WO2021159662A1 - 一种安装偏心状态下谐波减速器柔轮径向变形的检测方法 - Google Patents

一种安装偏心状态下谐波减速器柔轮径向变形的检测方法 Download PDF

Info

Publication number
WO2021159662A1
WO2021159662A1 PCT/CN2020/100957 CN2020100957W WO2021159662A1 WO 2021159662 A1 WO2021159662 A1 WO 2021159662A1 CN 2020100957 W CN2020100957 W CN 2020100957W WO 2021159662 A1 WO2021159662 A1 WO 2021159662A1
Authority
WO
WIPO (PCT)
Prior art keywords
function
flexspline
eccentric
wave generator
state
Prior art date
Application number
PCT/CN2020/100957
Other languages
English (en)
French (fr)
Inventor
杨聪彬
郭庆旭
刘志峰
赵永胜
张彩霞
程强
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2021159662A1 publication Critical patent/WO2021159662A1/zh
Priority to US17/521,756 priority Critical patent/US20220065746A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/021Gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • B25J9/1025Harmonic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions

Definitions

  • the invention relates to the technical field of harmonic reducer detection, in particular to a method for detecting radial deformation of a flexible wheel under an eccentric installation state.
  • the harmonic reducer is the core component of the robot joint.
  • the flexible wheel and the rigid wheel of the harmonic reducer are meshed and transmitted. It has the advantages of small size, high rotation ratio, large carrying capacity, and high transmission accuracy.
  • problems such as unstable transmission, time-varying stiffness and forced vibration.
  • the main reason is the large deformation of the flexible wheel, which causes the transmission process of the harmonic reducer to be very complicated.
  • most detection methods require high installation accuracy, and the detection accuracy of the flexspline deformation function is not high.
  • the purpose of the present invention is: in order to improve the detection accuracy of the flexspline deformation function of the harmonic reducer, and solve the problem that the accuracy of the device is too high and difficult to meet, by studying the contour difference of the wave generator under the eccentric state, a method of installation under the eccentric state is proposed.
  • the detection method of the radial deformation of the flexible wheel is: in order to improve the detection accuracy of the flexspline deformation function of the harmonic reducer, and solve the problem that the accuracy of the device is too high and difficult to meet, by studying the contour difference of the wave generator under the eccentric state.
  • a detection method for the radial deformation of the flexspline of the harmonic reducer under an eccentric installation The center of the wave generator is used as the origin to establish a reference coordinate system.
  • the center of the wave generator is calculated by measuring the standard circle coaxial with the wave generator.
  • the offset from the center of rotation of the turntable (e x , e y ); the radial deformation function and offset (e x , e y ) of the measuring wave generator in the eccentric state are brought into the theoretical ellipse eccentric mathematical model, Obtain the parameters (a, b) of the actual ellipse; bring the offset (e x , e y ) and the ellipse parameters (a, b) into the flexible wheel radial runout correction model to obtain the correction model under the eccentric state; Measure the deformation function of the flexible wheel, introduce the obtained modified model, and obtain the radial deformation function of the flexible wheel in the standard state.
  • the eccentric coordinate of the rotation center of the turntable is (e x , e y ).
  • r is the standard circle radius
  • e x is the measurement line offset
  • r 0 is the eccentric circle radius
  • d 0 is the distance change of the measuring point
  • is the rotation angle.
  • the standard circular function model under the eccentric state is:
  • the flexspline deformation function correction model is obtained under the eccentric state, which includes two parts, namely the wave generator eccentricity error correction model and the interval eccentricity error correction model.
  • the eccentricity error model of the wave generator is the difference function D between the wave generator function B under the standard state and the wave generator function model C under the eccentric state:
  • the interval eccentricity error correction model refers to the error model of the thickness of the flexible bearing and the flexspline in the eccentric state, which is the interpolation function ⁇ between the standard value and the eccentric value.
  • the deformation parameters of the coaxial standard circle, the wave generator and the flexible wheel are measured respectively.
