WO2021003928A1 - 工件轮廓检测的恒线速度控制方法 - Google Patents

工件轮廓检测的恒线速度控制方法 Download PDF

Info

Publication number
WO2021003928A1
WO2021003928A1 PCT/CN2019/117478 CN2019117478W WO2021003928A1 WO 2021003928 A1 WO2021003928 A1 WO 2021003928A1 CN 2019117478 W CN2019117478 W CN 2019117478W WO 2021003928 A1 WO2021003928 A1 WO 2021003928A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
contour
measured
scanning
linear velocity
Prior art date
Application number
PCT/CN2019/117478
Other languages
English (en)
French (fr)
Inventor
周向东
唐小琦
卢少武
颜昌亚
张庆祥
曾祥兵
Original Assignee
东莞市三姆森光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市三姆森光电科技有限公司 filed Critical 东莞市三姆森光电科技有限公司
Publication of WO2021003928A1 publication Critical patent/WO2021003928A1/zh
Priority to ZA2022/01073A priority Critical patent/ZA202201073B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Definitions

  • the present invention belongs to the technical field of detection of mechanical manufacturing, and more specifically, relates to a method for controlling a constant linear velocity when detecting a workpiece contour.
  • the traditional method of detecting the contour of the workpiece is that the workpiece and the sensor are kept at a certain distance and vertical, and the workpiece is rotated at an equal angle, and the sensor signal is read point by point.
  • the sampling on the contour is unequal, which affects the contour fitting accuracy.
  • the invention discloses a constant linear speed control method during the contour detection of a workpiece.
  • the layout of the workpiece and the laser displacement sensor of the present invention is that the position of the laser displacement sensor is fixed.
  • the constant linear velocity scanning point is planned by establishing the kinematic model of the scanning point pose and axis movement , Real-time calculation of the movement of the XYC axis corresponding to the pose of each scan point, and drive and control the translation and rotation of the worktable (X/Y/C three directions) to ensure that the focus of the sensor is always on the surface of the workpiece contour, and The relative movement of the workpiece and the focus of the laser displacement sensor is kept at a constant speed.
  • the contour of the workpiece to be measured is an XY plane contour.
  • the contour is composed of two types of geometric elements: straight line and circular arc.
  • the connection relationship between adjacent elements in the contour must satisfy G1 continuous, that is, the normal vector at the connection point is the same, The tangent included angle is zero;
  • the contour of the workpiece to be measured can be generated by drawing software and saved in DXF format;
  • S4 Constant linear velocity scanning point plan, according to the laser displacement sensor sampling frequency, sampling interval and interpolation cycle, calculate the scanning speed per cycle; because the sampling frequency, sampling interval and interpolation cycle remain fixed in one measurement, the planning is The scanning speed is constant; take the geometric elements of the contour of the workpiece to be measured in turn, calculate the step length of each cycle according to the calculated scanning speed, and use the step length to discretize the geometric elements, and calculate the position and normal vector of the scanning point corresponding to each cycle;
  • the present invention adopts the laser displacement sensor to fix the position, by controlling the translation and rotation movement of the worktable (X/Y/C three directions), the workpiece and the laser displacement sensor focus will move relative to each other.
  • the contour is divided into small equidistant line segments according to the requirements of constant linear velocity, and the measurement scanning points are planned and calculated.
  • the established kinematics model is used to calculate the corresponding scanning point Axis movement displacement amount, while driving and controlling platform movement. Since the calculation process is carried out in each interpolation control cycle, a good constant linear velocity control effect can be obtained.
  • Figure 1 is a schematic diagram of the structure of a measurement and control platform device
  • Figure 2 is a flow chart of constant linear velocity control of the contour of the workpiece to be measured
  • Figure 3 is a schematic diagram of the calculation of the coordinates of the scanning point of the linear element
  • Figure 4 is a schematic diagram of the normal vector calculation of the linear contour scanning point
  • Figure 5 is a schematic diagram of the motion transformation model of the present invention.
  • Fig. 6 is a schematic diagram of the motion transformation process of Fig. 5;
  • Figure 7 is a schematic diagram of the motion parameter calculation of the present invention.
  • the present invention provides a constant linear velocity control method during workpiece contour detection.
  • the specific steps are as follows:
