WO2021157915A1 - 레이저를 이용한 클리닝 단계를 포함하는 전극 제조방법, 상기 방법으로 제조된 전극 및 이를 포함하는 이차전지 - Google Patents
레이저를 이용한 클리닝 단계를 포함하는 전극 제조방법, 상기 방법으로 제조된 전극 및 이를 포함하는 이차전지 Download PDFInfo
- Publication number
- WO2021157915A1 WO2021157915A1 PCT/KR2021/000816 KR2021000816W WO2021157915A1 WO 2021157915 A1 WO2021157915 A1 WO 2021157915A1 KR 2021000816 W KR2021000816 W KR 2021000816W WO 2021157915 A1 WO2021157915 A1 WO 2021157915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mixture layer
- electrode
- electrode mixture
- current collector
- coated
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/351—Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0404—Machines for assembling batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M2010/4292—Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method of manufacturing an electrode including a cleaning step using a laser, an electrode manufactured by the method, and a secondary battery including the same.
- a lithium secondary battery is widely used as an energy source for various electronic products as well as various mobile devices in that it has high energy density and operating voltage and excellent preservation and lifespan characteristics.
- the secondary battery is attracting attention as an energy source for an electric vehicle or a hybrid electric vehicle, which is proposed as a method for solving air pollution such as conventional gasoline vehicles and diesel vehicles using fossil fuels.
- high-power batteries are required.
- the first electrode 10 has a structure in which a top-coated electrode mixture layer 12 and a back-coated electrode mixture layer 13 are formed on both surfaces of a current collector 11 .
- each of the electrode mixture layers 12 and 13 includes a holding portion to which the electrode mixture layer is applied and an uncoated portion to which the electrode mixture layer is not applied.
- the separation distance between the holding parts on which the electrode mixture layer is formed means the uncoated part width (D G ).
- D G uncoated part width
- an electrode is manufactured by top-coating an electrode mixture layer on one surface of the current collector 11 and then back-coating it on the opposite surface.
- the top/back-coated electrode mixture layer in which the top-coated electrode mixture layer 12 and the back-coated electrode mixture layer 13 are displaced from each other with respect to the current collector 11 are mismatched regions D M ) occurs.
- This mismatch area ( DM ) causes a decrease in the capacity of the electrode and a decrease in safety when applied to a secondary battery.
- FIG. 2 is a cross-sectional view illustrating a stacked structure of an electrode assembly manufactured according to the prior art.
- the conventional electrode assembly 40 has a structure in which a first electrode 10 and a second electrode 10 are formed on both sides with respect to a separator 30 .
- different sliding degrees 10a and 20a are shown in the boundary region of the electrode mixture layer.
- the sliding degree 20a of the tip of the second electrode holding part is greater than the sliding degree 10a of the tip of the first electrode holding part.
- the second electrode 20 is the negative electrode, the loading amount of the positive electrode to the negative electrode is greater than the preset reference value, and lithium precipitation occurs in the corresponding portion, which causes deterioration of the performance of the battery cell.
- the present invention has been devised to solve the above problems, and an object of the present invention is to provide a method for manufacturing an electrode including a cleaning step using a laser, an electrode manufactured by the method, and a secondary battery including the same.
- the present invention provides a method for manufacturing an electrode.
- the top-coated electrode mixture layer and the back-coated electrode mixture layer of the electrode current collector are irradiated with a laser along the boundary line of the holding part in contact with the uncoated part to form the holding part.
- Comprising the step of cleaning (cleaning) the end, the step of cleaning (cleaning), the line irradiating a laser to the top-coated electrode mixture layer and the back-coated electrode mixture layer of the electrode current collector is perpendicular to the electrode current collector in such a way that they correspond to each other.
- the process of irradiating a laser to the top-coated electrode mixture layer of the electrode current collector; And the process of irradiating the laser to the back-coated electrode mixture layer of the electrode current collector is performed at the same time.
- the process of irradiating a laser to the top-coated electrode mixture layer of the electrode current collector in the cleaning (cleaning) step, the process of irradiating a laser to the top-coated electrode mixture layer of the electrode current collector; And in the process of irradiating a laser to the back-coated electrode mixture layer of the electrode current collector, one laser irradiation process is performed first, and then the other laser irradiation process is performed.
- the method before the cleaning step, includes a step of top-coating an electrode mixture layer on an electrode current collector and a step of back-coating the electrode mixture layer, and the top-coated electrode mixture layer and back coating formed by coating
- the formation area of the electrode mixture layer is in the range of 101 to 105%, respectively, compared to the preset area of the final electrode mixture layer.
- the cleaning may be performed such that the forming angle of the end of the holding unit at the boundary line of the holding unit in contact with the uncoated unit is 75° or more.
- the present invention also provides an electrode manufactured by the manufacturing method described above.
- the electrode according to the present invention the electrode current collector; top coated electrode mixture layer; and a back-coated electrode mixture layer, wherein the top-coated electrode mixture layer and the back-coated electrode mixture layer facing each other with the electrode current collector interposed therebetween, a region not including the boundary line of the holding part (center) In the region (boundary region) including the boundary line of the holding part to the weight ratio (R Wb ) of the back-coated electrode mixture layer to the top-coated electrode mixture layer per unit area (1 cm x 1 cm) selected in the region)
- the ratio (R Wa / R Wb ) of the weight ratio (R Wa ) of the back coated electrode mixture layer to the top coated electrode mixture layer per selected unit area (1 cm x 1 cm) is in the range of 0.85 to 1.15.
- the formation angle of the ends of the holding part of the top-coated electrode mixture layer and the back-coated electrode mixture layer is in the range of 75° to 90°, respectively.
- the present invention provides an electrode assembly including the electrode described above.
- the electrode assembly according to the present invention the positive electrode; cathode; and a separator interposed between the positive electrode and the negative electrode, a unit selected from a region (central region) that does not include a boundary line of the holding part with respect to the positive electrode and the negative electrode facing each other with the separator interposed therebetween per unit area (1 cm x 1 cm) selected in the area (boundary area) including the boundary line of the holding part to the weight ratio (R W1 ) of the positive electrode mixture layer to the negative electrode mixture layer per area (1 cm x 1 cm)
- the ratio (R W2 / R W1 ) of the weight ratio (R W2 ) of the positive electrode mixture layer to the negative electrode mixture layer is in the range of 0.8 to 1.
- the negative electrode a current collector layer; and a negative electrode mixture layer formed on both surfaces of the current collector layer and including an anode active material, wherein the anode active material includes a silicon (Si)-based active material.
- the negative electrode a current collector layer; and a negative electrode mixture layer formed on both sides of the current collector layer, the negative electrode mixture layer including a negative electrode active material, wherein the negative active material contains a carbon-based active material and a silicon-based active material in a weight ratio of 10 to 95: 5 to 90 by weight.
- the present invention provides a secondary battery including the electrode assembly described above.
- the electrode manufacturing method according to the present invention includes a cleaning step in which the line irradiating laser on the top-coated electrode mixture layer and the back-coated electrode mixture layer of the electrode current collector correspond to each other in a direction perpendicular to the electrode current collector. , it is possible to prevent mismatch of the electrode mixture layer and significantly reduce the degree of sliding in the boundary region.
- FIG. 1 is a cross-sectional view showing the structure of an electrode formed according to the prior art.
- FIG. 2 is a cross-sectional view illustrating a stacked structure of an electrode assembly manufactured according to the prior art.
- FIG. 3 is a schematic diagram illustrating an electrode manufacturing process according to an embodiment of the present invention.
- FIG. 4 is a cross-sectional view illustrating an electrode manufacturing process according to an embodiment of the present invention.
- FIG. 5 is a cross-sectional view illustrating the structure of an electrode according to an embodiment of the present invention.
- FIG. 6 is a cross-sectional view illustrating a stacked structure of an electrode assembly manufactured according to an embodiment of the present invention.