  • the radial deformation correction model A1 of the flexspline in the eccentric state (e x , e y ) established in W5 is introduced into the flexspline deformation function model E measured in the eccentric state:
  • Q is the radial deformation function model of the flexspline in the standard state.
  • the invention obtains the offset of the standard circle by analyzing the trajectory change of the standard circle in the eccentric state; obtains the error parameters of the actual processing wave generator by analyzing the change of the standard ellipse in the eccentric state; taking the detection of the wave generator as the calibration reference , Correct the deformation function of the flexible wheel in the eccentric state through a certain algorithm to obtain a more accurate deformation function model; solve the problem of excessive precision of the device.
  • Figure 1 Flow chart of the detection of the radial deformation of the flexspline in an eccentric state
  • Figure 2 Schematic diagram of the detection device for the radial deformation of the flexspline.
  • Fig. 4 The experimental process of the radial deformation of the flexspline in the eccentric state.
  • a method for detecting the radial deformation of the flexspline of the harmonic reducer in an eccentric state is shown in Figure 1.
  • the method uses the center of the wave generator as the origin to establish a reference coordinate system, and measures the standard coaxial with the wave generator. Circle, calculate the offset (e x , e y ) between the center of the wave generator and the center of rotation of the turntable; take the measurement of the radial deformation function and offset (e x , e y ) of the wave generator in an eccentric state
  • the actual ellipse parameters (a, b) are obtained; the offset (e x , e y ) and the ellipse parameters (a, b) are brought into the flexible wheel radial runout correction model to obtain
  • the device is installed on the turntable 1, the rotating shaft 3 is installed on the turntable 2 through the base 2, the standard bearing 4 and the wave generator 5 are installed on the rotating shaft, and the upper flexspline 6 is fixed by the bracket.
  • the method includes the following steps:
  • the eccentric coordinate of the rotation center of the turntable is (e x , e y ).
  • r is the standard circle radius
  • e x is the measurement line offset
  • r 0 is the eccentric circle radius
  • d 0 is the distance change of the measuring point
  • is the rotation angle.
  • the standard circular function model under the eccentric state is:
  • the flexspline deformation function correction model is obtained under the eccentric state, which includes two parts, namely the wave generator eccentricity error correction model and the interval eccentricity error correction model.
  • the eccentricity error model of the wave generator is the difference function D between the wave generator function B under the standard state and the wave generator function model C under the eccentric state:
  • the interval eccentricity error correction model refers to the error model of the thickness of the flexible bearing and the flexspline in the eccentric state, which is the interpolation function ⁇ between the standard value and the eccentric value.
  • the deformation parameters of the coaxial standard circle, the wave generator and the flexible wheel are measured respectively.
  • the radial deformation correction model A1 of the flexspline in the eccentric state (e x , e y ) established in W5 is introduced into the flexspline deformation function model E measured in the eccentric state:
  • Q is the radial deformation function model of the flexspline in the standard state.
  • the invention obtains the offset of the standard circle by analyzing the trajectory change of the standard circle in the eccentric state; obtains the error parameters of the actual processing wave generator by analyzing the change of the standard ellipse in the eccentric state; taking the detection of the wave generator as the calibration reference , Correct the deformation function of the flexible wheel in the eccentric state through a certain algorithm to obtain a more accurate deformation function model; solve the problem of excessive precision of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种安装偏心状态下谐波减速器柔轮(6)径向变形的检测方法,以波发生器(5)中心为原点,建立基准坐标系,通过测量与波发生器(5)同轴的标准圆,计算出波发生器(5)中心与转台(1)回转中心的偏移量;将测量波发生器(5)在偏心状态下的径向变形函数与偏移量带入理论椭圆偏心数学模型中,得到实际椭圆的参数;将偏移量与椭圆参数带入柔轮(6)径向跳动修正模型中,得到偏心状态下的修正模型;测量柔轮(6)变形函数,引入获得的修正模型,得到标准状态下的柔轮(6)径向变形函数。该方法解决柔轮(6)变形检测过程中的安装偏心问题,获得较为精确的柔轮(6)变化函数,为齿形的设计与优化提供更为精确的实际基础。

