WO2021153412A1 - アルミニウム合金、アルミニウム合金線、アルミニウム合金部材、及びボルト - Google Patents

アルミニウム合金、アルミニウム合金線、アルミニウム合金部材、及びボルト Download PDF

Info

Publication number
WO2021153412A1
WO2021153412A1 PCT/JP2021/002026 JP2021002026W WO2021153412A1 WO 2021153412 A1 WO2021153412 A1 WO 2021153412A1 JP 2021002026 W JP2021002026 W JP 2021002026W WO 2021153412 A1 WO2021153412 A1 WO 2021153412A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
mass
less
strength
content
Prior art date
Application number
PCT/JP2021/002026
Other languages
English (en)
French (fr)
Inventor
亮太 松儀
功 岩山
司 松尾
博昭 高井
Original Assignee
住友電気工業株式会社
富山住友電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 富山住友電工株式会社 filed Critical 住友電気工業株式会社
Priority to CN202180007884.1A priority Critical patent/CN114901845A/zh
Priority to US17/790,284 priority patent/US20230037483A1/en
Priority to JP2021574691A priority patent/JPWO2021153412A1/ja
Priority to KR1020227026285A priority patent/KR20220132546A/ko
Priority to EP21747522.7A priority patent/EP4098760A4/en
Publication of WO2021153412A1 publication Critical patent/WO2021153412A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Definitions

