WO2021153559A1 - 溶接鋼管およびその製造方法 - Google Patents

溶接鋼管およびその製造方法 Download PDF

Info

Publication number
WO2021153559A1
WO2021153559A1 PCT/JP2021/002643 JP2021002643W WO2021153559A1 WO 2021153559 A1 WO2021153559 A1 WO 2021153559A1 JP 2021002643 W JP2021002643 W JP 2021002643W WO 2021153559 A1 WO2021153559 A1 WO 2021153559A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
surface side
content
weld metal
Prior art date
Application number
PCT/JP2021/002643
Other languages
English (en)
French (fr)
Inventor
篤史 石神
早川 直哉
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180010743.5A priority Critical patent/CN115210397B/zh
Priority to EP21747538.3A priority patent/EP4098764A4/en
Priority to JP2021526784A priority patent/JP7020592B2/ja
Priority to KR1020227025557A priority patent/KR20220115622A/ko
Publication of WO2021153559A1 publication Critical patent/WO2021153559A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0253Seam welding; Backing means; Inserts for rectilinear seams for the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/182Submerged-arc welding making use of a non-consumable electrode
    • B23K9/184Submerged-arc welding making use of a non-consumable electrode making use of several electrodes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to a welded steel pipe suitable as a line pipe for transporting petroleum and natural gas, and a method for producing the same.
  • Welded steel pipes such as UOE steel pipes and spiral steel pipes are manufactured by forming a plate-shaped or strip-shaped steel plate into a cylindrical shape and butt-welding the widthwise ends of the steel plate (for example, submerge arc welding). A linear welded portion (so-called seam portion) is formed.
  • the welded steel pipe thus obtained is used for various purposes, and quality suitable for the application is required. For example, in order to be used as a line pipe for transporting oil and natural gas, it must have good mechanical properties (eg toughness, etc.), especially for use as a line pipe laid in cold regions. Is required to have a significant improvement in low temperature toughness.
  • Submerged arc welding is widely used for welding the seams of welded steel pipes.
  • Submerged arc welding (so-called multi-electrode submerged welding) is performed by arranging two or more electrodes (that is, welding wires) in a row along the direction of welding.
  • the technique of performing arc welding is widespread. Then, from the viewpoint of improving productivity, a welding technique for increasing the welding speed has been put into practical use by using a plurality of electrodes and supplying a large current exceeding 1000 A as a welding current.
  • double-sided single-layer welding of the seam portion becomes possible.
  • double-sided one-layer welding of the seam portion of the welded steel pipe first, one-layer welding on the inner surface side is performed, and then one-layer welding on the outer surface side is performed.
  • a part of the weld metal on the inner surface side is reheated by welding on the outer surface side, and the mechanical properties are partially changed. Therefore, a technique for improving the characteristics of the seam portion (that is, the mechanical characteristics of the weld metal) by individually controlling the components of the weld metal on the inner surface side and the outer surface side has been studied (see Patent Document 2).
  • Welded steel pipes with sour resistance have been developed for use as line pipes in a sour environment, but sulfide stress corrosion cracking occurs in the seams in a sour environment. Since it is easy to do, it is necessary to keep the hardness of the weld metal low. Therefore, a technique for reducing the oxygen content of the weld metal, that is, improving the mechanical properties of the weld metal, is studied by using a welding wire having a reduced alloy component content and a highly basic flux in combination. (See Patent Document 3).
  • Patent Documents 1 and 2 are applied to a welded steel pipe having a steel plate thickness of 6 to 20 mm, a significant improvement in the characteristics of the seam portion cannot be expected. This is because the floating amount of the deoxidized product from the molten metal generated during welding is reduced and the oxygen content of the weld metal is increased, which adversely affects the mechanical properties of the weld metal. This phenomenon is likely to occur when manufacturing welded steel pipes used in an environment for transporting petroleum or natural gas containing hydrogen sulfide (H 2 S) (so-called sour environment).
  • H 2 S hydrogen sulfide
  • Patent Document 4 requires the installation of complicated ancillary equipment such as piping for supplying shield gas in addition to the main body of the welding machine for submerged arc welding, which causes an increase in the manufacturing cost of the welded steel pipe. ..
  • the present invention solves the problems of the prior art, and provides a welded steel pipe having a plate thickness of 6 to 20 mm, a bead with a beautiful appearance and a weld metal having excellent mechanical properties, and a method for manufacturing the same.
  • the purpose is to provide a welded steel pipe having a plate thickness of 6 to 20 mm, a bead with a beautiful appearance and a weld metal having excellent mechanical properties, and a method for manufacturing the same. The purpose.
  • the present inventor performs single-layer welding on the lower surface side (corresponding to the inner surface side) by butting two thick steel plates of the same thickness as a simulated experiment of double-sided single-layer welding of the seam portion in the manufacturing process of the welded steel pipe. After that, one-layer welding was performed on the upper surface side (corresponding to the outer surface side). The thickness of the thick steel plate used in the experiment was in the range of 6 to 20 mm, and multi-electrode submerged arc welding was used for both sides in single-layer welding. In this simulated experiment, the weld metal formed on the lower surface side is reheated by welding on the upper surface side, so that the characteristics of the welded portion (particularly the mechanical characteristics of the weld metal on the lower surface side) are partially changed.
  • a welded steel pipe obtained by forming a steel plate with a thickness of 6 to 20 mm into a cylindrical shape, butting both ends in the width direction of the steel plate, and welding both the inner surface side and the outer surface side by one-layer submerged arc welding.
  • the steel plate is C: 0.030 to 0.080% by mass, Si: 0.10 to 0.50% by mass, Mn: 1.00 to 2.00% by mass, P: 0.010% by mass or less, S: 0.005% by mass or less, Cu: 0.05% by mass or less, Ni: 0.05% by mass or less, Cr: 0.50% by mass or less, Mo: 0.20% by mass or less, Nb: 0.05% by mass or less, V: 0.100% by mass or less, Ti: 0.050% by mass or less, Al: 0.01 to 0.05% by mass, Ca: It contains 0.0005 to 0.0050% by mass, Mg: 0.0003 to 0.0100% by mass, REM: 0.020% by mass or less, and has a composition in which the balance consists of Fe and unavoidable impurities.
  • the weld metal on the inner surface side is C: 0.030 to 0.060% by mass, Si: 0.50% by mass or less, Mn: 0.80 to 1.80% by mass, Cu: 0.05% by mass or less, Ni: 0.05% by mass or less, Cr: 0.30% by mass or less.
  • the weld metal on the outer surface side is C: 0.030 to 0.060% by mass, Si: 0.50% by mass or less, Mn: 0.80 to 1.80% by mass, Cu: 0.05% by mass or less, Ni: 0.05% by mass or less, Cr: 0.30% by mass or less.
  • a steel plate having a composition component of 6 to 20 mm as described in [1] is formed into a cylindrical shape, and both ends of the steel plate in the width direction are butted and welded by submerged arc welding on both the inner surface side and the outer surface side.
  • the present invention in welding a relatively thin-walled (plate thickness 6 to 20 mm) welded steel pipe in which the amount of oxygen in the weld metal tends to be high, excellent mechanical properties are exhibited in the weld metal raw material portion and the weld metal reheat portion. It is possible to obtain a bead with a beautiful appearance, which is extremely effective in industry.
  • C 0.030 to 0.080 mass% C is an important element for improving the strength of a steel sheet, and if the C content is too small, a steel sheet having a predetermined strength cannot be obtained. On the other hand, if it is contained in an excessive amount, the toughness of the steel sheet deteriorates. Therefore, the C content is 0.030 to 0.080% by mass. Preferably, it is 0.040% by mass or more and 0.060% by mass or less.
  • Si 0.10 to 0.50 mass% Si is an element that is inevitably contained in the deoxidizing step when molten steel is melted, and has the effect of improving the strength of the steel sheet by solid solution strengthening. If the Si content is too low, a steel sheet having a predetermined strength cannot be obtained. On the other hand, if it is contained in an excessive amount, the toughness of the steel sheet deteriorates. Therefore, the Si content is set to 0.10 to 0.50% by mass. Preferably, the lower limit is 0.20% by mass and the upper limit is 0.40% by mass.
  • Mn 1.00 to 2.00 mass%
  • Mn is an important element for improving the hardenability of a steel sheet and improving the strength of the steel sheet, but if the Mn content is too low, the effect cannot be obtained. On the other hand, if the Mn content is too high, MnS is easily generated, which causes deterioration of the toughness of the steel sheet and hydrogen-induced cracking. Therefore, the Mn content is set to 1.00 to 2.00% by mass. Preferably, the lower limit is 1.20% by mass and the upper limit is 1.50% by mass.
  • P 0.010% by mass or less
  • P is an element that is mixed as an impurity in melting molten steel and deteriorates the toughness of steel sheets and weld heat-affected zones. Therefore, the smaller the P content, the more the effect of improving toughness can be obtained, so the content should be 0.010% by mass or less.
  • the lower limit value is 0.001% by mass or more and the upper limit value is 0.006% by mass or less in consideration of the de-P cost.