  • the platform has an XY translation axis, a C rotation axis, and a laser displacement sensor; the workpiece to be measured is set on the platform, and the workpiece is driven by the axis for translation and rotation.
  • the normal vector of the workpiece surface and the laser sensor can be guaranteed during the detection process. In the same direction, while keeping the focus of the laser sensor always on the contour of the workpiece surface.
  • the contour of the workpiece to be measured is an XY plane contour, which is composed of two types of geometric elements: straight line and circular arc; the connection relationship between adjacent elements in the contour must satisfy G1 continuous, that is, the normal vector at the connection point is the same, and the tangent direction at the connection point The included angle is zero; the contour must be closed;
  • the contour of the workpiece to be measured can be generated by drawing software and saved in DXF format.
  • the sampling frequency, sampling interval and interpolation period of the laser displacement sensor calculate the scanning speed of each cycle; because the sampling frequency, sampling interval and interpolation period are kept fixed in one measurement, the planned scanning speed is constant; take the workpiece to be tested in turn
  • the geometric elements of the contour according to the calculated scanning speed, calculate the step length of each period of scanning, and use the step length to discretize the geometric elements, and calculate the position and normal vector of the scanning point corresponding to each period.
  • the specific calculation steps are as follows:
  • the position and normal vector of the scanning point 4 are determined by the geometric characteristics of the profile, the sampling frequency and the sampling interval of the measurement. Assuming the probe sampling frequency f (HZ) and the sampling interval l (mm), the relative velocity v (mm/s) of the laser displacement sensor 1 relative to the contour of the workpiece 2 to be measured can be calculated as:
  • the sampling interval of the sampling frequency is a fixed value, so the scanning speed v is guaranteed to be constant.
  • a fixed moving step is obtained, and the contour is divided into equidistant scanning points 4 according to the cycle, so as to realize the constant linear velocity scanning point 4 planning.
  • the position and normal vector of the scanning point 4 can be calculated. Since the contour of the workpiece 2 to be measured includes straight line and circular arc types, it needs to be calculated according to different types. In this embodiment, the linear type is taken as an example for description.
  • v is the scanning speed
  • T is the interpolation period
  • I the tangent to the contour of the workpiece 2 to be measured.
  • the starting point of the contour of the workpiece 2 to be measured during scanning Known, so the subsequent points can be calculated by recursive formula, the tangent of the straight line It can be calculated from the start and end information of the straight line.
  • the normal vector of the scanning point 4 is always perpendicular to the tangent direction of the contour of the workpiece 2 to be measured. After calculating the tangent of the contour of the workpiece 2 to be measured, implement a 90-degree transformation ROT(90) on the tangent to obtain the scanning point The law vector. For a straight profile, as shown in Figure 4. S5, constant linear velocity scanning control
  • the measuring device has a translation axis XY axis and a rotation axis C. Place the workpiece on the platform, and adjust to ensure that the coordinate system of the workpiece to be measured coincides with the coordinate system M of the machine tool (the coordinate system M in Figure 5 is the origin of the machine tool coordinate system and the center of rotation at the same time), and the laser displacement sensor 1 is installed at a fixed position.
  • the vector of focus 3 in the machine coordinate system M is The laser beam direction is
  • the scanning point can be set through the rotation of the C axis and the XY translation movement. Perform coordinate transformation and focus on laser Coincidence, while ensuring the normal vector of the scanning point And laser beam direction parallel.
  • C, X, and Y are transformation parameters, which are rotation and translation respectively.
  • Equation 3 the relationship established by Equation 3, when with it is known, the transformation parameters C and X and Y can be obtained by solving the equations formed by equations 3 and 4. Since the transformation is produced by the movement of the axis, X, Y and C are the movements of the XYC axis respectively.
  • the specific calculation first calculates the rotation angle C and then the translation amount, the specific process is as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种工件(2)轮廓检测的恒线速度控制方法,包括如下步骤:将激光位移传感器(1)位置固定,通过控制工作台的平移和旋转运动,工件(2)和激光位移传感器(1)的焦点(3)产生相对运动,在运动过程中,保证激光位移传感器(1)的焦点(3)始终在工件(2)轮廓的表面,且激光位移传感器(1)的焦点(3)相对于工件(2)运动的线速度保持恒定。该方法解决了传统轮廓检测中采用等角度旋转但轮廓上不等距的问题,具有工件(2)轮廓恒线速运动的优点,保证了工件(2)轮廓上检测点的均匀选取。