Description

一种安装偏心状态下谐波减速器柔轮径向变形的检测方法 技术领域
本发明涉及谐波减速器检测技术领域,特别是涉及一种安装偏心状态下的柔轮径向变形的检测方法。
背景技术
谐波减速器是机器人关节的核心元件,谐波减速器柔轮与刚轮进行啮合传动,具有体积小,转动比高,承载能力大,传动精度高等优点。谐波传动过程中存在传动不平稳、刚度时变和强迫振动的等问题,主要原因在于柔轮的大变形,导致谐波减速器的传动过程很复杂。目前大多数检测方式需要较高的安装精度,检测柔轮变形函数精度不高,对于安装偏心的下的柔轮变形函数还现有研究。
发明内容
本发明目的是:为提高谐波减速器柔轮变形函数的检测精度,解决装置精度过高难以满足的问题,通过研究播波发生器偏心状态下的轮廓差异,提出一种安装偏心状态下的柔轮径向变形的检测方法。
本发明所采取的技术方案是:
一种安装偏心状态下谐波减速器柔轮径向变形的检测方法,以波发生器中心为原点,建立基准坐标系,通过测量与波发生器同轴的标准圆,计算出波发生器中心与转台回转中心的偏移量(e x,e y);将测量波发生器在偏心状态下的径向变形函数与偏移量(e x,e y)带入理论椭圆偏心数学模型中,得到实际椭圆的参数(a,b);将偏移量(e x,e y)与椭圆参数(a,b)带入柔轮径向跳动修正模型中,得到该偏心状态下的修正模型;测量柔轮变形函数,引入获得的修正模型,得到标准状态下的柔轮径向变形函数。
W1、建立基准坐标系
以波发生器中心为原点,建立测量基准坐标系O。在该坐标下,转台回转中心的偏心坐标为(e x,e y)。
W2、建立理论偏心状态下的标准圆与椭圆函数模型
1)偏心状态下的标准圆
在基准坐标系O中,r为标准圆半径;e x为测量线偏移量;r 0为偏心圆半径; d 0为测量点距离变化量;θ为转动角度。其偏心状态下的标准圆函数模型为:
Figure PCTCN2020100957-appb-000001
其中:
Figure PCTCN2020100957-appb-000002
通过以上公式,可得偏心状态下得标准圆函数模型:d 0=f(θ)。将检测的标准圆参数分别带入上式中,得实际圆偏移量(e x,e y)。
2)偏心状态下的椭圆曲线
以椭圆圆心为中心建立坐标系,θ为转动角度,设测量线与椭圆焦点为(x,y),转动中心坐标为(e x,-e y)。
Figure PCTCN2020100957-appb-000003
Figure PCTCN2020100957-appb-000004
将波发生器函数与偏移量(e x,e y)分别带入上式中,带入下式中,可得实际椭圆参数的a,b。
W3、建立理论偏心状态下得柔轮变形函数修正模型A
在基准坐标系O中,其偏心状态下得柔轮变形函数修正模型,包含两部分,即波发生器偏心误差修正模型与间隔偏心误差修正模型。
A=D+τ
波发生器偏心误差模型为标准状态下得波发生器函数B与偏心状态下得波发生器函数模型C之间得差值函数D:
D=B-C
其中:
Figure PCTCN2020100957-appb-000005
C:通过激光测距仪进行测量得波发生器函数
间隔偏心误差修正模型是指柔性轴承与柔轮得厚度在偏心状态下得误差模型,为标准值与偏心值之间得插值函数τ。
τ=β-β 1
β为理论状态下得间隔变化函数;β 1为偏心状态下得间隔变化函数。
理论状态下得间隔变化函数β 1
Figure PCTCN2020100957-appb-000006
其中Δ为厚度。
偏心状态下得间隔变化函数β 1:
将柔轮所在椭圆函数参数a1,b1与波发生器参数a2,b2分别带入上式(1-2)中,分别得(x 1,y 1),(x 2,y 2),带入下式中,可得。
Figure PCTCN2020100957-appb-000007
W4、测量同轴的标准圆、波发生器参数C与柔轮变形参数E
通过转台与激光测距仪的系统装置,分别测量同轴的标准圆、波发生器与柔轮变形参数。得到波发生器在偏心作用下得变形函数C。
W5、建立该偏心状态下的修正模型A1
通过测量的偏心下的标准圆参数,得到其偏心量(e x,e y),并将其带入式中,得到在偏心(e x,e y)状态下的柔轮径向变形函数修正模型A1。
W6、修正后的柔轮径向变形函数
将W5中建立的在偏心(e x,e y)状态下的柔轮径向变形修正模型A1,引入偏心 状态下测量的柔轮变形函数模型E中:
Q=E+A1
Q为标准状态下的柔轮径向变形函数模型。
本发明具有的优点和积极效果是:
本发明通过分析偏心状态下标准圆的轨迹变化,得到其偏移量;通过分析偏心状态下的标准椭圆的变化,得到其实际加工波发生器的误差参数;以波发生器的检测为标定基准,通过一定算法修正柔轮在偏心状态下的变形函数,获得较为精确的变形函数模型;解决装置精度过高的问题。