- the top-coated electrode mixture layer and the back-coated electrode mixture layer of the electrode current collector are irradiated with a laser along the boundary line of the holding part in contact with the uncoated part to clean the end of the holding part.
- the cleaning (cleaning) includes a line irradiating a laser to the top-coated electrode mixture layer and the back-coated electrode mixture layer of the electrode current collector to correspond to each other in a direction perpendicular to the electrode current collector.
- the ends of the holding part are cleaned by irradiating a laser to the top-coated electrode mixture layer and the back-coated electrode mixture layer of the electrode current collector.
- the laser irradiation is performed to correspond to each other in a direction perpendicular to the electrode current collector.
- the present invention minimizes a mismatch region of both electrode mixture layers by matching the ends of the holding portions of the top and back coated electrode mixture layers with respect to the electrode current collector.
- the process of irradiating a laser to the top-coated electrode mixture layer of the electrode current collector; And the process of irradiating the laser to the back-coated electrode mixture layer of the electrode current collector is performed at the same time.
- the cleaning (cleaning) step the process of irradiating a laser to the top-coated electrode mixture layer of the electrode current collector; And in the process of irradiating a laser to the back-coated electrode mixture layer of the electrode current collector, one laser irradiation process is performed first, and then the other laser irradiation process is performed.
- a line comprising a top-coated electrode mixture layer and a back-coated electrode mixture layer based on the electrode current collector, and irradiating a laser to the top-coated electrode mixture layer and the back-coated electrode mixture layer of the electrode current collector
- These electrodes are characterized in that they correspond to each other in a direction perpendicular to the current collector. In this case, it is possible to simultaneously or sequentially perform laser irradiation on both surfaces.
- a process of top-coating an electrode mixture layer on an electrode current collector and a step of back-coating the electrode mixture layer, the top-coated electrode mixture layer and the back formed by coating The formation area of the coated electrode mixture layer is in the range of 101 to 105%, respectively, compared to the preset area of the final electrode mixture layer.
- a step of cleaning the ends of the electrode mixture layer is performed. Accordingly, in the process of forming the electrode mixture layer on the electrode current collector, the electrode mixture layer is formed with a larger area compared to the area of the final electrode mixture layer in consideration of the cleaning step.
- the cleaning may be performed such that an angle at which the end of the holding unit is formed at a boundary line of the holding unit in contact with the uncoated area is 75° or more.
- the formation angle of the end of the holding part at the boundary line of the holding part in contact with the uncoated part is also called a sliding angle, and specifically, it reaches the average height of the center of the holding part from the end of the holding part based on the same plane as the electrode current collector. means the angle of the boundary.
- the forming angle of the end of the holding part satisfies the range of 75° to 90°, 80° to 90°, 75° to 88°, 80° to 85° or 85° to 90°.
- the present invention also provides an electrode manufactured by the method described above.
- the electrode according to the present invention the electrode current collector; top coated electrode mixture layer; and a back-coated electrode mixture layer, wherein the top-coated electrode mixture layer and the back-coated electrode mixture layer facing each other with the electrode current collector interposed therebetween, an area not including the boundary line of the holding part (center) In the region (boundary region) including the boundary line of the holding part to the weight ratio (R Wb ) of the back-coated electrode mixture layer to the top-coated electrode mixture layer per unit area (1 cm x 1 cm) selected in the region)
- the ratio (R Wa / R Wb ) of the weight ratio (R Wba ) of the back coated electrode mixture layer to the top coated electrode mixture layer per selected unit area (1 cm x 1 cm) is in the range of 0.85 to 1.15.
- the ratio (R Wa / R Wb ) is a comparison of the uniformity or mismatch degree of the electrode mixture layer formed on both surfaces of the electrode current collector in the central region and the boundary region of the holding part. Specifically, the ratio (R Wa / R Wb ) is in the range of 0.85 to 1.1, in the range of 0.85 to 1, in the range of 0.9 to 1.15, in the range of 0.9 to 1.1, in the range of 1 to 1.15, or in the range of 0.95 to 1.05.
- the formation angle of the ends of the holding part of the top-coated electrode mixture layer and the back-coated electrode mixture layer is 75° to 90°, respectively ° range.
- the formation angle of the end of the holding part it is possible to form the formation angle of the end of the holding part to a very high level, specifically, close to 90°.
- the forming angle of the end of the holding part satisfies the range of 75° to 90°, 80° to 90°, 75° to 88°, 80° to 85° or 85° to 90°.
- the electrode is an electrode for a secondary battery, and is applicable to, for example, a positive electrode, a negative electrode, or both a positive electrode and a negative electrode.
- the present invention provides an electrode assembly including the electrode described above.
- the present invention is a positive electrode; cathode; and a separator interposed between the positive electrode and the negative electrode.
- the negative electrode mixture layer per unit area (1 cm x 1 cm) selected in the region (center region) not including the boundary line of the holding part The weight ratio of the positive electrode mixture layer to the negative electrode mixture layer per unit area (1 cm x 1 cm) selected in the region (boundary region) including the boundary line of the holding part to the weight ratio (R W1 ) of the positive electrode mixture layer to the negative electrode mixture layer (R W1 ) ratio (R W2 / W1 R) of W2) is a 0.8 to 1 range.
- the ratio (R W2 / R W1 ) refers to a degree to which the ratio of the loading amount of the negative electrode mixture layer corresponding to the loading amount of the positive electrode mixture layer is uniform, and specifically, the central region and the boundary region of the holding part are compared. .
- sliding of the coating thickness occurs at the end of the holding part.
- the loading amount of the negative electrode facing the positive electrode is relatively small, which has a problem in that the performance of the battery cell is deteriorated due to lithium precipitation.
- the ratio (R W2 / R W1 ) when the ratio (R W2 / R W1 ) is 1, the positive electrode mixture layer and the negative electrode mixture layer are formed at a constant ratio in the central region and the boundary region.
- the ratio (R W2 / R W1 ) is greater than 1, it means that a relatively small amount of the negative electrode mixture layer is formed in the boundary region.
- the ratio (R W2 / R W1 ) is in the range of 0.85 to 1, 0.9 to 1, or 0.95 to 1.
- the present invention provides a secondary battery including the electrode described above.
- the secondary battery includes a positive electrode; It includes a negative electrode and a separator interposed between the positive electrode and the negative electrode, wherein the positive electrode has the electrode structure described above.
- the secondary battery is a lithium secondary battery.
- the lithium secondary battery may include, for example, the electrode assembly described above; a non-aqueous electrolyte for impregnating the electrode assembly; and a battery case containing the electrode assembly and the non-aqueous electrolyte.
- the positive electrode has a structure in which a positive electrode mixture layer is formed on one or both surfaces of a positive electrode current collector.
- the positive electrode mixture layer includes a conductive material and a binder polymer in addition to the positive electrode active material, and, if necessary, may further include a positive electrode additive commonly used in the art.
- the positive electrode according to the present invention is applied as a positive electrode of a secondary battery, the positive electrode has a structure in which a positive electrode mixture layer is formed on both sides of a positive electrode current collector.
- the current collector used for the positive electrode is a metal with high conductivity, and any metal that can be easily adhered to the positive electrode active material slurry and has no reactivity in the voltage range of the secondary battery may be used.
- the current collector for the positive electrode include a foil made of aluminum, nickel, or a combination thereof.
- the negative electrode a current collector layer; and a negative electrode mixture layer formed on one or both surfaces of the current collector layer, the negative electrode mixture layer including a negative electrode active material, wherein the negative electrode active material includes a silicon (Si)-based active material.
- the silicon-based active material is selected from the group consisting of silicon (Si), silicon oxide (SiOx, 0 ⁇ x ⁇ 2), and a silicon-metal (M) alloy (wherein metal (M) includes at least one of Cr and Ti).
- metal (M) includes at least one of Cr and Ti.
