状医療用デバイスの画像も含まれており、
     前記制御部は、前記第1超音波エコー画像及び/又は前記第2超音波エコー画像において、前記長尺状医療用デバイスと前記血管との間のずれ量を算出する、
    請求項3に記載の超音波プローブ操作システム。
  6.  前記制御部は、前記算出されたずれ量を前記第1超音波エコー画像及び/又は前記第2超音波エコー画像に対応付けて前記表示部に表示させる、
    請求項5に記載の超音波プローブ操作システム。
  7.  前記制御部は、前記ずれ量が所定の閾値に達した場合に警報を出力する、
    請求項5に記載の超音波プローブ操作システム。
  8.  前記制御部は、血管の長手方向に離間する複数の箇所において前記第1超音波エコー画像中の血管の中心位置を検出し、それら中心位置間の距離と前記複数の箇所間の距離とに基づいて、血管の長手方向の傾きを算出する、
    請求項3に記載の超音波プローブ操作システム。
  9.  前記制御部は、血管の長手方向に離間する複数の箇所において前記超音波プローブを前記第1配置に設定することにより、前記第1超音波エコー画像中の血管の中心位置を検出し、それら中心位置間の距離と前記複数の箇所間の距離とに基づいて、血管の長手方向の傾きを算出し、前記算出された傾きに基づいて前記ずれ量を補正する、
    請求項5に記載の超音波プローブ操作システム。
  10.  前記制御部は、前記算出された血管の長手方向の傾きに基づいて、前記血管の中心位置を通る縦断面画像として前記第2超音波エコー画像を取得する、
    請求項8に記載の超音波プローブ操作システム。
  11.  前記制御部は、前記算出された血管の長手方向の傾きに応じて、前記超音波プローブの姿勢を制御する、
    請求項10に記載の超音波プローブ操作システム。
  12.  前記制御部は、前記算出された血管の長手方向の傾きに応じて前記超音波プローブを傾けて体表面に押し当てることにより前記超音波プローブを前記第2配置に設定し、前記第2超音波エコー画像において血管の長手方向の画像を水平に表示させる、
    請求項11に記載の超音波プローブ操作システム。
  13.  前記制御部は、前記超音波プローブを傾けて体表面に押し当てたまま所定角度回転させることにより、前記第1配置と前記第2配置の間で切り替える、
    請求項12に記載の超音波プローブ操作システム。
  14.  前記制御部は、血管の長手方向に離間する複数の箇所において前記第1超音波エコー画像中の血管の中心位置を検出し、それら中心位置間の距離と前記複数の箇所間の距離とに基づいて、血管の経路を検出する、
    請求項3に記載の超音波プローブ操作システム。
  15.  超音波プローブをロボットにより操作する方法であって、
     血管の超音波エコー画像を取得する超音波プローブの配置を、前記ロボットにより、血管の横方向の断面の画像を取得する第1配置と血管の長手方向の断面の画像を取得する第2配置とで切り替えさせる、
    超音波プローブの操作方法。
  16.  前記ロボットは、所定の回転軸を中心に前記超音波プローブを回転させることにより、前記第1配置と前記第2配置とを切り替える、
    請求項15に記載の超音波プローブの操作方法。
  17.  前記第1配置で取得される第1超音波エコー画像と前記第2配置で取得される第2超音波エコー画像とのうちで、前記超音波プローブの現在又は過去の配置に対応する超音波エコー画像を、それ以外の配置に対応する超音波エコー画像と区別して表示させる、
    請求項16に記載の超音波プローブの操作方法。
  18.  前記超音波エコー画像には、血管内の長尺状医療用デバイスの画像も含まれており、
     前記第1超音波エコー画像において、前記長尺状医療用デバイスと前記血管との間のずれ量が算出される、
    請求項16に記載の超音波プローブの操作方法。
  19.  血管の長手方向に離間する複数の箇所において前記第1超音波エコー画像中の血管の中心位置を検出し、
     それら中心位置間の距離と前記複数の箇所間の距離とに基づいて、血管の長手方向の傾きを算出する、
    請求項17に記載の超音波プローブの操作方法。
  20.  前記算出された血管の長手方向の傾きに基づいて、血管の中心位置を通る縦断面画像として前記第2超音波エコー画像が取得される、
    請求項19に記載の超音波プローブの操作方法。
PCT/JP2020/005822 2020-02-14 2020-02-14 超音波プローブ操作システムおよび方法 WO2021161516A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022500186A JP7401645B2 (ja) 2020-02-14 2020-02-14 超音波プローブ操作システムおよび超音波プローブを操作するロボットの制御方法
PCT/JP2020/005822 WO2021161516A1 (ja) 2020-02-14 2020-02-14 超音波プローブ操作システムおよび方法
EP20918681.6A EP4104768A4 (en) 2020-02-14 2020-02-14 ULTRASONIC PROBE OPERATING SYSTEM AND METHOD
US17/886,524 US20220378396A1 (en) 2020-02-14 2022-08-12 Ultrasound probe operation system and method
JP2023206575A JP2024015252A (ja) 2020-02-14 2023-12-07 超音波プローブ操作システムおよび超音波プローブを操作するロボットの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005822 WO2021161516A1 (ja) 2020-02-14 2020-02-14 超音波プローブ操作システムおよび方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/886,524 Continuation US20220378396A1 (en) 2020-02-14 2022-08-12 Ultrasound probe operation system and method