  • S 0.005% by mass or less
  • S is an element that is mixed as an impurity during melting of molten steel and promotes central segregation of the steel sheet. Therefore, the smaller the S content, the better the quality of the welded steel pipe. Therefore, the S content shall be 0.005% by mass or less.
  • the lower limit is 0.001% by mass and the upper limit is 0.003% by mass in consideration of the de-S cost.
  • Cu 0.05% by mass or less
  • Cu is an important element for improving the strength of steel sheets, but if it is contained in excess, it causes a decrease in toughness of the weld heat affected zone of the welded steel pipe. Therefore, the Cu content should be 0.05% by mass or less.
  • the lower limit is 0.01% by mass and the upper limit is 0.03% by mass.
  • Ni 0.05% by mass or less
  • Ni is an element that improves the strength and toughness of steel sheets, but if it is contained in excess, sulfide stress corrosion cracking of the weld metal of the welded steel pipe is likely to occur. Therefore, the Ni content should be 0.05% by mass or less.
  • the lower limit is 0.005% by mass and the upper limit is 0.02% by mass.
  • Cr 0.50% by mass or less Cr is an important element for improving the strength of steel sheets, but if it is contained in excess, it causes a decrease in toughness of the weld heat affected zone of the welded steel pipe. Therefore, the Cr content is set to 0.05% by mass or less. Preferably, the lower limit is 0.10% by mass and the upper limit is 0.30% by mass.
  • Mo 0.20% by mass or less
  • Mo is an element that improves the strength and toughness of steel sheets, but when steel sheets containing excess Mo are joined by double-sided single-layer welding, the inner surface side is formed in advance. The weld metal is reheated in the next welding on the outer surface side, causing precipitation embrittlement. Therefore, the Mo content should be 0.20% by mass or less.
  • the lower limit is 0.05% by mass and the upper limit is 0.15% by mass.
  • Nb 0.05% by mass or less
  • Nb is an element that has the effect of expanding the unrecrystallized temperature range in hot rolling for manufacturing steel sheets, but if it is added excessively, the toughness of the weld heat-affected zone of the welded steel pipe will decrease.
  • the Nb content should be 0.05% by mass or less.
  • the lower limit is 0.02% by mass and the upper limit is 0.04% by mass.
  • V 0.100% by mass or less
  • V is an element that has the effect of improving the strength of the steel sheet by precipitation strengthening, but if it is added in excess, it causes a decrease in the toughness of the steel sheet and a decrease in the toughness of the weld heat affected zone of the welded steel pipe. Therefore, the V content shall be 0.100% by mass or less.
  • the lower limit is 0.001% by mass and the upper limit is 0.010% by mass.
  • Ti 0.050% by mass or less
  • Ti is an element that improves the toughness of steel sheets by combining with N to generate TiN when melting molten steel and reducing solid solution N.
  • the generated TiN contributes to the grain refinement of the steel sheet and the grain refinement of the weld heat-affected zone of the welded steel pipe.
  • the Ti content should be 0.050% by mass or less.
  • the lower limit is 0.005% by mass and the upper limit is 0.020% by mass.
  • Al 0.01-0.05 mass%
  • Al is an element added as a deoxidizing material when molten steel is melted, but if Al is excessively contained, the toughness of the steel sheet is lowered.
  • the Al content is set to 0.01 to 0.05% by mass.
  • the lower limit is 0.02% by mass and the upper limit is 0.04% by mass.
  • Ca 0.0005 to 0.0050% by mass
  • Ca is an element effective in controlling the morphology of sulfide-based inclusions in steel, and is an element that suppresses the formation of MnS and improves ductility, but if it is less than 0.0005% by mass, the effect is small, 0.0050% by mass. If it exceeds, CaO-CaS clusters are formed and become the starting point of HIC cracking and the starting point of ductile cracks during deformation. Therefore, the Ca content is set to 0.0005 to 0.0050% by mass.
  • the lower limit is 0.0010% by mass and the upper limit is 0.0040% by mass.
  • Mg 0.0003 to 0.0100% by mass
  • Mg has the effect of refining oxides in the steelmaking process and is effective in suppressing coarse oxides that cause a decrease in ductility, but the effect is small when it is less than 0.0003% by mass, and it is contained in excess of 0.0100% by mass.
  • the Mg content is set to 0.0003 to 0.0100% by mass.
  • the lower limit is 0.0010% by mass and the upper limit is 0.0040% by weight.
  • REM 0.020% by mass or less REM is an element effective for morphological control of sulfide-based inclusions in steel, and is an element that suppresses the formation of MnS and improves ductility, but contains more than 0.020% by mass. Even so, the effect is saturated, so the REM content should be 0.020% by mass or less. On the other hand, if REM is less than 0.0005% by mass, the effect is small, and therefore it is preferably in the range of 0.0005 to 0.020% by mass. More preferably, the lower limit is 0.0050% by mass and the upper limit is 0.0150% by mass.
  • the rest of the steel sheet other than the above-mentioned components is Fe and impurities that are inevitably mixed (hereinafter referred to as unavoidable impurities).
  • the welding metal on the inner surface side is formed first, and then the welding metal on the outer surface side is formed.
  • C 0.030 to 0.060 mass% C is an important element for enhancing the hardenability of the weld metal and improving the strength, and if the C content is too small, the weld metal having a predetermined strength cannot be obtained. On the other hand, if it is contained in an excessive amount, carbides and martensite are easily generated, and the toughness of the weld metal deteriorates. Therefore, the C content on the inner surface side and the outer surface side is 0.030 to 0.060% by mass. Preferably, the upper limit is 0.040% by mass and the lower limit is 0.060% by mass.
  • Si 0.50% by mass or less
  • Si is an element that is inevitably contained in the deoxidizing step when molten steel is melted, but if it is contained in excess, the toughness of the weld metal deteriorates. Therefore, the Si content on the inner surface side and the outer surface side shall be 0.50% by mass or less.
  • the lower limit is 0.20% by mass and the upper limit is 0.40% by mass.
  • Mn 0.80 to 1.80% by mass
  • Mn is an element that improves the strength of the weld metal, but if the Mn content is too low, the effect cannot be obtained. On the other hand, if the Mn content is too high, the hardness of the weld metal is significantly increased, resulting in deterioration of toughness. Therefore, the Mn content on the inner surface side and the outer surface side is set to 0.80 to 1.80% by mass.
  • the lower limit is 1.10% by mass and the upper limit is 1.70% by weight.
  • Cu 0.05% by mass or less Cu is an important element for improving the strength of the weld metal, but if it is contained in excess, the toughness of the weld metal deteriorates. Therefore, the Cu content on the inner surface side and the outer surface side is set to 0.05% by mass or less. Preferably, the lower limit is 0.01% by mass and the upper limit is 0.04% by mass.
  • Ni 0.05% by mass or less
  • Ni is an important element for improving the hardenability and strength of the weld metal, but if it is contained in excess, sulfide stress corrosion cracking of the weld metal is likely to occur. Therefore, the Ni content on the inner surface side and the outer surface side is set to 0.05% by mass or less.
  • the lower limit is 0.01% by mass and the upper limit is 0.03% by mass.
  • Cr 0.30% by mass or less Cr is an important element for improving the hardenability and strength of the weld metal, but if it is contained in excess, the hardness of the weld metal will increase significantly and the toughness will deteriorate. Invite. Therefore, the Cr content on the inner surface side and the outer surface side shall be 0.30% by mass or less. It is preferably in the range of 0.10 to 0.30% by mass. More preferably, the lower limit is 0.10% by mass and the upper limit is 0.20% by mass.
  • Mo 0.10% by mass or less on the inner surface side, 0.20% by mass or less on the outer surface side Mo is an important element for improving the hardenability and strength of the weld metal, but if it is contained excessively, the hardness of the weld metal Will increase significantly, leading to deterioration of toughness.
  • the weld metal on the inner surface side is reheated by welding on the outer surface side, and this phenomenon occurs remarkably. Therefore, the Mo content on the inner surface side is set to 0.10% by mass or less, and the Mo content on the outer surface side is 0.20% by mass. It is as follows.
  • the Mo content on the inner surface side is smaller than that on the outer surface side. More preferably, the lower limit value on the inner surface side is 0.05% by mass and the upper limit value is 0.10% by mass, and the lower limit value on the outer surface side is 0.05% by mass and the upper limit value is 0.20% by mass.
  • Nb 0.040% by mass or less
  • Nb is an important element for improving the hardenability and strength of the weld metal, but if it is contained in excess, the hardness of the weld metal will increase significantly and the toughness will deteriorate. Invite. Therefore, the Nb content on the inner surface side and the outer surface side shall be 0.040% by mass or less.
  • the lower limit is 0.010% by mass and the upper limit is 0.030% by mass.
  • V 0.010% by mass or less
  • V is an important element for improving the hardenability and strength of the weld metal, but if it is contained in excess, the hardness of the weld metal will increase significantly and the toughness will deteriorate. Invite. Therefore, the V content on the inner surface side and the outer surface side shall be 0.010% by mass or less. It is preferably 0.005% by mass or less. More preferably, the lower limit is 0.002% by mass and the upper limit is 0.004% by mass.