- the active material containing the silicon component is at least one of silicon (Si) and silicon oxide (SiOx, 0 ⁇ x ⁇ 2).
- a silicon-based active material may be applied as an active material applied to the negative electrode mixture layer, and in some cases, a carbon-based active material and a silicon-based active material may be mixed.
- the mixture layer may be formed as a single layer or divided into two or more layers.
- the negative electrode a current collector layer; and a negative electrode mixture layer formed on one or both surfaces of the current collector layer and including an anode active material, wherein the anode active material includes a carbon-based active material and a silicon-based active material.
- the negative electrode has a structure in which a negative electrode mixture layer is formed on both sides of a negative electrode current collector.
- the carbon-based active material low crystalline carbon and/or high crystalline carbon may be used.
- low crystalline carbon soft carbon and hard carbon are representative
- high crystalline carbon natural graphite, Kish graphite, pyrolytic carbon, and liquid crystal pitch-based carbon fiber are representative.
- meophase pitch based carbon fiber carbon microspheres (mesocarbon microbeads), liquid crystal pitches (Mesophase pitches), and high-temperature calcined carbon such as petroleum and coal-based cokes (petroleum orcoal tar pitch derived cokes) are representative examples.
- the carbon-based active material is a commonly used graphite component.
- the content ratio of the carbon-based active material and the silicon-based active material is in the range of 10 to 95: 5 to 90 by weight.
- the content ratio of the carbon-based active material and the silicon-based active material is 20-95: 5-80 weight ratio, 30-80: 20-70 weight ratio, 50-80: 20-50 weight ratio, 70-80: 20-30 weight ratio, 10-80: 20-90 weight ratio, 10-50: 50-90 weight ratio, 10-30: 70-90 weight ratio, 30-60: 40-70 weight ratio, 40-50: 50-60 weight ratio, or 40-60: 40 ⁇ 60 weight ratio range.
- the silicon-based active material has an advantage in that the capacity of the battery can be increased.
- the silicon-based active material causes a large volume change during the charging and discharging process. This volume change has a problem of accelerating deterioration of electrodes or deterioration of battery life.
- the silicone-based active material has a limitation in that a large amount of a binder or a conductive material must be mixed in order to improve the lifespan of the silicone-based component.
- the carbon-based active material by mixing and using the carbon-based active material, the volume change during charging and discharging can be reduced to a certain level, and the content of the binder or the conductive material can be reduced.
- Non-limiting examples of the current collector used for the negative electrode include a foil made of copper, gold, nickel, or a copper alloy, or a combination thereof.
- the current collector may be used by stacking substrates made of the above materials.
- the negative electrode may include a conductive material and a binder commonly used in the art.
- any porous substrate used in a lithium secondary battery may be used, for example, a polyolefin-based porous membrane or a nonwoven fabric may be used, but is not particularly limited thereto.
- the polyolefin-based porous membrane include polyethylene, such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene, polyolefin-based polymers such as polypropylene, polybutylene, and polypentene, respectively, individually or in a mixture thereof.
- polyethylene such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultra-high molecular weight polyethylene
- polyolefin-based polymers such as polypropylene, polybutylene, and polypentene, respectively, individually or in a mixture thereof.
- One membrane is mentioned.
- the electrolyte may use a non-aqueous electrolyte including a non-aqueous electrolyte.
- the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma-butylo.
- the present invention includes a device including the secondary battery described above.
- the device is one or more of a mobile device, a wearable device, a notebook computer, and an automobile.
- the vehicle is a hybrid or electric vehicle.
- the electrode according to the present invention has a structure in which a top-coated electrode mixture layer 120 and a back-coated electrode mixture layer 130 are formed on both sides of an electrode current collector 110 .
- the electrode is manufactured through a step 100 of cleaning the ends of the holding part through laser irradiation 141 and 142 along the boundary line of the holding part in contact with the uncoated part. The generation of a slid inclination at the ends of the electrode mixture layers 120 and 130 through the laser irradiation 141 and 142 is prevented.
- FIG. 4 is a cross-sectional view illustrating an electrode manufacturing process according to an embodiment of the present invention.
- a line irradiating a laser to the top-coated electrode mixture layer 220 and the back-coated electrode mixture layer 230 of the electrode current collector 210 is an electrode. It is performed to correspond to each other in a direction perpendicular to the current collector 210 . Through this, the formation area and position of the top-coated electrode mixture layer 220 and the back-coated electrode mixture layer 230 with respect to the electrode current collector 210 exactly correspond to each other, and a mismatched region does not occur. .
- the first electrode 300 has a structure in which a top-coated electrode mixture layer 320 and a back-coated electrode mixture layer 330 are formed on both surfaces of a current collector 310 .
- each of the electrode mixture layers 320 and 330 includes a holding portion to which the electrode mixture layer is applied and an uncoated portion to which the electrode mixture layer is not applied.
- the separation distance between the holding parts on which the electrode mixture layer is formed means the uncoated part width (D G ′).
- the line irradiating the laser to the top-coated electrode mixture layer 320 and the back-coated electrode mixture layer 330 of the electrode current collector 310 is the electrode current collector 310 .
- a mismatch area between the top/back coated electrode mixture layer in which the top-coated electrode mixture layer 320 and the back-coated electrode mixture layer 330 are misaligned with each other based on the electrode current collector 310 does not occur. .
- the electrode assembly 400 has a structure in which a first electrode 410 and a second electrode 410 are formed on both sides of a separator 430 .
- the electrode mixture layers of the first and second electrodes 410 and 420 exhibit almost similar or equal sliding degrees 410a and 420a in the boundary region while the cleaning step is performed through laser irradiation. Accordingly, the loading ratio of the positive electrode mixture layer corresponding to the negative electrode mixture layer is equally maintained even in the edge boundary region of the electrode mixture layer.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은, 전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 레이저를 조사하는 라인이 전극 집전체에 수직하는 방향으로 서로 대응하도록 수행하는 클리닝 단계를 포함하는 전극 제조방법, 상기 방법으로 제조된 전극 및 이를 포함하는 이차전지에 관한 것으로, 전극 합재층의 미스매치를 방지하고, 경계 영역에서 슬라이딩 발생 정도를 현저히 감소시킬 수 있다.
Description
본 출원은 2020.02.07.자 한국 특허 출원 제10-2020-0014827호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 레이저를 이용한 클리닝 단계를 포함하는 전극 제조방법, 상기 방법으로 제조된 전극 및 이를 포함하는 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요의 증가로, 이차전지의 수요 또한 급격히 증가하고 있다. 그 중에서도, 리튬 이차전지는 에너지 밀도와 작동전압이 높고 보존과 수명 특성이 우수하다는 점에서, 각종 모바일 기기는 물론 다양한 전자 제품들의 에너지원으로 널리 사용되고 있다.
또한, 이차전지는, 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차 또는 하이브리드 전기자동차 등의 에너지원으로 주목받고 있다. 전기자동차의 에너지원으로 적용하기 위해서는 고출력의 전지가 필요하다.
도 1은 종래 기술에 따라 형성된 전극의 구조를 도시한 단면도이다. 도 1을 참조하면, 제1 전극(10)은 집전체(11)의 양면에 탑 코팅된 전극 합재층(12)과 백 코팅된 전극 합재층(13)이 형성된 구조이다. 또한, 각 전극 합재층(12, 13)은 전극 합재층이 도포된 유지부와 그렇지 않은 무지부를 포함한다. 전극 합재층이 형성된 유지부 사이의 이격 거리는 무지부 폭(D
G)을 의미한다. 종래에는 집전체(11)의 일면에 전극 합재층을 탑 코팅한 후, 반대면에 백 코팅하는 과정을 거쳐 전극을 제조한다. 이 과정에서, 집전체(11)를 기준으로 탑 코팅된 전극 합재층(12)과 백 코팅된 전극 합재층(13)이 서로 어긋나게 형성된 탑/백 코팅된 전극 합재층의 미스매치 영역(D
M)이 발생한다. 이러한 미스매치 영역(D
M)은 전극의 용량을 저하시키고, 이차전지에 적용시 안전성을 저하시키는 원인이 된다.