Publications (1)

Publication Number Publication Date
WO2021161516A1 true WO2021161516A1 (ja) 2021-08-19

Family

ID=77292211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005822 WO2021161516A1 (ja) 2020-02-14 2020-02-14 超音波プローブ操作システムおよび方法

Country Status (4)

Country Link
US (1) US20220378396A1 (ja)
EP (1) EP4104768A4 (ja)
JP (2) JP7401645B2 (ja)
WO (1) WO2021161516A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4272800A1 (en) * 2022-05-06 2023-11-08 Caranx Medical SAS A biomedical device, a system comprising a biomedical device, a method for percutaneous catheterization of a body duct, and a method for aligning an external imaging means

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245280A (ja) * 2002-02-25 2003-09-02 Ichiro Sakuma 血管内皮機能検査方法
JP2004229823A (ja) 2003-01-29 2004-08-19 Aloka Co Ltd 超音波診断装置
JP2016086880A (ja) * 2014-10-30 2016-05-23 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波画像表示装置及びその制御プログラム
JP2018102589A (ja) * 2016-12-26 2018-07-05 セイコーエプソン株式会社 脈波伝播速度測定装置、血圧測定装置、および脈波伝播速度測定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855182B2 (ja) * 2005-08-29 2012-01-18 株式会社ユネクス 血管画像測定装置
US7862512B2 (en) * 2005-08-29 2011-01-04 Unex Corporation Blood vessel endothelium function evaluating apparatus provided with an electronic control device
JP5014051B2 (ja) * 2007-10-09 2012-08-29 株式会社ユネクス 血管超音波画像測定方法
WO2012164892A1 (ja) * 2011-05-30 2012-12-06 パナソニック株式会社 超音波診断装置および超音波を用いた画像取得方法
CN103505288B (zh) * 2012-06-29 2017-11-17 通用电气公司 超声成像方法和超声成像设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245280A (ja) * 2002-02-25 2003-09-02 Ichiro Sakuma 血管内皮機能検査方法
JP2004229823A (ja) 2003-01-29 2004-08-19 Aloka Co Ltd 超音波診断装置
JP2016086880A (ja) * 2014-10-30 2016-05-23 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波画像表示装置及びその制御プログラム
JP2018102589A (ja) * 2016-12-26 2018-07-05 セイコーエプソン株式会社 脈波伝播速度測定装置、血圧測定装置、および脈波伝播速度測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4104768A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4272800A1 (en) * 2022-05-06 2023-11-08 Caranx Medical SAS A biomedical device, a system comprising a biomedical device, a method for percutaneous catheterization of a body duct, and a method for aligning an external imaging means

Also Published As

Publication number Publication date
JP7401645B2 (ja) 2023-12-19
JP2024015252A (ja) 2024-02-01
JPWO2021161516A1 (ja) 2021-08-19
US20220378396A1 (en) 2022-12-01
EP4104768A1 (en) 2022-12-21
EP4104768A4 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
JP4373153B2 (ja) ボリュームデータセットの処理方法およびコンピュータプログラム製品ならびにコンピュータ
JP2004223128A (ja) 医療行為支援装置および方法
CN105578948B (zh) 用于受控单触摸缩放的系统和方法
JP2024015252A (ja) 超音波プローブ操作システムおよび超音波プローブを操作するロボットの制御方法
EP2554103A1 (en) Endoscope observation supporting system and method, and device and programme
US20100232647A1 (en) Three-dimensional recognition result displaying method and three-dimensional visual sensor
JP7362354B2 (ja) 情報処理装置、検査システム及び情報処理方法
JP6112689B1 (ja) 重畳画像表示システム
CN112292092A (zh) 用于使用立体内窥镜测量距离的系统和方法
EP4014886B1 (en) Ultrasonic diagnostic apparatus and control method for ultrasonic diagnostic apparatus
CN105228528A (zh) 超声波诊断设备
US20230172675A1 (en) Controller, endoscope system, and control method
US20220071717A1 (en) Robotic surgical control system
JP2010032330A (ja) 画像計測装置及びコンピュータプログラム
JP2009119000A (ja) 医療画像処理用の補助コントローラ、画像処理システム、及び医療画像の処理方法
JP4085315B2 (ja) 医用画像診断装置
WO2013099305A1 (ja) 内視鏡画像処理装置、内視鏡画像上の位置の指定方法及び記憶媒体
JP3576466B2 (ja) 内視鏡システムの表示制御システム及び内視鏡システムの表示制御方法
JP5215770B2 (ja) X線装置及び制御方法
JPH09259289A (ja) エッジ姿勢認識式の測定方法および装置
US20220265371A1 (en) Generating Guidance Path Overlays on Real-Time Surgical Images
JP6852612B2 (ja) 表示プログラム、情報処理装置、及び表示方法
WO2022024375A1 (ja) 超音波プローブ操作装置および方法
JP3409415B2 (ja) 手術器具の位置表示装置
US20220101533A1 (en) Method and system for combining computer vision techniques to improve segmentation and classification of a surgical site

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020918681

Country of ref document: EP

Effective date: 20220914