附图说明
图1安装偏心状态下的柔轮径向变形的检测流程图;
图2柔轮径向变形的检测装置示意图。
图3柔轮变形函数修正模型的表征。
图4偏心状态下柔轮径向变形的实验流程。
其中:1-转台、2-底座、3-回转轴、4-轴承、5-波发生器、6-柔轮。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例并配合附图详细说明如下:
一种安装偏心状态下谐波减速器柔轮径向变形的检测方法,如图1所示,该方法以波发生器中心为原点,建立基准坐标系,通过测量与波发生器同轴的标准圆,计算出波发生器中心与转台回转中心的偏移量(e x,e y);将测量波发生器在偏心状态下的径向变形函数与偏移量(e x,e y)带入理论椭圆偏心数学模型中,得到实际椭圆的参数(a,b);将偏移量(e x,e y)与椭圆参数(a,b)带入柔轮径向跳动修正模型中,得到该偏心状态下的修正模型;测量柔轮变形函数,引入获得的修正模型,得到标准状态下的柔轮径向变形函数。
如图2所示,其装置安装在转台1上,通过底座2将回转轴3安装在转台2上,回转轴上安装标准轴承4与波发生器5,上端柔轮6通过支架固定。
该方法包含以下步骤:
W1、建立基准坐标系
以波发生器中心为原点,建立测量基准坐标系O。在该坐标下,转台回转中心的偏心坐标为(e x,e y)。
W2、建立理论偏心状态下的标准圆与椭圆函数模型
1)偏心状态下的标准圆
在基准坐标系O中,r为标准圆半径;e x为测量线偏移量;r 0为偏心圆半径;d 0为测量点距离变化量;θ为转动角度。其偏心状态下的标准圆函数模型为:
Figure PCTCN2020100957-appb-000008
其中:
Figure PCTCN2020100957-appb-000009
通过以上公式,可得偏心状态下得标准圆函数模型:d 0=f(θ)。将检测的标准圆参数分别带入上式中,得实际圆偏移量(e x,e y)。
2)偏心状态下的椭圆曲线
以椭圆圆心为中心建立坐标系,θ为转动角度,设测量线与椭圆焦点为(x,y),转动中心坐标为(e x,-e y)。
Figure PCTCN2020100957-appb-000010
Figure PCTCN2020100957-appb-000011
将波发生器函数与偏移量(e x,e y)分别带入上式中,带入下式中,可得实际椭圆参数的a,b。
W3、建立理论偏心状态下得柔轮变形函数修正模型A
在基准坐标系O中,其偏心状态下得柔轮变形函数修正模型,包含两部分, 即波发生器偏心误差修正模型与间隔偏心误差修正模型。
A=D+τ
波发生器偏心误差模型为标准状态下得波发生器函数B与偏心状态下得波发生器函数模型C之间得差值函数D:
D=B-C
其中:
Figure PCTCN2020100957-appb-000012
C:通过激光测距仪进行测量得波发生器函数
间隔偏心误差修正模型是指柔性轴承与柔轮得厚度在偏心状态下得误差模型,为标准值与偏心值之间得插值函数τ。
τ=β-β 1
β为理论状态下得间隔变化函数;β 1为偏心状态下得间隔变化函数。
理论状态下得间隔变化函数β 1
Figure PCTCN2020100957-appb-000013
其中Δ为厚度。
偏心状态下得间隔变化函数β 1:
将柔轮所在椭圆函数参数a1,b1与波发生器参数a2,b2分别带入上式(1-2)中,分别得(x 1,y 1),(x 2,y 2),带入下式中,可得。
Figure PCTCN2020100957-appb-000014
W4、测量同轴的标准圆、波发生器参数C与柔轮变形参数E
通过转台与激光测距仪的系统装置,分别测量同轴的标准圆、波发生器与柔轮变形参数。得到波发生器在偏心作用下得变形函数C。
W5、建立该偏心状态下的修正模型A1
通过测量的偏心下的标准圆参数,得到其偏心量(e x,e y),并将其带入式中,得到在偏心(e x,e y)状态下的柔轮径向变形函数修正模型A1。
W6、修正后的柔轮径向变形函数
将W5中建立的在偏心(e x,e y)状态下的柔轮径向变形修正模型A1,引入偏心状态下测量的柔轮变形函数模型E中:
Q=E+A1
Q为标准状态下的柔轮径向变形函数模型。
本发明具有的优点和积极效果是:
本发明通过分析偏心状态下标准圆的轨迹变化,得到其偏移量;通过分析偏心状态下的标准椭圆的变化,得到其实际加工波发生器的误差参数;以波发生器的检测为标定基准,通过一定算法修正柔轮在偏心状态下的变形函数,获得较为精确的变形函数模型;解决装置精度过高的问题。