또한, 도 2는 종래 기술에 따라 제조된 전극 조립체의 적층 구조를 도시한 단면도이다. 도 2를 참조하면, 종래의 전극 조립체(40)는 분리막(30)을 기준으로 양면에 제1 전극(10)과 제2 전극(10)이 형성된 구조이다. 그러나, 제1 및 제2 전극(10, 20)을 각각 제조하는 과정에서, 전극 합재층의 경계 영역에서 서로 다른 슬라이딩 정도(10a, 20a)를 보이고 있다. 도 2에서는, 제1 전극 유지부 끝단의 슬라이딩 정도(10a) 보다 제2 전극 유지부 끝단의 슬라이딩 정도(20a)가 더 심한 것을 알 수 있다. 만약, 제2 전극(20)이 음극인 경우라면, 기 설정된 기준치보다 음극에 대한 양극의 로딩량이 커지면서, 해당 부위에 리튬 석출 현상이 발생하고, 이는 전지 셀의 성능을 저하시키는 원인이 된다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 레이저를 이용한 클리닝 단계를 포함하는 전극 제조방법, 상기 방법으로 제조된 전극 및 이를 포함하는 이차전지를 제공함을 목적으로 한다.
본 발명은 전극 제조방법을 제공한다. 하나의 예에서, 본 발명에 따른 전극 제조방법은, 전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 대하여, 무지부와 접하는 유지부의 경계 라인을 따라 레이저를 조사하여 유지부의 끝단을 클리닝(cleaning)하는 단계를 포함하며, 상기 클리닝(cleaning)하는 단계는, 전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 레이저를 조사하는 라인이 전극 집전체에 수직하는 방향으로 서로 대응하도록 수행한다.
하나의 예에서, 상기 클리닝하는 단계에서, 전극 집전체의 탑 코팅된 전극 합재층에 레이저를 조사하는 과정; 및 전극 집전체의 백 코팅된 전극 합재층에 레이저를 조사하는 과정은 동시에 수행한다.
또 다른 하나의 예에서, 상기 클리닝(cleaning)하는 단계에서, 전극 집전체의 탑 코팅된 전극 합재층에 레이저를 조사하는 과정; 및 전극 집전체의 백 코팅된 전극 합재층에 레이저를 조사하는 과정은 어느 하나의 레이저 조사 과정을 먼저 수행한 후, 다른 하나의 레이저 조사 과정을 수행한다.
하나의 예에서, 상기 클리닝하는 단계 이전에, 전극 집전체에 전극 합재층을 탑 코팅하는 과정과 전극 합재층을 백 코팅하는 단계를 포함하며, 코팅에 의해 형성된 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층의 형성 면적은, 미리 설정된 최종 전극 합재층의 면적 대비, 각각 101 내지 105% 범위이다.
하나의 예에서, 상기 클리닝하는 단계는, 무지부와 접하는 유지부의 경계 라인에서, 유지부 끝단의 형성 각도가 75° 이상이 되도록 수행한다.
본 발명은, 또한, 앞서 설명한 제조방법으로 제조된 전극을 제공한다. 하나의 예에서, 본 발명에 따른 전극은, 전극 집전체; 탑 코팅된 전극 합재층; 및 백 코팅된 전극 합재층을 포함하며, 상기 전극 집전체를 개재한 상태로 대면하는 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층을 기준으로, 유지부의 경계 라인을 포함하지 않은 영역(중심 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 탑 코팅된 전극 합재층에 대한 백 코팅된 전극 합재층의 중량비(R
Wb)에 대한, 유지부의 경계 라인을 포함하는 영역(경계 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 탑 코팅된 전극 합재층에 대한 백 코팅된 전극 합재층의 중량비(R
Wa)의 비율(R
Wa / R
Wb)은, 0.85 내지 1.15 범위이다.
또 다른 하나의 예에서, 무지부와 접하는 유지부의 경계 라인에서, 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층의 유지부 끝단의 형성 각도는 각각 75° 내지 90° 범위이다.
또한, 본 발명은 앞서 설명한 전극을 포함하는 전극 조립체를 제공한다. 하나의 예에서, 본 발명에 따른 전극 조립체는, 양극; 음극; 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 전극 조립체에 있어서, 상기 분리막을 개재한 상태로 대면하는 양극과 음극을 기준으로, 유지부의 경계 라인을 포함하지 않은 영역(중심 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 음극 합재층에 대한 양극 합재층의 중량비(R
W1)에 대한, 유지부의 경계 라인을 포함하는 영역(경계 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 음극 합재층에 대한 양극 합재층의 중량비(R
W2)의 비율(R
W2 / R
W1)은, 0.8 내지 1 범위이다.
또 다른 하나의 예에서, 상기 음극은, 집전체층; 및 상기 집전체층의 양면에 형성되되, 음극 활물질을 포함하는 음극 합제층을 포함하며, 상기 음극 활물질은, 실리콘(Si)계 활물질을 포함한다.
또 다른 하나의 예에서, 상기 음극은, 집전체층; 및 상기 집전체층의 양면에 형성되되, 음극 활물질을 포함하는 음극 합제층을 포함하며, 상기 음극 활물질은, 탄소계 활물질과 실리콘계 활물질을 10~95 : 5~90 중량비로 포함한다.
또한, 본 발명은 앞서 설명한 전극 조립체를 포함하는 이차전지를 제공한다.
본 발명에 따른 전극 제조방법은, 전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 레이저를 조사하는 라인이 전극 집전체에 수직하는 방향으로 서로 대응하도록 수행하는 클리닝 단계를 통해, 전극 합재층의 미스매치를 방지하고, 경계 영역에서 슬라이딩 발생 정도를 현저히 감소시킬 수 있다.
도 1은 종래 기술에 따라 형성된 전극의 구조를 도시한 단면도이다.
도 2는 종래 기술에 따라 제조된 전극 조립체의 적층 구조를 도시한 단면도이다.
도 3은 본 발명의 일 실시예에 따른 전극 제조 과정을 도시한 모식도이다.
도 4는 본 발명의 일 실시예에 따른 전극 제조 과정을 도시한 단면도이다.
도 5는 본 발명의 일 실시예에 따른 전극의 구조를 도시한 단면도이다.
도 6은 본 발명의 일 실시예에 따라 제조된 전극 조립체의 적층 구조를 도시한 단면도이다.
특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따른 전극은, 전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 대하여, 무지부와 접하는 유지부의 경계 라인을 따라 레이저를 조사하여 유지부의 끝단을 클리닝(cleaning)하는 단계를 포함한다. 하나의 실시예에서, 상기 클리닝(cleaning)하는 단계는, 전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 레이저를 조사하는 라인이 전극 집전체에 수직하는 방향으로 서로 대응하도록 수행한다.
본 발명은 전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 레이저를 조사하는 과정을 통해 유지부의 끝단을 클리닝하게 된다. 이 때, 레이저 조사는 전극 집전체에 수직하는 방향으로 서로 대응하도록 수행한다. 이를 통해, 본 발명은 전극 집전체를 기준으로, 탑 및 백 코팅된 전극 합재층의 유지부 끝단을 맞춤으로써, 양 전극 합재층의 미스매치(mismatch) 영역을 최소화한다. 더불어, 본 발명에서는, 양 전극 합재층의 유지부 단부의 형성 각도를 정밀하게 제어할 수 있다.