  • the present disclosure relates to aluminum alloys, aluminum alloy wires, aluminum alloy members, and bolts.
  • This application claims priority based on Japanese Patent Application No. 2020-014172 of the Japanese application dated January 30, 2020, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 discloses an aluminum alloy having a tensile strength equal to or higher than that of the aluminum alloy of JIS alloy number A6056.
  • the aluminum alloy described in Patent Document 1 will be referred to as a conventional aluminum alloy.
  • the aluminum alloy of the present disclosure contains Si of 1.0% by mass or more and 1.8% by mass or less, Mg of 0.5% by mass or more and 1.2% by mass or less, and 0.3% by mass or more and 0.8% by mass.
  • the following Fe Cu of 0.1% by mass or more and 0.4% by mass or less, Mn of 0.2% by mass or more and 0.5% by mass or less, and Cr of 0% by mass or more and 0.3% by mass or less.
  • the aluminum alloy wire of the present disclosure is made of the aluminum alloy of the present disclosure.
  • the aluminum alloy member of the present disclosure is made of the aluminum alloy of the present disclosure and has a tensile strength of 450 MPa or more.
  • the bolt of the present disclosure is made of the aluminum alloy of the present disclosure, and has a tensile strength of 450 MPa or more, a breaking elongation of 5% or more, and a 0.2% proof stress of 390 MPa or more.
  • FIG. 1 is a perspective view showing an aluminum alloy wire of an embodiment.
  • FIG. 2 is a perspective view showing a bolt of the embodiment.
  • 6000 series alloys such as JIS alloy number A6056 have high strength by being subjected to heat treatment such as T6 treatment.
  • the 6000 series alloy is a high-strength alloy among the types of aluminum alloys. However, it is desired that the aluminum alloy constituting the structural member or the like be further improved in strength.
  • the aluminum alloys and aluminum alloy wires of the present disclosure are suitable as materials for high-strength aluminum alloy members.
  • the aluminum alloy member of the present disclosure and the bolt of the present disclosure have high strength.
  • the aluminum alloy according to one aspect of the present disclosure contains Si of 1.0% by mass or more and 1.8% by mass or less, Mg of 0.5% by mass or more and 1.2% by mass or less, and 0.3% by mass. % Or more and 0.8% by mass or less of Fe, 0.1% by mass or more and 0.4% by mass or less of Cu, 0.2% by mass or more and 0.5% by mass or less of Mn, and 0% by mass or more and 0.
  • It contains 3% by mass or less of Cr, 0.005% by mass or more and 0.6% by mass or less of Ni, and 0.005% by mass or more and 0.6% by mass or less of Sn, and the balance is Al and unavoidable impurities. It has a composition consisting of.
  • Ni and Sn are considered to contribute to the effect of improving the strength by strengthening the dispersion, as will be described later.
  • the aluminum alloy of the present disclosure contains one or both of Ni and Sn with respect to the above-mentioned conventional aluminum alloy. Therefore, the aluminum alloy of the present disclosure can form an aluminum alloy member having higher strength than the aluminum alloy member made of the above-mentioned conventional aluminum alloy.
  • the aluminum alloy of the present disclosure is excellent in plastic workability in the manufacturing process of the aluminum alloy member.
  • Such an aluminum alloy of the present disclosure is suitable as a material for a high-strength aluminum alloy member.
  • the Si content is more than 1.2% by mass and the Mg content is more than 0.8% by mass.
  • the above-mentioned form can form a higher-strength aluminum alloy member.
  • a higher strength aluminum alloy member can be formed by the effects of both Ni and Sn.
  • the aluminum alloy of the present disclosure has a tensile strength of 450 MPa or more after being subjected to a solution treatment and an aging treatment in order, and the holding temperature of the solution treatment is 545 ° C. or higher and 575 ° C. or higher.
  • the temperature is selected from the range of ° C. or lower
  • the holding time of the solution treatment is the time selected from the range of 30 minutes or more and 60 minutes or less
  • the holding temperature of the aging treatment is 160 ° C. or higher and 180 ° C.
  • the temperature is selected from the following range
  • the holding time of the aging treatment is a time selected from the range of 5 hours or more and 35 hours or less.
  • the above form can form an aluminum alloy member having higher strength than the above-mentioned aluminum alloy member made of the conventional aluminum alloy.
  • the above form can form an aluminum alloy member having high strength and high elongation. Further, after the aging treatment, plastic working may be possible due to the high elongation. In this case, the above-mentioned form is also excellent in the manufacturability of the aluminum alloy member.
  • the above form can form an aluminum alloy member having high strength and high proof stress.
  • the aluminum alloy wire according to one aspect of the present disclosure is made of any one of the above (1) to (6).
  • the aluminum alloy wire of the present disclosure is suitable for an aluminum alloy member including a linear portion, for example, a material such as a bolt. By utilizing the aluminum alloy wire of the present disclosure, it is possible to form an aluminum alloy member having higher strength than the above-mentioned aluminum alloy member made of the conventional aluminum alloy.
  • the aluminum alloy wire of the present disclosure there is a form having a wire diameter of 3 mm or more and 15 mm or less.
  • the above form is suitable for an aluminum alloy member including a linear portion having a wire diameter in the above range, for example, a material such as a bolt.
  • the aluminum alloy member according to one aspect of the present disclosure is made of any one of the above (1) to (6) and has a tensile strength of 450 MPa or more.
  • the aluminum alloy member of the present disclosure has higher strength than the above-mentioned aluminum alloy member made of the conventional aluminum alloy.
  • Such an aluminum alloy member of the present disclosure can be used as a high-strength structural member or the like.
  • the above form can be used as a structural member or the like having at least one of high strength, high elongation and high proof stress.
  • the bolt according to one aspect of the present disclosure is made of any one of the aluminum alloys (1) to (6) above, and has a tensile strength of 450 MPa or more, a breaking elongation of 5% or more, and 0 of 390 MPa or more. It has a proof stress of .2%.
  • the bolts of the present disclosure have higher strength, higher elongation, and higher proof stress than the bolts made of the conventional aluminum alloy described above.
  • Such a bolt of the present disclosure can construct a strong fastening structure.
  • the bolts of the present disclosure can maintain a strong fastening state for a long period of time.
  • the aluminum alloy of the embodiment is an alloy containing an additive element and mainly containing Al (aluminum).
  • the aluminum alloy of the embodiment is Si (silicon), Mg (magnesium), Fe (iron), Cu (copper), Mn (manganese), Ni (nickel) and Sn (tin). ), And the balance is composed of Al and unavoidable impurities.
  • the aluminum alloy of the embodiment may further contain Cr (chromium) in addition to the above-mentioned additive elements.
  • Cr chromium
  • Si The Si content is 1.0% by mass or more and 1.8% by mass or less.
  • Si mainly reinforces the aluminum alloy by precipitation hardening. Specifically, Si functions as a dispersion strengthening agent by being dispersed in the matrix phase as fine Mg 2 Si together with Mg.
  • Mg 2 Si is a precipitate formed by combining Si solid-solved in Al by solution treatment with Mg by aging treatment, that is, artificial aging.
  • the remainder that does not form Mg 2 Si is solid-solved in Al, precipitated by Si alone, or crystallized in a dendrite shape by Si alone to reinforce the aluminum alloy.
  • the remainder described above is sometimes referred to as excess Si.
  • the mother phase is mainly composed of Al.
  • the Si content is 1.0% by mass or more, the effect of improving the strength by the above-mentioned strengthening can be satisfactorily obtained.
  • the Si content may be more than 1.0% by mass, 1.1% by mass or more, and 1.15% by mass or more. If the Si content exceeds 1.2% by mass, the strength tends to be even higher.
  • the Si content is 1.8% by mass or less, the precipitates and crystallized substances containing Si are unlikely to become coarse. Also, there is not too much excess Si. Therefore, the decrease in strength due to the excess of coarse precipitates and crystallizations and excess Si is suppressed. In addition, a decrease in plastic workability is suppressed. It should be noted that the coarse precipitates and crystallized substances serve as the starting points of cracks, so that the strength tends to decrease. Further, if the excess Si is too large, Si alone segregates at the grain boundaries of the crystals of the matrix phase. The segregated Si makes the grain boundaries embrittlement, so that the strength tends to decrease. From the viewpoint of suppressing the decrease in strength, the Si content may be 1.7% by mass or less and 1.6% by mass or less. When the Si content is 1.5% by mass or less, the strength is unlikely to decrease.
  • the Si content is more than 1.0% by mass and 1.7% by mass or less and more than 1.2% by mass and 1.5% by mass or less, the above-mentioned decrease in strength is suppressed, and the aluminum alloy has high strength. Easy to do.
  • Mg The content of Mg is 0.5% by mass or more and 1.2% by mass or less. Mg reinforces the aluminum alloy by solid solution in Al. Further, Mg strengthens the aluminum alloy by precipitation hardening together with Si as described above.
  • the Mg content is 0.5% by mass or more, the effect of improving the strength by solid solution strengthening and precipitation hardening can be satisfactorily obtained.
  • the higher the Mg content the easier it is for the strength to improve.
  • the Mg content may be 0.6% by mass or more and 0.7% by mass or more. If the Mg content exceeds 0.8% by mass, the strength tends to be even higher.
  • the Mg content When the Mg content is 1.2% by mass or less, excess Si is surely generated. Therefore, the strengthening effect due to excess Si can be obtained satisfactorily. As a result, the strength tends to be high. In addition, the yield strength tends to be high. In addition, macrosegregation is unlikely to occur during casting. It is unlikely that the resistance to stress corrosion cracking will decrease, the plastic workability will decrease, and the heat resistance will decrease. Since these effects can be obtained satisfactorily, the Mg content may be 1.15% by mass or less and 1.1% by mass or less. When the Mg content is 1.05% by mass or less, the above-mentioned effect can be further easily obtained.
  • the Mg content is 0.6% by mass or more and 1.15% by mass or less, and more than 0.8% by mass and 1.05% by mass or less, the strength and proof stress are likely to be improved. In addition, resistance to stress corrosion cracking, plastic workability, and heat resistance are unlikely to decrease.
  • the Si content when the Si content is more than 1.2% by mass and the Mg content is more than 0.8% by mass, as described above, a large amount of Mg 2 Si is likely to be precipitated by the aging treatment. Therefore, the strength tends to be higher.
  • the Si content may be 1.3% by mass or more, and the Mg content may be 0.9% by mass or more. Further, the Si content may be 1.35% by mass or more, and the Mg content may be 0.95% by mass or more.
  • A Fine Mg 2 Si is easily dispersed uniformly in the matrix phase. Therefore, the strength and proof stress are likely to be improved.
  • C Heat resistance and corrosion resistance tend to be high.
  • the Fe content When the Fe content is 0.3% by mass or more, the above-mentioned effects such as solid solution strengthening and crystal miniaturization can be satisfactorily obtained. As a result, Mg 2 Si is likely to be precipitated in the matrix phase and is likely to be dispersed and present in the matrix phase. Therefore, it is easy to obtain the effect of improving the strength by precipitation hardening.
  • the higher the Fe content the easier it is for the strength to improve.
  • the Fe content may be 0.35% by mass or more and 0.4% by mass or more. When the Fe content is 0.45% by mass or more, the strength tends to be further increased.
  • the Fe content When the Fe content is 0.8% by mass or less, the content of crystallizations and precipitates composed of compounds containing Al and Fe tends to decrease. Therefore, the decrease in plastic workability caused by the above compound is suppressed. From this point, the aluminum alloy member can be easily manufactured. From the viewpoint of ensuring good plastic workability, the Fe content may be 0.7% by mass or less and 0.6% by mass or less. When the Fe content is 0.55% by mass or less, good plastic workability can be obtained.
  • the Fe content is 0.35% by mass or more and 0.7% by mass or less and 0.45% by mass or more and 0.55% by mass or less, the strength tends to be further increased. Moreover, good plastic workability can be obtained.
  • Cu The Cu content is 0.1% by mass or more and 0.4% by mass or less.
  • Cu mainly contributes to suppressing the adverse effect of Si segregating at the grain boundaries of the matrix crystals. Specifically, Cu forms precipitates with Si segregated at grain boundaries by solution treatment and aging treatment. This precipitate is a compound that matches the atomic arrangement of Al constituting the parent phase. Therefore, the precipitate is unlikely to adversely affect the grain boundaries. By suppressing the embrittlement of the grain boundaries due to segregated Si, the decrease in strength is suppressed.
  • the Cu content When the Cu content is 0.1% by mass or more, the above-mentioned embrittlement of grain boundaries is suppressed.
  • the higher the Cu content the easier it is to suppress the decrease in strength due to embrittlement of grain boundaries.
  • the Cu content may be 0.15% by mass or more and 0.2% by mass or more. If the Cu content is 0.25% by mass or more, the strength is unlikely to decrease.
  • the Cu content When the Cu content is 0.4% by mass or less, the formation of a low melting point phase containing Cu is suppressed. As a result, a decrease in corrosion resistance and a decrease in heat resistance are suppressed. From the viewpoint of ensuring good corrosion resistance and heat resistance, the Cu content may be 0.38% by mass or less and 0.36% by mass or less. When the Cu content is 0.35% by mass or less, good heat resistance and good corrosion resistance can be easily obtained.
  • the Cu content is 0.15% by mass or more and 0.38% by mass or less and 0.25% by mass or more and 0.35% by mass or less, the above-mentioned decrease in strength is likely to be suppressed. In addition, good heat resistance and corrosion resistance can be obtained.
  • Mn The Mn content is 0.2% by mass or more and 0.5% by mass or less. A part of Mn reinforces the aluminum alloy by dissolving it in Al. The remainder of Mn contributes to making the crystals of the aluminum alloy finer. Specifically, Mn forms a compound with Al. This compound suppresses the crystals from becoming coarse. If the crystal is fine, the above effects (a) to (d) can be obtained. In addition, Mn contributes to the spherical crystallization of the above-mentioned compound containing Al and Fe. If the crystallized product is spherical, it is unlikely to adversely affect the plastic workability. From this point, Mn contributes to the improvement of plastic workability.
  • the Mn content is 0.2% by mass or more, the above-mentioned effects such as solid solution strengthening, crystal refinement, and spheroidization of crystallized products can be satisfactorily obtained.
  • the higher the Mn content the easier it is to obtain these effects.
  • the Mn content may be 0.22% by mass or more and 0.24% by mass or more.
  • the Mn content is 0.25% by mass or more, the above effect can be obtained satisfactorily.
  • the Mn content When the Mn content is 0.5% by mass or less, the crystals and precipitates composed of the above-mentioned compound containing Al and Mn are unlikely to become coarse. Therefore, the decrease in strength and the decrease in plastic workability due to the coarse crystals and precipitates are suppressed. Further, when the Mn content is 0.5% by mass or less, the solidus temperature of the molten aluminum alloy does not become too high. From this point, the casting temperature does not become too high. Therefore, it is easy to manufacture the aluminum alloy member. From the viewpoint of suppressing the decrease in strength and improving the manufacturability, the Mn content may be 0.45% by mass or less and 0.4% by mass or less. When the Mn content is 0.35% by mass or less, the strength is unlikely to decrease. Also, the casting temperature does not become too high.
  • the Mn content is 0.22% by mass or more and 0.45% by mass or less and 0.25% by mass or more and 0.35% by mass or less, the above-mentioned effects such as solid solution strengthening and crystal miniaturization are good. Obtained in. In addition, the strength is unlikely to decrease. The casting temperature does not become too high.
  • the Cr content is 0% by mass or more and 0.3% by mass or less.
  • the Cr content is 0% by mass, that is, when Cr is not contained, the total content of the added elements is small. Therefore, the decrease in plastic workability due to the large total content of the added elements is suppressed. Also, the casting temperature does not become too high. From these points, it is easy to manufacture the aluminum alloy member.
  • the content of Cr is more than 0% by mass, that is, when Cr is contained, Cr forms a compound containing Al.
  • This compound containing Al and Cr contributes to making the crystals of the aluminum alloy finer, similar to Mn.
  • Cr also has the effect of improving heat resistance and corrosion resistance. From the viewpoint of improving the strength, heat resistance and corrosion resistance by refining the crystal, the Cr content is, for example, 0.005% by mass or more and 0.01% by mass or more.
  • the Cr content When the Cr content is 0.3% by mass or less, the crystals and precipitates composed of the above-mentioned compound containing Al and Cr are unlikely to become coarse as in Mn. Also, the casting temperature does not become too high. From the viewpoint of suppressing the decrease in strength and improving the manufacturability, the Cr content may be 0.2% by mass or less, 0.1% by mass or less, and 0.05% by mass or less.
  • the Cr content is 0.005% by mass or more and 0.2% by mass or less and 0.01% by mass or more and 0.05% by mass or less, the above-mentioned effects such as crystal refinement can be obtained satisfactorily. In addition, the strength is unlikely to decrease. The casting temperature does not become too high.
  • the aluminum alloy of the embodiment may further contain Sr (strontium) in addition to the above-mentioned additive elements.
  • Sr has the effect of making the crystals of the cast material finer.
  • the content of Sr is, for example, 0.005% by mass or more and 0.05% by mass or less. From the viewpoint of miniaturization of the cast material, the content of Sr may be 0.005% by mass or more and 0.03% by mass or less.
  • Ni The Ni content is 0.005% by mass or more and 0.6% by mass or less. Ni contributes to finely depositing the above-mentioned Mg 2 Si. In addition, Ni contributes to making the crystals of the aluminum alloy finer. If both Mg 2 Si and the crystal are fine, it is easy to obtain a structure in which Mg 2 Si is dispersed in the matrix phase and a structure in which the number of Mg 2 Si present per unit area is large in the aluminum alloy. In such a structure, the effect of improving the strength by precipitation hardening can be obtained satisfactorily. Therefore, the strength is likely to be further improved.