Claims (2)

  1. 一种安装偏心状态下谐波减速器柔轮径向变形的检测方法,其特征在于:包含以下步骤:
    W1、建立基准坐标系;
    以波发生器中心为原点,建立测量基准坐标系O;在该坐标下,转台回转中心的偏心坐标为(e x,e y);
    W2、建立理论偏心状态下的标准圆与椭圆函数模型;
    1)偏心状态下的标准圆
    在基准坐标系O中,r为标准圆半径;e x为测量线偏移量;r 0为偏心圆半径;d 0为测量点距离变化量;θ为转动角度;其偏心状态下的标准圆函数模型为:
    Figure PCTCN2020100957-appb-100001
    其中:
    Figure PCTCN2020100957-appb-100002
    通过以上公式,得偏心状态下得标准圆函数模型:d 0=f(θ);将检测的标准圆参数分别带入上式中,得实际圆偏移量(e x,e y);
    2)偏心状态下的椭圆曲线;
    以椭圆圆心为中心建立坐标系,θ为转动角度,设测量线与椭圆焦点为(x,y),转动中心坐标为(e x,-e y);
    Figure PCTCN2020100957-appb-100003
    Figure PCTCN2020100957-appb-100004
    将波发生器函数与偏移量(e x,e y)分别带入上式中,带入下式中,得实际椭圆 参数的a,b;
    W3、建立理论偏心状态下得柔轮变形函数修正模型A;
    在基准坐标系O中,其偏心状态下得柔轮变形函数修正模型,包含两部分,即波发生器偏心误差修正模型与间隔偏心误差修正模型;
    A=D+τ
    波发生器偏心误差模型为标准状态下得波发生器函数B与偏心状态下得波发生器函数模型C之间得差值函数D:
    D=B-C
    其中:
    Figure PCTCN2020100957-appb-100005
    C:通过激光测距仪进行测量得波发生器函数;
    间隔偏心误差修正模型是指柔性轴承与柔轮得厚度在偏心状态下得误差模型,为标准值与偏心值之间得插值函数τ;
    τ=β-β 1
    β为理论状态下得间隔变化函数;β 1为偏心状态下得间隔变化函数;
    理论状态下得间隔变化函数β 1
    Figure PCTCN2020100957-appb-100006
    其中Δ为厚度;
    W4、测量同轴的标准圆、波发生器参数C与柔轮变形参数E
    通过转台与激光测距仪的系统装置,分别测量同轴的标准圆、波发生器与柔轮变形参数;得到波发生器在偏心作用下得变形函数C;
    W5、建立该偏心状态下的修正模型A1;
    通过测量的偏心下的标准圆参数,得到其偏心量(e x,e y),并将其带入式中,得到在偏心(e x,e y)状态下的柔轮径向变形函数修正模型A1;
    W6、修正后的柔轮径向变形函数;
    将W5中建立的在偏心(e x,e y)状态下的柔轮径向变形修正模型A1,引入偏心状态下测量的柔轮变形函数模型E中:
    Q=E+A1
    Q为标准状态下的柔轮径向变形函数模型。
  2. 根据权利要求1所述的一种安装偏心状态下谐波减速器柔轮径向变形的检测方法,其特征在于:
    偏心状态下得间隔变化函数β 1
    将柔轮所在椭圆函数参数a1,b1与波发生器参数a2,b2分别带入上式(1-2)中,分别得(x 1,y 1),(x 2,y 2),带入下式中,得:
    Figure PCTCN2020100957-appb-100007
PCT/CN2020/100957 2020-02-14 2020-07-09 一种安装偏心状态下谐波减速器柔轮径向变形的检测方法 WO2021159662A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/521,756 US20220065746A1 (en) 2020-02-14 2021-11-08 Detection method for radial deformation of flexspline of harmonic reducer under installation eccentricity state