Description

工件轮廓检测的恒线速度控制方法 技术领域
本发明属于机械制造的检测技术领域,更具体地,涉及一种工件轮廓检测时的恒线速度控制方法。
背景技术
传统的工件轮廓的检测方法是工件和传感器保持一定的距离并垂直,工件做等角度转动,逐点读取传感器信号。这种检测方法,对于非圆工件,在轮廓上的取样是不等间距的,影响轮廓的拟合精度。
发明内容
本发明公开一种工件轮廓检测时的恒线速度控制方法。
本发明的工件和激光位移传感器的布局是激光位移传感器位置固定,为了满足传感器固定采样频率下等距采样的需求,通过建立扫描点位姿和轴运动的运动学模型,规划恒线速扫描点,实时计算每周期扫描点位姿对应的XYC轴的运动量,并驱动控制工作台的平移和旋转运动(X/Y/C三个方向),保证传感器的焦点始终在工件轮廓的表面,并使工件和激光位移传感器焦点的相对运动保持恒速。
所述具体步骤如下:
S1、构建测控平台,该平台具有XY平移轴和C旋转轴,以及激光位移传感器;待测工件设在平台上,由轴驱动进行平移和旋转,通过正确的移动,可以保证工件表面和激光传感器保持垂直等距的关系;
S2、工件轮廓描述,待测工件的轮廓为XY平面轮廓,轮廓由直线和圆弧2类几何元素构成,轮廓内相邻元素的连接关系需满足G1连续,即连接点处的法矢相同、切线夹角为零;待测工件的轮廓可由绘图软件生成,并保存成DXF格式;
S3、待测工件轮廓导入和预处理,读入和解析包含轮廓的DXF文件,获取待测工件的轮廓几何信息,对待测工件的轮廓元素检查和排序,构造首尾相接的有序的轮廓;
S4:恒线速度扫描点规划,根据激光位移传感器采样频率、采样间隔以及插补周期,计算每周期的扫描速度;由于采样频率、采样间隔和插补周期在一次测量中保持固定,因此规划的扫描速度恒定;依次取待测工件轮廓的几何元素,根据计算的扫描速度,计算每周期扫描的步长,并用步长对几何元素离散,计算每周期对应的扫描点位置和法矢;
S5、恒线速度扫描控制,在每个插补周期,根据运动学逆变换公式,实时计算扫描点位姿对应的XYC轴的运动量,并驱动平台进行平移和旋转运动,保证传感器焦点相对于待测工件轮廓扫描点的运动保持恒线速度。
本发明由于采用了激光位移传感器位置固定,通过控制工作台的平移和旋转运动(X/Y/C三个方向),工件和激光位移传感器焦点产生相对运动,在已知待测工件轮廓模型的前提下,根据采样参数将轮廓按恒线速度要求划分为等距的小线段,进行测量扫描点的规划和计算,在每个插补周期,通过建立的运动学模型计算每个扫描点对应的 轴运动位移量,同时驱动和控制平台运动。由于该计算过程在每个插补控制周期内进行,因此可以获得很好的恒线速度控制效果。
附图说明
图1是一种测控平台装置结构示意图;
图2是一种待测工件轮廓的恒线速度控制流程图;
图3是直线元素扫描点坐标计算示意图;
图4是直线轮廓扫描点法矢计算示意图;
图5是本发明的运动变换模型示意图;
图6是图5的运动变换过程示意图;
图7是本发明的运动参数计算原理图。
具体实施方式
为使本发明目的、技术方案及优点更加清楚明确,以下参照附图3~7及对应公式,对本发明的恒线速度控制的结构和原理进行进一步的详细说明。
本发明提供一种工件轮廓检测时的恒线速度控制方法,具体步骤如下:
S1、构建测控平台
该平台具有XY平移轴和C旋转轴,以及激光位移传感器;待测工件设在平台上,由轴驱动进行平移和旋转,通过正确的移动,可以保证检测过程中,工件表面法矢和激光传感器同向、同时保持激光传感器焦点始终在工件表面轮廓。
S2、工件轮廓描述
为了满足检测条件、待测工件轮廓需要满足:
待测工件的轮廓为XY平面轮廓,轮廓由直线和圆弧2类几何元素构成;轮廓内相邻元素的连接关系需满足G1连续,即连接点处的法矢相同,连接点处的切向夹角为零;轮廓必须是封闭的;
待测工件的轮廓可由绘图软件生成,并保存成DXF格式。
S3、待测工件轮廓导入和预处理
待测工件轮廓导入和预处理。由于在进行绘制和编辑轮廓时,几何元素的顺序不一定是有序的,因此读入轮廓元素后,需要对待测工件的轮廓元素进行有序化和封闭性检查。
S4、恒线速度扫描点规划
根据激光位移传感器采样频率、采样间隔以及插补周期,计算每周期的扫描速度;由于采样频率、采样间隔和插补周期在一次测量中保持固定,因此规划的扫描速度恒定;依次取待测工件轮廓的几何元素,根据计算的扫描速度,计算每周期扫描的步长,并用步长对几何元素离散,计算每周期对应的扫描点位置和法矢。具体计算步骤如下:
1)恒线速度计算
扫描点4的位置和法矢由轮廓的几何特性以及测量的采样频率及采样间隔等决定。假设测头采样频率f(HZ),采样间隔l(mm),可计算激光位移传感器1相对与待测工件2的轮廓的相对运动速度v(mm/s)为:
v=l·f     (1)
在测量过程中,采样频率采样间隔为固定数值,因此保证扫描速 度v为恒速。以此恒速,获取固定移动步长,将轮廓按周期拆分成等距的扫描点4,实现恒线速度扫描点4规划。