  • the Ni content When the Ni content is 0.005% by mass or more, the above-mentioned strength improving effect can be obtained. When the Ni content is 0.008% by mass or more and 0.01% by mass or more, the strength tends to be higher. When the Ni content is 0.015% by mass or more, the strength tends to be further increased.
  • the Ni content When the Ni content is 0.6% by mass or less, the crystals and precipitates composed of compounds containing Al and Ni are unlikely to become coarse. Therefore, the decrease in strength and the decrease in plastic workability due to the coarse crystals and precipitates are suppressed. From the viewpoint of suppressing the decrease in strength, the Ni content may be 0.5% by mass or less and 0.4% by mass or less. When the Ni content is 0.3% by mass or less, the strength is unlikely to decrease.
  • the Ni content is 0.008% by mass or more and 0.5% by mass or less and 0.015% by mass or more and 0.3% by mass or less, the effect of improving the strength can be satisfactorily obtained.
  • the Ni content is 0.01% by mass or more and 0.5% by mass or less, 0.
  • it is 0.03% by mass or more and 0.3% by mass or less, the effect of improving the strength can be satisfactorily obtained.
  • Sn The Sn content is 0.005% by mass or more and 0.6% by mass or less.
  • Sn contributes to delaying natural aging and promoting artificial aging. That is, Sn promotes the formation of Mg 2 Si during the aging treatment. This promoting action is considered to occur as follows. Sn traps vacancy, which is an atomic level defect in Al. Also, Sn traps Mg.
  • Sn traps vacancy, which is an atomic level defect in Al.
  • Sn traps Mg.
  • Sn By including Sn, more pairs of the pores and Mg are formed after the solution treatment as compared with the above-mentioned conventional aluminum alloy not containing Sn. Diffusion of solute atoms occurs through the above pores. Therefore, when there are many pairs of the pores and Mg, when Mg reacts with Si in Al, many Mg 2 Si are formed. Since Mg 2 Si is formed well, the strength is improved.
  • the Sn content is 0.005% by mass or more, the above-mentioned strength improving effect can be obtained.
  • the Sn content is 0.008% by mass or more and 0.01% by mass or more, the strength tends to be higher.
  • the Sn content is 0.015% by mass or more, the strength tends to be further increased. Further, it is considered that Sn is easier to improve the strength than Ni.
  • the Sn content is 0.6% by mass or less, the formation of a low melting point phase containing Sn is suppressed.
  • partial melting occurs during the solution treatment. Partial melting creates large voids inside the aluminum alloy. Since the large voids serve as the starting point of cracking, the strength is reduced. Since the low melting point phase is difficult to form, the decrease in strength due to the low melting point phase is suppressed. In addition, the decrease in corrosion resistance is suppressed. Since these effects can be obtained satisfactorily, the Sn content may be 0.5% by mass or less and 0.4% by mass or less. When the Sn content is 0.3% by mass or less, the above-mentioned effect can be further easily obtained.
  • the Sn content is 0.008% by mass or more and 0.5% by mass or less and 0.015% by mass or more and 0.3% by mass or less, the effect of improving the strength can be satisfactorily obtained.
  • the Si content is more than 1.2% by mass and the Mg content is more than 0.8% by mass
  • the Sn content is 0.01% by mass or more and 0.5% by mass or less, 0.
  • it is 0.03% by mass or more and 0.3% by mass or less, the effect of improving the strength can be satisfactorily obtained.
  • Ni and Sn When the aluminum alloy of the embodiment contains both Ni and Sn, the strength tends to be further increased due to the effects of both Ni and Sn.
  • the contents of Ni and Sn may be selected from the above range. In particular, when both the Ni content and the Sn content are 0.03% by mass or more and 0.5% by mass or less and 0.04% by mass or more and 0.3% by mass or less, the effect of improving the strength is good. can get.
  • the aluminum alloy of the embodiment typically has a structure in which precipitates are dispersed in the matrix.
  • the precipitate is typically a compound such as Mg 2 Si described above.
  • the structure in which the above-mentioned precipitates are dispersed is typically obtained by subjecting an aluminum alloy to a solution treatment and an aging treatment.
  • the aging treatment may be performed after the solution treatment.
  • the aluminum alloy of the embodiment constitutes a material such as the aluminum alloy member of the embodiment described later and the bolt of the embodiment, the solution treatment and the aging treatment are typically not performed. Therefore, the aluminum alloy of the embodiment has a cast structure or solidified structure obtained by solidifying the molten metal, a processed structure formed by plastic working, a softened structure obtained by softening the plastic working material, and the like.
  • the structure such as the cast structure, the processed structure, the softened structure, and the structure after the aging treatment can be discriminated by, for example, observing the cross section of the aluminum alloy with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the structure can be determined by, for example, the presence or absence of Mg 2 Si and the size.
  • the processed structure, the softened structure, and the structure after the aging treatment contain Mg 2 Si. Further, the structure after the aging treatment contains Mg 2 Si on the order of several nanometers. However, the processed structure and softened structure do not contain Mg 2 Si on the order of several nanometers.
  • the aluminum alloy of the embodiment has higher strength than JIS alloy No. A6056 and the above-mentioned conventional aluminum alloy by being subjected to solution treatment and aging treatment.
  • an example of the aluminum alloy of the embodiment has a tensile strength of 450 MPa or more after the solution treatment and the aging treatment are sequentially performed under the following conditions.
  • Another example of the aluminum alloy of the embodiment is that it has a breaking elongation of 5% or more in addition to the above-mentioned tensile strength after the solution treatment and the aging treatment are sequentially performed under the following conditions. ..
  • Another example of the aluminum alloy of the embodiment is that it has a 0.2% proof stress of 390 MPa or more in addition to the above-mentioned tensile strength after the solution treatment and the aging treatment are sequentially performed under the following conditions. Can be mentioned.
  • the holding temperature is a temperature selected from the range of 545 ° C. or higher and 575 ° C. or lower.
  • the holding time is a time selected from the range of 30 minutes or more and 60 minutes or less.
  • the holding temperature is a temperature selected from the range of 160 ° C. or higher and 180 ° C. or lower.
  • the holding time is a time selected from the range of 5 hours or more and 35 hours or less.
  • the conditions for the solution treatment and the conditions for the aging treatment are simulations of the solution treatment and the aging treatment performed in the manufacturing process.
  • the above conditions include a plurality of "combinations of temperature and time" selected from a range of holding temperatures and a range of holding times.
  • An example of the aluminum alloy of the embodiment has a tensile strength of 450 MPa or more for at least one combination. Further, another example of the aluminum alloy of the embodiment has at least one of a breaking elongation of 5% or more and a 0.2% proof stress of 390 MPa or more in addition to having the above-mentioned tensile strength for at least one combination. ..
  • the aluminum alloy of the embodiment having a tensile strength of 450 MPa or more has a higher strength than the above-mentioned conventional aluminum alloy. From the viewpoint of improving the strength, the tensile strength is preferably 452 MPa or more and 455 MPa or more. Depending on the composition, the tensile strength is 460 MPa or more, 465 MPa or more, and 470 MPa or more.
  • the tensile strength is, for example, 550 MPa or less.
  • the aluminum alloy of the embodiment having a breaking elongation of 5% or more has high strength and high elongation. Further, due to the high elongation, plastic working may be possible after the aging treatment. In this case, the aluminum alloy member can be easily manufactured. From the viewpoint of ensuring good elongation, the elongation at break may be 8% or more and 9% or more. Depending on the composition, the elongation at break is 10% or more, 12% or more, 15% or more, 16% or more.
  • the elongation at break is, for example, 40% or less.
  • the aluminum alloy of the embodiment having a 0.2% proof stress of 390 MPa or more has high strength and high proof stress. Due to the high yield strength, for example, stress is difficult to be relaxed.
  • Such an aluminum alloy is suitable as a material for structural members such as bolts.
  • the 0.2% proof stress may be 395 MPa or more, 400 MPa or more, and 405 MPa or more. Depending on the composition, the 0.2% proof stress is 410 MPa or more.
  • the 0.2% proof stress is, for example, 490 MPa or less.
  • ⁇ Measuring method> Tensile strength, elongation at break, and 0.2% proof stress are measured by performing a tensile test in accordance with JIS Z 2241: 2011. A test piece for measurement is prepared from the above-mentioned solution-treated and aging-treated aluminum alloy in accordance with JIS Z 2241: 2011.
  • the aluminum alloy of the embodiment has a specific composition containing at least one of Ni and Sn as described above, a high-strength aluminum alloy member can be formed. This effect will be specifically described with reference to the following test examples.
  • the aluminum alloy of the embodiment is typically used as a material constituting various aluminum alloy members.
  • a typical example of the aluminum alloy member made of the aluminum alloy of the embodiment is a plastic working material that has been subjected to at least one kind of plastic working.
  • the plastic working material tends to have higher strength due to work hardening as compared with an aluminum alloy that has not been subjected to plastic working, typically a cast material.
  • the aluminum alloy of the embodiment has a composition excellent in plastic workability as described above. Therefore, it is easy to manufacture the plastic working material.
  • plastically processed material examples include a primary processed material and a secondary processed material obtained by further processing the primary processed material.
  • the primary processed material is a cast material including a continuous cast material that is subjected to plastic working. Specific examples include rolled materials, wire drawing materials, forged materials, extruded materials and the like.
  • the primary processed material is typically used as a material when manufacturing a secondary processed material. Examples of the rolled material include a linear one and a plate-shaped one.
  • the linear rolled material includes a relatively thick one, that is, a rod-shaped one.
  • the wire drawing material the aluminum alloy wire of the embodiment described later can be mentioned.
  • the secondary processed material is typically a final product. Further processing applied to the primary processed material in the manufacturing process of the secondary processed material includes plastic working, surface treatment such as anodizing / polishing, cutting and the like.
  • the secondary processed material is used for various structural members such as automobile parts and bicycle parts, for example. Examples of automobile parts include bolts, spool valves and the like. In the bolt manufacturing process, the wire drawing material, which is the primary processed material, is forged, such as head processing and rolling processing. In the process of manufacturing the spool valve, the wire drawing material is machined. Bicycle parts include cranks and the like. In the crank manufacturing process, the cast material is forged.
  • the solution treatment and the aging treatment are performed at an appropriate time, so that the secondary processed material has high tensile strength as described later. Further, the secondary processed material may have at least one of high strength, high elongation and high proof stress.
  • Examples of the aluminum alloy member of the embodiment include the aluminum alloy member of the embodiment and having a tensile strength of 450 MPa or more. When the tensile strength is 450 MPa or more, the aluminum alloy member of the embodiment has higher strength than the above-mentioned aluminum alloy member made of the conventional aluminum alloy.
  • the aluminum alloy member of such an embodiment can be used as a high-strength structural member. The range of tensile strength is the same as the above-mentioned ⁇ Tensile strength> section.
  • the aluminum alloy member of the embodiment in addition to having the above-mentioned tensile strength, at least one of having a breaking elongation of 5% or more and having a 0.2% proof stress of 390 MPa or more is satisfied.
  • the aluminum alloy member of the embodiment having a breaking elongation of 5% or more can be used as a structural member having high strength and high toughness.
  • the aluminum alloy member of the embodiment having a 0.2% proof stress of 390 MPa or more can be used as a structural member having high strength and high proof stress. If the yield strength is high, for example, stress is difficult to be relaxed. Therefore, a structural member having high strength and high yield strength can be suitably used for a fastening member such as a bolt.
  • the range of elongation at break and the range of 0.2% proof stress are the same as those of the above-mentioned ⁇ Elongation at break> and ⁇ 0.2% proof stress>.
  • the aluminum alloy member of the embodiment has a tensile strength of 450 MPa or more, a breaking elongation of 5% or more, and a 0.2% proof stress of 390 MPa or more, it is suitable as a structural member having high strength, high toughness, and high proof stress. Available.
  • the test piece for the tensile test may be manufactured from an aluminum alloy member in accordance with JIS Z 2241: 2011.
  • the aluminum alloy wire 1 of the embodiment is made of the aluminum alloy of the embodiment.
  • a typical example of the aluminum alloy wire 1 is a wire drawing material which is the above-mentioned primary processed material.
  • the aluminum alloy wire 1 is a secondary processed material and can be used as a material for an aluminum alloy member including a linear portion, for example, a material for a bolt. Since it is made of the aluminum alloy of the embodiment, plastic working such as forging can be easily performed in the manufacturing process of the secondary processed material.
  • the shape and size of the aluminum alloy wire 1 can be appropriately selected depending on the application and the like.
  • examples of the aluminum alloy wire 1 include a round wire having a circular cross-sectional shape, a square wire having a polygonal cross-sectional shape such as a rectangle, and a deformed wire having an elliptical cross-sectional shape.
  • the cross section here is a cross section obtained by cutting the aluminum alloy wire 1 in a plane orthogonal to the axial direction of the aluminum alloy wire 1.
  • the aluminum alloy wire 1 has, for example, a wire diameter D1 of 3 mm or more and 15 mm or less. As long as the wire diameter D1 is in the above range, the aluminum alloy wire 1 can be used, for example, as a material for bolts, a material for spool valves, and the like. Further, the aluminum alloy wire 1 having a wire diameter D1 of 13 mm or less and further 12 mm or less is suitable as a material for bolts having a size suitable for fastening automobile parts and the like.
  • the wire diameter D1 here is measured as follows. Take the cross section of the aluminum alloy wire 1. In this cross section, the smallest circle including the contour line of the aluminum alloy wire 1 is taken. The wire diameter D1 is the diameter of this smallest circle. If the aluminum alloy wire 1 is a round wire, the outer diameter of the round wire corresponds to the wire diameter D1.
  • the length of the aluminum alloy wire 1 is not particularly limited. If the aluminum alloy wire 1 is the above-mentioned primary processed material, it may have a length that can be wound into a coil, for example, a length of 3 m or more. When the aluminum alloy wire 1 is used as a material for the above-mentioned secondary processed material, it is typically cut to a predetermined length. The cut piece is subjected to secondary processing.
  • Such an aluminum alloy wire 1 When the aluminum alloy wire 1 is subjected to solution treatment and aging treatment in the manufacturing process, it has high strength as described above.
  • Such an aluminum alloy wire 1 can be used as a high-strength wire rod. Furthermore, it may have at least one of high strength and high elongation and high proof stress.
  • the range of tensile strength, the range of elongation at break, and the range of 0.2% proof stress of the aluminum alloy wire 1 are the same as those in the above-mentioned ⁇ Mechanical properties> section.
  • the test piece for the tensile test may be manufactured from the aluminum alloy wire 1 in accordance with JIS Z 2241: 2011.
  • the bolt 10 of the embodiment is made of the aluminum alloy of the embodiment and has a tensile strength of 450 MPa or more, a breaking elongation of 5% or more, and a 0.2% proof stress of 390 MPa or more.
  • the bolt 10 of such an embodiment has higher strength than the above-mentioned bolt made of a conventional aluminum alloy. Therefore, the bolt 10 can construct a strong fastening structure.
  • the bolt 10 of the embodiment also has high elongation and high yield strength. Therefore, the bolt 10 is difficult to break and stress relaxation is difficult. Therefore, the bolt 10 can maintain a strong fastening state for a long period of time.
  • the bolt 10 typically includes a head portion 11 and a shaft portion 12.
  • the shaft portion 12 includes a screw portion 13.
  • the threaded portion 13 is provided in a region on the surface side of the shaft portion 12 in a range from the tip of the shaft portion 12 to a predetermined position of the shaft portion 12.
  • the bolt 10 may be manufactured by using the aluminum alloy wire 1 of the embodiment which is the above-mentioned primary processed material.
  • the aluminum alloy wire 1 is cut to a predetermined length. This cut piece is subjected to forging processing such as head processing and rolling processing. Further, the bolt 10 is manufactured by performing the solution treatment and the aging treatment at an appropriate time.
  • FIG. 2 illustrates a hexagonal bolt in which the head 11 is a hexagonal column, but the shape can be changed as appropriate.
  • the size for hexagon bolts, for example, the “screw nominal diameter d” defined in JIS B 1180: 2014 is M2 to M12.
  • the tensile strength, breaking elongation, and 0.2% proof stress of the bolt 10 can be measured by a tensile test using the bolt 10 itself as a test piece in accordance with JIS B 1051: 2000.
  • the tensile strength, breaking elongation, and 0.2% proof stress of the aluminum alloy itself constituting the bolt 10 can be measured by performing a tensile test in accordance with JIS Z 2241: 2011.
  • forging is performed in the manufacturing process of the bolt 10.
  • the strength of the bolt 10 may be improved due to work hardening by forging. Therefore, when measuring the tensile strength or the like of the aluminum alloy itself, the test piece is manufactured from the inner region of the shaft portion 12 of the bolt 10 where the screw portion 13 is not provided. That is, this test piece is produced from a region that is not substantially work-hardened by forging or a region that is less affected by work hardening.