  • Ti 0.010 to 0.040% by mass Ti is an element that forms an oxide to form a nucleation of acicular ferrite and improves the toughness of the weld metal. If the Ti content is too low, this effect will not be obtained. On the other hand, if it is contained in an excessive amount, the solid solution Ti of the weld metal increases and the toughness deteriorates. Therefore, the Ti content on the inner surface side and the outer surface side is 0.010 to 0.040% by mass. Preferably, the lower limit is 0.015% by mass and the upper limit is 0.025% by mass.
  • B 0.0015 to 0.0040% by mass or less on the inner surface side, 0.0015 to 0.0060% by mass on the outer surface side B is an element that segregates at the grain boundaries and suppresses the formation of grain boundary ferrites. If the B content is too low, this effect cannot be obtained. On the other hand, if it is contained in an excessive amount, the hardness of the weld metal is significantly increased and the toughness is deteriorated. In particular, the weld metal on the inner surface side is reheated by welding on the outer surface side, and this phenomenon occurs remarkably. Therefore, the B content on the inner surface side is 0.0015 to 0.0040% by mass, and the B content on the outer surface side is 0.0015 to 0.0015.
  • the lower limit value on the inner surface side is 0.0015 mass% and the upper limit value is 0.0030 mass%
  • the lower limit value on the outer surface side is 0.0015 mass%
  • the upper limit value is 0.0050 mass%.
  • Al 0.030% by mass or less
  • Al is an element added as a deoxidizing material when molten steel is melted, but if Al is excessively contained, the toughness of the weld metal is lowered. Therefore, the Al content on the inner surface side and the outer surface side shall be 0.030% by mass or less.
  • the lower limit is 0.005% by mass and the upper limit is 0.020% by mass.
  • O 0.020 to 0.040% by mass
  • O is an element that improves the mechanical properties of weld metals by combining with Ti to form Ti oxides and becoming nucleation of acicular ferrite. If the O content is too low, this effect cannot be obtained. On the other hand, if it is contained in an excessive amount, grain boundary ferrite is generated in the weld metal, which causes a decrease in toughness. Therefore, the O content on the inner surface side and the outer surface side is 0.020 to 0.040% by mass.
  • N 0.007% by mass or less
  • N is an element that suppresses the segregation of B at the grain boundaries by mixing with the weld metal as an impurity and combining with B to form BN. If N is excessively contained, grain boundary ferrite is easily generated, which causes a decrease in the toughness of the weld metal. Therefore, the N content on the inner surface side and the outer surface side shall be 0.007% by mass or less. Preferably, the lower limit is 0.003% by mass and the upper limit is 0.006% by mass.
  • Pcm Inner surface side 0.140-0.180, outer surface side 0.140-0.185
  • the Pcm calculated by Eq. (1) below is an index showing the hardenability of the weld metal, and if it is too small, grain boundary ferrite tends to precipitate, and the toughness of the weld metal deteriorates. On the other hand, if the Pcm is too large, the hardenability becomes high and bainite is easily generated, which also causes a decrease in the toughness of the weld metal. Therefore, the Pcm on the inner surface side is 0.140 to 0.180, and the Pcm on the outer surface side is 0.140 to 0.185.
  • the lower limit of Pcm on the inner surface side is 0.160 and the upper limit value is 0.175
  • the lower limit value of Pcm on the outer surface side is 0.160 and the upper limit value is 0.180.
  • Pcm [C] + [Si] / 30 + ([Mn] + [Cu] + [Cr]) / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B] ⁇ ⁇ ⁇ (1)
  • Si Si content (% by mass) of weld metal
  • Cu] Cu content (% by mass) of weld metal
  • Cr] Cr content (% by mass) of weld metal
  • Ni Ni content (% by mass) of weld metal [Mo]: Mo content (mass%) of weld metal [V]: V content (% by mass) of wel
  • the welding wire is appropriately selected according to the component of the steel plate, the component of the flux, the plate thickness, the welding conditions, etc. so that the weld metal having the above-mentioned components can be obtained.
  • the composition component of the welding wire is such that the weld metal can be easily controlled within the above component range. That is, as described above, the amount of Mo of the weld metal is 0.1% by mass or less on the inner surface side and 0.2% by mass or less on the outer surface side. Therefore, the Mo amount of the welding wire is preferably 0.55% by mass or less.
  • the amount of B of the weld metal is 0.0015 to 0.0040% by mass on the inner surface side and 0.0015 to 0.0060% by mass on the outer surface side. Therefore, the B amount of the welding wire is preferably 0.0150% by mass or less, and more preferably the lower limit is .0.100% by mass.
  • a plate-shaped or strip-shaped steel plate having the above-mentioned composition component and having a plate thickness of 6 to 20 mm is formed into a cylindrical shape, and the widthwise end portions of the steel plates are abutted against each other.
  • submerged arc welding is performed on each of the widthwise end portions of the steel plate on the inner surface side and the outer surface side to form a linear welded portion (seam portion) having the weld metal of the above composition component.
  • the one-layer welding on the inner surface side is performed, the one-layer welding on the outer surface side is performed.
  • the components of the flux used in the one-layer welding on the inner surface side and the outer surface side by submerged arc welding will be described. If the basicity (BI) of the flux calculated by the following equation (2) is too low, the amount of oxygen in the weld metal may increase and the mechanical properties may deteriorate. On the other hand, if the BI is too high, the viscosity of the molten slag generated by the one-layer welding decreases, so that a bead with a beautiful appearance may not be obtained. Therefore, the BI of the flux used is preferably in the range of 1.0 to 2.2. As the type of flux, both molten flux and calcined flux can be used.
  • the welding heat input of the one-layer welding on the inner surface side and the outer surface side by submerged arc welding will be described.
  • the one-layer welding on the inner surface side is performed first, and then the one-layer welding on the outer surface side is performed.
  • the welding heat input for the one-layer welding according to the thickness of the steel plate as the material. Specifically, under the condition that the welding heat input Q B (kJ / mm) on the inner surface side satisfies the following equation (3) and the welding heat input Q F (kJ / mm) on the outer surface side satisfies the following equation (4). It is preferable to perform one-layer welding by submerged arc welding.
  • the present invention can be applied to welding of welded steel pipes (for example, UOE steel pipes, spiral steel pipes, etc.), and is suitable for one-layer welding on the inner surface side and the outer surface side by submerged arc welding. Further, when performing butt welding of thick steel sheets, it can also be applied to one-layer welding on the lower surface side and the upper surface side. Furthermore, it can be applied to grooves of various shapes.
  • welded steel pipes for example, UOE steel pipes, spiral steel pipes, etc.
  • Table 6 shows the combination of steel plate, flux, welding wire, and welding conditions in the manufacturing experiment of UOE steel pipe as a welded steel pipe.
  • the appearance of the bead at the site where submerged arc welding is stable (hereinafter referred to as "welding steady portion") except for the pipe end is visually observed. It was inspected for welding defects and serpentine exposure on the bead surface. The results are shown in Table 9. ⁇ , which is shown as the appearance of the bead in Table 9, is an example in which welding defects and meandering were not observed, and ⁇ is an example in which welding defects were not observed although meandering occurred.
  • the hardness of the weld metal conforms to JIS standard Z3101, with a pitch of 1 mm at a depth of 2 mm from the inner surface layer and 2 mm from the outer surface layer, a pitch of 1 mm on the center line of the weld metal, and a Vickers hardness with a load of 98 N.
  • the hardness of the weld metal is based on JIS standard Z3101, and the Vickers hardness was measured with a pitch of 1 mm on the center line of the weld metal and a load of 98 N, and the maximum value of the hardness was recorded (Fig.). 2).
  • the results are shown in Table 9.
  • the Charpy impact test of the weld metal was carried out at -30 ° C in accordance with JIS standard Z2242.
  • the size of the test piece was 10 mm ⁇ 10 mm, and the measurement was performed using a steel BM2 (plate thickness 20.0 mm) UOE steel pipe collected 7 mm from the outer surface surface layer so that the center line of the test piece was taken (see FIG. 3).
  • the results are shown in Table 9 as V E -30 (J) on the outer surface.
  • the results of measurement using the one collected so that the line connecting the two points where the melting boundary line on the inner surface side and the melting boundary line on the outer surface side intersect is the center line of the test piece (see FIG. 4) are used as the meeting part. Also shown in Table 9 as V E -30 (J).
  • both the bead on the inner surface side and the bead on the outer surface side obtained a beautiful appearance. Further, the hardness of the weld metal on the inner surface side and the weld metal on the outer surface side became Hv10 ⁇ 248 and did not increase excessively, and good toughness of V E -30 ⁇ 70 J was obtained.
  • Nos. 1, 2, 10 and 11 have the BI value (basicity) of the flux satisfying the equation (2) and the welding heat input satisfying the equations (3) and (4), so that the appearance of the bead and the toughness of the weld metal Has improved significantly.