2)扫描点计算
已知扫描速度v、待测工件2的几何轮廓及插补周期,可计算出扫描点4的位置和法矢。由于待测工件2的轮廓包括直线和圆弧类型,因此需要根据不同的类型进行计算。本实施方案中,以直线类型为例进行说明。
对于直线类型,其递推计算如图3所示意,为:
Figure PCTCN2019117478-appb-000001
其中v为扫描速度,T为插补周期,
Figure PCTCN2019117478-appb-000002
为待测工件2的轮廓的切线。扫描时待测工件2的轮廓的起点
Figure PCTCN2019117478-appb-000003
已知,因此后续点可通过递推公式计算出来,直线的切线
Figure PCTCN2019117478-appb-000004
可通过直线起终点的信息计算出来。
3)扫描点法矢计算
扫描点4法矢总是垂直于待测工件2的轮廓的切线方向,计算出待测工件2的轮廓切线切线后,对切线实施一个旋转90度的变换ROT(90),就可获得扫描点的法矢。对于直线轮廓,如图4所示意。S5、恒线速度扫描控制
在每个插补周期,根据建立的变换模型计算实时计算扫描点4位姿对应的XYC轴的运动量,并驱动平台进行平移和旋转运动,保证激光位移传感器1的焦点相对于待测工件2的轮廓扫描点4的运动保持恒线速度。具体步骤如下:
1)建立变换模型
如图5,该测量设备具有平移轴XY轴和旋转轴C。将工件安放于平台,通过调整保证待测工件坐标系和机床坐标系M重合(图5中坐标系M为机床坐标系原点,同时也为旋转中心),激光位移传感器1安装到固定位置,激光焦点3在机床坐标系M下的矢量为
Figure PCTCN2019117478-appb-000005
激光光束方向为
Figure PCTCN2019117478-appb-000006
在进行待测工件2的轮廓上任意一点位置的扫描测量时,如图6所示,可通过C轴的旋转和XY平移运动,将扫描点
Figure PCTCN2019117478-appb-000007
进行坐标变换,并和激光焦点
Figure PCTCN2019117478-appb-000008
重合,同时保证扫描点法矢
Figure PCTCN2019117478-appb-000009
和激光光束方向
Figure PCTCN2019117478-appb-000010
平行。
由此建立的变换模型如下:
如果扫描点4位置为
Figure PCTCN2019117478-appb-000011
法矢为
Figure PCTCN2019117478-appb-000012
激光焦点位置为
Figure PCTCN2019117478-appb-000013
方向为
Figure PCTCN2019117478-appb-000014
通过M r旋转变换矩阵和M t平移变换矩阵分别对
Figure PCTCN2019117478-appb-000015
Figure PCTCN2019117478-appb-000016
施加变换,使变换后的
Figure PCTCN2019117478-appb-000017
Figure PCTCN2019117478-appb-000018
同向,
Figure PCTCN2019117478-appb-000019
Figure PCTCN2019117478-appb-000020
重合,则变换公式如下:
Figure PCTCN2019117478-appb-000021
Figure PCTCN2019117478-appb-000022
其中
Figure PCTCN2019117478-appb-000023
Figure PCTCN2019117478-appb-000024
矩阵中C,X,Y为变换参数,分别为旋转和平移量。
2)XYC运动量计算
如图7所示,由式3建立的关系,当
Figure PCTCN2019117478-appb-000025
Figure PCTCN2019117478-appb-000026
已知时,通过解 式3、4构成的方程组,便可获得变换参数C和X、Y。由于变换是由轴的运动产生的,因此X、Y和C分别为XYC三轴的运动量。具体计算先计算旋转角度C再计算平移量,具体过程如下:
由式3得:
Figure PCTCN2019117478-appb-000027
由于
Figure PCTCN2019117478-appb-000028
固定,总是为[1 0 0],因此解得旋转量C为:
C=acos(n x)(6)
由式4:
Figure PCTCN2019117478-appb-000029
解得平移量XY为:
X=q x-cos(C)·p x-sin(C)·p y     (8)
Y=q y+sin(C)·p x-cos(C)·p y     (9)