하나의 실시예에서, 상기 클리닝하는 단계에서, 전극 집전체의 탑 코팅된 전극 합재층에 레이저를 조사하는 과정; 및 전극 집전체의 백 코팅된 전극 합재층에 레이저를 조사하는 과정은 동시에 수행한다. 또 다른 하나의 실시예에서, 상기 클리닝(cleaning)하는 단계에서, 전극 집전체의 탑 코팅된 전극 합재층에 레이저를 조사하는 과정; 및 전극 집전체의 백 코팅된 전극 합재층에 레이저를 조사하는 과정은 어느 하나의 레이저 조사 과정을 먼저 수행한 후, 다른 하나의 레이저 조사 과정을 수행한다. 본 발명에서는 전극 집전체를 기준으로 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층을 포함하며, 상기 전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 레이저를 조사하는 라인이 전극 집전체에 수직하는 방향으로 서로 대응하는 것을 특징으로 한다. 이 경우, 양면에 대한 레이저 조사를 동시에 하거나, 순차적으로 진행하는 것이 가능하다.
하나의 실시예에서, 상기 클리닝하는 단계 이전에, 전극 집전체에 전극 합재층을 탑 코팅하는 과정과 전극 합재층을 백 코팅하는 단계를 포함하며, 코팅에 의해 형성된 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층의 형성 면적은, 미리 설정된 최종 전극 합재층의 면적 대비, 각각 101 내지 105% 범위이다. 본 발명에서는 전극 합재층을 형성한 후, 전극 합재층의 끝단을 클리닝하는 단계를 거치게 된다. 따라서, 전극 집전체에 전극 합재층을 형성하는 과정에서, 클리닝하는 단계를 감안하여 최종 전극 합재층의 면적 대비 넓은 면적으로 전극 합재층을 형성하게 된다.
또 다른 하나의 실시예에서, 상기 클리닝하는 단계는, 무지부와 접하는 유지부의 경계 라인에서, 유지부 끝단의 형성 각도가 75° 이상이 되도록 수행한다. 무지부와 접하는 유지부의 경계 라인에서 유지부 끝단의 형성 각도는 슬라이딩 각도(sliding angle)이라고도 하며, 구체적으로는 전극 집전체와 동일한 평면을 기준으로, 유지부 끝단으로부터 유지부 중심부의 평균 높이까지 도달하는 경계부의 각도를 의미한다. 본 발명에서는 유지부 끝단의 형성 각도를 매우 높은 수준, 구체적으로는 90°에 가깝도록 형성하는 것이 가능하다. 예를 들어, 본 발명에서, 유지부 끝단의 형성 각도는 75° 내지 90°, 80° 내지 90°, 75° 내지 88°, 80° 내지 85° 또는 85° 내지 90° 범위를 만족한다.
본 발명은 또한, 앞서 설명한 방법으로 제조된 전극을 제공한다. 하나의 실시예에서, 본 발명에 따른 전극은, 전극 집전체; 탑 코팅된 전극 합재층; 및 백 코팅된 전극 합재층을 포함하며, 상기 전극 집전체를 개재한 상태로 대면하는 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층을 기준으로, 유지부의 경계 라인을 포함하지 않은 영역(중심 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 탑 코팅된 전극 합재층에 대한 백 코팅된 전극 합재층의 중량비(R
Wb)에 대한, 유지부의 경계 라인을 포함하는 영역(경계 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 탑 코팅된 전극 합재층에 대한 백 코팅된 전극 합재층의 중량비(R
Wba)의 비율(R
Wa / R
Wb)은, 0.85 내지 1.15 범위이다. 본 발명에서, 상기 비율(R
Wa / R
Wb)은, 유지부의 중심 영역과 경계 영역에서 전극 집전체의 양면에 형성된 전극 합재층의 균일성 내지 미스매치 정도를 비교한 것이다. 구체적으로, 상기 비율(R
Wa / R
Wb)은 0.85 내지 1.1 범위, 0.85 내지 1 범위, 0.9 내지 1.15 범위, 0.9 내지 1.1 범위, 1 내지 1.15 범위 또는 0.95 내지 1.05 범위이다.
또 다른 하나의 실시예에서, 본 발명에 따른 전극은 무지부와 접하는 유지부의 경계 라인에서, 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층의 유지부 끝단의 형성 각도가 각각 75° 내지 90° 범위이다. 본 발명에서는 유지부 끝단의 형성 각도를 매우 높은 수준, 구체적으로는 90°에 가깝도록 형성하는 것이 가능하다. 예를 들어, 본 발명에서, 유지부 끝단의 형성 각도는 75° 내지 90°, 80° 내지 90°, 75° 내지 88°, 80° 내지 85° 또는 85° 내지 90° 범위를 만족한다.
구체적으로, 상기 전극은 이차전지용 전극이며, 예를 들어, 양극, 음극 또는 양극과 음극 모두에 적용 가능하다.
또한, 본 발명은 앞서 설명한 전극을 포함하는 전극 조립체를 제공한다.
본 발명은 양극; 음극; 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 전극 조립체를 제공한다. 하나의 실시예에서, 상기 분리막을 개재한 상태로 대면하는 양극과 음극을 기준으로, 유지부의 경계 라인을 포함하지 않은 영역(중심 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 음극 합재층에 대한 양극 합재층의 중량비(R
W1)에 대한, 유지부의 경계 라인을 포함하는 영역(경계 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 음극 합재층에 대한 양극 합재층의 중량비(R
W2)의 비율(R
W2 / R
W1)은, 0.8 내지 1 범위이다.
상기 비율은(R
W2 / R
W1)은 양극 합재층의 로딩량에 대응하는 음극 합재층의 로딩량의 비율이 균일한 정도를 의미하며, 구체적으로는 유지부의 중심 영역과 경계 영역을 대비한 것이다. 전극 집전체 상에 전극 합재층을 토출하는 과정에서, 유지부의 끝단에서 코팅 두께의 슬라이딩(sliding)이 발생한다. 이 과정에서, 음극의 슬라이딩 정도가 양극 대비 커지게 되면, 양극과 대면하는 음극의 로딩량이 상대적으로 적은 경우가 발생하고, 이는 리튬 석출로 인한 전지셀의 성능이 저하되는 문제가 있다. 본 발명에서, 상기 비율은(R
W2 / R
W1)이 1인 경우는, 중심 영역과 경계 영역에서 일정한 비율로 양극 합재층과 음극 합재층이 형성된 경우이다. 상기 비율(R
W2 / R
W1)이 1 보다 큰 경우는, 경계 영역에서 음극 합재층이 상대적으로 적게 형성된 것을 의미한다. 구체적으로, 상기 비율은(R
W2 / R
W1)은 0.85 내지 1 범위, 0.9 내지 1 범위 또는 0.95 내지 1 범위이다.
하나의 실시예에서, 상기 음극은, 집전체층; 및 상기 집전체층의 양면에 형성되되, 음극 활물질을 포함하는 음극 합제층을 포함하며, 상기 음극 활물질은, 실리콘(Si)계 활물질을 포함한다. 또 다른 하나의 실시예에서, 상기 음극은, 집전체층; 및 상기 집전체층의 양면에 형성되되, 음극 활물질을 포함하는 음극 합제층을 포함하며, 상기 음극 활물질은, 탄소계 활물질과 실리콘계 활물질을 10~95 : 5~90 중량비로 포함한다.
또한, 본 발명은 앞서 설명한 전극을 포함하는 이차전지를 제공한다. 구체적으로, 상기 이차전지는 양극; 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하며, 상기 양극은 앞서 설명한 전극 구조이다. 예를 들어, 상기 이차전지는 리튬 이차전지이다. 구체적으로, 상기 리튬 이차전지는 예를 들어, 앞서 설명한 전극 조립체; 상기 전극 조립체를 함침시키는 비수 전해액; 및 상기 전극 조립체와 상기 비수 전해액을 내장하는 전지 케이스를 포함한다.
양극은, 양극 집전체의 일면 또는 양면에 양극 합제층이 형성된 구조이다. 하나의 예에서, 양극 합제층은 양극 활물질 외에 도전재 및 바인더 고분자 등을 포함되며, 필요에 따라, 당업계에서 통상적으로 사용되는 양극 첨가제를 더 포함할 수 있다. 본 발명에 따른 전극이 이차전지의 양극으로 적용될 경우에는, 상기 양극은 양극 집전체의 양면에 양극 합제층이 형성된 구조이다.