Abstract

板厚6~20mmの鋼板を円筒状に成形し、鋼板の幅方向両端部を突き合わせて内面側および外面側ともに1層盛のサブマージアーク溶接で溶接することによって得られる溶接鋼管であって、鋼板及び内面側と外面側の溶接金属が所定の成分を有し、かつ、内面側の溶接金属の成分から下記(1)式により算出されるPcmが0.140~0.180の範囲内であり、外面側の溶接金属の成分から算出されるPcmが0.140~0.185の範囲内である、溶接鋼管である。 Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B] ・・・(1)

Description

溶接鋼管およびその製造方法
 本発明は、石油や天然ガスを輸送するためのラインパイプとして好適な溶接鋼管およびその製造方法に関するものである。
 UOE鋼管やスパイラル鋼管等の溶接鋼管は、板状あるいは帯状の鋼板を円筒状に成形し、その鋼板の幅方向端部を突き合わせて溶接(たとえばサブマージアーク溶接等)することによって製造されるので、線状の溶接部(いわゆるシーム部)が形成される。こうして得られる溶接鋼管は種々の用途に使用され、その用途に適した品質が求められる。たとえば、石油や天然ガスを輸送するためのラインパイプとして使用するためには、良好な機械的特性(たとえば靭性等)を備える必要があり、特に寒冷地に敷設されるラインパイプとして使用するためには低温靭性の大幅な向上が求められる。
 溶接鋼管の品質を改善するためには、素材となる鋼板の特性、およびシーム部に形成される溶接金属の特性を向上させる必要がある。しかし、鋼板を円筒状に成形してシーム部を溶接する溶接鋼管の製造工程において鋼板の特性を向上させるのは難しい。そこで、鋼板と溶接材料(たとえばフラックス、溶接ワイヤ等)の成分を制御して、それらを適正に組み合わせて溶接を行なうことによって、シーム部の特性(すなわち溶接金属の機械的特性)を向上させる技術が検討されている(特許文献1参照)。
 溶接鋼管のシーム部の溶接にはサブマージアーク溶接が広く使用されており、2本以上の電極(すなわち溶接ワイヤ)を溶接の進行方向に沿って一列に配置してサブマージアーク溶接(いわゆる多電極サブマージアーク溶接)を行なう技術が普及している。そして、生産性向上の観点から複数の電極を使用し、かつ溶接電流として1000Aを超える大電流を供給することによって、溶接速度を増加させる溶接技術が実用化されている。
 このような多電極サブマージアーク溶接を適用することによって、シーム部の両面1層盛溶接が可能となる。溶接鋼管のシーム部の両面1層盛溶接では、まず内面側の1層盛溶接を行ない、次いで外面側の1層盛溶接を行なう。これにより内面側の溶接金属の一部は外面側の溶接によって再加熱を受けて、機械的特性が部分的に変化する。そこで、内面側と外面側の溶接金属の成分を夫々個別に制御して、シーム部の特性(すなわち溶接金属の機械的特性)を向上させる技術が検討されている(特許文献2参照)。
 また、サワー環境でラインパイプとして使用するために、耐サワー性を備えた溶接鋼管(たとえばAPI規格X60~X65相当)が開発されているが、サワー環境ではシーム部に硫化物応力腐食割れが発生し易いので、溶接金属の硬さを低く抑える必要がある。そこで、合金成分の含有量を低減した溶接ワイヤと高塩基度のフラックスを組み合わせて使用することによって、溶接金属の酸素含有量の低減、すなわち溶接金属の機械的特性の向上を図る技術が検討されている(特許文献3参照)。
 さらにはビードの形状を安定させて美麗な外観のビードを得るために、溶融スラグと溶融メタルならびにその周辺を覆うカバーを用いて、フラックスに含有される窒素(N2)を二酸化炭素(CO2)やアルゴンガス(Ar)で置換するとともに溶融メタル周辺を大気から遮断(いわゆるシールド)しながら溶接する技術も検討されている(特許文献4参照)。
特公平1-38851号公報 特開平9-1344号公報 特開昭48-100344号公報 特開2010-29931号公報
 しかし特許文献1、2に開示された技術を、鋼板の板厚6~20mmの溶接鋼管に適用しても、シーム部の特性の大幅な向上は期待できない。何故なら、溶接中に生じる溶融メタルからの脱酸生成物の浮上量が減少して、溶接金属の酸素含有量が増加するので、溶接金属の機械的特性に悪影響を及ぼすからである。この現象は、硫化水素(H2S)を含有する石油や天然ガスを輸送する環境(いわゆるサワー環境)で使用される溶接鋼管を製造する場合に発生し易い。
 特許文献3に開示された技術は、溶接中に生じる溶融スラグの粘度が低下するので、ビードの形状が不安定になり易い。
 特許文献4に開示された技術は、サブマージアーク溶接の溶接機本体に加えて、シールドガスを供給する配管等の複雑な付帯設備を設置する必要があるので、溶接鋼管の製造コストの上昇を招く。
 本発明は、従来の技術の問題点を解消し、板厚が6~20mmで、美麗な外観のビードおよび機械的特性に優れた溶接金属を有する溶接鋼管、およびその製造方法を提供することを目的とする。
 本発明者は、溶接鋼管の製造工程におけるシーム部の両面1層盛溶接の模擬実験として、同じ板厚の厚鋼板を2枚突き合わせて下面側(内面側に相当)の1層盛溶接を行なった後、上面側(外面側に相当)の1層盛溶接を行なった。実験で使用した厚鋼板の板厚は6~20mmの範囲内であり、1層盛溶接では両面とも多電極サブマージアーク溶接を採用した。この模擬実験では、下面側に形成される溶接金属が上面側の溶接で再加熱されるので、溶接部の特性(特に下面側の溶接金属の機械的特性)が部分的に変化する。
 そこで、得られた溶接部の機械的特性とビードの外観を調査した。その結果、下面側と上面側の溶接金属の成分を夫々個別に制御すれば、優れた特性を有する溶接部が得られることを見出した。
 本発明は、このような知見に基づいてなされたものである。
 [1]板厚6~20mmの鋼板を円筒状に成形し、鋼板の幅方向両端部を突き合わせて内面側および外面側ともに1層盛のサブマージアーク溶接で溶接することによって得られる溶接鋼管であって、
鋼板が、C:0.030~0.080質量%、Si:0.10~0.50質量%、Mn:1.00~2.00質量%、P:0.010質量%以下、S:0.005質量%以下、Cu:0.05質量%以下、Ni:0.05質量%以下、Cr:0.50質量%以下、Mo:0.20質量%以下、Nb:0.05質量%以下、V:0.100質量%以下、Ti:0.050質量%以下、Al:0.01~0.05質量%、Ca:0.0005~0.0050質量%、Mg:0.0003~0.0100質量%、REM:0.020質量%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、
内面側の溶接金属が、C:0.030~0.060質量%、Si:0.50質量%以下、Mn:0.80~1.80質量%、Cu:0.05質量%以下、Ni:0.05質量%以下、Cr:0.30質量%以下、Mo:0.10質量%以下、Nb:0.040質量%以下、V:0.010質量%以下、Ti:0.010~0.040質量%、B:0.0015~0.0040質量%、Al:0.030質量%以下、O:0.020~0.040質量%、N:0.007質量%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、かつ下記(1)式で算出されるPcmが0.140~0.180の範囲内を満たし、
外面側の溶接金属が、C:0.030~0.060質量%、Si:0.50質量%以下、Mn:0.80~1.80質量%、Cu:0.05質量%以下、Ni:0.05質量%以下、Cr:0.30質量%以下、Mo:0.20質量%以下、Nb:0.040質量%以下、V:0.010質量%以下、Ti:0.010~0.040質量%、B:0.0015~0.0060質量%、Al:0.030質量%以下、O:0.020~0.040質量%、N:0.007質量%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、かつ下記(1)式で算出されるPcmが0.140~0.185の範囲内を満たす溶接鋼管である。
Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]  ・・・(1)
[C]:溶接金属のC含有量(質量%)
[Si]:溶接金属のSi含有量(質量%)
[Mn]:溶接金属のMn含有量(質量%)
[Cu]:溶接金属のCu含有量(質量%)
[Cr]:溶接金属のCr含有量(質量%)
[Ni]:溶接金属のNi含有量(質量%)
[Mo]:溶接金属のMo含有量(質量%)
[V]:溶接金属のV含有量(質量%)
[B]:溶接金属のB含有量(質量%)
 [2] [1]に記載の組成成分の板厚6~20mmの鋼板を円筒状に成形し、鋼板の幅方向両端部を突き合わせて内面側および外面側ともに1層盛のサブマージアーク溶接で溶接して[1]に記載の組成成分の溶接金属にする溶接鋼管の製造方法。
 [3] 内面側および外面側のサブマージアーク溶接のフラックスとして、下記(2)式で算出されるB.I.が1.0~2.2の範囲内を満たすものを使用する[2]に記載の溶接鋼管の製造方法である。
B.I.=([CaO]+[CaF2]+[MgO]+0.5[MnO])/{[SiO2]+0.5([Al2O3]+[TiO2])}   ・・・(2)
[CaO]:フラックスのCaO含有量(質量%)
[CaF2]:フラックスのCaF2含有量(質量%)
[MgO]:フラックスのMgO含有量(質量%)
[MnO]:フラックスのMnO含有量(質量%)
[SiO2]:フラックスのSiO2含有量(質量%)
[Al2O3]:フラックスのAl2O3含有量(質量%)
[TiO2]:フラックスのTiO2含有量(質量%)
 [4]内面側の溶接入熱QB(kJ/mm)が下記(3)式を満たし、外面側の溶接入熱QF(kJ/mm)が下記(4)式を満たす条件でサブマージアーク溶接を行なう[2]又は[3]に記載の溶接鋼管の製造方法。
1.3×exp(0.045×t)≦QB≦1.9×exp(0.048×t)   ・・・(3)
1.3×exp(0.045×t)≦QF≦1.9×exp(0.048×t)   ・・・(4)
t:鋼板の板厚(mm)
 [5]サブマージアーク溶接が多電極サブマージアーク溶接である[2]から[4]のいずれかに記載の溶接鋼管の製造方法。
 [6] 内面側の1層盛の溶接を行った後、外面側の1層盛の溶接を行う[2]から[5]のいずれかに記載の溶接鋼管の製造方法。
 本発明によれば、溶接金属の酸素量が高くなりやすい比較的薄肉(板厚6~20mm)の溶接鋼管の溶接において、溶接金属原質部および溶接金属再熱部で優れた機械的特性が得られ、しかも美麗な外観のビードを得ることが可能となり、産業上格段の効果を奏する。
開先形状の例を模式的に示す断面図である。 ビッカース硬さを測定した位置を示す断面図である。 シャルピー衝撃試験片を採取した位置を示す断面図である。 シャルピー衝撃試験片を採取した位置を示す断面図である。 シャルピー衝撃試験片を採取した位置を示す断面図である。
 まず、本発明に係る溶接鋼管の素材となる鋼板の成分について説明する。
 C:0.030~0.080質量%
 Cは、鋼板の強度を向上させるために重要な元素であり、C含有量が少なすぎると所定の強度を備えた鋼板が得られない。一方で、過剰に含有させると鋼板の靭性が劣化する。したがって、C含有量は0.030~0.080質量%とする。好ましくは、0.040質量%以上であり、0.060質量%以下である。
 Si:0.10~0.50質量%