Claims (5)

  1. 一种工件轮廓检测时的恒线速度控制方法,包括如下步骤:
    S1、构建测控平台,该平台具有XY平移轴和C旋转轴,以及激光位移传感器;待测工件设在平台上,由轴驱动进行平移和旋转,保证工件表面和激光传感器保持垂直等距的关系;
    S2、工件轮廓描述,待测工件的轮廓为XY平面轮廓,轮廓由直线和圆弧两类几何元素构成,轮廓内相邻元素的连接关系需满足G1连续,待测工件的轮廓由绘图软件生成,并保存成DXF格式;
    S3、待测工件轮廓导入和预处理,读入和解析包含轮廓的DXF文件,获取待测工件的轮廓几何信息,对待测工件的轮廓元素检查和排序,构造首尾相接的有序的轮廓;
    S4:恒线速度扫描点规划,根据激光位移传感器采样频率、采样间隔以及插补周期,计算每周期的扫描速度;依次取待测工件轮廓的几何元素,根据计算的扫描速度,计算每周期扫描的步长,并用步长对几何元素离散,计算每周期对应的扫描点位置和法矢;
    S5、恒线速度扫描控制,在每个插补周期,根据运动学逆变换公式,实时计算扫描点位姿对应的XYC轴的运动量,并驱动平台进行平移和旋转运动,保证传感器焦点相对于待测工件轮廓扫描点的运动保持恒线速度。
  2. 根据权利要求1所述的工件轮廓检测时的恒线速度控制方法,其特征在于:所述恒线速度扫描点规划的具体计算步骤如下:
    1)恒线速度计算,
    扫描点的位置和法矢由轮廓的几何特性以及测量的采样频率及采样间隔等决定,假设测头采样频率f(HZ),采样间隔l(mm),可计算激光位移传感器1相对与待测工件的轮廓的相对运动速度v(mm/s)为:
    v=l·f    式1
    在测量过程中,采样频率采样间隔为固定数值,因此保证扫描速度v为恒速;以此恒速,获取固定移动步长,将轮廓按周期拆分成等距的扫描点,实现恒线速度扫描点规划;
    2)扫描点计算,
    已知扫描速度v、待测工件的几何轮廓及插补周期,可计算出扫描点4的位置和法矢。由于待测工件的轮廓包括直线和圆弧类型,因此需要根据不同的类型进行计算;
    对于直线类型,其递推计算为:
    Figure PCTCN2019117478-appb-100001
    其中v为扫描速度,T为插补周期,
    Figure PCTCN2019117478-appb-100002
    为待测工件2的轮廓的切线;扫描时待测工件的轮廓的起点
    Figure PCTCN2019117478-appb-100003
    已知,因此后续点可通过递推公式计算出来,直线的切线
    Figure PCTCN2019117478-appb-100004
    可通过直线起终点的信息计算出来;
    3)扫描点法矢计算,
    扫描点法矢总是垂直于待测工件的轮廓的切线方向,计算出待测工件的轮廓切线切线后,对切线实施一个旋转90度的变换 ROT(90),就可获得扫描点的法矢。
  3. 根据权利要求1或2所述的工件轮廓检测时的恒线速度控制方法,其特征在于:所述构建测控平台包括,将工件安放于平台,通过调整保证待测工件坐标系和机床坐标系M重合,激光位移传感器安装到固定位置,激光焦点在机床坐标系M下的矢量为
    Figure PCTCN2019117478-appb-100005
    激光光束方向为
    Figure PCTCN2019117478-appb-100006
    在进行待测工件的轮廓上任意一点位置的扫描测量时,通过C轴的旋转和XY平移运动,将扫描点
    Figure PCTCN2019117478-appb-100007
    进行坐标变换,并和激光焦点
    Figure PCTCN2019117478-appb-100008
    重合,同时保证扫描点法矢
    Figure PCTCN2019117478-appb-100009
    和激光光束方向
    Figure PCTCN2019117478-appb-100010
    平行。
  4. 根据权利要求3所述的工件轮廓检测时的恒线速度控制方法,其特征在于:由此建立的变换模型如下:
    如果扫描点位置为
    Figure PCTCN2019117478-appb-100011
    法矢为