상기 양극에 사용되는 집전체는 전도성이 높은 금속으로, 양극 활물질 슬러리가 용이하게 접착할 수 있는 금속이면서, 이차전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 구체적으로 양극용 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
하나의 실시예에서, 상기 음극은, 집전체층; 및 상기 집전체층의 일면 또는 양면에 형성되되, 음극 활물질을 포함하는 음극 합제층을 포함하며, 상기 음극 활물질은 실리콘(Si)계 활물질을 포함한다.
상기 실리콘계 활물질은 실리콘(Si), 실리콘 산화물(SiOx, 0<x≤2) 및 실리콘-금속(M) 합금(여기서, 금속(M)은 Cr 및 Ti 중 1종 이상을 포함)으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다. 예를 들어, 실리콘 성분을 함유하는 활물질은 실리콘(Si) 및 실리콘 산화물(SiOx, 0<x≤2) 중 1종 이상이다.
본 발명에서는, 상기 음극 합제층에 적용되는 활물질로 실리콘계 활물질을 적용할 수 있으며, 경우에 따라서는 탄소계 활물질과 실리콘계 활물질을 혼합 사용할 수 있다. 탄소계 활물질과 실리콘계 활물질을 혼합 사용하는 경우에는, 합제층을 단일층으로 형성하거나 둘 이상의 층으로 나누어 형성할 수 있다.
하나의 실시예에서, 상기 음극은, 집전체층; 및 상기 집전체층의 일면 또는 양면에 형성되되, 음극 활물질을 포함하는 음극 합제층을 포함하며, 상기 음극 활물질은 탄소계 활물질과 실리콘계 활물질을 포함한다. 본 발명에 따른 전극이 이차전지의 음극으로 적용될 경우에는, 상기 음극은 음극 집전체의 양면에 음극 합제층이 형성된 구조이다.
상기 탄소계 활물질은 저결정 탄소 및/또는 고결정성 탄소 등을 사용할 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (mesocarbon microbeads), 액정피치 (Mesophase pitches), 석유와 석탄계 코크스 (petroleum orcoal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 예를 들어, 상기 탄소계 활물질은 통상적으로 사용되는 흑연 성분이다.
또 다른 하나의 실시예에서, 상기 음극 활물질에서, 탄소계 활물질과 실리콘계 활물질의 함량 비율은 10~95 : 5~90 중량비 범위이다. 구체적으로, 상기 탄소계 활물질과 실리콘계 활물질의 함량 비율은 20~95 : 5~80 중량비, 30~80 : 20~70 중량비, 50~80 : 20~50 중량비, 70~80 : 20~30 중량비, 10~80 : 20~90 중량비, 10~50 : 50~90 중량비, 10~30 : 70~90 중량비, 30~60 : 40~70 중량비, 40~50 : 50~60 중량비 또는 40~60 : 40~60 중량비 범위이다. 탄소계 활물질 대비 실리콘계 활물질은 전지의 용량을 높일 수 있다는 장점이 있다. 그러나, 실리콘계 활물질은 충방전 과정에서 큰 폭으로 부피 변화를 유발한다. 이러한 부피 변화는 전극의 퇴화 내지 전지의 수명 열화를 가속화하는 문제가 있다. 또한, 실리콘계 활물질은 실리콘계 성분의 수명 향상을 위해 바인더 내지 도전재를 다량으로 혼합하여야 하는 한계가 있다. 그러나, 본 발명에서는 탄소계 활물질을 혼합 사용함으로써 충방전시 부피 변화를 일정 수준 낮출 수 있고, 바인더 내지 도전재의 함량을 줄일 수 있다.
상기 음극에 사용되는 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 집전체는 상기 물질들로 이루어진 기재들을 적층하여 사용할 수도 있다.
또한, 상기 음극은 당해 분야에 통상적으로 사용되는 도전재 및 바인더를 포함할 수 있다.
상기 분리막은 리튬 이차전지에서 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막(membrane) 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다. 상기 폴리올레핀계 다공성 막의 예로는, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)을 들 수 있다.
본 발명의 일 실시예에 따르면 상기 전해액은 비수 전해액을 포함하는 비수계 전해질을 사용할 수 있다. 상기 비수 전해액으로는 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다. 그러나 특별히 여기에 한정되는 것은 아니며 통상적으로 리튬 이차전지 분야에서 사용되는 다수의 전해액 성분들이 적절한 범위 내에서 가감될 수 있다.
또한, 본 발명은 앞서 설명한 이차전지를 포함하는 디바이스를 포함한다. 구체적인 예에서, 상기 디바이스는 모바일 기기, 웨어러블 디바이스, 노트북 및 자동차 중 1종 이상이다. 예를 들어, 상기 자동차는 하이브리드 또는 전기 자동차이다.
이하, 도면 등을 통해 본 발명을 보다 상세히 설명한다. 그러나, 본 명세서에 기재된 도면에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
(제1 실시 형태)
도 3은 본 발명의 일 실시예에 따른 전극 제조 과정을 도시한 모식도이다. 도 3을 참조하면, 본 발명에 따른 전극은 전극 집전체(110)의 양면에 탑 코팅된 전극 합재층(120)과 백 코팅된 전극 합재층(130)이 형성된 구조이다. 본 발명에서는 무지부와 접하는 유지부의 경계 라인을 따라 레이저 조사(141, 142)를 통해 유지부의 끝단을 클리닝(cleaning)하는 단계(100)를 거쳐 전극을 제조한다. 상기 레이저 조사(141, 142)를 통해 전극 합재층(120, 130)의 끝단에 슬라이딩된 경사가 발생하는 것을 방지한다.
도 4는 본 발명의 일 실시예에 따른 전극 제조 과정을 도시한 단면도이다. 도 4를 참조하면, 본 발명의 클리닝 단계(200)에서, 전극 집전체(210)의 탑 코팅된 전극 합재층(220)과 백 코팅된 전극 합재층(230)에 레이저를 조사하는 라인이 전극 집전체(210)에 수직하는 방향으로 서로 대응하도록 수행한다. 이를 통해, 전극 집전체(210)를 기준으로 탑 코팅된 전극 합재층(220)과 백 코팅된 전극 합재층(230)의 형성 면적 및 위치가 서로 정확히 대응되며, 미스매치된 영역이 발생하지 않는다.
(제2 실시 형태)
도 5는 본 발명의 일 실시예에 따른 전극의 구조를 도시한 단면도이다. 도 5를 참조하면, 제1 전극(300)은 집전체(310)의 양면에 탑 코팅된 전극 합재층(320)과 백 코팅된 전극 합재층(330)이 형성된 구조이다. 또한, 각 전극 합재층(320, 330)은 전극 합재층이 도포된 유지부와 그렇지 않은 무지부를 포함한다. 전극 합재층이 형성된 유지부 사이의 이격 거리는 무지부 폭(D
G')을 의미한다. 본 발명에서는, 레이저 조사를 통한 클리닝 단계에서, 전극 집전체(310)의 탑 코팅된 전극 합재층(320)과 백 코팅된 전극 합재층(330)에 레이저를 조사하는 라인이 전극 집전체(310)에 수직하는 방향으로 서로 대응된다. 따라서, 전극 집전체(310)를 기준으로 탑 코팅된 전극 합재층(320)과 백 코팅된 전극 합재층(330)이 서로 어긋나게 형성된 탑/백 코팅된 전극 합재층의 미스매치 영역이 발생하지 않는다.