 Siは、溶鋼を溶製する際に脱酸工程で必然的に含有される元素であり、固溶強化によって鋼板の強度を向上させる効果を有する。Si含有量が少なすぎると所定の強度を備えた鋼板が得られない。一方で、過剰に含有させると鋼板の靭性が劣化する。したがって、Si含有量は0.10~0.50質量%とする。好ましくは、下限値は0.20質量%であり、上限値は0.40質量%である。
 Mn:1.00~2.00質量%
 Mnは、鋼板の焼入れ性を高めて、鋼板の強度を向上させるために重要な元素であるが、Mn含有量が低すぎるとその効果が得られない。一方で、Mn含有量が高すぎると、MnSが容易に生成されるので、鋼板の靭性劣化や水素誘起割れの原因となる。したがって、Mn含有量は1.00~2.00質量%とする。好ましくは、下限値は1.20質量%であり、上限値は1.50質量%である。
 P:0.010質量%以下
 Pは、溶鋼を溶製する際に不純物として混入して、鋼板や溶接熱影響部の靭性を劣化させる元素である。したがってP含有量が少ないほど、靭性向上の効果が得られるので0.010質量%以下とする。好ましくは、脱Pコストも考慮し、下限値は0.001質量%以上であり、上限値は0.006質量%以下である。
 S:0.005質量%以下
 Sは、溶鋼を溶製する際に不純物として混入して、鋼板の中心偏析を助長する元素であるから、S含有量が少ないほど、溶接鋼管の品質が向上する。したがって、S含有量は0.005質量%以下とする。好ましくは、脱Sコストも考慮し、下限値は0.001質量%であり、上限値は0.003質量%である。
 Cu:0.05質量%以下
 Cuは、鋼板の強度を向上させるために重要な元素であるが、過剰に含有させると溶接鋼管の溶接熱影響部の靭性低下を招く。したがって、Cu含有量は0.05質量%以下とする。好ましくは、下限値は0.01質量%であり、上限値は0.03質量%である。
 Ni:0.05質量%以下
 Niは、鋼板の強度と靭性を向上させる元素であるが、過剰に含有させると溶接鋼管の溶接金属の硫化物応力腐食割れが発生し易くなる。したがって、Ni含有量は0.05質量%以下とする。好ましくは、下限値は0.005質量%であり、上限値は0.02質量%である。
 Cr:0.50質量%以下
 Crは、鋼板の強度を向上させるために重要な元素であるが、過剰に含有させると溶接鋼管の溶接熱影響部の靭性低下を招く。したがって、Cr含有量は0.05質量%以下とする。
好ましくは、下限値は0.10質量%であり、上限値は0.30質量%である。
 Mo:0.20質量%以下
 Moは、鋼板の強度と靭性を向上させる元素であるが、Moを過剰に含有する鋼板を両面1層盛溶接で接合する場合に、先行して形成される内面側の溶接金属が次の外面側の溶接で再加熱されて析出脆化を起こす。したがって、Mo含有量は0.20質量%以下とする。好ましくは、下限値は0.05質量%であり、上限値は0.15質量%である。
 Nb:0.05質量%以下
 Nbは、鋼板を製造するための熱間圧延にて未再結晶温度域を拡大する効果を有する元素であるが、過剰に添加すると溶接鋼管の溶接熱影響部の靭性低下を招く。また、Nbを過剰に含有する鋼板を両面1層盛溶接で接合する場合に、先行して形成される内面側の溶接金属が次の溶接で再加熱されて析出脆化を起こす。したがって、Nb含有量は0.05質量%以下とする。好ましくは、下限値は0.02質量%であり、上限値は0.04質量%である。
 V:0.100質量%以下
 Vは、析出強化によって鋼板の強度を向上させる効果を有する元素であるが、過剰に添加すると鋼板の靭性低下および溶接鋼管の溶接熱影響部の靭性低下を招く。したがって、V含有量は0.100質量%以下とする。好ましくは、下限値は0.001質量%であり、上限値は0.010質量%である。
 Ti:0.050質量%以下
 Tiは、溶鋼を溶製する際にNと結合してTiNを生成し、固溶Nを低減させることによって鋼板の靭性を向上させる元素である。また、生成したTiNは鋼板の結晶粒微細化および溶接鋼管の溶接熱影響部の結晶粒微細化に寄与する。しかしTiを過剰に含有させると、鋼板の靭性低下を招く。したがって、Ti含有量は0.050質量%以下とする。好ましくは、下限値は0.005質量%であり、上限値は0.020質量%である。
 Al:0.01~0.05質量%
 Alは、溶鋼を溶製する際に脱酸材として添加される元素であるが、Alを過剰に含有させると鋼板の靭性低下を招く。一方で、Alを大幅に低下させるためには溶鋼の溶製に長時間を要するので、鋼板の製造コストが上昇する。したがって、Al含有量は0.01~0.05質量%とする。好ましくは、下限値が0.02質量%であり、上限値が0.04質量%である。
 Ca:0.0005~0.0050質量%
 Caは、鋼中の硫化物系介在物の形態制御に有効な元素であり、MnSの生成を抑制して延性を向上させる元素であるが、0.0005質量%未満ではその効果は小さく、0.0050質量%を超えるとCaO-CaSのクラスターを形成し、HIC割れの発生起点や変形時の延性き裂の発生起点となるため、Ca含有量は0.0005~0.0050質量%とする。好ましくは、下限値は0.0010質量%であり、上限値は0.0040質量%である。
 Mg:0.0003~0.0100質量%
 Mgは、製鋼過程で酸化物を微細化する効果があり、延性低下の原因となる粗大酸化物の抑制に有効であるが、0.0003質量%未満ではその効果は小さく、0.0100質量%を超えて含有しても効果が飽和するため、Mg含有量は0.0003~0.0100質量%とする。好ましくは、下限値は0.0010質量%であり、上限値は0.0040質量%である。
 REM:0.020質量%以下
 REMは、鋼中の硫化物系介在物の形態制御に有効な元素であり、MnSの生成を抑制して延性を向上させる元素であるが、0.020質量%を超えて含有しても効果が飽和するため、REM含有量は0.020質量%以下とする。一方、REMが0.0005質量%未満ではその効果は小さいため、好ましくは0.0005~0.020質量%の範囲内である。より好ましくは、下限値は0.0050質量%であり、上限値は0.0150質量%である。
 鋼板の上記した成分以外の残部は、Feおよび不可避的に混入する不純物(以下、不可避的不純物という)である。
 次に、本発明に係る溶接鋼管の溶接金属の成分について説明する。なお、本発明では内面側の溶接金属が先行して形成され、次に外面側の溶接金属が形成される。
 C:0.030~0.060質量%
 Cは、溶接金属の焼入れ性を高めて、強度を向上させるために重要な元素であり、C含有量が少なすぎると所定の強度を備えた溶接金属が得られない。一方で、過剰に含有させると炭化物やマルテンサイトが容易に生成して、溶接金属の靭性が劣化する。したがって内面側と外面側のC含有量は、いずれも0.030~0.060質量%とする。好ましくは、上限値は0.040質量%であり、下限値は0.060質量%である。
 Si:0.50質量%以下
 Siは、溶鋼を溶製する際に脱酸工程で必然的に含有される元素であるが、過剰に含有させると溶接金属の靭性が劣化する。したがって内面側と外面側Si含有量は、いずれも0.50質量%以下とする。好ましくは、下限値は0.20質量%であり、上限値は0.40質量%である。
 Mn:0.80~1.80質量%
 Mnは、溶接金属の強度を向上させる元素であるが、Mn含有量が低すぎるとその効果が得られない。一方で、Mn含有量が高すぎると、溶接金属の硬さが大幅に上昇して靭性の劣化を招く。したがって内面側と外面側のMn含有量は、いずれも0.80~1.80質量%とする。好ましくは、下限値は1.10質量%であり、上限値は1.70質量%である。
 Cu:0.05質量%以下
 Cuは、溶接金属の強度を向上させるために重要な元素であるが、過剰に含有させると溶接金属の靭性の劣化を招く。したがって内面側と外面側のCu含有量は、いずれも0.05質量%以下とする。好ましくは、下限値は0.01質量%であり、上限値は0.04質量%である。
 Ni:0.05質量%以下
 Niは、溶接金属の焼入れ性を高めて、強度を向上させるために重要な元素であるが、過剰に含有させると溶接金属の硫化物応力腐食割れが発生し易くなる。したがって内面側と外面側のNi含有量は、いずれも0.05質量%以下とする。好ましくは、下限値は0.01質量%であり、上限値は0.03質量%である。
 Cr:0.30質量%以下
 Crは、溶接金属の焼入れ性を高めて、強度を向上させるために重要な元素であるが、過剰に含有させると溶接金属の硬さが大幅に上昇して靭性の劣化を招く。したがって内面側と外面側のCr含有量は、いずれも0.30質量%以下とする。好ましくは0.10~0.30質量%の範囲内である。より好ましくは、下限値は0.10質量%であり、上限値は0.20質量%である。
 Mo:内面側0.10質量%以下、外面側0.20質量%以下
 Moは、溶接金属の焼入れ性を高めて、強度を向上させるために重要な元素であるが、過剰に含有させると溶接金属の硬さが大幅に上昇して靭性の劣化を招く。特に内面側の溶接金属は、外面側の溶接によって再加熱されて、この現象が顕著に発生するので、内面側のMo含有量を0.10質量%以下とし、外面側のMo含有量を0.20質量%以下とする。好ましくは内面側のMo含有量を外面側より小とする。より好ましくは、内面側の下限値は0.05質量%、上限値は0.10質量%であり、外面側の下限値は0.05質量%、上限値は0.20質量%である。
 Nb:0.040質量%以下
 Nbは、溶接金属の焼入れ性を高めて、強度を向上させるために重要な元素であるが、過剰に含有させると溶接金属の硬さが大幅に上昇して靭性の劣化を招く。したがって内面側と外面側のNb含有量は、いずれも0.040質量%以下とする。好ましくは、下限値は0.010質量%であり、上限値は0.030質量%である。
 V:0.010質量%以下
 Vは、溶接金属の焼入れ性を高めて、強度を向上させるために重要な元素であるが、過剰に含有させると溶接金属の硬さが大幅に上昇して靭性の劣化を招く。したがって内面側と外面側のV含有量は、いずれも0.010質量%以下とする。好ましくは0.005質量%以下である。より好ましくは、下限値は0.002質量%であり、上限値は0.004質量%である。
 Ti:0.010~0.040質量%
 Tiは、酸化物を形成してアシキュラーフェライトの生成核となり、溶接金属の靭性を向上させる元素である。Ti含有量が少なすぎると、この効果が得られない。一方で、過剰に含有させると、溶接金属の固溶Tiが増加して、靭性が劣化する。したがって内面側と外面側のTi含有量は、いずれも0.010~0.040質量%とする。好ましくは、下限値は0.015質量%であり、上限値は0.025質量%である。
 B:内面側0.0015~0.0040質量%以下、外面側0.0015~0.0060質量%
 Bは、粒界に偏析して粒界フェライトの生成を抑制する元素である。B含有量が少なすぎると、この効果が得られない。一方で、過剰に含有させると溶接金属の硬さが大幅に上昇して靭性の劣化を招く。特に内面側の溶接金属は、外面側の溶接によって再加熱されて、この現象が顕著に発生するので、内面側のB含有量を0.0015~0.0040質量%とし、外面側のB含有量を0.0015~0.0060質量%とする。好ましくは、内面側の下限値は0.0015質量%、上限値は0.0030質量%であり、外面側の下限値は0.0015質量%、上限値は0.0050質量%である。
 Al:0.030質量%以下
 Alは、溶鋼を溶製する際に脱酸材として添加される元素であるが、Alを過剰に含有させると溶接金属の靭性低下を招く。したがって内面側と外面側のAl含有量は、いずれも0.030質量%以下とする。好ましくは、下限値は0.005質量%であり、上限値は0.020質量%である。
 O:0.020~0.040質量%