    Figure PCTCN2019117478-appb-100012
    激光焦点位置为
    Figure PCTCN2019117478-appb-100013
    方向为
    Figure PCTCN2019117478-appb-100014
    通过M r旋转变换矩阵和M t平移变换矩阵分别对
    Figure PCTCN2019117478-appb-100015
    Figure PCTCN2019117478-appb-100016
    施加变换,使变换后的
    Figure PCTCN2019117478-appb-100017
    Figure PCTCN2019117478-appb-100018
    同向,
    Figure PCTCN2019117478-appb-100019
    Figure PCTCN2019117478-appb-100020
    重合,则变换公式如下:
    Figure PCTCN2019117478-appb-100021
    Figure PCTCN2019117478-appb-100022
    其中
    Figure PCTCN2019117478-appb-100023
    Figure PCTCN2019117478-appb-100024
    矩阵中C,X,Y为变换参数,分别为旋转和平移量。
  5. 根据权利要求4所述的工件轮廓检测时的恒线速度控制方法,其特征在于:所述实时计算扫描点位姿对应的XYC轴的运动量包括,
    由式3建立的关系,当
    Figure PCTCN2019117478-appb-100025
    Figure PCTCN2019117478-appb-100026
    已知时,通过解式3、4构成的方程组,便可获得变换参数C和X、Y;由于变换是由轴的运动产生的,因此X、Y和C分别为XYC三轴的运动量;具体计算先计算旋转角度C再计算平移量,具体过程如下:
    由式3得:
    Figure PCTCN2019117478-appb-100027
    由于
    Figure PCTCN2019117478-appb-100028
    固定,总是为[1 0 0],因此解得旋转量C为:
    C=a cos(n x)    (6)
    由式4:
    Figure PCTCN2019117478-appb-100029
    解得平移量XY为:
    X=q x-cos(C)·p x-sin(C)·p y    (8)
    Y=q y+sin(C)·p x-cos(C)·p y    (9)
PCT/CN2019/117478 2019-07-09 2019-11-12 工件轮廓检测的恒线速度控制方法 WO2021003928A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/01073A ZA202201073B (en) 2019-07-09 2022-01-24 Constant linear velocity control method for detecting contour of workpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910616495.3 2019-07-09
CN201910616495.3A CN110285773B (zh) 2019-07-09 2019-07-09 工件轮廓检测的恒线速度控制方法

Publications (1)

Publication Number Publication Date
WO2021003928A1 true WO2021003928A1 (zh) 2021-01-14

Family

ID=68022121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117478 WO2021003928A1 (zh) 2019-07-09 2019-11-12 工件轮廓检测的恒线速度控制方法

Country Status (3)