  • a test piece may be produced from the core portion 120 in which the region on the surface side including the screw portion 13 has been cut off.
  • the range of tensile strength, the range of breaking elongation, and the range of 0.2% proof stress of the bolt 10 are the above-mentioned ⁇ tensile strength>, ⁇ breaking elongation>, and ⁇ 0.2% proof stress>. Similar to the term.
  • the aluminum alloy member of the embodiment and the bolt 10 of the embodiment have a tensile strength of 450 MPa or more and are high in strength.
  • the aluminum alloy wire 1 of the embodiment can be suitably used, for example, as a material for the above-mentioned high-strength aluminum alloy member and bolt 10.
  • Examples of the use form of the aluminum alloy of the embodiment include casting materials, plastic working materials, heat treatment materials, cutting materials, surface treatment materials and the like, if they are distinguished according to the manufacturing process.
  • the manufacturing method described in Patent Document 1 can be used. That is, in the production of the aluminum alloy of the embodiment, there are few or substantially no significant changes in the production process as compared with the production method described in Patent Document 1. In this respect, the aluminum alloy of the embodiment is excellent in manufacturability.
  • the manufacturing method will be briefly described.
  • the casting material is manufactured through the first step of casting a molten metal made of an aluminum alloy having the above-mentioned specific composition.
  • the plastic working material is produced, for example, through a second step of subjecting at least a part of the above-mentioned cast material to one or more kinds of plastic working.
  • the heat-treated material is produced, for example, through a third step of heat-treating the above-mentioned cast material or the above-mentioned plastic working material.
  • the heat treatment include solution treatment and aging treatment.
  • the aluminum alloy member of the embodiment and the bolt 10 of the embodiment having a tensile strength of 450 MPa or more described above are examples of heat-treated materials. Therefore, in the manufacturing process of the aluminum alloy member and the bolt 10 of the embodiment, the heat treatment includes a solution treatment and an aging treatment.
  • the aging treatment can be performed at any time after the solution treatment.
  • Other heat treatments include softening treatment and the like.
  • the cutting material and surface treatment material are manufactured, for example, through a fourth step of cutting and surface treating the above-mentioned casting material, the above-mentioned plastic working material, or the above-mentioned heat-treated material.
  • the aluminum alloy of the embodiment may be produced by a production method including the above-mentioned first step.
  • the aluminum alloy of the embodiment may be produced by a production method including at least one of the above-mentioned second step, third step, and fourth step in addition to the first step. ..
  • the manufacturing process may be selected according to the above-mentioned usage pattern. Hereinafter, each step will be described.
  • First process Casting>
  • various casting methods can be used.
  • a continuous casting method can be preferably used.
  • the continuous casting method can solidify the molten metal at a faster solidification rate than billet casting. That is, quick-cooling solidification is possible.
  • the above-mentioned crystals are unlikely to become coarse due to quick-cooling solidification.
  • the crystals of the cast material tend to become fine.
  • the additive element is likely to dissolve in Al in the solution treatment.
  • Mg 2 Si is likely to be formed in the aging treatment performed after the solution treatment.
  • Mg 2 Si is more likely to be formed by the action of Sn as described above.
  • Mg 2 Si is likely to be finely deposited by the action of Ni as described above. If the cast material has a fine crystal structure, it is easy to obtain a fine crystal structure even after casting. In the aluminum alloy of the embodiment, a fine crystal structure can be more easily obtained by the action of Fe, Mn, and appropriately Cr as described above. If the matrix has a fine crystal structure, the fine Mg 2 Si is likely to be uniformly dispersed in the matrix. As a result, the effect of improving strength by precipitation hardening can be obtained satisfactorily.
  • the crystals tend to be fine and the proportion of equiaxed crystals contained per unit cross-sectional area tends to be high. Therefore, plastic working is easy to be performed after casting. Further, the plastic working material obtained after plastic working tends to have excellent surface properties. Further, if the continuous cast material is used as a material such as a rolled material and a wire drawn material, the rolled material and the wire drawn material can be mass-produced.
  • the continuous casting method for example, a known method such as a belt-and-wheel method or a propelch method can be used.
  • the solidification rate in continuous casting that is, the cooling rate of the molten metal, is 1 ° C./sec or more. The faster the solidification rate, the easier it is to obtain the above-mentioned effects such as miniaturization.
  • the solidification rate may be 2 ° C./sec or higher, 5 ° C./sec or higher, 8 ° C./sec or higher, and 10 ° C./sec or higher. It is preferable that the solidification rate of the entire molten metal is 1 ° C./sec or more because the entire molten metal is uniformly cooled. In this case, the components of the cast material tend to be uniform. Therefore, the homogenization process can be omitted.
  • the casting method may be a method other than the continuous casting method.
  • plastic working> Examples of plastic working applied to the cast material include rolling, wire drawing, forging, extrusion and the like. Plastic working can be hot, warm, or cold. One plastic working may include machining of multiple passes.
  • the holding time in the heat treatment does not include the temperature rising time.
  • the holding temperature may be selected from 545 ° C. or higher and 575 ° C. or lower.
  • the holding time includes a time selected from 30 minutes or more and 60 minutes or less.
  • the temperature rising time to the holding temperature is 60 minutes or less.
  • the holding temperature When the holding temperature is 545 ° C. or higher, the additive element is easily dissolved in Al. From the viewpoint of promoting solid solution, the holding temperature may be 550 ° C or higher, 555 ° C or higher, or 560 ° C or higher. When the holding temperature is 575 ° C. or lower, the amount of Si segregated at the grain boundaries of the crystal tends to decrease. From the viewpoint of reducing segregated Si, the holding temperature may be 570 ° C. or lower.
  • the holding time is 30 minutes or more, the additive element is easily dissolved in Al. From the viewpoint of promoting solid solution, the holding time may be 35 minutes or longer or 40 minutes or longer. When the holding time is 60 minutes or less, the amount of Si segregated at the grain boundaries of the crystal tends to decrease. From the viewpoint of reducing segregated Si, the holding time may be 55 minutes or less and 50 minutes or less.
  • the holding temperature may be a temperature selected from 160 ° C. or higher and 180 ° C. or lower.
  • the holding time includes a time selected from 5 hours or more and 35 hours or less.
  • the holding temperature is 160 ° C. or higher, Mg 2 Si and the like are deposited. As a result, the effect of improving the strength by precipitation hardening can be obtained. From the viewpoint of promoting precipitation, the holding temperature may be 165 ° C. or higher. If the holding temperature is 180 ° C. or lower, the precipitates are unlikely to become coarse. As a result, fracture due to coarse precipitates is suppressed. From this point, the strength tends to be high.
  • the holding temperature may be 175 ° C. or lower from the viewpoint of suppressing the coarsening of the precipitate.
  • the holding time may be 8 hours or more and 10 hours or more. If the holding time is 35 hours or less, the precipitate is unlikely to become coarse. As a result, fracture is suppressed as described above.
  • the holding time may be 30 hours or less from the viewpoint of suppressing the coarsening of the precipitate.
  • Softening treatment Other conditions for the softening treatment include, for example, a holding temperature selected from 250 ° C. or higher and 450 ° C. or lower, and a holding time selected from 0.5 hours or longer and 40 hours or lower.
  • the aluminum alloy wire of the embodiment may be manufactured by the following manufacturing method.
  • This manufacturing method includes the above-mentioned first step, the above-mentioned second step, and a third step of subjecting the plastic working material manufactured in the above-mentioned second step to a softening treatment as a heat treatment.
  • the cast material can be mass-produced by using the continuous casting method as described above. Further, in the second step, plastic working is easy and a long wire drawing material or the like can be obtained. If necessary, the cast material can be surface-cut before the second step.
  • the plastic working in the second step includes wire drawing. Further, the plastic working in the second step may include rolling or swaging in addition to the wire drawing. Rolling or swaging is typically performed hot or warm. If the rolling process is performed continuously after casting, the rolled material can be mass-produced. In this case, for example, a Properch type continuous casting rolling mill may be used. The wire drawing process is typically performed cold. If necessary, the peeling process can be performed before the wire drawing process.
  • the softening treatment in the third step is typically performed for the purpose of removing the strain introduced by the plastic working.
  • the softening treatment is performed, for example, (1) after rolling or swage processing, that is, before wire drawing, (2) between passes when performing wire drawing of multiple passes, and (3) after the final pass. Be done.
  • the softening treatment is carried out at at least one of the above-mentioned implementation times. For the conditions of the softening treatment, it is advisable to refer to the above-mentioned “Softening treatment” section.
  • the aluminum alloy member of the embodiment having the above-mentioned high tensile strength may be manufactured by, for example, the following first manufacturing method, second manufacturing method, or third manufacturing method.
  • the first manufacturing method includes the above-mentioned first step, the above-mentioned second step, and a third step of heat-treating the plastic working material manufactured in the above-mentioned second step.
  • the heat treatment in the third step includes a solution treatment and an aging treatment.
  • the second manufacturing method includes the above-mentioned first step and a step of heat-treating the cast material produced in the first step. This heat treatment includes a solution treatment and an aging treatment.
  • the third manufacturing method includes, in the first manufacturing method or the second manufacturing method, a step of performing plastic working after the aging treatment. For the conditions of the solution treatment and the aging treatment, it is advisable to refer to the above-mentioned "Solution treatment" and "Aging treatment".
  • the solution process is between one plastic working and another, or between the passes. You may go.
  • the aging treatment can be performed at any time after the solution treatment.
  • the aging treatment may be performed immediately after the solution treatment.
  • processing such as plastic working or cutting may be performed between the solution treatment and the aging treatment.
  • the aluminum alloy wire of the embodiment can be used as a plastic working material instead of the first step and the second step in the first manufacturing method.
  • the bolt of the embodiment having the above-mentioned high tensile strength may be manufactured by, for example, the following manufacturing method.
  • This manufacturing method includes a step of cutting the aluminum alloy wire of the embodiment to a predetermined length, a step of subjecting the cut piece to plastic working, a step of subjecting the cut piece or the plastic working material to a solution treatment, and a solution treatment.
  • Subsequent steps include a step of performing aging treatment.
  • plastic working here include forging such as header processing and rolling processing. The aging treatment is performed, for example, after the rolling process.
  • Test Example 1 Aluminum alloy wires having the compositions shown in Tables 1 to 4 have tensile strength (MPa), 0.2% proof stress (MPa), and fracture after being subjected to solution treatment and aging treatment in order under the following conditions. The growth (%) was examined. The measurement results are shown in Tables 1 to 4.
  • Each sample shown in Tables 1 to 4 contains Si, Mg, Fe, Cu, and Mn as additive elements. Depending on the sample, Cr is further contained in addition to the above five elements. Alternatively, depending on the sample, Cr and Sr are further contained in addition to the above five elements. The content of each element is the amount (mass%) shown in Tables 1 to 4. In the composition of each sample shown in Tables 1 to 4, the balance is Al and unavoidable impurities. In Tables 1 to 4, a hyphen "-" indicates that no element has been added.
  • sample No. containing at least one of Ni and Sn. 1 to No. 53 may be collectively referred to as a specific sample group.
  • Sample No. 101 The sample numbers shown in Tables 1 to 4 are shown in Tables 1 to 4.
  • Reference numeral 101 denotes a sample containing Si, Mg, Fe, Cu, Mn, and Cr as additive elements and containing neither Ni nor Sn. So to speak, sample No. 101 corresponds to the above-mentioned conventional aluminum alloy.
  • the aluminum alloy wire is a wire drawn material having a wire diameter of 4.6 mm, and was produced as follows. Pure aluminum is melted to prepare a molten metal. After adding the additive element to the molten metal so that the content of the additive element is the amount (mass%) shown in Tables 1 to 4, the molten metal is held for a predetermined time. The molten metal made of the aluminum alloy whose components have been adjusted is appropriately subjected to a treatment for removing hydrogen gas and a treatment for removing foreign substances. The molten aluminum alloy produced is cast. The casting temperature is 730 ° C. The solidification rate during casting is 1 ° C./sec or more. The cast material is a round bar having a diameter of 30 mm ⁇ .
  • a round bar having a diameter of 24 mm ⁇ is produced by surface-cutting a cast material having a diameter of 30 mm ⁇ .
  • a round bar whose surface has been cut is warmly swaged to produce a wire rod having a wire diameter of 10.3 mm ⁇ .
  • the heating temperature for swage processing is 300 ° C.
  • the swaged wire is coldly drawn to produce a wire with a diameter of 4.6 mm ⁇ .
  • the wire rod before wire drawing, the intermediate wire drawing material having a wire diameter of 8.2 mm ⁇ , and the intermediate wire drawing material having a wire diameter of 6.3 mm ⁇ were each subjected to a softening treatment.
  • the conditions for the three softening treatments are that the holding temperature is 300 ° C. and the holding time is 3 hours.
  • the composition of the obtained wire drawing material is the same as the composition shown in Tables 1 to 4.
  • a known method can be used for the composition analysis of the wire drawing material.
  • an energy dispersive X-ray analyzer or the like can be used.
  • ⁇ Heat treatment conditions> The conditions for the solution treatment are that the holding temperature is 560 ° C. and the holding time is 45 minutes. After the holding time has passed, water quench. The temperature rise time to the holding temperature is 45 minutes. The conditions for the aging treatment are that the holding temperature is 160 ° C. and the holding time is 16 hours or 30 hours. It should be noted that each sample has not been homogenized between the casting and the solution treatment.
  • Tensile strength (MPa), 0.2% proof stress (MPa), and elongation at break (%) are measured by performing a tensile test at room temperature.
  • the tensile test is performed in accordance with JIS Z 2241: 2011.
  • the test piece is prepared from a heat-treated material obtained by subjecting the above-mentioned wire drawing material having a wire diameter of 4.6 mm to the above-mentioned solution treatment and aging treatment.
  • the specific sample group composed of an aluminum alloy containing at least one of Ni and Sn is the sample No. which does not contain both Ni and Sn. It can be seen that it has a higher tensile strength as compared with 101. Quantitatively, most of the specific sample groups have a tensile strength of 450 MPa or more. Among the specific sample groups, there are samples having a tensile strength of 460 MPa or more and further 470 MPa or more. From this, it was shown that both Ni and Sn contribute to the improvement of strength.
  • the specific sample group has a 0.2% proof stress of 390 MPa or more. Of the specific sample group, many samples have a 0.2% proof stress of 400 MPa or more. Among the specific sample groups, the sample No. Some samples have a higher yield strength than 101. In particular, in the specific sample group, there is a sample having a 0.2% proof stress of 410 MPa or more. From this, it is considered that both Ni and Sn also contribute to the improvement of proof stress.
  • the specific sample group has a breaking elongation of 5% or more. Of the specific sample group, many samples have a breaking elongation of 10% or more. Among the specific sample groups, the sample No. Some samples have a elongation higher than 101. In particular, among the specific sample group, there is a sample having a breaking elongation of 16% or more. From this, it is considered that both Ni and Sn also contribute to the improvement of elongation.
  • the tensile strength, 0.2% proof stress, and elongation at break are all sample No. There are samples higher than 101. From this, it was shown that an aluminum alloy containing at least one of Ni and Sn in addition to Si, Mg, Fe, Cu and Mn can form an aluminum alloy member having high strength, high strength and high toughness. Further, when Cr is contained in addition to Si, Mg, Fe, Cu, and Mn, or when Cr and Sr are contained, an aluminum alloy containing at least one of Ni and Sn also has high strength, high strength, and high toughness. It was shown that a flexible aluminum alloy member can be constructed.
  • the aluminum alloy having the above-mentioned specific composition containing at least one of Ni and Sn has higher strength than the conventional aluminum alloy by being subjected to solution treatment and aging treatment. Was done. Also, in some cases, one or both of elongation and proof stress have been shown to be higher than conventional aluminum alloys. It can be said that such an aluminum alloy is suitable as a material for structural members such as bolts.
  • the present invention is not limited to these examples, but is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
  • the type / content of the additive element, the conditions for solution treatment, the conditions for aging treatment, the wire diameter, and the like can be appropriately changed.
  • the wire rod to be subjected to cold wire drawing may be a continuously cast rolled material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Conductive Materials (AREA)
  • Forging (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