 Oは、Tiと結合してTi酸化物を生成し、アシキュラーフェライトの生成核となることによって、溶接金属の機械的特性を向上させる元素である。O含有量が少なすぎると、この効果が得られない。一方で、過剰に含有させると溶接金属中に粒界フェライトが生成して靭性低下の原因となる。したがって内面側と外面側のO含有量は、いずれも0.020~0.040質量%とする。
 N:0.007質量%以下
 Nは、溶接金属に不純物として混入し、Bと結合してBNを生成することによって、粒界にBが偏析するのを抑制する元素である。Nを過剰に含有させると、粒界フェライトが容易に生成されて、溶接金属の靭性低下を招く。したがって内面側と外面側のN含有量は、いずれも0.007質量%以下とする。好ましくは、下限値は0.003質量%であり、上限値は0.006質量%である。
 Pcm:内面側0.140~0.180、外面側0.140~0.185
 下記の(1)式で算出されるPcmは溶接金属の焼入れ性を示す指標であり、小さすぎると粒界フェライトが析出し易くなるので、溶接金属の靭性が劣化する。一方で、Pcmが大きすぎると焼入れ性が高くなって、ベイナイトが容易に生成されるので、同じく溶接金属の靭性低下を招く。よって内面側のPcmを0.140~0.180とし、外面側のPcmを0.140~0.185とする。好ましくは、内面側のPcmの下限値は0.160、上限値は0.175であり、外面側のPcmの下限値は0.160、上限値は0.180である。
Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]    ・・・(1)
[C]:溶接金属のC含有量(質量%)
[Si]:溶接金属のSi含有量(質量%)
[Mn]:溶接金属のMn含有量(質量%)
[Cu]:溶接金属のCu含有量(質量%)
[Cr]:溶接金属のCr含有量(質量%)
[Ni]:溶接金属のNi含有量(質量%)
[Mo]:溶接金属のMo含有量(質量%)
[V]:溶接金属のV含有量(質量%)
[B]:溶接金属のB含有量(質量%)
 内面側と外面側の溶接金属の、上記した成分以外の残部は、FeおよびP、S等の不可避的不純物である。
 なお溶接ワイヤは、上記した成分の溶接金属が得られるように、鋼板の成分、フラックスの成分、板厚もしくは溶接条件等に応じて適宜選択される。特に、溶接ワイヤの組成成分は、溶接金属を上記成分範囲に制御しやすいものであることが好ましい。すなわち、上述の通り、溶接金属のMo量は内面側が0.1質量%以下であり、外面側が0.2質量%以下である。そこで、溶接ワイヤのMo量は0.55質量%以下であることが好ましい。また、溶接金属のB量は内面側が0.0015~0.0040質量%であり、外面側が0.0015~0.0060質量%である。そこで、溶接ワイヤのB量は0.0150質量%以下であることが好ましく、さらに下限値が.0.100質量%であることがより好ましい。
 以下に、溶接鋼管の製造方法について説明する。まず、上述した組成成分を有する板厚6~20mmの板状あるいは帯状の鋼板が円筒形状に成形され、鋼板の幅方向端部が突き合わされる。その後、内面側及び外面側の鋼板の幅方向端部のそれぞれにサブマージアーク溶接が施され、上記組成成分の溶接金属を有する線状の溶接部(シーム部)が形成される。この際、内面側の1層盛溶接を行なった後に、外面側の1層盛溶接が行われる。サブマージアーク溶接が行われる際、フラックスが突合せ部に沿って散布され、フラックスに覆われた母材と溶接ワイヤとの間にアークを発生させることで溶接が行われる。なお、1本の溶接ワイヤを用いた単電極サブマージアーク溶接を行っても良いが、複数の溶接ワイヤを用いた多電極サブマージアーク溶接を行うことが好ましい。また、複数の電極の配列は、特に限定されず、例えば溶接の進行方向に直列に配置する等の種々の配列方法を用いることができる。
 次に、サブマージアーク溶接による内面側と外面側の1層盛溶接で使用するフラックスの成分について説明する。下記の(2)式で算出されるフラックスの塩基度(B.I.)が低すぎると、溶接金属の酸素量が増加して、機械的特性が劣化する場合がある。一方で、B.I.が高すぎると、1層盛溶接によって発生する溶融スラグの粘度が低下するので、美麗な外観のビードが得られない場合がある。したがって使用するフラックスのB.I.は、1.0~2.2の範囲内であることが好ましい。
 なおフラックスの種類は、溶融型フラックスおよび焼成型フラックス、いずれも使用できる。
B.I.=([CaO]+[CaF2]+[MgO]+0.5[MnO])/{[SiO2]+0.5([Al2O3]+[TiO2])}   ・・・(2)
[CaO]:フラックスのCaO含有量(質量%)
[CaF2]:フラックスのCaF2含有量(質量%)
[MgO]:フラックスのMgO含有量(質量%)
[MnO]:フラックスのMnO含有量(質量%)
[SiO2]:フラックスのSiO2含有量(質量%)
[Al2O3]:フラックスのAl2O3含有量(質量%)
[TiO2]:フラックスのTiO2含有量(質量%)
 次に、サブマージアーク溶接による内面側と外面側の1層盛溶接の溶接入熱について説明する。
 溶接鋼管のシーム部の内面側と外面側を1層盛溶接で溶接する場合は、内面側の1層盛溶接を先行して行ない、その後に外面側の1層盛溶接を行なう。その溶接を行なう際には、内面側の溶接金属と外面側の溶接金属が重なり合うように溶接条件を設定する必要がある。溶接入熱が小さすぎると、溶け込み不足や溶接ワイヤの溶着不足等に起因する溶接欠陥が発生する場合がある。一方で、溶接入熱が大きすぎると、溶接金属の冷却速度が低下して、焼入れ性が低くなるので、溶接金属の機械的特性が劣化する場合がある。また、板厚6~20mmの薄肉の溶接鋼管の内面側では、溶接中に溶融メタルが脱落し易くなるという問題も発生する場合がある。
 このような問題を解決するためには、素材となる鋼板の板厚に応じて1層盛溶接の溶接入熱を設定することが好ましい。具体的には、内面側の溶接入熱QB(kJ/mm)が下記(3)式を満たし、外面側の溶接入熱QF(kJ/mm)が下記(4)式を満たす条件でサブマージアーク溶接による1層盛溶接を行なうことが好ましい。
1.3×exp(0.045×t)≦QB≦1.9×exp(0.048×t)   ・・・(3)
1.3×exp(0.045×t)≦QF≦1.9×exp(0.048×t)   ・・・(4)
t:鋼板の板厚(mm)
 以上に説明したように、本発明は溶接鋼管(たとえばUOE鋼管、スパイラル鋼管等)の溶接に適用でき、サブマージアーク溶接による内面側と外面側の1層盛溶接に好適である。また、厚鋼板の突き合わせ溶接を行なう際に、下面側と上面側の1層盛溶接にも適用できる。さらに、様々な形状の開先に適用できる。
 鋼板をUOE鋼管の製造ラインに供給して、溶接鋼管(API規格X60級)の製造実験を行なった。その鋼板の板厚と成分を表1に示し、突合せ部(シーム部)の開先形状を図1および表2に示す。サブマージアーク溶接による1層盛溶接に用いたフラックスの成分および(2)式によるB.I.の計算値を表3に示し、溶接ワイヤの成分を表4に示す。1層盛溶接は4電極のサブマージアーク溶接で行ない、その溶接条件は表5に示すように設定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 溶接鋼管としてのUOE鋼管の製造実験における鋼板、フラックス、溶接ワイヤ、溶接条件の組み合わせは表6に示す通りである。
Figure JPOXMLDOC01-appb-T000006
 こうして内面側および外面側の1層盛溶接を行なってUOE鋼管を製造した後、管端部を除くサブマージアーク溶接が安定した部位(以下、「溶接定常部」という)のビードの外観を目視で検査して、ビードの表面に露出した溶接欠陥と蛇行の有無を調査した。その結果を表9に示す。表9中にビード外観として示す◎は溶接欠陥および蛇行が認められなかった例、〇は蛇行が発生したものの溶接欠陥は認められなかった例である。
 次いで、溶接定常部から試験片を採取して、内面側と外面側の溶接金属の成分、硬さ、吸収エネルギーを調査した。溶接金属の成分は表7、8に示す通りである。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 溶接金属の硬さは、JIS規格Z3101に準拠して、内面表層から2mm、外面表層から2mmの深さの位置で1mmピッチ、さらに溶接金属中央線上で1mmピッチ、負荷荷重を98Nとしてビッカース硬さを測定した(図2参照)。なお、溶接金属の硬さは、JIS規格Z3101に準拠して、溶接金属中央線上で1mmピッチ、負荷荷重を98Nとしてビッカース硬さを測定し、硬さの最大値を記録したものである(図2参照)。その結果を表9に示す。
 溶接金属のシャルピー衝撃試験は、JIS規格Z2242に準拠して、-30℃で行なった。試験片は10mm×10mmサイズとし、鋼BM2(板厚20.0mm)のUOE鋼管の外面表層から7mmの位置が試験片の中心線となるように採取したもの(図3参照)を用いて測定した結果を外面のVE-30(J)として表9に示す。また、内面側の溶融境界線と外面側の溶融境界線が交わる2つの点を結ぶ線が試験片の中心線となるように採取したもの(図4参照)を用いて測定した結果を会合部のVE-30(J)として同じく表9に示す。さらに鋼BM1(板厚12.7mm)のUOE鋼管では、板厚の中央が試験片の中心線となるように採取したもの(図5参照)を用いて測定した結果を板厚中央のVE-30(J)として表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9から明らかなように、発明例では、内面側のビードと外面側のビードは、いずれも、美麗な外観が得られた。また、内面側の溶接金属と外面側の溶接金属は、硬さがHv10≦248となって過剰に上昇することなく、しかもVE-30≧70Jの良好な靭性が得られた。特にNo.1、2、10、11はフラックスのB.I値(塩基度)が(2)式を満たし、溶接入熱が(3)、(4)式を満たすので、ビードの外観と溶接金属靭性が著しく向上した。
 一方、比較例であるNo.7、16は、溶接金属のPcmが高すぎるので、焼入れ性が高くなって、溶接金属の硬さが過剰に上昇した。No.8、17は、溶接金属のPcmが低すぎるので、焼入れ性が低くなって、溶接金属の靭性が劣化した。No,9、18は、内面側の溶接金属のMo含有量が高すぎるので、内面側の溶接金属の再加熱される部位の靭性が劣化した。
 発明例No.3、4、12、13のようにフラックスのB.I.値が上記式(2)を満たしていない場合でも(表3参照)、所望のビードの外観、硬度及び靭性を得ることができた。但し、発明例No.3、12のようにフラックスのB.I.値が上記式(2)の上限より大きい場合、上記式(2)を満たす場合に比べてビードの外観が劣っていた。また、発明例No.4、13のようにフラックスのB.I.値が上記式(2)の下限未満である場合、上記式(2)を満たす場合と比べると靭性が劣化した。
 発明例No.5、6、14、15のように上記式(3)、(4)の溶接入熱条件を満たしていない場合でも、所望のビード外観、硬度及び靭性を得ることができた。ただし、発明例No.5、14のように上記式(3)、(4)の溶接入熱条件の下限値を下回る場合、溶け込み不足や溶着量不足が生じる場合があった。また、発明例No.6、15のように、上記式(3)、(4)の溶接入熱条件の上限値を上回る場合、内面への溶接金属の溶け落ちが生じる場合があった。一方、上記式(3)、(4)の溶接入熱条件を満たす発明例No.1~4、10~13では、このような溶接欠陥が生じることがなかった。
 1 鋼板
 2 内面側の溶接金属
 3 外面側の溶接金属
 4 ビッカース硬さの測定位置
 5 内面側の溶融境界線
 6 外面側の溶融境界線
 7 シャルピー衝撃試験片
 8 ノッチ