Country Link
CN (1) CN110285773B (zh)
WO (1) WO2021003928A1 (zh)
ZA (1) ZA202201073B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188447A (zh) * 2021-05-12 2021-07-30 深圳市国匠数控科技有限公司 一种提高高频激光扫描仪精度的办法
CN113804121A (zh) * 2021-08-26 2021-12-17 华东师范大学 一种多工件轮廓实时测量方法及测量系统
CN114739290A (zh) * 2022-04-01 2022-07-12 上海拓璞数控科技股份有限公司 线激光扫描化铣胶刻线的路径规划方法及系统
CN114943752A (zh) * 2022-05-31 2022-08-26 河南埃尔森智能科技有限公司 一种基于曲率特征描述的自适应轮廓模板识别配准方法
CN115656238A (zh) * 2022-10-17 2023-01-31 中国科学院高能物理研究所 一种微区xrf元素分析与多维成像方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285773B (zh) * 2019-07-09 2020-06-05 东莞市三姆森光电科技有限公司 工件轮廓检测的恒线速度控制方法
CN111157533B (zh) * 2020-01-16 2022-07-08 东莞市兆丰精密仪器有限公司 一种匀速三维连续插补激光检测方法
CN112907592A (zh) * 2021-04-15 2021-06-04 北京平恒智能科技有限公司 基于dxf的轮廓缺陷检测
CN113418461A (zh) * 2021-06-18 2021-09-21 红塔烟草(集团)有限责任公司 一种物流箱体形变检测方法及装置
CN113884020B (zh) * 2021-09-16 2022-06-28 苏州三姆森光电科技有限公司 一种3c产品内部长宽尺寸的测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619587A (en) * 1991-05-10 1997-04-08 Aluminum Company Of America System and method for contactlessly gauging the thickness of a contoured object, such as a vehicle wheel
CN101290212A (zh) * 2007-04-18 2008-10-22 六边形度量衡股份公司 扫描速度恒定的扫描探针
CN103398669A (zh) * 2013-07-30 2013-11-20 深圳市大族激光科技股份有限公司 一种用于测量自由曲面的多轴联动视觉检测方法和设备
CN103438828A (zh) * 2013-08-20 2013-12-11 厦门大学 一种激光检测螺杆转子端截形的方法
CN103954231A (zh) * 2014-03-28 2014-07-30 电子科技大学 冷弯成型过程中变形板带横截面轮廓的非接触式测量方法
CN105452802A (zh) * 2013-07-19 2016-03-30 株式会社尼康 形状测定装置、构造物制造系统、形状测定方法、构造物制造方法、形状测定程序、以及记录介质
CN108562243A (zh) * 2018-04-23 2018-09-21 西安工业大学 一种四轴叶片测量系统及方法
CN110285773A (zh) * 2019-07-09 2019-09-27 东莞市三姆森光电科技有限公司 工件轮廓检测的恒线速度控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750031B (zh) * 2009-12-09 2011-08-10 华中科技大学 一种二维轮廓形状的测量方法及测量装置
CN102944204A (zh) * 2012-11-12 2013-02-27 沈阳黎明航空发动机(集团)有限责任公司 利用二维测量机检测截面轮廓度的方法
CN103925902B (zh) * 2014-04-08 2016-11-02 北京工业大学 一种基于弧面凸轮等距模型的轮廓度误差测量装置及测量方法
CN103927786A (zh) * 2014-04-29 2014-07-16 盐城工学院 一种刀具刃口三维模型构建方法
CN104359415B (zh) * 2014-10-31 2017-05-24 广东工业大学 一种水火弯板角变形量测量方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619587A (en) * 1991-05-10 1997-04-08 Aluminum Company Of America System and method for contactlessly gauging the thickness of a contoured object, such as a vehicle wheel
CN101290212A (zh) * 2007-04-18 2008-10-22 六边形度量衡股份公司 扫描速度恒定的扫描探针
CN105452802A (zh) * 2013-07-19 2016-03-30 株式会社尼康 形状测定装置、构造物制造系统、形状测定方法、构造物制造方法、形状测定程序、以及记录介质
CN103398669A (zh) * 2013-07-30 2013-11-20 深圳市大族激光科技股份有限公司 一种用于测量自由曲面的多轴联动视觉检测方法和设备
CN103438828A (zh) * 2013-08-20 2013-12-11 厦门大学 一种激光检测螺杆转子端截形的方法
CN103954231A (zh) * 2014-03-28 2014-07-30 电子科技大学 冷弯成型过程中变形板带横截面轮廓的非接触式测量方法
CN108562243A (zh) * 2018-04-23 2018-09-21 西安工业大学 一种四轴叶片测量系统及方法
CN110285773A (zh) * 2019-07-09 2019-09-27 东莞市三姆森光电科技有限公司 工件轮廓检测的恒线速度控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188447A (zh) * 2021-05-12 2021-07-30 深圳市国匠数控科技有限公司 一种提高高频激光扫描仪精度的办法
CN113804121A (zh) * 2021-08-26 2021-12-17 华东师范大学 一种多工件轮廓实时测量方法及测量系统
CN113804121B (zh) * 2021-08-26 2024-05-17 华东师范大学 一种多工件轮廓实时测量方法及测量系统
CN114739290A (zh) * 2022-04-01 2022-07-12 上海拓璞数控科技股份有限公司 线激光扫描化铣胶刻线的路径规划方法及系统
CN114739290B (zh) * 2022-04-01 2024-01-26 上海拓璞数控科技股份有限公司 线激光扫描化铣胶刻线的路径规划方法及系统
CN114943752A (zh) * 2022-05-31 2022-08-26 河南埃尔森智能科技有限公司 一种基于曲率特征描述的自适应轮廓模板识别配准方法
CN114943752B (zh) * 2022-05-31 2024-03-29 河南埃尔森智能科技有限公司 一种基于曲率特征描述的自适应轮廓模板识别配准方法
CN115656238A (zh) * 2022-10-17 2023-01-31 中国科学院高能物理研究所 一种微区xrf元素分析与多维成像方法及系统