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010092620.8 2020-02-14
CN202010092620.8A CN111189406B (zh) 2020-02-14 2020-02-14 一种安装偏心状态下谐波减速器柔轮径向变形的检测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/521,756 Continuation US20220065746A1 (en) 2020-02-14 2021-11-08 Detection method for radial deformation of flexspline of harmonic reducer under installation eccentricity state

Publications (1)

Publication Number Publication Date
WO2021159662A1 true WO2021159662A1 (zh) 2021-08-19

Family

ID=70708278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100957 WO2021159662A1 (zh) 2020-02-14 2020-07-09 一种安装偏心状态下谐波减速器柔轮径向变形的检测方法

Country Status (3)

Country Link
US (1) US20220065746A1 (zh)
CN (1) CN111189406B (zh)
WO (1) WO2021159662A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114087989A (zh) * 2021-11-19 2022-02-25 江苏理工学院 汽车缸体工件定位孔圆心三维坐标测量方法及系统
CN115615373A (zh) * 2022-12-19 2023-01-17 山东九博智能装备有限公司 一种谐波齿轮径向跳动检测装置、检测方法及控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111189406B (zh) * 2020-02-14 2021-09-14 北京工业大学 一种安装偏心状态下谐波减速器柔轮径向变形的检测方法
CN111929233B (zh) * 2020-05-14 2023-03-31 北京工业大学 一种测量材料周期性变形情况下的摩擦系数测量装置
CN112033296A (zh) * 2020-08-07 2020-12-04 北京工业大学 一种谐波传动柔轮径向变形量可重构测量装置
CN114800048B (zh) * 2022-05-07 2023-07-18 西安理工大学 一种齿轮在机测量过程中基于齿距测量的径跳检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110093155A1 (en) * 2009-10-15 2011-04-21 Mando Corporation Method and system for detecting reducer fault
CN104275597A (zh) * 2014-09-19 2015-01-14 北京卫星制造厂 一种装配高精度谐波齿轮减速器的工装组件及装配方法
CN106441874A (zh) * 2016-10-26 2017-02-22 赛达(上海)传动工程有限公司 适用于双轮铣铣削轮减速器测试的台架试验台及其测试控制方法
CN107121279A (zh) * 2017-05-15 2017-09-01 东莞市鑫拓智能机械科技有限公司 一种谐波减速器微小模数柔轮双面啮合自动检查仪
CN108645323A (zh) * 2018-06-21 2018-10-12 北京工业大学 安装误差影响下的渐开线圆柱直齿轮齿廓偏差评定方法
CN111189406A (zh) * 2020-02-14 2020-05-22 北京工业大学 一种安装偏心状态下谐波减速器柔轮径向变形的检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110688614B (zh) * 2019-09-18 2022-10-28 北京工业大学 一种谐波减速器杯形柔轮多齿啮合复合应力求解方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110093155A1 (en) * 2009-10-15 2011-04-21 Mando Corporation Method and system for detecting reducer fault
CN104275597A (zh) * 2014-09-19 2015-01-14 北京卫星制造厂 一种装配高精度谐波齿轮减速器的工装组件及装配方法
CN106441874A (zh) * 2016-10-26 2017-02-22 赛达(上海)传动工程有限公司 适用于双轮铣铣削轮减速器测试的台架试验台及其测试控制方法
CN107121279A (zh) * 2017-05-15 2017-09-01 东莞市鑫拓智能机械科技有限公司 一种谐波减速器微小模数柔轮双面啮合自动检查仪
CN108645323A (zh) * 2018-06-21 2018-10-12 北京工业大学 安装误差影响下的渐开线圆柱直齿轮齿廓偏差评定方法
CN111189406A (zh) * 2020-02-14 2020-05-22 北京工业大学 一种安装偏心状态下谐波减速器柔轮径向变形的检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, JIANG: "Reliability Based-Design Optimization and Transmission Accuracy Analysis of Harmonic Drive Gear Speed Reducer", CHINESE MASTER’S THESES FULL-TEXT DATABASE, 18 May 2012 (2012-05-18), XP055835270 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114087989A (zh) * 2021-11-19 2022-02-25 江苏理工学院 汽车缸体工件定位孔圆心三维坐标测量方法及系统
CN114087989B (zh) * 2021-11-19 2023-09-22 江苏理工学院 汽车缸体工件定位孔圆心三维坐标测量方法及系统
CN115615373A (zh) * 2022-12-19 2023-01-17 山东九博智能装备有限公司 一种谐波齿轮径向跳动检测装置、检测方法及控制方法