Claims (6)

  1.  板厚6~20mmの鋼板を円筒状に成形し、前記鋼板の幅方向両端部を突き合わせて内面側および外面側ともに1層盛のサブマージアーク溶接で溶接することによって得られる溶接鋼管であって、
    前記鋼板が、C:0.030~0.080質量%、Si:0.10~0.50質量%、Mn:1.00~2.00質量%、P:0.010質量%以下、S:0.005質量%以下、Cu:0.05質量%以下、Ni:0.05質量%以下、Cr:0.50質量%以下、Mo:0.20質量%以下、Nb:0.05質量%以下、V:0.100質量%以下、Ti:0.050質量%以下、Al:0.01~0.05質量%、Ca:0.0005~0.0050質量%、Mg:0.0003~0.0100質量%、REM:0.020質量%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、
    前記内面側の溶接金属が、C:0.030~0.060質量%、Si:0.50質量%以下、Mn:0.80~1.80質量%、Cu:0.05質量%以下、Ni:0.05質量%以下、Cr:0.30質量%以下、Mo:0.10質量%以下、Nb:0.040質量%以下、V:0.010質量%以下、Ti:0.010~0.040質量%、B:0.0015~0.0040質量%、Al:0.030質量%以下、O:0.020~0.040質量%、N:0.007質量%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、かつ下記(1)式で算出されるPcmが0.140~0.180の範囲内を満たし、
    前記外面側の溶接金属が、C:0.030~0.060質量%、Si:0.50質量%以下、Mn:0.80~1.80質量%、Cu:0.05質量%以下、Ni:0.05質量%以下、Cr:0.30質量%以下、Mo:0.20質量%以下、Nb:0.040質量%以下、V:0.010質量%以下、Ti:0.010~0.040質量%、B:0.0015~0.0060質量%、Al:0.030質量%以下、O:0.020~0.040質量%、N:0.007質量%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、かつ下記(1)式で算出されるPcmが0.140~0.185の範囲内を満たすことを特徴とする溶接鋼管。
    Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]   ・・・(1)
    [C]:溶接金属のC含有量(質量%)
    [Si]:溶接金属のSi含有量(質量%)
    [Mn]:溶接金属のMn含有量(質量%)
    [Cu]:溶接金属のCu含有量(質量%)
    [Cr]:溶接金属のCr含有量(質量%)
    [Ni]:溶接金属のNi含有量(質量%)
    [Mo]:溶接金属のMo含有量(質量%)
    [V]:溶接金属のV含有量(質量%)
    [B]:溶接金属のB含有量(質量%)
  2.  請求項1に記載の組成成分の板厚6~20mmの鋼板を円筒状に成形し、前記鋼板の幅方向両端部を突き合わせて内面側および外面側ともに1層盛のサブマージアーク溶接で溶接して請求項1に記載の組成成分の溶接金属にする溶接鋼管の製造方法。
  3.  前記内面側および前記外面側の前記サブマージアーク溶接のフラックスとして、下記(2)式で算出されるB.I.が1.0~2.2の範囲内を満たすものを使用する請求項2に記載の溶接鋼管の製造方法。
    B.I.=([CaO]+[CaF2]+[MgO]+0.5[MnO])/{[SiO2]+0.5([Al2O3]+[TiO2])}   ・・・(2)
    [CaO]:フラックスのCaO含有量(質量%)
    [CaF2]:フラックスのCaF2含有量(質量%)
    [MgO]:フラックスのMgO含有量(質量%)
    [MnO]:フラックスのMnO含有量(質量%)
    [SiO2]:フラックスのSiO2含有量(質量%)
    [Al2O3]:フラックスのAl2O3含有量(質量%)
    [TiO2]:フラックスのTiO2含有量(質量%)
  4.  前記内面側の溶接入熱QB(kJ/mm)が下記(3)式を満たし、前記外面側の溶接入熱QF(kJ/mm)が下記(4)式を満たす条件で前記サブマージアーク溶接を行なう請求項2又は3に記載の溶接鋼管の製造方法。
    1.3×exp(0.045×t)≦QB≦1.9×exp(0.048×t)   ・・・(3)
    1.3×exp(0.045×t)≦QF≦1.9×exp(0.048×t)   ・・・(4)
    t:鋼板の板厚(mm)
  5.  前記サブマージアーク溶接が多電極サブマージアーク溶接である請求項2から4のいずれか1項に記載の溶接鋼管の製造方法。
  6.  内面側の1層盛の溶接を行った後、外面側の1層盛の溶接を行う請求項2から5のいずれか1項に記載の溶接鋼管の製造方法。
PCT/JP2021/002643 2020-01-29 2021-01-26 溶接鋼管およびその製造方法 WO2021153559A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180010743.5A CN115210397B (zh) 2020-01-29 2021-01-26 焊接钢管及其制造方法
EP21747538.3A EP4098764A4 (en) 2020-01-29 2021-01-26 WELDED STEEL PIPE AND METHOD OF MANUFACTURING IT
JP2021526784A JP7020592B2 (ja) 2020-01-29 2021-01-26 溶接鋼管およびその製造方法
KR1020227025557A KR20220115622A (ko) 2020-01-29 2021-01-26 용접 강관 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-012395 2020-01-29
JP2020012395 2020-01-29