1.0質量%以上1.8質量%以下のSiと、0.5質量%以上1.2質量%以下のMgと、0.3質量%以上0.8質量%以下のFeと、0.1質量%以上0.4質量%以下のCuと、0.2質量%以上0.5質量%以下のMnと、0質量%以上0.3質量%以下のCrと、0.005質量%以上0.6質量%以下のNi及び0.005質量%以上0.6質量%以下のSnの少なくとも一方とを含み、残部がAl及び不可避不純物からなる組成を備える、アルミニウム合金。

Description

アルミニウム合金、アルミニウム合金線、アルミニウム合金部材、及びボルト
 本開示は、アルミニウム合金、アルミニウム合金線、アルミニウム合金部材、及びボルトに関する。
 本出願は、2020年01月30日付の日本国出願の特願2020-014172に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 特許文献1は、JIS合金番号A6056のアルミニウム合金と同等以上の引張強さを有するアルミニウム合金を開示する。以下、特許文献1に記載されるアルミニウム合金を従来のアルミニウム合金と呼ぶ。
特開2015-166480号公報
 本開示のアルミニウム合金は、1.0質量%以上1.8質量%以下のSiと、0.5質量%以上1.2質量%以下のMgと、0.3質量%以上0.8質量%以下のFeと、0.1質量%以上0.4質量%以下のCuと、0.2質量%以上0.5質量%以下のMnと、0質量%以上0.3質量%以下のCrと、0.005質量%以上0.6質量%以下のNi及び0.005質量%以上0.6質量%以下のSnの少なくとも一方とを含み、残部がAl及び不可避不純物からなる組成を備える。
 本開示のアルミニウム合金線は、本開示のアルミニウム合金からなる。
 本開示のアルミニウム合金部材は、本開示のアルミニウム合金からなり、450MPa以上の引張強さを有する。
 本開示のボルトは、本開示のアルミニウム合金からなり、450MPa以上の引張強さと、5%以上の破断伸びと、390MPa以上の0.2%耐力とを有する。
図1は、実施形態のアルミニウム合金線を示す斜視図である。 図2は、実施形態のボルトを示す斜視図である。
[本開示が解決しようとする課題]
 より高強度なアルミニウム合金が望まれている。
 JIS合金番号A6056等の6000系合金は、T6処理等の熱処理が施されることで高い強度を有する。6000系合金は、アルミニウム合金の種類のなかでも、高強度な合金である。しかし、構造部材等を構成するアルミニウム合金には、更なる強度の向上が望まれる。
 また、構造部材等が製造される過程では、通常、上述の熱処理だけなく、各種の塑性加工、例えば圧延、伸線、鍛造等がアルミニウム合金に施される。そのため、熱処理後において高い強度を有することに加えて、製造過程において塑性加工性に優れるアルミニウム合金が好ましい。
 そこで、本開示は、高強度なアルミニウム合金部材の素材に適したアルミニウム合金を提供することを目的の一つとする。また、本開示は、高強度なアルミニウム合金部材の素材に適したアルミニウム合金線を提供することを別の目的とする。本開示は、高強度なアルミニウム合金部材、高強度なボルトを提供することを更に別の目的とする。
[本開示の効果]
 本開示のアルミニウム合金、及びアルミニウム合金線は、高強度なアルミニウム合金部材の素材に適する。本開示のアルミニウム合金部材、及び本開示のボルトは、高強度である。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係るアルミニウム合金は、1.0質量%以上1.8質量%以下のSiと、0.5質量%以上1.2質量%以下のMgと、0.3質量%以上0.8質量%以下のFeと、0.1質量%以上0.4質量%以下のCuと、0.2質量%以上0.5質量%以下のMnと、0質量%以上0.3質量%以下のCrと、0.005質量%以上0.6質量%以下のNi及び0.005質量%以上0.6質量%以下のSnの少なくとも一方とを含み、残部がAl及び不可避不純物からなる組成を備える。
 Ni及びSnは、後述するように、分散強化による強度の向上効果に寄与すると考えられる。本開示のアルミニウム合金は、上述の従来のアルミニウム合金に対して、Ni及びSnの一方、又は両方を含む。そのため、本開示のアルミニウム合金は、上記従来のアルミニウム合金からなるアルミニウム合金部材に比較して、高い強度を有するアルミニウム合金部材を構成できる。
 また、本開示のアルミニウム合金は、アルミニウム合金部材の製造過程において塑性加工性に優れる。このような本開示のアルミニウム合金は、高強度なアルミニウム合金部材の素材に適する。
(2)本開示のアルミニウム合金の一例として、前記Siの含有量は1.2質量%超であり、前記Mgの含有量は0.8質量%超である形態が挙げられる。
 上記形態は、時効処理によって、分散強化剤として機能するMgSiが多く析出され易い。従って、上記形態は、より高強度なアルミニウム合金部材を構成できる。
(3)本開示のアルミニウム合金の一例として、前記Ni及び前記Snの双方を含む形態が挙げられる。
 上記形態は、Ni及びSnの双方の効果によって、より高強度なアルミニウム合金部材を構成できる。
(4)本開示のアルミニウム合金の一例として、溶体化処理と時効処理とが順に施された後において、450MPa以上の引張強さを有し、前記溶体化処理の保持温度は、545℃以上575℃以下の範囲から選択される温度であり、前記溶体化処理の保持時間は、30分以上60分以下の範囲から選択される時間であり、前記時効処理の保持温度は、160℃以上180℃以下の範囲から選択される温度であり、前記時効処理の保持時間は、5時間以上35時間以下の範囲から選択される時間である形態が挙げられる。
 上記形態は、上述の従来のアルミニウム合金からなるアルミニウム合金部材より高い強度を有するアルミニウム合金部材を構成できる。
(5)上記(4)のアルミニウム合金の一例として、前記溶体化処理と前記時効処理とが順に施された後において、5%以上の破断伸びを有する形態が挙げられる。
 上記形態は、高い強度と高い伸びとを有するアルミニウム合金部材を構成できる。また、時効処理後において、伸びが高いため、塑性加工が可能な場合がある。この場合、上記形態は、アルミニウム合金部材の製造性にも優れる。
(6)上記(4)又は(5)のアルミニウム合金の一例として、前記溶体化処理と前記時効処理とが順に施された後において、390MPa以上の0.2%耐力を有する形態が挙げられる。
 上記形態は、高い強度と高い耐力とを有するアルミニウム合金部材を構成できる。
(7)本開示の一態様に係るアルミニウム合金線は、上記(1)から(6)のいずれか一つのアルミニウム合金からなる。
 本開示のアルミニウム合金線は、線状の部分を含むアルミニウム合金部材、例えばボルト等の素材に適する。本開示のアルミニウム合金線を利用すれば、上述の従来のアルミニウム合金からなるアルミニウム合金部材に比較して、高い強度を有するアルミニウム合金部材を構成できる。
(8)本開示のアルミニウム合金線の一例として、3mm以上15mm以下の線径を有する形態が挙げられる。
 上記形態は、上述の範囲の線径を有する線状の部分を含むアルミニウム合金部材、例えばボルト等の素材に適する。
(9)本開示の一態様に係るアルミニウム合金部材は、上記(1)から(6)のいずれか一つのアルミニウム合金からなり、450MPa以上の引張強さを有する。
 本開示のアルミニウム合金部材は、上述の従来のアルミニウム合金からなるアルミニウム合金部材に比較して、高強度である。このような本開示のアルミニウム合金部材は、高強度な構造部材等として利用できる。
(10)上記(9)のアルミニウム合金部材の一例として、5%以上の破断伸びを有すること、及び390MPa以上の0.2%耐力を有することの少なくとも一方を満たす形態が挙げられる。
 上記形態は、高い強度と、高い伸び及び高い耐力の少なくとも一方を有する構造部材等として利用できる。
(11)本開示の一態様に係るボルトは、上記(1)から(6)のいずれか一つのアルミニウム合金からなり、450MPa以上の引張強さと、5%以上の破断伸びと、390MPa以上の0.2%耐力とを有する。
 本開示のボルトは、上述の従来のアルミニウム合金からなるボルトに比較して、高い強度、高い伸び、及び高い耐力を有する。このような本開示のボルトは、強固な締結構造を構築できる。また、本開示のボルトは、長期にわたり、強固な締結状態を維持できる。
[本開示の実施形態の詳細]
 以下、適宜、図面を参照して、本開示の実施形態を具体的に説明する。
[アルミニウム合金]
(組成)
 実施形態のアルミニウム合金は、添加元素を含み、Al(アルミニウム)を主体とする合金である。具体的には、実施形態のアルミニウム合金は、Si(珪素)と、Mg(マグネシウム)と、Fe(鉄)と、Cu(銅)と、Mn(マンガン)と、Ni(ニッケル)及びSn(錫)の少なくとも一方とを含み、残部がAl及び不可避不純物からなる組成を備える。実施形態のアルミニウム合金は、上述の添加元素に加えて、更にCr(クロム)を含んでもよい。
 以下、添加元素ごとに含有量及び効果を説明する。
〈Si〉
 Siの含有量は、1.0質量%以上1.8質量%以下である。
 Siは、主として、析出硬化によってアルミニウム合金を強化する。詳しくは、Siは、Mgと共に微細なMgSiとして母相中に分散して存在することによって、分散強化剤として機能する。MgSiは、溶体化処理によってAlに固溶したSiが時効処理、即ち人工時効によってMgと化合してなる析出物である。Siのうち、MgSiを構成していない残部は、Alに固溶する、又はSi単体で析出する、又はSi単体でデンドライト状に晶出することによって、アルミニウム合金を強化する。Siのうち、上述の残部は、過剰Siと呼ばれることがある。なお、上記母相は、主としてAlからなる。
 Siの含有量が1.0質量%以上であることで、上述の強化による強度の向上効果が良好に得られる。Mgの含有量にもよるが、Siの含有量が多いほど、時効処理によってMgSiの含有量が多くなり易い。その結果、強度が向上し易い。強度の向上の観点から、Siの含有量は1.0質量%超、1.1質量%以上、1.15質量%以上でもよい。Siの含有量が1.2質量%超であれば、強度が更に高くなり易い。
 Siの含有量が1.8質量%以下であることで、Siを含む析出物及び晶出物が粗大になり難い。また、過剰Siが多過ぎない。そのため、粗大な析出物及び晶出物、及び過剰Siの過多に起因する強度の低下が抑制される。また、塑性加工性の低下も抑制される。なお、粗大な析出物及び晶出物が割れの起点となることで、強度が低下し易くなる。また、過剰Siが多過ぎると、Si単体が母相の結晶の粒界に偏析する。この偏析Siによって、粒界が脆化することで、強度が低下し易くなる。強度の低下を抑制する観点から、Siの含有量は1.7質量%以下、1.6質量%以下でもよい。Siの含有量が1.5質量%以下であれば、強度の低下が生じ難い。
 Siの含有量が1.0質量%超1.7質量%以下、1.2質量%超1.5質量%以下であれば、上述の強度の低下が抑制され、アルミニウム合金は高い強度を有し易い。
〈Mg〉
 Mgの含有量は、0.5質量%以上1.2質量%以下である。
 Mgは、Alに固溶することによってアルミニウム合金を強化する。また、Mgは、上述のようにSiと共に、析出硬化によってアルミニウム合金を強化する。
 Mgの含有量が0.5質量%以上であることで、固溶強化及び析出硬化による強度の向上効果が良好に得られる。Mgの含有量が多いほど、強度が向上し易い。強度の向上の観点から、Mgの含有量は0.6質量%以上、0.7質量%以上でもよい。Mgの含有量が0.8質量%超であれば、強度が更に高くなり易い。
 Mgの含有量が1.2質量%以下であることで、過剰Siが確実に生成される。そのため、過剰Siによる強化効果が良好に得られる。その結果、強度が高くなり易い。また、耐力も高くなり易い。その他、鋳造時にマクロ偏析が生じ難い。応力腐食割れに対する耐性の低下、塑性加工性の低下、及び耐熱性の低下が生じ難い。これらの効果が良好に得られるため、Mgの含有量は1.15質量%以下、1.1質量%以下でもよい。Mgの含有量が1.05質量%以下であれば、上述の効果が更に得られ易い。
 Mgの含有量は、0.6質量%以上1.15質量%以下、0.8質量%超1.05質量%以下であれば、強度、耐力が向上し易い。また、応力腐食割れに対する耐性、塑性加工性、及び耐熱性が低下し難い。
〈Si及びMg〉
 特に、Siの含有量が1.2質量%超であり、かつMgの含有量が0.8質量%超である場合、上述のように、時効処理によってMgSiが多く析出され易い。そのため、強度が更に高くなり易い。強度の向上の観点から、Siの含有量は1.3質量%以上であり、かつMgの含有量は0.9質量%以上でもよい。更に、Siの含有量は1.35質量%以上であり、Mgの含有量は0.95質量%以上でもよい。
〈Fe〉
 Feの含有量は、0.3質量%以上0.8質量%以下である。
 Feは、主として、Alに固溶することによってアルミニウム合金を強化する。また、Feは、アルミニウム合金の結晶を微細にすることに寄与する。上記結晶が微細であれば、以下の効果(a)から(d)が得られる。その他、Feは、アルミニウム合金を加工硬化し易くする効果も期待できる。加工硬化によって、強度、耐力が向上し易い。
(a)微細なMgSiが母相に均一的に分散し易い。そのため、強度、耐力が向上し易い。
(b)結晶の粒界量が増加する。粒界が多ければ、Siが粒界に偏析することによる脆化が相対的に小さくなり易い。そのため、粒界の脆化による強度の低下が抑制される。
(c)耐熱性、耐食性が高くなり易い。
(d)塑性加工が行い易い。
 Feの含有量が0.3質量%以上であることで、上述の固溶強化、結晶の微細化等の効果が良好に得られる。結果として、MgSiが母相中に析出し易い上に、母相中に分散して存在し易い。そのため、析出硬化による強度の向上効果が得られ易い。Feの含有量が多いほど、強度が向上し易い。強度の向上の観点から、Feの含有量は0.35質量%以上、0.4質量%以上でもよい。Feの含有量が0.45質量%以上であれば、強度が更に高くなり易い。
 Feの含有量が0.8質量%以下であることで、AlとFeとを含む化合物からなる晶出物及び析出物の含有量が少なくなり易い。そのため、上記化合物に起因する塑性加工性の低下が抑制される。この点から、アルミニウム合金部材の製造が行い易い。良好な塑性加工性の確保の観点から、Feの含有量は0.7質量%以下、0.6質量%以下でもよい。Feの含有量が0.55質量%以下であれば、良好な塑性加工性が得られる。
 Feの含有量は、0.35質量%以上0.7質量%以下、0.45質量%以上0.55質量%以下であれば、強度が更に高くなり易い。また、良好な塑性加工性が得られる。
〈Cu〉
 Cuの含有量は、0.1質量%以上0.4質量%以下である。
 Cuは、主として、母相の結晶の粒界に偏析するSiの悪影響を抑制することに寄与する。詳しくは、Cuは、溶体化処理及び時効処理によって、粒界に偏析するSiと析出物を形成する。この析出物は、母相を構成するAlの原子配列に整合した化合物である。そのため、上記析出物は、粒界に悪影響を及ぼし難い。偏析Siによる粒界の脆化が抑制されることで、強度の低下が抑制される。
 Cuの含有量が0.1質量%以上であることで、上述の粒界の脆化が抑制される。Cuの含有量が多いほど、粒界の脆化による強度の低下が抑制され易い。強度の低下を抑制する観点から、Cuの含有量は0.15質量%以上、0.2質量%以上でもよい。Cuの含有量が0.25質量%以上であれば、強度の低下が生じ難い。
 Cuの含有量が0.4質量%以下であることで、Cuを含む低融点相の形成が抑制される。その結果、耐食性の低下、耐熱性の低下が抑制される。良好な耐食性及び耐熱性の確保の観点から、Cuの含有量は0.38質量%以下、0.36質量%以下でもよい。Cuの含有量は0.35質量%以下であれば、良好な耐熱性、良好な耐食性が得られ易い。
 Cuの含有量は、0.15質量%以上0.38質量%以下、0.25質量%以上0.35質量%以下であれば、上述の強度の低下が抑制され易い。また、良好な耐熱性、耐食性が得られる。
〈Mn〉
 Mnの含有量は、0.2質量%以上0.5質量%以下である。
 Mnの一部は、Alに固溶することによってアルミニウム合金を強化する。Mnの残部は、アルミニウム合金の結晶を微細にすることに寄与する。詳しくは、Mnは、Alと化合物を形成する。この化合物は、上記結晶が粗大になることを抑制する。上記結晶が微細であれば、上述の効果(a)から(d)が得られる。また、Mnは、上述のAlとFeとを含む化合物を球状に晶出させることに寄与する。晶出物が球状であれば、塑性加工性に悪影響を与え難い。この点から、Mnは、塑性加工性の向上に寄与する。
 Mnの含有量が0.2質量%以上であることで、上述の固溶強化、結晶の微細化、晶出物の球状化等の効果が良好に得られる。Mnの含有量が多いほど、これらの効果が得られ易い。強度の向上等の観点から、Mnの含有量は0.22質量%以上、0.24質量%以上でもよい。Mnの含有量が0.25質量%以上であれば、上記効果が良好に得られる。
 Mnの含有量が0.5質量%以下であることで、上述のAlとMnとを含む化合物からなる晶出物及び析出物が粗大になり難い。そのため、粗大な晶出物及び析出物に起因する強度の低下、塑性加工性の低下が抑制される。また、Mnの含有量が0.5質量%以下であることで、アルミニウム合金の溶湯の固相線温度が高くなり過ぎない。この点から、鋳込み温度が高くなり過ぎない。そのため、アルミニウム合金部材の製造が行い易い。強度の低下の抑制、製造性の向上の観点から、Mnの含有量は0.45質量%以下、0.4質量%以下でもよい。Mnの含有量が0.35質量%以下であれば、強度の低下が生じ難い。また、鋳込み温度が高くなり過ぎない。
 Mnの含有量は、0.22質量%以上0.45質量%以下、0.25質量%以上0.35質量%以下であれば、上述の固溶強化、結晶の微細化等の効果が良好に得られる。また、強度の低下が生じ難い。鋳込み温度が高くなり過ぎない。
〈Cr〉
 Crの含有量は、0%質量以上0.3質量%以下である。
 Crの含有量が0質量%である場合、即ちCrを含有しない場合には、添加元素の合計含有量が少ない。そのため、添加元素の合計含有量が多いことに起因する塑性加工性の低下が抑制される。また、鋳込み温度が高くなり過ぎない。これらの点から、アルミニウム合金部材の製造が行い易い。
 Crの含有量が0質量%超である場合、即ちCrを含有する場合には、Crは、Alを含む化合物を形成する。このAlとCrとを含む化合物は、Mnと同様に、アルミニウム合金の結晶を微細にすることに寄与する。また、Crは、耐熱性、耐食性を向上させる効果もある。結晶の微細化による強度の向上、耐熱性及び耐食性の向上の観点から、Crの含有量は例えば0.005質量%以上、0.01質量%以上が挙げられる。