Also Published As

Publication number Publication date
US20220065746A1 (en) 2022-03-03
CN111189406B (zh) 2021-09-14
CN111189406A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2021159662A1 (zh) 一种安装偏心状态下谐波减速器柔轮径向变形的检测方法
CN103615998B (zh) 齿轮测量中心工件装夹倾斜与偏心误差测量与补偿方法
CN109186487A (zh) 一种管道椭圆度自动检测设备及其检测方法
WO2021003928A1 (zh) 工件轮廓检测的恒线速度控制方法
CN110470243B (zh) 基于非接触传感器且工件可偏置的内圆度测量方法及装置
CN111060061B (zh) 一种渐开线齿轮样板齿廓测量与修正方法
CN102890475A (zh) 大型回转体零件表面轮廓误差测量及实时补偿方法
CN107806836A (zh) 一种基于五轴联动点光源的精锻叶片型面检测方法
CN205981061U (zh) 一种角度标记工具
CN114253217B (zh) 带有自修正功能的五轴机床rtcp自动标定方法
CN106017273B (zh) 大型屏蔽电机飞轮锥面精密测量方法
CN107727023A (zh) 基于三点法的杂交四点法回转误差、圆度误差计算方法
CN107228614B (zh) 一种六缸曲轴相位角的检测装置及检测方法
CN101439412B (zh) 自动测量误差加工半组合式曲轴主轴颈基正圆的方法及设备
CN104390624A (zh) 倾斜圆锥锥角水平旋转测量的方法
CN110146290B (zh) 一种基于定位普遍法则的滚动轴承外圈缺陷定位诊断方法
CN107957272B (zh) 一种使用正交双置陀螺仪矫正零偏的方法
TW201517496A (zh) 馬達參數量測方法與馬達參數量測系統
CN114838643B (zh) 一种航空发动机叶片叠合轴基准检测装置及方法
CN216348317U (zh) 一种曲轴飞轮定位销孔角度快检工具
CN105865782B (zh) 一种rv减速器回转传动精度误差测量试验台及测量方法
CN107192368B (zh) 一种三点构面定轴的旋转角度测量方法
RU2243499C1 (ru) Способ измерения поверхностей вращения на кругломере
CN116448046B (zh) 一种圆柱形零件端面垂直度误差的测量装置及方法
CN114777607B (zh) 一种回转体同轴度误差检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919174

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20919174

Country of ref document: EP

Kind code of ref document: A1