Also Published As

Publication number Publication date
CN110285773B (zh) 2020-06-05
ZA202201073B (en) 2022-05-25
CN110285773A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2021003928A1 (zh) 工件轮廓检测的恒线速度控制方法
US11359905B2 (en) Complex surface three-coordinate measuring device and error compensation method
US11484982B2 (en) Online CNC machine tool geometric/thermal error measurement and compensation system
CN108534679B (zh) 一种筒形件轴线位姿的无靶标自动测量装置及方法
CN105404238B (zh) 一种在机激光测量中测头位姿的线性化标定方法
US20150160049A1 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
CN107289876A (zh) 多轴联动的视觉、激光复合式非接触测量装置及测量方法
CN102430779B (zh) 一种测量自由曲面任意点处法向矢量的装置及其测量方法
CN107084674B (zh) 调整激光位移传感器的出射激光束通过回转中心的方法
CN109520421A (zh) 一种影像测头姿态的调整装置及其调整方法
CN106989670B (zh) 一种机器人协同的非接触式高精度大型工件跟踪测量方法
CN110186400B (zh) 摩擦焊接同轴度精度检测装置及其检测方法
CN108827187A (zh) 一种用于对工件进行三维轮廓测量的测量系统
CN106546190B (zh) 一种用于表面缺陷检测的机械手装置及方法
CN102873586A (zh) 数控加工工件曲率半径快速在线测量装置
Zhu et al. Semiclosed-loop motion control with robust weld bead tracking for a spiral seam weld beads grinding robot
CN102445171A (zh) 一种确定自由曲面上任意点处法向矢量的方法
CN109128540B (zh) 一种t型接头激光焊接焦点轨迹确定方法
CN207881649U (zh) 一种旋转式双激光轮廓测量装置
EP4015139A1 (en) Connecting rod rotary table and decoupling control method thereof
CN113182932A (zh) 基于工件外形扫描数据调整工件角度的复合机床
CN105115465B (zh) 一种摆线齿轮齿廓法向误差的测量方法及装置
CN110645935B (zh) 数控回转轴集成位移传感器安装偏置的精确校准方法
CN107957254A (zh) 测量数控机床工作台瞬时运动中心的实验装置与确定方法
CN110640546B (zh) 用于大型齿轮在机旁置测量的被测齿轮回转轴线测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937060

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937060

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937060

Country of ref document: EP

Kind code of ref document: A1