 Crの含有量が0.3質量%以下であることで、Mnと同様に、上述のAlとCrとを含む化合物からなる晶出物及び析出物が粗大になり難い。また、鋳込み温度が高くなり過ぎない。強度の低下の抑制、製造性の向上の観点から、Crの含有量は0.2質量%以下、0.1質量%以下、0.05質量%以下でもよい。
 Crの含有量は、0.005質量%以上0.2質量%以下、0.01質量%以上0.05質量%以下であれば、上述の結晶の微細化等の効果が良好に得られる。また、強度の低下が生じ難い。鋳込み温度が高くなり過ぎない。
〈その他の元素〉
 実施形態のアルミニウム合金は、上述の添加元素に加えて、更にSr(ストロンチウム)を含んでもよい。Srは、鋳造材の結晶を微細にする効果がある。特に、Siの存在下でSrを含む場合、Si単体の晶出物のサイズを小さくすることができる。そのため、圧延等の塑性加工性が改善される。Srの含有量は、例えば、0.005質量%以上0.05質量%以下が挙げられる。鋳造材の微細化の観点から、Srの含有量は0.005質量%以上0.03質量%以下でもよい。
〈Ni〉
 Niの含有量は、0.005質量%以上0.6質量%以下である。
 Niは、上述のMgSiを微細に析出させることに寄与する。また、Niは、アルミニウム合金の結晶を微細にすることに寄与する。MgSi及び結晶の双方が微細であれば、MgSiが母相中に分散した組織であって、アルミニウム合金において単位面積あたりに存在するMgSiの数が多い組織が得られ易い。このような組織は、析出硬化による強度の向上効果が良好に得られる。従って、強度が更に向上し易い。
 Niの含有量が0.005質量%以上であることによって、上述の強度の向上効果が得られる。Niの含有量が0.008質量%以上、0.01質量%以上であると、強度がより高くなり易い。Niの含有量が0.015質量%以上であると、強度が更に高くなり易い。
 Niの含有量が0.6質量%以下であることで、AlとNiとを含む化合物からなる晶出物及び析出物が粗大になり難い。そのため、粗大な晶出物及び析出物に起因する強度の低下、塑性加工性の低下が抑制される。強度の低下の抑制の観点から、Niの含有量が0.5質量%以下、0.4質量%以下でもよい。Niの含有量が0.3質量%以下であれば、強度の低下が生じ難い。
 Niの含有量は、0.008質量%以上0.5質量%以下、0.015質量%以上0.3質量%以下であれば、強度の向上効果が良好に得られる。
 Siの含有量が1.2質量%超であり、かつMgの含有量が0.8質量%超である場合、Niの含有量は、0.01質量%以上0.5質量%以下、0.03質量%以上0.3質量%以下であれば、強度の向上効果が良好に得られる。
〈Sn〉
 Snの含有量は、0.005質量%以上0.6質量%以下である。
 Snは、自然時効を遅延すると共に、人工時効を促進することに寄与する。即ち、Snは、時効処理時にMgSiの生成を促進する。この促進作用は、以下のようにして生じると考えられる。Snは、Alにおいて原子レベルの欠陥である空孔をトラップする。また、SnはMgをトラップする。Snを含むことで、Snを含まない上述の従来のアルミニウム合金に比較して、溶体化処理後において、上記空孔とMgとの対が多く形成される。溶質原子の拡散は、上記空孔を介して生じる。そのため、上記空孔とMgとの対が多い場合、MgとAl中のSiとが反応すると、多くのMgSiが形成される。MgSiが良好に形成されるため、強度が向上する。
 Snの含有量が0.005質量%以上であることによって、上述の強度の向上効果が得られる。Snの含有量が0.008質量%以上、0.01質量%以上であると、強度がより高くなり易い。Snの含有量が0.015質量%以上であると、強度が更に高くなり易い。また、Snは、Niより強度を向上させ易いと考えられる。
 Snの含有量が0.6質量%以下であることで、Snを含む低融点相の形成が抑制される。ここで、Snを含む低融点相を含むアルミニウム合金では、溶体化処理時に部分的な溶融が生じる。部分的な溶融によって、アルミニウム合金の内部に大きな空隙が生じる。大きな空隙が割れの起点となることで、強度が低下する。上記低融点相が形成され難いことで、上記低融点相に起因する強度の低下が抑制される。また、耐食性の低下が抑制される。これらの効果が良好に得られるため、Snの含有量が0.5質量%以下、0.4質量%以下でもよい。Snの含有量が0.3質量%以下であれば、上述の効果が更に得られ易い。
 Snの含有量は、0.008質量%以上0.5質量%以下、0.015質量%以上0.3質量%以下であれば、強度の向上効果が良好に得られる。
 Siの含有量が1.2質量%超であり、かつMgの含有量が0.8質量%超である場合、Snの含有量は、0.01質量%以上0.5質量%以下、0.03質量%以上0.3質量%以下であれば、強度の向上効果が良好に得られる。
〈Ni及びSn〉
 実施形態のアルミニウム合金は、Ni及びSnの双方を含むと、Ni及びSnの双方の効果によって、強度が更に高くなり易い。Ni及びSnの含有量は上述の範囲から選択するとよい。特に、Niの含有量及びSnの含有量の双方が0.03質量%以上0.5質量%以下、0.04質量%以上0.3質量%以下であると、強度の向上効果が良好に得られる。
(組織)
 実施形態のアルミニウム合金は、代表的には、母相中に析出物が分散した組織を有することが挙げられる。析出物は、代表的には、上述のMgSi等の化合物である。析出物の他、母相中には、上述のように晶出物も存在する。上記の析出物が分散した組織は、代表的には、アルミニウム合金に溶体化処理及び時効処理を施すことで得られる。
 なお、実施形態のアルミニウム合金の製造過程において、溶体化処理及び時効処理は連続して行う必要がない。時効処理は、溶体化処理以降に行えばよい。
 実施形態のアルミニウム合金が後述する実施形態のアルミニウム合金部材、実施形態のボルト等の素材を構成する場合、代表的には、溶体化処理及び時効処理が施されていない。そのため、実施形態のアルミニウム合金は、溶湯を凝固させてなる鋳造組織又は凝固組織、塑性加工が施されてなる加工組織、塑性加工材に軟化処理が施されてなる軟化組織等を有する。鋳造組織、加工組織、軟化組織、時効処理後の組織等の組織の判別は、例えば、アルミニウム合金の断面を透過型電子顕微鏡(TEM)によって観察することによって行える。組織の判別は、例えばMgSiの有無、大きさによって行える。具体的には、加工組織、軟化組織、時効処理後の組織は、MgSiを含む。更に、時効処理後の組織は、数ナノメートルオーダーのMgSiを含む。しかし、加工組織、軟化組織は、数ナノメートルオーダーのMgSiを含まない。
(機械的特性)
 実施形態のアルミニウム合金は、溶体化処理及び時効処理が施されることで、JIS合金番号A6056、更には上述の従来のアルミニウム合金より高い強度を有する。定量的には、実施形態のアルミニウム合金の一例は、以下の条件で溶体化処理と時効処理とが順に施された後において、450MPa以上の引張強さを有することが挙げられる。
 実施形態のアルミニウム合金の別例は、以下の条件で溶体化処理と時効処理とが順に施された後において、上述の引張強さに加えて、5%以上の破断伸びを有することが挙げられる。
 実施形態のアルミニウム合金の更に別例は、以下の条件で溶体化処理と時効処理とが順に施された後において、上述の引張強さに加えて、390MPa以上の0.2%耐力を有することが挙げられる。
(溶体化処理の条件)
 保持温度は、545℃以上575℃以下の範囲から選択される温度である。
 保持時間は、30分以上60分以下の範囲から選択される時間である。
(時効処理の条件)
 保持温度は、160℃以上180℃以下の範囲から選択される温度である。
 保持時間は、5時間以上35時間以下の範囲から選択される時間である。
 上記溶体化処理の条件、及び上記時効処理の条件は、製造過程で行われる溶体化処理及び時効処理を模擬したものである。上述の条件は、保持温度の範囲及び保持時間の範囲から選択される「温度と時間との組み合わせ」を複数含む。実施形態のアルミニウム合金の一例は、少なくとも一つの組み合わせについて、450MPa以上の引張強さを有する。また、実施形態のアルミニウム合金の別例は、少なくとも一つの組み合わせについて、上述の引張強さを有することに加えて、5%以上の破断伸び及び390MPa以上の0.2%耐力の少なくとも一方を有する。
 以下、上述の条件で、溶体化処理及び時効処理が施された後のアルミニウム合金について説明する。
〈引張強さ〉
 引張強さが450MPa以上である実施形態のアルミニウム合金は、上述の従来のアルミニウム合金より高い強度を有する。強度の向上の観点から、引張強さは452MPa以上、455MPa以上が好ましい。組成によっては、引張強さは460MPa以上、465MPa以上、470MPa以上である。
 引張強さの上限は特に設けない。伸びの低下を抑制する観点から、引張強さは例えば550MPa以下が挙げられる。
〈破断伸び〉
 破断伸びが5%以上である実施形態のアルミニウム合金は、高い強度と高い伸びとを有する。また、伸びが高いことで、時効処理後において塑性加工が可能な場合がある。この場合、アルミニウム合金部材の製造が行い易い。良好な伸びの確保の観点から、破断伸びは8%以上、9%以上でもよい。組成によっては、破断伸びは10%以上、12%以上、15%以上、16%以上である。
 破断伸びの上限は特に設けない。強度の低下を抑制する観点から、破断伸びは例えば40%以下が挙げられる。
〈0.2%耐力〉
 0.2%耐力が390MPa以上である実施形態のアルミニウム合金は、高い強度と高い耐力とを有する。耐力が高いことで、例えば応力が緩和され難い。このようなアルミニウム合金は、ボルト等の構造部材の素材に適する。耐力の向上の観点から、0.2%耐力は395MPa以上、400MPa以上、405MPa以上でもよい。組成によっては、0.2%耐力は410MPa以上である。
 0.2%耐力の上限は特に設けない。伸びの低下を抑制する観点から、0.2%耐力は例えば490MPa以下が挙げられる。
〈測定方法〉
 引張強さ、破断伸び、0.2%耐力は、JIS Z 2241:2011に準拠して引張試験を行うことによって測定する。上述の溶体化処理及び時効処理が施されたアルミニウム合金から、JIS Z 2241:2011に準拠して測定用の試験片を作製する。
(主な効果)
 実施形態のアルミニウム合金は、上述のようにNi及びSnの少なくとも一方を含む特定の組成を備えるため、高強度なアルミニウム合金部材を構成できる。この効果を以下の試験例で具体的に説明する。
[アルミニウム合金部材]
 実施形態のアルミニウム合金は、代表的には、各種のアルミニウム合金部材を構成する材料として利用される。実施形態のアルミニウム合金からなるアルミニウム合金部材の代表例として、少なくとも一種の塑性加工が施されてなる塑性加工材が挙げられる。塑性加工材は、塑性加工が施されていないアルミニウム合金、代表的には鋳造材に比較して、加工硬化によって、高い強度を有し易い。また、実施形態のアルミニウム合金は、上述のように塑性加工性に優れる組成を有する。そのため、塑性加工材の製造が行い易い。
 塑性加工材の具体例として、1次加工材、1次加工材に更に加工が施されてなる2次加工材が挙げられる。
 1次加工材は、連続鋳造材を含む鋳造材に塑性加工が施されてなる。
 具体例として、圧延材、伸線材、鍛造材、押出材等が挙げられる。1次加工材は、代表的には、2次加工材を製造する際に素材として利用される。圧延材は、線状のもの又は板状のものが挙げられる。線状の圧延材は、比較的太いもの、即ち棒状のものを含む。伸線材の一例として、後述する実施形態のアルミニウム合金線が挙げられる。
 2次加工材は、代表的には最終製品である。
 2次加工材の製造過程において、1次加工材に施される更なる加工は、塑性加工、陽極酸化処理・研磨等の表面処理、切削等が挙げられる。2次加工材は、例えば、自動車部品、自転車部品等の各種の構造部材に利用される。自動車部品は、例えば、ボルト、スプールバルブ等が挙げられる。ボルトの製造過程では、1次加工材である伸線材に、ヘッド加工、転造加工等の鍛造加工が施される。スプールバルブの製造過程では、伸線材に切削加工が施される。自転車部品は、クランク等が挙げられる。クランクの製造過程では、鋳造材に鍛造加工が施される。
 2次加工材の製造過程では、適宜な時期に溶体化処理及び時効処理が行われることで、後述するように2次加工材は高い引張強さを有する。更には、2次加工材は高い強度と、高い伸び及び高い耐力の少なくとも一方とを有する場合がある。
〈機械的特性〉
 実施形態のアルミニウム合金部材として、実施形態のアルミニウム合金からなり、450MPa以上の引張強さを有することが挙げられる。引張強さが450MPa以上であれば、実施形態のアルミニウム合金部材は、上述の従来のアルミニウム合金からなるアルミニウム合金部材より高い強度を有する。このような実施形態のアルミニウム合金部材は、高強度な構造部材として利用できる。引張強さの範囲は、上述の〈引張強さ〉の項と同様である。
 実施形態のアルミニウム合金部材の一例として、上述の引張強さを有することに加えて、5%以上の破断伸びを有すること及び390MPa以上の0.2%耐力を有することの少なくとも一方を満たすことが挙げられる。破断伸びが5%以上である実施形態のアルミニウム合金部材は、高強度で高靭性な構造部材として利用できる。0.2%耐力が390MPa以上である実施形態のアルミニウム合金部材は、高強度で高耐力な構造部材として利用できる。耐力が高いと、例えば応力が緩和され難い。そのため、高強度で高耐力な構造部材は、ボルト等の締結部材に好適に利用できる。破断伸びの範囲、0.2%耐力の範囲は、上述の〈破断伸び〉の項、〈0.2%耐力〉の項と同様である。
 実施形態のアルミニウム合金部材が450MPa以上の引張強さと、5%以上の破断伸びと、390MPa以上の0.2%耐力とを有すれば、高強度、高靭性、高耐力な構造部材として好適に利用できる。なお、引張試験の試験片は、JIS Z 2241:2011に準拠して、アルミニウム合金部材から作製すればよい。
〈アルミニウム合金線材〉
 以下、図1を適宜参照して、実施形態のアルミニウム合金線を説明する。
 実施形態のアルミニウム合金線1は、実施形態のアルミニウム合金からなる。アルミニウム合金線1の代表例として、上述の1次加工材である伸線材が挙げられる。この場合、アルミニウム合金線1は、2次加工材であって、線状の部分を含むアルミニウム合金部材の素材、例えばボルトの素材に利用できる。実施形態のアルミニウム合金からなることで2次加工材の製造過程では、上述のように鍛造加工等の塑性加工が行い易い。
 アルミニウム合金線1の形状、大きさは、用途等に応じて適宜選択できる。
 形状に関して、アルミニウム合金線1は、例えば、横断面形状が円形である丸線、横断面形状が矩形等の多角形である角線、横断面形状が楕円等である異形線等が挙げられる。ここでの横断面は、アルミニウム合金線1をアルミニウム合金線1の軸方向に直交する平面で切断した断面である。
 大きさに関して、アルミニウム合金線1は、例えば3mm以上15mm以下の線径D1を有することが挙げられる。線径D1が上記の範囲であれば、アルミニウム合金線1は、例えばボルトの素材、スプールバルブの素材等に利用できる。また、線径D1が13mm以下、更に12mm以下であるアルミニウム合金線1は、自動車部品の締結等に適したサイズを有するボルトの素材に適する。
 ここでの線径D1は、以下のように測定する。アルミニウム合金線1の横断面をとる。この横断面において、アルミニウム合金線1の輪郭線を内包する最小の円をとる。線径D1は、この最小の円の直径である。アルミニウム合金線1が丸線であれば、丸線の外径が線径D1に相当する。
 アルミニウム合金線1の長さは特に問わない。アルミニウム合金線1が上述の1次加工材であれば、コイル状に巻き取り可能な程度な長さ、例えば3m以上の長さを有することが挙げられる。アルミニウム合金線1が上述の2次加工材の素材に利用される場合、代表的には所定の長さに切断される。切断片に2次加工が施される。
 なお、アルミニウム合金線1の製造過程において溶体化処理及び時効処理が施された場合には、上述のように高い強度を有する。このようなアルミニウム合金線1は、高強度な線材として利用できる。更には、高い強度と、高い伸び及び高い耐力の少なくとも一方とを有する場合がある。アルミニウム合金線1の引張強さの範囲、破断伸びの範囲、0.2%耐力の範囲は、上述の〈機械的特性〉の項と同様である。引張試験の試験片は、JIS Z 2241:2011に準拠して、アルミニウム合金線1から作製すればよい。
〈ボルト〉
 以下、図2を適宜参照して、実施形態のボルトを説明する。
 実施形態のボルト10は、実施形態のアルミニウム合金からなり、450MPa以上の引張強さと、5%以上の破断伸びと、390MPa以上の0.2%耐力とを有する。このような実施形態のボルト10は、上述の従来のアルミニウム合金からなるボルトに比較して、高強度である。そのため、ボルト10は、強固な締結構造を構築できる。また、実施形態のボルト10は、高い伸び及び高い耐力も有する。そのため、ボルト10は、破断し難い上に、応力緩和し難い。従って、ボルト10は、長期にわたり、強固な締結状態を維持できる。
 ボルト10は、代表的には、頭部11と、軸部12とを備える。軸部12は、ねじ部13を備える。ねじ部13は、軸部12の先端から軸部12の所定の位置までの範囲において、軸部12の表面側の領域に設けられる。
 ボルト10は、上述の1次加工材である実施形態のアルミニウム合金線1を用いて製造することが挙げられる。アルミニウム合金線1は、所定の長さに切断される。この切断片にヘッド加工及び転造加工等の鍛造加工が施される。更に、適宜な時期に溶体化処理及び時効処理が行われることで、ボルト10が製造される。
 ボルト10の形状、大きさは適宜選択できる。
 形状について、図2は、頭部11が六角柱である六角ボルトを例示するが適宜変更できる。
 大きさについて、六角ボルトでは、例えば、JIS B 1180:2014に規定される「ねじの呼び径d」がM2からM12であることが挙げられる。
 ボルト10の引張強さ、破断伸び、及び0.2%耐力は、JIS B 1051:2000に準拠して、ボルト10自体を試験片とする引張試験によって測定することが挙げられる。
 ボルト10を構成するアルミニウム合金自体の引張強さ、破断伸び、及び0.2%耐力は、JIS Z 2241:2011に準拠して引張試験を行うことによって測定することが挙げられる。ここで、上述のようにボルト10の製造過程では、鍛造加工が行われる。鍛造加工による加工硬化に起因して、ボルト10の強度が向上する場合がある。そのため、上記アルミニウム合金自体の引張強さ等を測定する場合には、試験片は、ボルト10の軸部12のうち、ねじ部13が設けられていない内部の領域から作製する。つまり、この試験片は、鍛造加工によって実質的に加工硬化されていない領域、又は加工硬化による影響が少ない領域から作製する。具体的には、軸部12において、ねじ部13を含む表面側の領域が切削除去されたコア部120から試験片を作製することが挙げられる。
 なお、ボルト10の引張強さの範囲、破断伸びの範囲、0.2%耐力の範囲は、上述の〈引張強さ〉の項、〈破断伸び〉の項、〈0.2%耐力〉の項と同様である。
(主な効果)
 実施形態のアルミニウム合金部材及び実施形態のボルト10は、450MPa以上の引張強さを有しており、高強度である。実施形態のアルミニウム合金線1は、例えば、上述の高強度なアルミニウム合金部材、ボルト10の素材に好適に利用できる。
[アルミニウム合金の製造方法]
 実施形態のアルミニウム合金は、使用形態として、製造過程によって区別すれば、鋳造材、塑性加工材、熱処理材、切削加工材、表面処理材等が挙げられる。これらの使用形態を製造するための基本的な製造方法として、特許文献1に記載される製造方法が利用できる。即ち、実施形態のアルミニウム合金の製造では、特許文献1に記載される製造方法に比較して製造工程において大幅な変更が少ない又は実質的に無い。この点で、実施形態のアルミニウム合金は、製造性に優れる。以下、製造方法を簡単に説明する。
 鋳造材は、上述の特定の組成を備えるアルミニウム合金からなる溶湯を鋳造する第一の工程を経て製造される。
 塑性加工材は、例えば、上述の鋳造材の少なくとも一部に、一種又は複数種の塑性加工を施す第二の工程を経て製造される。
 熱処理材は、例えば、上述の鋳造材、又は上述の塑性加工材に、熱処理を施す第三の工程を経て製造される。熱処理は、例えば、溶体化処理及び時効処理が挙げられる。上述の450MPa以上の引張強さを有する実施形態のアルミニウム合金部材及び実施形態のボルト10は熱処理材の一例である。そのため、実施形態のアルミニウム合金部材及びボルト10の製造過程では、熱処理は溶体化処理及び時効処理を含む。時効処理は、溶体化処理以降の任意の時期に行える。その他の熱処理として、軟化処理等が挙げられる。
 切削加工材、表面処理材は、例えば、上述の鋳造材、上述の塑性加工材、又は上述の熱処理材に切削加工、表面処理を施す第四の工程を経て製造される。
 従って、実施形態のアルミニウム合金は、上述の第一の工程を備える製造方法によって製造することが挙げられる。又は、実施形態のアルミニウム合金は、上記第一の工程に加えて、上述の第二の工程、第三の工程、及び第四の工程の少なくとも一つを備える製造方法によって製造することが挙げられる。製造過程は、上述の使用形態に応じて選択すればよい。
 以下、工程ごとに説明する。
〈第一の工程:鋳造〉
 第一の工程では、各種の鋳造法が利用できる。特に、連続した長いアルミニウム合金線等を製造する場合には、連続鋳造法が好適に利用できる。
 連続鋳造法は、ビレット鋳造より速い凝固速度によって、溶湯を凝固可能である。即ち、急冷凝固が可能である。急冷凝固によって、上述の晶出物が粗大になり難い。また、鋳造材の結晶が微細になり易い。
 粗大な晶出物が少なければ、溶体化処理では、添加元素がAlに固溶し易い。その結果、溶体化処理以降に行われる時効処理において、MgSiが形成され易い。実施形態のアルミニウム合金では、上述のようにSnの作用によって、MgSiがより形成され易い。また、実施形態のアルミニウム合金では、上述のようにNiの作用によって、MgSiが微細に析出され易い。鋳造材が微細な結晶組織を有すれば、鋳造以降においても微細な結晶組織が得られ易い。実施形態のアルミニウム合金では、上述のようにFe,Mn、適宜Crの作用によって、微細な結晶組織がより得られ易い。母相が微細な結晶組織を有すれば、微細なMgSiは母相に均一的に分散し易い。結果として、析出硬化による強度の向上効果が良好に得られる。
 その他、連続鋳造法では、結晶が微細になり易い上に、単位断面積あたりに含まれる等軸晶の割合が高くなり易い。そのため、鋳造以降において塑性加工が行い易い。また、塑性加工後に得られる塑性加工材が優れた表面性状を有し易い。更に、連続鋳造材は、圧延材、伸線材等の素材に利用すれば、圧延材、伸線材等を量産できる。
 連続鋳造法は、例えば、ベルトアンドホイール方式、プロペルチ方式等の公知の手法を利用できる。連続鋳造における凝固速度、即ち溶湯の冷却速度は、1℃/秒以上が挙げられる。凝固速度が速いほど、上述の微細化等の効果が得られ易い。凝固速度は、2℃/秒以上、5℃/秒以上、8℃/秒以上、10℃/秒以上でもよい。溶湯の全体において、凝固速度が1℃/秒以上であると、溶湯全体が均一的に冷却されて好ましい。この場合、鋳造材の成分が均一的になり易い。そのため、均質化処理を省略することができる。なお、凝固速度が1℃/秒以上であれば、鋳造方法は連続鋳造法以外の方法でもよい。
〈第二の工程:塑性加工〉
 鋳造材に施される塑性加工は、例えば、圧延、伸線、鍛造、押出等が挙げられる。塑性加工は、熱間、温間、冷間のいずれも利用できる。一つの塑性加工が複数パスの加工を含んでもよい。
〈第三の工程:熱処理〉
 ここでの熱処理における保持時間は、昇温時間を含まない。
  《溶体化処理》
 溶体化処理において、保持温度は545℃以上575℃以下から選択される温度が挙げられる。保持時間は30分以上60分以下から選択される時間が挙げられる。保持温度までの昇温時間は60分以下が挙げられる。
 保持温度が545℃以上であれば、添加元素がAlに固溶し易い。固溶の促進の観点から、保持温度は550℃以上、555℃以上、560℃以上でもよい。
 保持温度が575℃以下であれば、結晶の粒界に偏析するSiの量が少なくなり易い。偏析Siの低減の観点から、保持温度は570℃以下でもよい。
 保持時間が30分以上であれば、添加元素がAlに固溶し易い。固溶の促進の観点から、保持時間は35分以上、40分以上でもよい。
 保持時間が60分以下であれば、結晶の粒界に偏析するSiの量が少なくなり易い。偏析Siの低減の観点から、保持時間は55分以下、50分以下でもよい。
  《時効処理》
 時効処理において、保持温度は160℃以上180℃以下から選択される温度が挙げられる。保持時間は5時間以上35時間以下から選択される時間が挙げられる。
 保持温度が160℃以上であれば、MgSi等が析出する。その結果、析出硬化による強度の向上効果が得られる。析出の促進の観点から、保持温度は165℃以上でもよい。
 保持温度が180℃以下であれば、析出物が粗大になり難い。その結果、粗大な析出物に起因する破断が抑制される。この点から、強度が高くなり易い。析出物の粗大化を抑制する観点から、保持温度は175℃以下でもよい。
 保持時間が5時間以上であれば、MgSi等が析出する。その結果、上述のように強度の向上効果が得られる。析出の促進の観点から、保持時間は8時間以上、10時間以上でもよい。
 保持時間が35時間以下であれば、析出物が粗大になり難い。その結果、上述のように破断が抑制される。析出物の粗大化を抑制する観点から、保持時間は30時間以下でもよい。
 上記の保持温度の範囲において低い温度である場合には、保持時間が長いと、MgSi等が析出し易い。上記の保持温度の範囲において高い温度である場合には、保持時間が短くてもよい。
  《軟化処理》
 その他、軟化処理の条件は、例えば、保持温度が250℃以上450℃以下から選択される温度であり、保持時間が0.5時間以上40時間以下から選択される時間であることが挙げられる。
〈アルミニウム合金線の製造方法〉
 実施形態のアルミニウム合金線は例えば、以下の製造方法によって製造することが挙げられる。この製造方法は、上述の第一の工程と、上述の第二の工程と、上記第二の工程で製造された塑性加工材に熱処理として軟化処理を施す第三の工程とを備える。
 第一の工程における鋳造は、上述のように連続鋳造法を利用すると、鋳造材を量産できる。また、第二の工程において、塑性加工が行い易い上に長い伸線材等が得られる。必要に応じて、第二の工程前に鋳造材に表面切削を施すことができる。
 第二の工程における塑性加工は、伸線加工を含む。また、第二の工程における塑性加工は、伸線加工に加えて、圧延加工又はスウェージ加工を含んでもよい。
 圧延加工又はスウェージ加工は、代表的には、熱間又は温間で行う。圧延加工は、鋳造に連続して行うと、圧延材を量産できる。この場合、例えば、プロペルチ式連続鋳造圧延機を利用することが挙げられる。
 伸線加工は、代表的には、冷間で行う。必要に応じて、伸線加工前に皮剥ぎ加工を行うことができる。
 第三の工程における軟化処理は、代表的には、塑性加工によって導入された歪みを除去することを目的として行われる。軟化処理の実施時期は、例えば、(1)圧延加工又はスウェージ加工後、即ち伸線加工前、(2)複数パスの伸線加工を行う場合にはパス間、(3)最終パス後が挙げられる。軟化処理は、上記の実施時期の少なくとも一つの時期に行う。軟化処理の条件は、上述の《軟化処理》の項を参照するとよい。
〈アルミニウム合金部材の製造方法〉
 上述の高い引張強さを有する実施形態のアルミニウム合金部材は、例えば、以下の第一の製造方法、又は第二の製造方法、又は第三の製造方法によって製造することが挙げられる。
 第一の製造方法は、上述の第一の工程と、上述の第二の工程と、上記第二の工程で製造された塑性加工材に熱処理を施す第三の工程とを備える。第三の工程における熱処理は、溶体化処理と時効処理とを含む。
 第二の製造方法は、上述の第一の工程と、上記第一の工程で製造された鋳造材に熱処理を施す工程とを備える。この熱処理は、溶体化処理と時効処理とを含む。
 第三の製造方法は、第一の製造方法、又は第二の製造方法において、時効処理後に塑性加工を行う工程を備えることが挙げられる。
 溶体化処理、時効処理の条件は、上述の《溶体化処理》の項、《時効処理》の項を参照するとよい。
 第二の工程が複数種の塑性加工を含む場合、又は一つの塑性加工が複数パスの塑性加工を含む場合、溶体化処理は、ある塑性加工と別の塑性加工との間、又はパス間に行ってもよい。
 時効処理は、溶体化処理後であれば、任意の時期に行える。例えば、時効処理は、溶体化処理の直後に行ってもよい。又は、溶体化処理と時効処理との間に、塑性加工、切削加工等の加工が行われてもよい。
 実施形態のアルミニウム合金部材が線状の部分を有する場合、第一の製造方法における第一の工程及び第二の工程に代えて、塑性加工材として、実施形態のアルミニウム合金線が利用できる。
〈ボルトの製造方法〉
 上述の高い引張強さを有する実施形態のボルトは、例えば、以下の製造方法によって製造することが挙げられる。この製造方法は、実施形態のアルミニウム合金線を所定の長さに切断する工程と、切断片に塑性加工を施す工程と、切断片又は塑性加工材に溶体化処理を施す工程と、溶体化処理以降に時効処理を行う工程とを備える。ここでの塑性加工は、ヘッダー加工、転造加工等の鍛造加工が挙げられる。時効処理は、例えば転造加工後に施す。
[試験例1]
 表1から表4に示す組成を有するアルミニウム合金線について、以下の条件で、溶体化処理及び時効処理が順に施された後における引張強さ(MPa)、0.2%耐力(MPa)、破断伸び(%)を調べた。測定結果を表1から表4に示す。
〈試料の説明〉
 表1から表4に示す各試料は、添加元素としてSi,Mg,Fe,Cu,Mnを含む。試料によっては、上記の5個の元素に加えて、更にCrを含む。又は、試料によっては、上記の5個の元素に加えて、更にCrとSrとを含む。各元素の含有量は、表1から表4に示す量(質量%)である。表1から表4に示す各試料の組成において、残部は、Al及び不可避不純物である。表1から表4において、ハイフン「-」は、元素を添加していないことを示す。
  《表1 Sn添加》
 表1に示す試料No.1からNo.8は、上記の元素に加えて、Snを含む。
  《表2 Ni添加》
 表2に示す試料No.11からNo.18は、上記の元素に加えて、Niを含む。
  《表3 Ni及びSn添加》
 表3に示す試料No.21からNo.32は、上記の元素に加えて、Ni及びSnの双方を含む。
  《表4 高Si及び高Mg》
 表4に示す試料No.41からNo.53は、Siの含有量が1.2質量%超であり、Mgの含有量が0.8質量%超である。
 試料No.41からNo.46は、上記の元素に加えて、Snを含む。
 試料No.47からNo.53は、上記の元素に加えて、Niを含む。
 以下、Ni及びSnの少なくとも一方を含む試料No.1からNo.53をまとめて、特定試料群と呼ぶことがある。
  《試料No.101》
 表1から表4に示す試料No.101は、添加元素としてSi,Mg,Fe,Cu,Mn,Crを含み、Ni及びSnの双方を含まない試料である。いわば、試料No.101は上述の従来のアルミニウム合金に相当する。
〈アルミニウム合金線の作製〉
 アルミニウム合金線は、線径4.6mmの伸線材であり、以下のように作製した。
 純アルミニウムを溶解して、溶湯を作製する。
 添加元素の含有量が表1から表4に示す量(質量%)となるように、添加元素を上記溶湯に加えた後、溶湯を所定時間保持する。
 成分調整されたアルミニウム合金からなる溶湯について、適宜、水素ガスを除去する処理、異物を除去する処理を行う。
 作製したアルミニウム合金の溶湯を鋳造する。鋳込み温度は、730℃である。鋳造時における凝固速度は1℃/秒以上である。鋳造材は、直径30mmφの丸棒である。
 直径30mmφの鋳造材に表面切削を施して、直径24mmφの丸棒を作製する。
 表面切削された丸棒に、温間でスウェージ加工を施して、線径10.3mmφの線材を作製する。スウェージ加工の加熱温度は、300℃である。
 スウェージ加工が施された線材に、冷間で伸線加工を施して、線径4.6mmφの伸線材を作製する。ここでは、伸線加工前の線材、線径8.2mmφの中間伸線材、線径6.3mmφの中間伸線材にそれぞれ軟化処理を施した。3回の軟化処理の条件はいずれも、保持温度が300℃であり、保持時間が3時間である。
 得られた伸線材の組成は、表1から表4に示す組成と同様である。伸線材の組成分析には、公知の手法が利用できる。例えば、エネルギー分散型X線分析装置等が利用できる。
〈熱処理の条件〉
 溶体化処理の条件は、保持温度が560℃であり、保持時間が45分である。保持時間が経過したら水焼入れを行う。保持温度までの昇温時間は45分である。
 時効処理の条件は、保持温度が160℃であり、保持時間が16時間又は30時間である。
 なお、各試料は、鋳造以降、溶体化処理までの間に均質化処理を行っていない。
〈機械的特性の評価〉
 引張強さ(MPa)、0.2%耐力(MPa)、及び破断伸び(%)は、室温で引張試験を行って測定する。引張試験は、JIS Z 2241:2011に準拠して行う。試験片は、上述の線径4.6mmの伸線材に上述の溶体化処理及び時効処理を施した熱処理材から作製する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1から表4に示すように、Ni及びSnの少なくとも一方を含むアルミニウム合金からなる特定試料群は、Ni及びSnの双方を含まない試料No.101に比較して、高い引張強さを有することが分かる。定量的には、特定試料群の多くは、450MPa以上の引張強さを有する。特定試料群のなかには、460MPa以上、更には470MPa以上の引張強さを有する試料がある。このことから、Ni及びSnはいずれも、強度の向上に寄与することが示された。
 また、特定試料群は、390MPa以上の0.2%耐力を有する。特定試料群のうち、多くの試料は、400MPa以上の0.2%耐力を有する。特定試料群のなかには、試料No.101より高い耐力を有する試料がある。特に、特定試料群のなかには、410MPa以上の0.2%耐力を有する試料がある。このことから、Ni及びSnはいずれも、耐力の向上にも寄与すると考えられる。
 更に、特定試料群は、5%以上の破断伸びを有する。特定試料群のうち、多くの試料は、10%以上の破断伸びを有する。特定試料群のなかには、試料No.101より高い伸びを有する試料がある。特に、特定試料群のなかには、16%以上の破断伸びを有する試料がある。このことから、Ni及びSnはいずれも、伸びの向上にも寄与すると考えられる。
 更に、特定試料群のなかには、引張強さ、0.2%耐力、及び破断伸びの全てが試料No.101より高い試料がある。このことから、Si,Mg,Fe,Cu,Mnに加えて、Ni及びSnの少なくとも一方を含むアルミニウム合金は、高強度、高耐力、及び高靭性なアルミニウム合金部材を構成できることが示された。また、Si,Mg,Fe,Cu,Mnに加えてCrを含む場合、又はCrとSrとを含む場合に、Ni及びSnの少なくとも一方を含むアルミニウム合金も、高強度、高耐力、及び高靭性なアルミニウム合金部材を構成できることが示された。
 その他、この試験から以下のことが分かる。
(1)表1に着目する。ここでは、Snの含有量が0.005質量%以上0.30質量%以下の範囲において、引張強さ及び0.2%耐力がより高い傾向にあるといえる。
(2)表2に着目する。ここでは、Niの含有量が0.01質量%超0.50質量%以下の範囲において、引張強さ及び0.2%耐力がより高い傾向にあるといえる。
(3)表3と、表1及び表2とにおいて、Snの含有量、Niの含有量が同程度である試料同士を比較する。例えば、試料No.26と試料No.3及びNo.14とを比較する。その結果、Ni及びSnの双方を含む試料では、Sn又はNiを含む試料に比較して、引張強さが高い傾向にあるといえる。表3に示す特定試料群のうち、多くの試料は、460MPa以上の引張強さを有する。また、ここでは、Sn及びNiの双方を含む場合、Snの含有量は0.05質量%以上0.20質量%以下であり、Niの含有量が0.05質量%以上0.30質量%未満であることが好ましいといえる。
(4)表4と、表1及び表2とにおいて、Snの含有量、Niの含有量が同程度である試料を比較する。例えば、試料No.43と試料No.4とを比較する。また、例えば、試料No.48と試料No.13とを比較する。その結果、Si及びMgを比較的多く含むと共に、Ni又はSnを含む試料では、Si及びMgを比較的少なく含む試料に比較して、引張強さが高い傾向にある。表4に示す特定試料群のうち、多くの試料は、460MPa以上の引張強さを有する。このことから、Ni及びSnの双方を含むことに代えて、Si及びMgを多く含むことは、強度の向上に寄与するといえる。
 以上の試験結果から、Ni及びSnの少なくとも一方を含む上述の特定の組成を有するアルミニウム合金は、溶体化処理及び時効処理が施されることによって、従来のアルミニウム合金より高い強度を有することが示された。また、場合によっては、伸び及び耐力の一方又は双方も従来のアルミニウム合金より高いことが示された。このようなアルミニウム合金は、ボルト等の構造部材の素材に適するといえる。
 本発明は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。例えば、試験例1において、添加元素の種類・含有量、溶体化処理の条件、時効処理の条件、線径等を適宜変更することができる。
 例えば、試験例1において、冷間伸線加工に供する線材は連続鋳造圧延材でもよい。
1 アルミニウム合金線
10 ボルト、11 頭部、12 軸部、13 ねじ部、120 コア部
D1 線径

Claims (11)

  1.  1.0質量%以上1.8質量%以下のSiと、
     0.5質量%以上1.2質量%以下のMgと、
     0.3質量%以上0.8質量%以下のFeと、
     0.1質量%以上0.4質量%以下のCuと、
     0.2質量%以上0.5質量%以下のMnと、
     0質量%以上0.3質量%以下のCrと、
     0.005質量%以上0.6質量%以下のNi及び0.005質量%以上0.6質量%以下のSnの少なくとも一方とを含み、
     残部がAl及び不可避不純物からなる組成を備える、
    アルミニウム合金。
  2.  前記Siの含有量は1.2質量%超であり、
     前記Mgの含有量は0.8質量%超である、請求項1に記載のアルミニウム合金。
  3.  前記Ni及び前記Snの双方を含む、請求項1又は請求項2に記載のアルミニウム合金。
  4.  溶体化処理と時効処理とが順に施された後において、450MPa以上の引張強さを有し、
     前記溶体化処理の保持温度は、545℃以上575℃以下の範囲から選択される温度であり、前記溶体化処理の保持時間は、30分以上60分以下の範囲から選択される時間であり、
     前記時効処理の保持温度は、160℃以上180℃以下の範囲から選択される温度であり、前記時効処理の保持時間は、5時間以上35時間以下の範囲から選択される時間である、請求項1から請求項3のいずれか1項に記載のアルミニウム合金。
  5.  前記溶体化処理と前記時効処理とが順に施された後において、5%以上の破断伸びを有する、請求項4に記載のアルミニウム合金。
  6.  前記溶体化処理と前記時効処理とが順に施された後において、390MPa以上の0.2%耐力を有する、請求項4又は請求項5に記載のアルミニウム合金。
  7.  請求項1から請求項6のいずれか1項に記載のアルミニウム合金からなる、
    アルミニウム合金線。
  8.  3mm以上15mm以下の線径を有する、請求項7に記載のアルミニウム合金線。
  9.  請求項1から請求項6のいずれか1項に記載のアルミニウム合金からなり、
     450MPa以上の引張強さを有する、
    アルミニウム合金部材。
  10.  5%以上の破断伸びを有すること、及び390MPa以上の0.2%耐力を有することの少なくとも一方を満たす、請求項9に記載のアルミニウム合金部材。
  11.  請求項1から請求項6のいずれか1項に記載のアルミニウム合金からなり、
     450MPa以上の引張強さと、
     5%以上の破断伸びと、
     390MPa以上の0.2%耐力とを有する、
    ボルト。
PCT/JP2021/002026 2020-01-30 2021-01-21 アルミニウム合金、アルミニウム合金線、アルミニウム合金部材、及びボルト WO2021153412A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180007884.1A CN114901845A (zh) 2020-01-30 2021-01-21 铝合金、铝合金线、铝合金部件及螺栓
US17/790,284 US20230037483A1 (en) 2020-01-30 2021-01-21 Aluminum alloy, aluminum alloy wire, aluminum alloy memeber, and bolt
JP2021574691A JPWO2021153412A1 (ja) 2020-01-30 2021-01-21
KR1020227026285A KR20220132546A (ko) 2020-01-30 2021-01-21 알루미늄 합금, 알루미늄 합금선, 알루미늄 합금 부재 및 볼트
EP21747522.7A EP4098760A4 (en) 2020-01-30 2021-01-21 Aluminum alloy, aluminum alloy wire, aluminum alloy member, and bolt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-014172 2020-01-30
JP2020014172 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153412A1 true WO2021153412A1 (ja) 2021-08-05

Family

ID=77079890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002026 WO2021153412A1 (ja) 2020-01-30 2021-01-21 アルミニウム合金、アルミニウム合金線、アルミニウム合金部材、及びボルト

Country Status (6)

Country Link
US (1) US20230037483A1 (ja)
EP (1) EP4098760A4 (ja)
JP (1) JPWO2021153412A1 (ja)
KR (1) KR20220132546A (ja)
CN (1) CN114901845A (ja)
WO (1) WO2021153412A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323226A (zh) * 2022-10-14 2022-11-11 山东裕航特种合金装备有限公司 船舶用紧固件及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199276A (ja) * 1995-01-25 1996-08-06 Showa Denko Kk 冷間鍛造用アルミニウム合金
JP2010189750A (ja) * 2009-02-20 2010-09-02 Kobe Steel Ltd 耐軟化性に優れた高強度アルミニウム合金線棒材およびその製造方法
JP2011001602A (ja) * 2009-06-18 2011-01-06 Kobe Steel Ltd 成形性に優れた高強度ボルト用アルミニウム合金線棒材およびその製造方法、高強度フランジボルトおよびその製造方法
WO2015129304A1 (ja) * 2014-02-28 2015-09-03 アイシン軽金属株式会社 成形性に優れた高強度アルミニウム合金押出材
JP2015166480A (ja) 2014-03-03 2015-09-24 住友電気工業株式会社 アルミニウム合金、アルミニウム合金線材、アルミニウム合金線材の製造方法、アルミニウム合金部材の製造方法、及びアルミニウム合金部材
CN104975209A (zh) * 2015-03-13 2015-10-14 宝山钢铁股份有限公司 一种高自然时效稳定性6000系铝合金材料、铝合金板及其制造方法
WO2016204043A1 (ja) * 2015-06-16 2016-12-22 株式会社神戸製鋼所 高強度アルミニウム合金熱間鍛造材
WO2019167469A1 (ja) * 2018-03-01 2019-09-06 本田技研工業株式会社 Al-Mg-Si系アルミニウム合金材
JP2020014172A (ja) 2018-07-20 2020-01-23 富士通コンポーネント株式会社 防水構造を有するビーコン装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262264A (ja) * 2000-03-21 2001-09-26 Kobe Steel Ltd 靱性および曲げ性に優れたAl−Mg−Si系Al合金板
JP5925667B2 (ja) * 2012-11-19 2016-05-25 株式会社神戸製鋼所 高圧水素ガス容器用アルミニウム合金材とその製造方法
EP3199654B1 (en) * 2014-09-22 2019-08-14 Furukawa Electric Co. Ltd. Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199276A (ja) * 1995-01-25 1996-08-06 Showa Denko Kk 冷間鍛造用アルミニウム合金
JP2010189750A (ja) * 2009-02-20 2010-09-02 Kobe Steel Ltd 耐軟化性に優れた高強度アルミニウム合金線棒材およびその製造方法
JP2011001602A (ja) * 2009-06-18 2011-01-06 Kobe Steel Ltd 成形性に優れた高強度ボルト用アルミニウム合金線棒材およびその製造方法、高強度フランジボルトおよびその製造方法
WO2015129304A1 (ja) * 2014-02-28 2015-09-03 アイシン軽金属株式会社 成形性に優れた高強度アルミニウム合金押出材
JP2015166480A (ja) 2014-03-03 2015-09-24 住友電気工業株式会社 アルミニウム合金、アルミニウム合金線材、アルミニウム合金線材の製造方法、アルミニウム合金部材の製造方法、及びアルミニウム合金部材
CN104975209A (zh) * 2015-03-13 2015-10-14 宝山钢铁股份有限公司 一种高自然时效稳定性6000系铝合金材料、铝合金板及其制造方法
WO2016204043A1 (ja) * 2015-06-16 2016-12-22 株式会社神戸製鋼所 高強度アルミニウム合金熱間鍛造材
WO2019167469A1 (ja) * 2018-03-01 2019-09-06 本田技研工業株式会社 Al-Mg-Si系アルミニウム合金材
JP2020014172A (ja) 2018-07-20 2020-01-23 富士通コンポーネント株式会社 防水構造を有するビーコン装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4098760A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323226A (zh) * 2022-10-14 2022-11-11 山东裕航特种合金装备有限公司 船舶用紧固件及其制备方法
CN115323226B (zh) * 2022-10-14 2023-01-24 山东裕航特种合金装备有限公司 船舶用紧固件及其制备方法

Also Published As

Publication number Publication date
CN114901845A (zh) 2022-08-12
EP4098760A4 (en) 2023-06-28
KR20220132546A (ko) 2022-09-30
US20230037483A1 (en) 2023-02-09
EP4098760A1 (en) 2022-12-07
JPWO2021153412A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
JP5421613B2 (ja) 耐軟化性に優れた高強度アルミニウム合金線棒材およびその製造方法
JP5837026B2 (ja) 自動車用アルミニウム合金鍛造材及びその製造方法
JP6368087B2 (ja) アルミニウム合金線材、アルミニウム合金線材の製造方法、及びアルミニウム合金部材
JP6420553B2 (ja) アルミニウム合金、アルミニウム合金線材、アルミニウム合金線材の製造方法、アルミニウム合金部材の製造方法、及びアルミニウム合金部材
JP5830006B2 (ja) 強度に優れたアルミニウム合金押出材
JP5385025B2 (ja) 成形性に優れた高強度ボルト用アルミニウム合金線棒材およびその製造方法、高強度フランジボルトおよびその製造方法
CN109136669B (zh) 一种铝合金锻件及其制备方法与应用
WO2013073575A1 (ja) ボルト用アルミニウム合金線及びボルト並びにそれらの製造方法
JP2004084058A (ja) 輸送機構造材用アルミニウム合金鍛造材の製造方法およびアルミニウム合金鍛造材
JP6235513B2 (ja) マグネシウム−リチウム合金部品の製造方法及びマグネシウム−リチウム合金の製造方法
Lu et al. A new fast heat treatment process for cast A356 alloy motorcycle wheel hubs
WO2021153412A1 (ja) アルミニウム合金、アルミニウム合金線、アルミニウム合金部材、及びボルト
JP2004315938A (ja) 輸送機構造材用アルミニウム合金鍛造材およびその製造方法
JP6063318B2 (ja) アルミニウム合金およびその製造方法
WO2018088351A1 (ja) アルミニウム合金押出材
JP2009149954A (ja) アルミニウム合金鍛造素材
JP2007092125A (ja) アルミニウム合金、アルミニウム合金棒、鍛造用アルミニウム合金鋳塊の製造方法及び鍛造成形品
JP2022044919A (ja) アルミニウム合金製鍛造部材及びその製造方法
JPH09249949A (ja) アルミ押出し材鍛造製品の製造方法
JPH10183287A (ja) 冷間鍛造用アルミニウム合金とその製造方法
WO2022091944A1 (ja) 自動車のホイール用アルミニウム合金及び自動車のホイール
JP5607960B2 (ja) 疲労強度特性に優れた耐熱マグネシウム合金およびエンジン用耐熱部品
WO2020261666A1 (ja) 快削性銅合金、及び、快削性銅合金の製造方法
JP6063295B2 (ja) アルミニウム合金およびその製造方法
JP2001200326A (ja) 耐摩耗性アルミニウム合金長尺体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021747522

Country of ref document: EP

Effective date: 20220830