Publications (1)

Publication Number Publication Date
WO2021153559A1 true WO2021153559A1 (ja) 2021-08-05

Family

ID=77079376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002643 WO2021153559A1 (ja) 2020-01-29 2021-01-26 溶接鋼管およびその製造方法

Country Status (5)

Country Link
EP (1) EP4098764A4 (ja)
JP (1) JP7020592B2 (ja)
KR (1) KR20220115622A (ja)
CN (1) CN115210397B (ja)
WO (1) WO2021153559A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100344A (ja) 1972-04-01 1973-12-18
JPH0138851B2 (ja) 1985-07-08 1989-08-16 Nippon Kokan Kk
JPH091344A (ja) 1995-06-14 1997-01-07 Kawasaki Steel Corp 低温用高靱性uoe鋼管
JP2010029931A (ja) 2008-07-31 2010-02-12 Jfe Steel Corp 多電極サブマージアーク溶接法
WO2012036148A1 (ja) * 2010-09-14 2012-03-22 新日本製鐵株式会社 低温靭性に優れた厚肉溶接鋼管および低温靭性に優れた厚肉溶接鋼管の製造方法、厚肉溶接鋼管製造用鋼板
JP2013204103A (ja) * 2012-03-29 2013-10-07 Jfe Steel Corp 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法
WO2018185851A1 (ja) * 2017-04-04 2018-10-11 新日鐵住金株式会社 縦シーム溶接鋼管

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137094A (en) * 1981-02-17 1982-08-24 Kawasaki Steel Corp High speed submerged arc welding method of single layer on both sides
JPS6438851A (en) 1987-08-04 1989-02-09 Nec Corp Testing equipment for storage device
JP3508189B2 (ja) * 1993-12-15 2004-03-22 Jfeスチール株式会社 低温用高靱性uoe鋼管のサブマージアーク溶接法
JP4853575B2 (ja) * 2009-02-06 2012-01-11 Jfeスチール株式会社 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
JP5792050B2 (ja) * 2011-01-31 2015-10-07 株式会社神戸製鋼所 低温用鋼のサブマージアーク溶接方法
JP5870664B2 (ja) * 2011-12-08 2016-03-01 Jfeスチール株式会社 高強度溶接鋼管およびその製造方法
CN103846577B (zh) * 2014-03-26 2016-08-31 锦州天鹅焊材股份有限公司 一种x100管线钢埋弧焊用焊剂及其制备方法
KR101937005B1 (ko) * 2014-03-31 2019-01-09 제이에프이 스틸 가부시키가이샤 용접 조인트

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100344A (ja) 1972-04-01 1973-12-18
JPH0138851B2 (ja) 1985-07-08 1989-08-16 Nippon Kokan Kk
JPH091344A (ja) 1995-06-14 1997-01-07 Kawasaki Steel Corp 低温用高靱性uoe鋼管
JP2010029931A (ja) 2008-07-31 2010-02-12 Jfe Steel Corp 多電極サブマージアーク溶接法
WO2012036148A1 (ja) * 2010-09-14 2012-03-22 新日本製鐵株式会社 低温靭性に優れた厚肉溶接鋼管および低温靭性に優れた厚肉溶接鋼管の製造方法、厚肉溶接鋼管製造用鋼板
JP2013204103A (ja) * 2012-03-29 2013-10-07 Jfe Steel Corp 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法
WO2018185851A1 (ja) * 2017-04-04 2018-10-11 新日鐵住金株式会社 縦シーム溶接鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4098764A4

Also Published As

Publication number Publication date
EP4098764A1 (en) 2022-12-07
EP4098764A4 (en) 2022-12-21
KR20220115622A (ko) 2022-08-17
JP7020592B2 (ja) 2022-02-16
CN115210397B (zh) 2024-01-05
CN115210397A (zh) 2022-10-18
JPWO2021153559A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
JP3519966B2 (ja) 低温靱性に優れた超高強度ラインパイプおよびその製造法
EP0867520B1 (en) Welded high-strength steel structures and methods of manufacturing the same
JP4879696B2 (ja) 高降伏強度高靭性ガスシールドアーク溶接用フラックス入りワイヤ
JP4558780B2 (ja) 低温用鋼のサブマージアーク溶接用フラックス入りワイヤ
CA2860605A1 (en) Abrasion resistant welded steel pipe and method of producing the same
JP4171169B2 (ja) 耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管とその製造方法
JP6811854B2 (ja) フラックス入りワイヤ用冷延鋼板及びその製造方法
JP3871655B2 (ja) 高張力鋼用の両面一層サブマージアーク溶接用ワイヤ
JP4751341B2 (ja) 溶接熱影響部のctodが優れた鋼およびその製造方法
JP4341395B2 (ja) 大入熱溶接用高張力鋼と溶接金属
JP3814112B2 (ja) シーム溶接部の低温強靱性に優れた超高強度鋼管及びその製造方法
JP5028761B2 (ja) 高強度溶接鋼管の製造方法
JP5229300B2 (ja) 溶接部靱性に優れた高強度厚肉溶接ベンド鋼管用の素管およびその製造方法
WO2021153559A1 (ja) 溶接鋼管およびその製造方法
JP2006110581A (ja) 高強度高靭性ガスシールドアーク溶接用ワイヤ。
JP2002146471A (ja) 低温靱性および溶接熱影響部靭性に優れた超高強度鋼板、超高強度鋼管およびそれらの製造法
JP4964480B2 (ja) 溶接部の靱性に優れた高強度鋼管及びその製造方法
JPH09296253A (ja) 低温靱性の優れた極厚高強度鋼管
JPS62114796A (ja) 高靭性溶接金属の得られる潜弧溶接方法
JP2002285283A (ja) 高速延性破壊特性に優れた超高強度鋼管
RU2790854C1 (ru) Стальная сварная труба и способ ее изготовления
JP2000096187A (ja) 高強度溶接鋼管
US20200149127A1 (en) Cold rolled steel sheet for flux-cored wire, and manufacturing method therefor
CN111542634A (zh) 药芯焊丝用冷轧钢板及其制造方法
CN114850627B (zh) 药芯焊丝、焊接金属、气体保护电弧焊方法及焊接接头的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021526784

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227025557

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021747538

Country of ref document: EP

Effective date: 20220829