(제3 실시 형태)
도 6은 본 발명의 일 실시예에 따라 제조된 전극 조립체의 적층 구조를 도시한 단면도이다. 도 6을 참조하면, 전극 조립체(400)는 분리막(430)을 기준으로 양면에 제1 전극(410)과 제2 전극(410)이 형성된 구조이다. 제1 및 제2 전극(410, 420)을 각각 제조하는 과정에서, 전극 합재층의 경계 영역에서 서로 다른 슬라이딩 정도(410a, 420a)를 보이는 것이 일반적이다. 그러나, 본 발명에서는 레이저 조사를 통해 클리닝 단계를 거치면서 제1 및 제2 전극(410, 420)의 전극 합재층이 경계 영역에서 거의 유사하거나 동등한 슬라이딩 정도(410a, 420a)를 보이게 된다. 이를 통해, 전극 합재층의 가장자리 경계 영역에서도, 음극 합재층에 대응되는 양극 합재층의 로딩 비율을 동등하게 유지하게 된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
10, 300, 410: 제1 전극
10a, 410a: 제1 전극 유지부 끝단의 슬라이딩 정도
11, 110, 210, 310: 전극 집전체
12, 120, 220, 320: 탑 코팅된 전극 합재층
13, 130, 230, 330: 백 코팅된 전극 합재층
20, 420: 제2 전극
20a, 420a: 제2 전극 유지부 끝단의 슬라이딩 정도
30, 430: 분리막
100, 200: 클리닝 단계
141, 142, 241, 242, 251, 252: 레이저 조사
40, 400: 전극 조립체
D
G: 무지부 폭
D
M: 탑/백 코팅된 전극 합재층의 미스매치 영역
Claims (11)
- 전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 대하여, 무지부와 접하는 유지부의 경계 라인을 따라 레이저를 조사하여 유지부의 끝단을 클리닝(cleaning)하는 단계를 포함하며,상기 클리닝(cleaning)하는 단계는,전극 집전체의 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층에 레이저를 조사하는 라인이 전극 집전체에 수직하는 방향으로 서로 대응하도록 수행하는 것을 특징으로 하는 전극 제조방법.
- 제 1 항에 있어서,상기 클리닝하는 단계에서,전극 집전체의 탑 코팅된 전극 합재층에 레이저를 조사하는 과정; 및전극 집전체의 백 코팅된 전극 합재층에 레이저를 조사하는 과정은 동시에 수행하는 것을 특징으로 하는 전극 제조방법.
- 제 1 항에 있어서,상기 클리닝(cleaning)하는 단계에서,전극 집전체의 탑 코팅된 전극 합재층에 레이저를 조사하는 과정; 및전극 집전체의 백 코팅된 전극 합재층에 레이저를 조사하는 과정은 어느 하나의 레이저 조사 과정을 먼저 수행한 후, 다른 하나의 레이저 조사 과정을 수행하는 것을 특징으로 하는 전극 제조방법.
- 제 1 항에 있어서,상기 클리닝하는 단계 이전에,전극 집전체에 전극 합재층을 탑 코팅하는 과정과 전극 합재층을 백 코팅하는 단계를 포함하며,코팅에 의해 형성된 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층의 형성 면적은, 미리 설정된 최종 전극 합재층의 면적 대비, 각각 101 내지 105% 범위인 것을 특징으로 하는 전극 제조방법.
- 제 1 항에 있어서,상기 클리닝하는 단계는,무지부와 접하는 유지부의 경계 라인에서, 유지부 끝단의 형성 각도가 75° 이상이 되도록 수행하는 것을 특징으로 하는 전극 제조방법.
- 전극 집전체; 탑 코팅된 전극 합재층; 및 백 코팅된 전극 합재층을 포함하며,상기 전극 집전체를 개재한 상태로 대면하는 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층을 기준으로,유지부의 경계 라인을 포함하지 않은 영역(중심 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 탑 코팅된 전극 합재층에 대한 백 코팅된 전극 합재층의 중량비(R Wb)에 대한,유지부의 경계 라인을 포함하는 영역(경계 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 탑 코팅된 전극 합재층에 대한 백 코팅된 전극 합재층의 중량비(R Wa)의 비율(R Wa / R Wb)은, 0.85 내지 1.15 범위인 전극.
- 제 6 항에 있어서,무지부와 접하는 유지부의 경계 라인에서, 탑 코팅된 전극 합재층과 백 코팅된 전극 합재층의 유지부 끝단의 형성 각도가 각각 75° 내지 90° 범위인 전극.
- 양극; 음극; 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 전극 조립체에 있어서,상기 분리막을 개재한 상태로 대면하는 양극과 음극을 기준으로,유지부의 경계 라인을 포함하지 않은 영역(중심 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 음극 합재층에 대한 양극 합재층의 중량비(R W1)에 대한,유지부의 경계 라인을 포함하는 영역(경계 영역)에서 선택된 단위 면적(1 cm x 1 cm) 당 음극 합재층에 대한 양극 합재층의 중량비(R W2)의 비율(R W2 / R W1)은, 0.8 내지 1 범위인 전극 조립체.
- 제 8 항에 있어서,상기 음극은, 집전체층; 및 상기 집전체층의 양면에 형성되되, 음극 활물질을 포함하는 음극 합제층을 포함하며,상기 음극 활물질은, 실리콘(Si)계 활물질을 포함하는 전극 조립체.
- 제 8 항에 있어서,상기 음극은, 집전체층; 및 상기 집전체층의 양면에 형성되되, 음극 활물질을 포함하는 음극 합제층을 포함하며,상기 음극 활물질은, 탄소계 활물질과 실리콘계 활물질을 10~95 : 5~90 중량비로 포함하는 전극 조립체.
- 제 8 항에 따른 전극 조립체를 포함하는 이차전지.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180002684.7A CN113646918B (zh) | 2020-02-07 | 2021-01-21 | 包括使用激光的清洁步骤的电极制造方法、通过该方法制造的电极、以及包括该电极的二次电池 |
EP21749758.5A EP3910700B1 (en) | 2020-02-07 | 2021-01-21 | Electrode manufacturing method comprising cleaning step using laser, electrode manufactured by method, and secondary battery comprising same |
US17/433,858 US20220149355A1 (en) | 2020-02-07 | 2021-01-21 | Electrode Manufacturing Method Comprising Cleaning Step Using Laser, Electrode Manufactured By Method, and Secondary Battery Comprising Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200014827A KR20210100895A (ko) | 2020-02-07 | 2020-02-07 | 레이저를 이용한 클리닝 단계를 포함하는 전극 제조방법, 상기 방법으로 제조된 전극 및 이를 포함하는 이차전지 |
KR10-2020-0014827 | 2020-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021157915A1 true WO2021157915A1 (ko) | 2021-08-12 |
Family
ID=77200675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/000816 WO2021157915A1 (ko) | 2020-02-07 | 2021-01-21 | 레이저를 이용한 클리닝 단계를 포함하는 전극 제조방법, 상기 방법으로 제조된 전극 및 이를 포함하는 이차전지 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220149355A1 (ko) |
EP (1) | EP3910700B1 (ko) |
KR (1) | KR20210100895A (ko) |
CN (1) | CN113646918B (ko) |
HU (1) | HUE066727T2 (ko) |
WO (1) | WO2021157915A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023121412A1 (ko) * | 2021-12-24 | 2023-06-29 | 주식회사 엘지에너지솔루션 | 전극 및 전극의 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100614369B1 (ko) * | 2004-07-28 | 2006-08-21 | 삼성에스디아이 주식회사 | 이차 전지의 극판 제조 방법 및 이에 의한 이차 전지 |
US20100028767A1 (en) * | 2008-07-31 | 2010-02-04 | Nec Tokin Corporation | Stacked secondary battery and method of manufacturing the same |
JP2015076229A (ja) * | 2013-10-08 | 2015-04-20 | 株式会社豊田自動織機 | 電極の製造方法 |
KR20170135122A (ko) * | 2016-05-30 | 2017-12-08 | 주식회사 엘지화학 | 전기 용량 증대와 용접 기능성 향상이 동시에 구현 가능한 전극의 제조 방법 |
JP2018088357A (ja) * | 2016-11-29 | 2018-06-07 | トヨタ自動車株式会社 | 固体電池の製造方法 |
KR20200014827A (ko) | 2017-06-01 | 2020-02-11 | 에보니크 오퍼레이션즈 게엠베하 | 게르마늄-규소 층의 제조를 위한 트리페닐게르밀실란 및 트리클로로실릴-트리클로로게르만, 및 트리클로로실릴-트리페닐게르만으로부터 그를 제조하는 방법 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005086175A (ja) * | 2003-09-11 | 2005-03-31 | Hamamatsu Photonics Kk | 半導体薄膜の製造方法、半導体薄膜、半導体薄膜チップ、電子管、及び光検出素子 |
JP2008243658A (ja) * | 2007-03-28 | 2008-10-09 | Matsushita Electric Ind Co Ltd | 非水系二次電池用電極板およびこれを用いた非水系二次電池とその製造方法およびその製造装置 |
CN201067736Y (zh) * | 2007-06-19 | 2008-06-04 | 李亚光 | 带机器视觉装置的涂布机 |
JP5048843B2 (ja) * | 2008-09-22 | 2012-10-17 | 株式会社アルバック | 太陽電池の製造方法 |
US9929400B2 (en) * | 2012-08-06 | 2018-03-27 | Ut-Battelle, Llc | High capacity monolithic composite Si/carbon fiber electrode architectures synthesized from low cost materials and process technologies |
CN104466229A (zh) * | 2013-09-25 | 2015-03-25 | 华为技术有限公司 | 一种柔性锂二次电池及其制备方法 |
JP6621765B2 (ja) * | 2015-01-30 | 2019-12-18 | 株式会社エンビジョンAescエナジーデバイス | 二次電池 |
CN106469825B (zh) * | 2015-08-21 | 2019-03-29 | 北京好风光储能技术有限公司 | 一种高功率大容量锂离子电池及其制备方法 |
JP6344347B2 (ja) * | 2015-09-11 | 2018-06-20 | トヨタ自動車株式会社 | セパレータ層付き電極の製造方法、及び、セパレータ層付き電極の製造装置 |
JP6806073B2 (ja) * | 2015-09-28 | 2021-01-06 | 株式会社Gsユアサ | 蓄電素子、蓄電素子の製造方法、集電体及びカバー部材 |
KR102116676B1 (ko) * | 2016-02-25 | 2020-05-29 | 주식회사 엘지화학 | 이차전지용 전극의 제조 방법 및 제조 장치 |
KR20180001229A (ko) * | 2016-06-27 | 2018-01-04 | 삼성에스디아이 주식회사 | 이차 전지의 제조 방법 및 이를 이용한 이차 전지 |
KR102079929B1 (ko) * | 2016-09-08 | 2020-02-21 | 주식회사 엘지화학 | 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법 |
CN107240671A (zh) * | 2017-04-07 | 2017-10-10 | 深圳市优特利电源有限公司 | 柔性电极和柔性电芯 |
JP2019029256A (ja) | 2017-08-01 | 2019-02-21 | 株式会社豊田自動織機 | 電極の製造方法 |
KR102682126B1 (ko) * | 2017-08-04 | 2024-07-08 | 삼성전자주식회사 | 고체 전해질, 그 제조방법 및 이를 포함한 리튬전지 |
-
2020
- 2020-02-07 KR KR1020200014827A patent/KR20210100895A/ko unknown
-
2021
- 2021-01-21 HU HUE21749758A patent/HUE066727T2/hu unknown
- 2021-01-21 US US17/433,858 patent/US20220149355A1/en active Pending
- 2021-01-21 WO PCT/KR2021/000816 patent/WO2021157915A1/ko unknown
- 2021-01-21 EP EP21749758.5A patent/EP3910700B1/en active Active
- 2021-01-21 CN CN202180002684.7A patent/CN113646918B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100614369B1 (ko) * | 2004-07-28 | 2006-08-21 | 삼성에스디아이 주식회사 | 이차 전지의 극판 제조 방법 및 이에 의한 이차 전지 |
US20100028767A1 (en) * | 2008-07-31 | 2010-02-04 | Nec Tokin Corporation | Stacked secondary battery and method of manufacturing the same |
JP2015076229A (ja) * | 2013-10-08 | 2015-04-20 | 株式会社豊田自動織機 | 電極の製造方法 |
KR20170135122A (ko) * | 2016-05-30 | 2017-12-08 | 주식회사 엘지화학 | 전기 용량 증대와 용접 기능성 향상이 동시에 구현 가능한 전극의 제조 방법 |
JP2018088357A (ja) * | 2016-11-29 | 2018-06-07 | トヨタ自動車株式会社 | 固体電池の製造方法 |
KR20200014827A (ko) | 2017-06-01 | 2020-02-11 | 에보니크 오퍼레이션즈 게엠베하 | 게르마늄-규소 층의 제조를 위한 트리페닐게르밀실란 및 트리클로로실릴-트리클로로게르만, 및 트리클로로실릴-트리페닐게르만으로부터 그를 제조하는 방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3910700A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023121412A1 (ko) * | 2021-12-24 | 2023-06-29 | 주식회사 엘지에너지솔루션 | 전극 및 전극의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
EP3910700B1 (en) | 2024-04-10 |
EP3910700A4 (en) | 2022-05-04 |
CN113646918B (zh) | 2024-06-18 |
US20220149355A1 (en) | 2022-05-12 |
EP3910700A1 (en) | 2021-11-17 |
CN113646918A (zh) | 2021-11-12 |
KR20210100895A (ko) | 2021-08-18 |
HUE066727T2 (hu) | 2024-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018008953A1 (en) | Negative electrode for secondary battery | |
WO2017135792A1 (ko) | 양극 및 이를 포함하는 리튬 이차전지 | |
WO2019103460A1 (ko) | 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 | |
WO2016148383A1 (ko) | 다층 구조 전극 및 이를 포함하는 리튬 이차전지 | |
WO2017171409A1 (ko) | 이차전지용 음극, 이의 제조방법 및 이를 포함하는 이차전지 | |
WO2017164702A1 (ko) | 음극 및 이의 제조방법 | |
WO2012165758A1 (ko) | 리튬 이차전지 | |
WO2018016785A1 (en) | Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby | |
WO2021107586A1 (ko) | 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지 | |
WO2020111649A1 (ko) | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
WO2019093830A1 (ko) | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 | |
WO2020122511A1 (ko) | 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 | |
WO2019103546A2 (ko) | 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지 | |
WO2021225396A1 (ko) | 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019050216A2 (ko) | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 | |
WO2021157915A1 (ko) | 레이저를 이용한 클리닝 단계를 포함하는 전극 제조방법, 상기 방법으로 제조된 전극 및 이를 포함하는 이차전지 | |
WO2020149618A1 (ko) | 음극 활물질의 제조 방법 | |
WO2014200214A1 (ko) | 내진동 특성이 향상된 전기화학소자 및 전지 모듈 | |
WO2019004655A1 (ko) | 전극 조립체 및 그를 포함하는 리튬 이차전지 | |
WO2022092679A1 (ko) | 전극 조립체 및 이를 포함하는 전지셀 | |
WO2021125694A1 (ko) | 내부 단락 평가용 전지 셀 및 이를 이용한 전지 셀의 내부 단락 평가 방법 | |
WO2022045852A1 (ko) | 음극 및 상기 음극을 포함하는 이차 전지 | |
WO2018226070A1 (ko) | 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법 | |
WO2021112607A1 (ko) | 이차전지용 양극재의 제조방법 | |
WO2021107363A1 (ko) | 도핑 원소가 도핑된 리튬 니켈계 산화물을 포함하는 양극 활물질, 및 이를 포함하는 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021749758 Country of ref document: EP Effective date: 20210813 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21749758 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |