WO2021153097A1 - 回転角度センサ、電動パワーステアリング装置及び回転角度センサの製造方法 - Google Patents

回転角度センサ、電動パワーステアリング装置及び回転角度センサの製造方法 Download PDF

Info

Publication number
WO2021153097A1
WO2021153097A1 PCT/JP2020/047701 JP2020047701W WO2021153097A1 WO 2021153097 A1 WO2021153097 A1 WO 2021153097A1 JP 2020047701 W JP2020047701 W JP 2020047701W WO 2021153097 A1 WO2021153097 A1 WO 2021153097A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
support member
circuit board
motor
fixed
Prior art date
Application number
PCT/JP2020/047701
Other languages
English (en)
French (fr)
Inventor
義宏 青崎
浩之 山村
優介 西岡
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP20916243.7A priority Critical patent/EP3964790B1/en
Priority to CN202080049958.3A priority patent/CN114096797B/zh
Priority to JP2021561997A priority patent/JP7047986B2/ja
Publication of WO2021153097A1 publication Critical patent/WO2021153097A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/022Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation having an ideal characteristic, map or correction data stored in a digital memory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure

Definitions

  • the present invention relates to a method for manufacturing a rotation angle sensor, an electric power steering device, and a rotation angle sensor.
  • a resolver is widely known as a sensor that detects the rotation angle of a motor.
  • the following Patent Document 1 describes an electric power steering device that controls a steering assist force applied to a steering system of a vehicle based on a rotation angle of a motor detected by a resolver.
  • Patent Document 2 piezoelectric film that relieves the internal stress generated in the composite by heat-treating the composite of the substrate portion in which the piezoelectric film is sandwiched between the electrodes and the detection plate coated on the substrate portion. The manufacturing method of the sensor is described.
  • the present invention has been made in view of such a problem, and an object of the present invention is to inexpensively realize a redundant configuration in which a plurality of sensors simultaneously detect the rotation angle of one motor.
  • the rotation angle sensor includes a magnet fixed to an end opposite to the output end of the rotation shaft of the motor and a plurality of magnetoresistive sensor elements for detecting a change in magnetic flux.
  • the circuit board is provided with a circuit board on which the above-mentioned is mounted and a support member fixed to the motor. It is fixed to the support member so as to be close to each other.
  • the electric power steering device includes the above-mentioned rotation angle sensor and a motor, and the motor assists the steering system of the vehicle with steering based on the rotation angle of the motor detected by the rotation angle sensor. Give power.
  • a rotation angle sensor a plurality of magnetoresistive sensor elements are mounted on a circuit board, and a magnet is fixed to an end opposite to the output end of the rotation shaft of the motor to form a circuit.
  • the circuit board is arranged between the support member and the motor so that the plurality of magnetoresistive sensor elements are close to the magnet.
  • the rotation angle sensor of the embodiment includes a sensor unit 1 having a plurality of MR (Magnetic Resistance) sensor elements, an electronic control unit (ECU) 13 separate from the sensor unit 1, and a sensor unit.
  • a harness 14 for transmitting a signal between 1 and the electronic control unit 13 is provided, and the rotation angle of the motor 2 is detected.
  • the sensor unit 1 includes a magnet 10, a circuit board 11, and a support member 12.
  • the magnet 10 is fixed to an end portion 5 opposite to the output end 4 of the rotating shaft 3 of the motor 2 and has different magnetic poles (S pole and N pole) arranged along the circumferential direction of the rotating shaft 3. There is.
  • a plurality of MR sensor elements for detecting magnetic flux are mounted on the circuit board 11.
  • the first MR sensor element 20 and the second MR sensor element 21 are mounted on the circuit board 11 as a plurality of MR sensor elements.
  • the circuit board 11 is fixed to the support member 12 at three fixing points by the three fixing means 22, 23 and 24.
  • the fixing means 22, 23, and 24 are screws for fastening the circuit board 11 to the support member 12.
  • the support member 12 is fixed to the motor 2 by the fixing means 25 and 26.
  • the fixing means 25 and 26 are screws for fastening the support member 12 to the motor 2.
  • the circuit board 11 is fixed to the support member 12 by the three fixing means 22, 23 and 24, and the support member 12 is fixed to the motor 2 by the fixing means 25 and 26.
  • the circuit board 11 is arranged between the support member 12 and the motor 2, and the first MR sensor element 20 and the second MR sensor element 21 are attached to the magnet 10. It has been decided to be close.
  • the support member 12 is, for example, a cover that covers the circuit board 11.
  • the support member 12 has, for example, a recess that opens downward in FIG. 1, and the circuit board 11 is fixed in the recess of the support member 12.
  • the opening of the recess of the support member 12 is shielded by the motor 2, and the circuit board 11 is housed in the recess of the support member 12 and the internal space defined by the motor 2.
  • the support member 12 may be formed of a metal having good thermal conductivity such as an aluminum alloy and may serve as a heat sink. Further, the support member 12 may be the heat sink itself.
  • the number of MR sensor elements mounted on the circuit board 11 is not limited to two, and three or more MR sensor elements may be mounted on the circuit board 11. Further, the number of fixing means and fixing points for fixing the circuit board 11 to the support member 12 is not limited to three, and the circuit board 11 may be fixed to the support member 12 with four or more fixing means and fixing points. .. The number of fixing means for fixing the support member 12 to the motor 2 is not limited to two, and the support member 12 may be fixed to the motor 2 by three or more fixing means.
  • the positions where the first MR sensor element 20 and the second MR sensor element 21 are mounted on the circuit board 11, that is, the in-plane positions of the first MR sensor element 20 and the second MR sensor element 21 on the circuit board 11 are three or more fixing means. Inside a polygon (triangle in the example of FIG. 1) having three or more fixed points (three fixed points in the example of FIG. 1) as vertices by the fixing means 22, 23 and 24 in the example of FIG. It is preferable to be arranged. By arranging the first MR sensor element 20 and the second MR sensor element 21 at such positions, the relative of the first MR sensor element 20 and the second MR sensor element 21 to the magnet 10 when vibration or impact is applied to the sensor unit 1. The fluctuation of the position can be suppressed.
  • the ECU 13 calculates the rotation angle ⁇ m of the motor 2 based on the detection signals of the first MR sensor element 20 and the second MR sensor element 21, and controls the power semiconductor switching element (not shown) according to the calculated rotation angle ⁇ m. To drive the motor 2. See FIG.
  • the ECU 13 includes a processor 30 such as a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit), a memory 31, and analog-to-digital converters (ADCs) 32 to 35.
  • the memory 31 and the ADCs 32 to 35 may be built in a processor 30 such as an MPU.
  • the function of the ECU 13 described below is realized, for example, by the processor 30 executing a computer program stored in the memory 31.
  • the ECU 13 reads the sine signal SIN1 and the cosine signal COS1 converted into digital signals by the ADC 32 and the ADC 33.
  • the ECU 13 calculates the rotation angle ⁇ m of the motor 2 based on the sine signal SIN1 and the cosine signal COS1.
  • the ECU 13 reads the sine signal SIN2 and the cosine signal COS2 converted into digital signals by the ADC 34 and the ADC 35, respectively.
  • the ECU 13 calculates the rotation angle ⁇ m of the motor 2 based on the sine signal SIN2 and the cosine signal COS2.
  • the rotation angle sensor of the embodiment has a redundant configuration in which a plurality of MR sensor elements simultaneously detect the rotation angle of one motor.
  • the ECU 13 includes an adder 40, a subtractor 41, an angle calculation unit 42, and a correction unit 43.
  • the angle calculation unit 42 calculates the detection angle ⁇ d as the rotation angle ⁇ m of the motor 2 based on the output of the adder 40 (COS1 + SIN1) and the output of the subtractor 41 (COS1-SIN1).
  • the correction unit 43 corrects the detection angle ⁇ d by subtracting the calibration data 44 stored in the memory 31 of the ECU 13 from the detection angle ⁇ d by the subtractor 45, and outputs an angle signal indicating the rotation angle ⁇ m of the motor 2. do.
  • the calibration data 44 is data for correcting an error (so-called linearity error) between the actual rotation angle ⁇ m to be detected and the detection angle ⁇ d.
  • the horizontal axis shows the actual rotation angle ⁇ m of the rotation axis 3 of the motor 2, and the vertical axis shows the reference angle ⁇ r (single point chain line) which is the same as the rotation angle ⁇ m and the detection angle ⁇ d (solid line).
  • the calibration data 44 is, for example, data in which the difference ( ⁇ d ⁇ r) between the detection angle ⁇ d and the reference angle ⁇ r is associated with the detection angle ⁇ d and stored in the memory 31.
  • the calibration data 44 calculates the detection angle ⁇ d while reading the actual rotation angle ⁇ m of the rotation axis 3 of the motor 2 as the reference angle ⁇ r with the calibrated rotation angle sensor, and sets the detection angle ⁇ d and the reference angle ⁇ r.
  • the present invention is not intended to be limited to the above configuration.
  • the sensor unit 1 and the ECU 13 may be integrally configured.
  • the processor 30, the memory 31, and the ADCs 32 to 35 of the ECU 13 may be mounted on the circuit board 11.
  • the support member 12 may be formed of a plurality of members. See FIG.
  • the support member 12 includes a cover (or heat sink) 27 made of a metal having good thermal conductivity such as an aluminum alloy, an aluminum power board 28 on which a power semiconductor switching element is mounted, a circuit board 11 and a power board.
  • a resin insert member 29 interposed between the 28 may be provided.
  • the ECU 13 is integrated with the circuit board 11, and an electric wire (for example, a bus bar) that electrically connects the circuit board 11 and the power board 28 is wired inside the insert member 29.
  • the circuit board 11 is fixed to the insert member 29 fixed to the cover 27 via the power board 28 at three or more fixing points by three or more fixing means (not shown), and the cover or the cover or the cover 27 is fixed.
  • the circuit board 11 is arranged between the support member 12 and the motor 2 so that the first MR sensor element 20 and the second MR sensor element 21 are close to the magnet 10.
  • the fixing means for fixing the circuit board 11 to the resin insert member 29 may be a fastening member such as a screw.
  • the circuit board 11 may be fixed to the insert member 29 by inserting a resin pin (protrusion) of the insert member 29 into the through hole formed in the circuit board 11 and then crimping the pin.
  • the rotation angle sensor using the MR sensor element as described above has advantages such as “compactness” and “easy to make redundant", but on the other hand, the temperature characteristics and stress characteristics of the detection signal are higher than those of the conventional resolver. It has the disadvantage of being inferior. Therefore, for example, even if the rotation angle sensor is calibrated in a normal temperature atmosphere at the time of shipment (that is, even if calibration data 44 is generated), if heat is applied after shipment, the rotation angle sensor will return to normal temperature thereafter. There was a problem that the linearity did not return to the factory.
  • FIG. 6 shows the angle error of the rotation angle sensor in the temperature cycle test.
  • Plot 50 shows that the angular error of the rotation angle sensor immediately after calibration at 35 ° C. is 0, and plots 51 and 52 show the angular error at 80 ° C. and 120 ° C. in the first temperature cycle.
  • Plots 53 and 54 show the angular error when returning to 35 ° C. after the first temperature cycle
  • plot 55 shows the angular error when returning to 120 ° C. in the second temperature cycle.
  • Plot 56 shows the angular error when returning to 35 ° C. after the second temperature cycle.
  • the angle error increases when heat is applied to the rotation angle sensor, but even if the temperature returns thereafter, the angle error at a temperature of 35 ° C. (plots 53, 54 and 56) remains. It does not return to the angular error (plot 50) before applying heat.
  • the angular error when returning to 35 ° C. after the second temperature cycle (plot 56) is approximately equal to the angular error when returning to 35 ° C. after the first temperature cycle (plots 53 and 54). You can see that. That is, it can be seen that the angle error at room temperature after the heat is applied once returns to the same magnitude of error even if the heat is applied again thereafter.
  • the MR element has a large output fluctuation with respect to stress changes, and when heat is applied, the structures (circuit board 11 and support member 12) that support the MR sensor element are plastically deformed to form the MR sensor element. It is considered that the cause is that the stress has changed since the calibration. Therefore, in the rotation angle sensor of the present embodiment, the circuit board 11 and the support member 12 are plastically deformed by heat treatment in advance. As a result, even if heat is applied to the rotation angle sensor after shipment, the angle error when returning to normal temperature can be returned to the angle error at the time of shipment.
  • the stress applied to the first MR sensor element 20 and the second MR sensor element 21 is also affected by the stress generated when the circuit board 11 is fixed to the support member 12 by the fixing means 22, 23 and 24.
  • the heat treatment for plastically deforming the circuit board 11 and the support member 12 is performed in a state where the circuit board 11 is fixed to the support member 12 by the fixing means 22, 23, and 24. As a result, it is possible to reduce the change in the angle error due to the change in the fixed state between the circuit board 11 and the support member 12 due to the plastic deformation due to heating.
  • the detection angle ⁇ d calculated from the sinusoidal signal SIN1 and the cosine signal COS1 output from the first MR sensor element 20 is calibrated in a normal temperature atmosphere. Then, it is preferable to store the obtained calibration data 44 in the memory 31. The same applies to the sine signal SIN2 and the cosine signal COS2 of the second MR sensor element 21.
  • the heat treatment for plastically deforming the circuit board 11 and the support member 12 it is desirable to heat the circuit board 11 and the support member 12 at a temperature equal to or higher than the ambient temperature of the rotation angle sensor in the actual use environment.
  • the atmospheric temperature of the MR sensor element may reach about 100 ° C. due to the influence of heat generation of the motor or the like. Therefore, the heat treatment for plastically deforming the circuit board 11 and the support member 12 is preferably heat treatment at a temperature of 100 ° C. or higher.
  • Plot 60 shows that the angle error of the rotation angle sensor immediately after calibration at 25 ° C. is zero.
  • Plot 61 shows the angular error at 100 ° C. in the first temperature cycle.
  • Plot 62 shows the angular error when returning to 25 ° C. after the first temperature cycle.
  • the angle error at room temperature (plot 62) after the heat is applied does not return to the angle error (plot 60) before the heat is applied.
  • plot 63 the calibration is performed again, and the angle error of the rotation angle sensor is set to 0 at 25 ° C.
  • plots 64 and 66 show the angular error at 100 ° C. in the second and third temperature cycles, respectively, and plots 65 and 67 show the angle error at 25 ° C. after the second and third temperature cycles, respectively. Indicates the angle error of.
  • the angular error (plots 65 and 67) when returning to 25 ° C after the second and third temperature cycles is calibrated. It can be returned to the same level as (Plot 60).
  • step S1 the first MR sensor element 20 and the second MR sensor element 21 are mounted on the circuit board 11.
  • step S2 the magnet 10 is fixed to the end portion 5 on the side opposite to the output end 4 of the rotating shaft 3 of the motor 2.
  • step S3 the circuit board 11 is fixed to the support member 12 at three or more fixing points by three or more fixing means.
  • step S4 the circuit board 11 and the support member 12 are plastically deformed by heat-treating the support member 12 to which the circuit board 11 is fixed.
  • step S2 may be executed before step S1, and step S2 may be executed after step S4.
  • step S5 the support member 12 is fixed to the motor 2.
  • step S6 the detection angle ⁇ d calculated from the sine signal SIN1 and the cosine signal COS1 output from the first MR sensor element 20 is calibrated in a room temperature atmosphere, and the obtained calibration data 44 is stored in the memory 31. The same applies to the sine signal SIN2 and the cosine signal COS2 of the second MR sensor element 21. After that, the process ends.
  • the column shaft 102 of the steering handle 101 is connected to the tie rod 106 of the steering wheel via the reduction gear 103, the universal joints 104A and 104B, and the pinion rack mechanism 105.
  • the column shaft 102 is provided with a torque sensor 110 that detects the steering torque Th of the steering handle 101, and the motor 2 that assists the steering force of the steering handle 101 is connected to the column shaft 102 via the reduction gear 103. Has been done.
  • the above-mentioned ECU 13 is used as an electronic control unit that controls the power steering device. Electric power is supplied to the ECU 13 from the battery 114, which is a power source, and an ignition key signal is input from the ignition key 111.
  • the ECU 13 calculates the steering angle ⁇ of the steering handle 101 based on the rotation angle ⁇ m of the motor 2 calculated as described above and the reduction ratio N of the reduction gear 103.
  • the ECU 13 calculates the steering assist command value of the assist command using the assist map or the like based on the steering angle ⁇ , the steering torque Th, and the vehicle speed Vh detected by the vehicle speed sensor 112, and the calculated steering assist.
  • the current I supplied to the motor 2 is controlled based on the command value.
  • the torque sensor 110 detects the steering torque Th by the driver's handle operation transmitted from the steering handle 101, and calculates the steering angle ⁇ based on the rotation angle ⁇ m of the motor 2. Then, the motor 2 is driven and controlled by the steering assist command value calculated based on the steering torque Th, the steering angle ⁇ , and the vehicle speed Vh, and this drive is applied to the steering system as an auxiliary force (steering assist force) for the driver's steering operation. Granted.
  • the rotation angle sensor of the embodiment includes a magnet 10 fixed to an end portion 5 opposite to the output end 4 of the rotation shaft 3 of the motor 2, a circuit board 11 on which a plurality of MR sensor elements are mounted, and the like.
  • a support member 12 fixed to the motor 2 is provided.
  • the circuit board 11 is fixed to the support member 12 so that a plurality of MR sensor elements are close to the magnet 10, and is arranged between the support member 12 fixed to the motor 2 and the motor 2.
  • the circuit board 11 is fixed to the support member 12 at three or more fixed points, and the in-plane position of the MR sensor element on the circuit board 11 is inside the polygon having the three or more fixed points as vertices. It may be arranged. As a result, it is possible to suppress fluctuations in the relative position of the MR sensor element with respect to the magnet 10 when vibration or impact is applied to the rotation angle sensor.
  • the circuit board 11 and the support member 12 may be plastically deformed by heat treatment in advance. As a result, even if heat is applied to the rotation angle sensor after shipment, the angle error when returning to normal temperature can be returned to the angle error at the time of shipment.
  • the circuit board 11 and the support member 12 may be plastically deformed by heat treatment with the circuit board 11 fixed to the support member 12. As a result, it is possible to reduce the change in the angle error due to the change in the fixed state between the circuit board 11 and the support member 12 due to the plastic deformation due to heating.
  • the rotation angle sensor of the embodiment may further include a memory 31 for storing calibration data 44 for calibrating the output signal of the MR sensor element.
  • the calibration data 44 generated by calibrating the magnetoresistive sensor element in a normal temperature atmosphere may be stored in the memory 31.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Technology Law (AREA)
  • Power Steering Mechanism (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

回転角度センサは、モータ(2)の回転軸(3)の出力端(4)と反対側の端部(5)に固定された磁石(10)と、磁束変化を検出する複数の磁気抵抗センサ素子(20、21)が実装された回路基板(11)と、モータ(2)に固定される支持部材(12)と、を備える。回路基板(11)は、モータ(2)に固定された支持部材(12)とモータ(2)との間に配置されて、複数の磁気抵抗センサ素子(20、21)が磁石(10)に近接するように支持部材(12)に固定される。

Description

回転角度センサ、電動パワーステアリング装置及び回転角度センサの製造方法
 本発明は、回転角度センサ、電動パワーステアリング装置及び回転角度センサの製造方法に関する。
 モータの回転角度を検出するセンサとしてレゾルバが広く知られている。下記特許文献1には、レゾルバによって検出されたモータの回転角度に基づいて、車両の操舵系に付与する操舵補助力を制御する電動パワーステアリング装置が記載されている。
 また、下記特許文献2には、電極間に圧電フィルムを挟んだ基板部と、基板部の塗布した検出板との複合体を加熱処理することにより、複合体に生じた内部応力を緩和する圧電センサの製造方法が記載されている。
特開2019-156291号公報 国際公開第2015/093356号パンフレット
 上記の電動パワーステアリング装置のようなモータを備えた電動アクチュエータ製品において、複数のセンサで1つのモータの回転角度を同時に検出する冗長構成を採用することが考えられる。冗長構成を採用することにより、複数のセンサのいずれかに異常が発生しても、残りの正常なセンサを用いてモータ制御を継続したり、センサの異常を診断するなど、電動アクチュエータ製品の信頼性を高めることができる。
 しかしながら、高価なレゾルバを複数搭載することは、電動アクチュエータ製品の製造コストの増加を招く。
 本発明は、このような問題に鑑みてなされたものであり、複数のセンサで1つのモータの回転角度を同時に検出する冗長構成を安価に実現することを目的とする。
 上記目的を達成するために、本発明の一態様による回転角度センサは、モータの回転軸の出力端と反対側の端部に固定された磁石と、磁束変化を検出する複数の磁気抵抗センサ素子が実装された回路基板と、モータに固定される支持部材と、を備え、回路基板は、モータに固定された支持部材とモータとの間に配置されて、複数の磁気抵抗センサ素子が磁石に近接するように支持部材に固定されている。
 本発明の他の態様による電動パワーステアリング装置は、上記の回転角度センサと、モータと、を備え、回転角度センサによって検出されたモータの回転角度に基づいて、モータによって車両の操舵系に操舵補助力を付与する。
 本発明の更なる他の態様による回転角度センサの製造方法では、複数の磁気抵抗センサ素子を回路基板に実装し、モータの回転軸の出力端と反対側の端部に磁石を固定し、回路基板を支持部材に固定し、支持部材をモータに固定することにより、複数の磁気抵抗センサ素子が磁石に近接するように支持部材とモータとの間に回路基板を配置する。
 本発明によれば、複数のセンサで1つのモータの回転角度を同時に検出する冗長構成を安価に実現することが可能になる。
実施形態の回転角度センサの一例の概要を示す分解図である。 実施形態の回転角度センサの機能構成の説明図である。 実施形態の電子制御ユニットによる角度演算機能の機能ブロック図である。 構成データの一例の説明図である。 実施形態の回転角度センサの他の例の概要を示す分解図である。 温度サイクル試験における回転角度センサの角度誤差の一例の説明図である。 加熱処理後に校正した場合の角度誤差の説明図である。 実施形態の回転角度センサの製造方法の一例のフローチャートである。 実施形態の回転角度センサを備える電動パワーステアリング装置の一例の概要を示す構成図である。
 本発明の実施形態を、図面を参照しながら詳細に説明する。なお、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構成、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 (構成)
 図1を参照する。実施形態の回転角度センサは、複数のMR(磁気抵抗:Magnetic Resistance)センサ素子を備えるセンサユニット1と、センサユニット1とは別体の電子制御ユニット(ECU:Electronic Control Unit)13と、センサユニット1と電子制御ユニット13との間の信号を伝達するハーネス14を備え、モータ2の回転角度を検出する。
 センサユニット1は、磁石10と、回路基板11と、支持部材12とを備える。
 磁石10は、モータ2の回転軸3の出力端4と反対側の端部5に固定され、回転軸3の周方向に沿って配列された異なる磁極(S極及びN極)を有している。
 回路基板11には磁束を検出する複数のMRセンサ素子が実装されている。図1の例では、複数のMRセンサ素子として第1MRセンサ素子20及び第2MRセンサ素子21が回路基板11に実装されている。
 回路基板11は3つの固定手段22、23及び24によって3つの固定点で支持部材12に固定されている。図1の例では、固定手段22、23及び24は回路基板11を支持部材12に締結するネジである。
 支持部材12は、固定手段25及び26によってモータ2に固定される。図1の例では、固定手段25及び26は支持部材12をモータ2に締結するネジである。
 3つの固定手段22、23及び24によって回路基板11が支持部材12に固定される位置と、固定手段25及び26によって支持部材12がモータ2に固定される位置は、回路基板11が支持部材12に固定され且つ支持部材12がモータ2に固定されたときに、支持部材12とモータ2との間に回路基板11が配置されて、第1MRセンサ素子20及び第2MRセンサ素子21が磁石10に近接するように決定されている。
 支持部材12は、例えば回路基板11を覆うカバーである。支持部材12は、例えば、図1において下方に開口する凹部を有しており、回路基板11は支持部材12の凹部内に固定される。支持部材12をモータ2に固定すると、支持部材12の凹部の開口部がモータ2によって遮蔽され、支持部材12の凹部とモータ2によって画成される内部空間内に回路基板11が収納される。これにより、外部からの衝撃や異物から回路基板11が保護される。
 支持部材12は、例えばアルミ合金などの熱伝導性のよい金属で形成されて、ヒートシンクとしての役割を果たしてよい。また、支持部材12はヒートシンクそのものであってもよい。
 なお、回路基板11に実装されるMRセンサ素子の数は2個に限定されず、3個以上のMRセンサ素子が回路基板11に実装されてもよい。
 また、回路基板11を支持部材12に固定する固定手段及び固定点の数は3個に限定されず、4個以上の固定手段及び固定点で回路基板11を支持部材12に固定してもよい。
 支持部材12をモータ2に固定する固定手段の数も2個に限定されず、3個以上の固定手段で支持部材12をモータ2に固定してもよい。
 第1MRセンサ素子20及び第2MRセンサ素子21を回路基板11に実装する位置、すなわち、回路基板11上における第1MRセンサ素子20及び第2MRセンサ素子21の面内位置は、3つ以上の固定手段(図1の例では固定手段22、23及び24)による3つ以上の固定点(図1の例では3つの固定点)を頂点とする多角形(図1の例では3角形)の内側に配置されることが好ましい。このような位置に第1MRセンサ素子20及び第2MRセンサ素子21を配置することにより、センサユニット1に振動や衝撃が加わった際の磁石10に対する第1MRセンサ素子20及び第2MRセンサ素子21の相対位置の変動を抑制できる。
 ECU13は、第1MRセンサ素子20及び第2MRセンサ素子21による検出信号に基づいてモータ2の回転角度θmを演算し、演算した回転角度θmに応じてパワー半導体スイッチング素子(図示せず)を制御して、モータ2を駆動する。
 図2を参照する。ECU13は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)等のプロセッサ30と、メモリ31と、アナログディジタル変換器(ADC:Analog-Digital Converter)32~35を備える。メモリ31と、ADC32~35はMPU等のプロセッサ30に内蔵される場合もある。以下に説明するECU13の機能は、例えばプロセッサ30が、メモリ31に格納されたコンピュータプログラムを実行することにより実現される。
 以下、実施形態の回転角度センサによる回転角度θmの検出について説明する。
 第1MRセンサ素子20は、モータ2の回転軸3とともに回転する磁石10の磁束を検出することにより、モータ2の回転角度θmに応じた正弦信号SIN1=sinθmと余弦信号COS1=cosθmを出力する。ECU13は、ADC32及びADC33によってディジタル信号に変換された正弦信号SIN1及び余弦信号COS1を読み取る。ECU13は、正弦信号SIN1及び余弦信号COS1に基づいてモータ2の回転角度θmを算出する。
 第2MRセンサ素子21は、第1MRセンサ素子20とは別個に、モータ2の回転角度θmに応じた正弦信号SIN2=sinθmと余弦信号COS2=cosθmを出力する。ECU13は、ADC34及びADC35によってそれぞれディジタル信号に変換された正弦信号SIN2及び余弦信号COS2を読み取る。ECU13は、正弦信号SIN2及び余弦信号COS2に基づいてモータ2の回転角度θmを算出する。
 このように、実施形態の回転角度センサは、複数のMRセンサ素子で1つのモータの回転角度を同時に検出する冗長構成を有する。
 図3を参照して、ECU13による回転角度θmの演算機能の一例を説明する。なお、ここでは第1MRセンサ素子20の正弦信号SIN1と余弦信号COS1に基づく回転角度θmの演算について説明するが、第2MRセンサ素子21の正弦信号SIN2と余弦信号COS2に基づく回転角度θmの演算も同様である。
 ECU13は、加算器40と、減算器41と、角度演算部42と、補正部43とを備える。
 角度演算部42は、加算器40の出力(COS1+SIN1)と、減算器41の出力(COS1-SIN1)とに基づいて、検出角度θdを、モータ2の回転角度θmとして演算する。
 補正部43は、減算器45により、ECU13のメモリ31に格納された校正データ44を検出角度θdから減じることにより、検出角度θdを補正して、モータ2の回転角度θmを示す角度信号を出力する。
 校正データ44は、検出対象である実際の回転角度θmと検出角度θdとの誤差(いわゆるリニアリティ誤差)を補正するデータである。
 図4を参照する。横軸はモータ2の回転軸3の実際の回転角度θmを示し、縦軸は、回転角度θmと同一の基準角度θr(一点鎖線)と、検出角度θd(実線)を示す。
 校正データ44は、例えば、検出角度θdと基準角度θrの差分(θd-θr)を検出角度θdに対応付けてメモリ31に格納したデータである。
 校正データ44は、例えば、校正済みの回転角度センサでモータ2の回転軸3の実際の回転角度θmを基準角度θrとして読み取りながら、検出角度θdを算出し、検出角度θdと基準角度θrとの差分(θd-θr)を、検出角度θdに関連付けて記憶することによって生成してよい。
 補正部43は、検出角度θdに関連付けられて記憶された校正データ44(θd-θr)をメモリ31から読み出して、検出角度θdから減じることにより補正後の回転角度θr=θmを算出する。
 以上のような構成により、比較的安価なMRセンサ素子を用いて、複数のセンサで1つのモータの回転角度を同時に検出する冗長構成を実現することができる。
 なお、以上説明した構成はあくまでも一例であって、本発明が上記構成に限定されることを意図するものではない。
 例えば、センサユニット1とECU13とが一体的に構成されてもよい。例えば、ECU13のプロセッサ30、メモリ31及びADC32~35は、回路基板11に実装されていてもよい。
 また、支持部材12は複数の部材で形成されていてもよい。
 図5を参照する。支持部材12は、例えばアルミ合金などの熱伝導性のよい金属で形成されたカバー(又はヒートシンク)27と、パワー半導体スイッチング素子が実装されたアルミ製のパワー基板28と、回路基板11及びパワー基板28の間に介装される樹脂製のインサート部材29を備えていてもよい。ECU13は回路基板11と一体化されており、インサート部材29の内部には、回路基板11とパワー基板28とを電気的に接続する電線(たとえばバスバー)が配線されている。
 そして、パワー基板28を介してカバー27に固定されたインサート部材29に対して、3つ以上の固定手段(図示せず)によって、回路基板11を3つ以上の固定点で固定し、カバー又はヒートシンク27をモータ2に固定することによって、第1MRセンサ素子20及び第2MRセンサ素子21が磁石10に近接するように、支持部材12とモータ2との間に回路基板11が配置される。
 樹脂製のインサート部材29に回路基板11を固定する固定手段は、ネジ等の締結部材でもよい。または、回路基板11に形成した貫通孔にインサート部材29の樹脂製のピン(突起部)を挿入した後に、このピンをかしめることによって回路基板11をインサート部材29に固定してもよい。
 以上のようなMRセンサ素子を用いた回転角度センサは、「コンパクトである」、「冗長化しやすい」等の利点があるが、一方で、検出信号の温度特性や応力特性が従来のレゾルバに比べて劣るという短所を有する。
 このため、例えば出荷時に常温雰囲気下で回転角度センサを校正しても(すなわち校正データ44を生成しても)、出荷後に熱が印加されると、その後に常温に戻っても回転角度センサのリニアリティが出荷時に戻らないといった問題があった。
 図6は、温度サイクル試験における回転角度センサの角度誤差を示す。プロット50は、35℃で校正した直後の回転角度センサの角度誤差が0であることを示し、プロット51及び52は、1回目の温度サイクルにおいて80℃及び120℃のときの角度誤差を示す。
 プロット53及び54は、1回目の温度サイクルの後に35℃に戻ったときの角度誤差を示し、プロット55は、2回目の温度サイクルにおいて120℃のときの角度誤差を示す。プロット56は、2回目の温度サイクル後に35℃に戻ったときの角度誤差を示す。
 プロット51、52及び55が示すように、回転角度センサに熱が加わると角度誤差が増大するが、その後に温度が戻っても、温度35℃における角度誤差(プロット53、54及び56)は、熱を加える前の角度誤差(プロット50)には戻らない。
 一方で、2回目の温度サイクルの後に35℃に戻ったときの角度誤差(プロット56)は、1回目の温度サイクルの後に35℃に戻ったときの角度誤差(プロット53及び54)とほぼ等しいことが分かる。すなわち、一度熱が印加された後の常温時の角度誤差は、その後に再び熱が印加されても同じ大きさの誤差に戻ることが分かる。
 これは、MR素子は応力変化に対する出力変動が大きいこと、及び、熱が印加されるとMRセンサ素子を支持する構造物(回路基板11や支持部材12)が塑性変形して、MRセンサ素子にかかる応力が校正時から変化していることが原因であると考えられる。
 このため、本実施形態の回転角度センサでは、回路基板11と支持部材12とを予め加熱処理により塑性変形させておく。これにより、出荷後に回転角度センサに熱が加わっても、常温時に戻ったときの角度誤差を出荷時の角度誤差に戻すことができる。
 第1MRセンサ素子20及び第2MRセンサ素子21に加わる応力には、固定手段22、23及び24によって回路基板11を支持部材12に固定する際に発生する応力も影響する。
 この結果、加熱による塑性変形により回路基板11と支持部材12との固定状態が変化すると角度誤差が変化することになる。したがって、回路基板11と支持部材12とを塑性変形させる加熱処理は、固定手段22、23及び24によって回路基板11を支持部材12に固定した状態で行うことが好ましい。
 これにより、加熱による塑性変形に伴う回路基板11と支持部材12との固定状態の変化による角度誤差の変化を軽減できる。
 また、回路基板11と支持部材12とを加熱処理により塑性変形させた後に、常温雰囲気下で、第1MRセンサ素子20から出力された正弦信号SIN1及び余弦信号COS1から演算された検出角度θdを校正し、得られた校正データ44をメモリ31に格納することが好ましい。第2MRセンサ素子21の正弦信号SIN2及び余弦信号COS2についても同様である。
 回路基板11と支持部材12とを塑性変形させる加熱処理では、実使用環境における回転角度センサの雰囲気温度以上の温度で、回路基板11と支持部材12と加熱することが望ましい。
 例えば、電動パワーステアリング装置のモータの回転角度を検出する回転角度センサの場合には、MRセンサ素子の雰囲気温度は、モータの発熱などの影響を受けて100℃程度に到達することがある。このため、回路基板11と支持部材12とを塑性変形させる加熱処理は、100℃以上の温度で加熱処理することが好ましい。
 このように、加熱処理後に校正を行うことにより、常温雰囲気下での回転角度センサの検出精度を向上することができる。
 図7を参照する。プロット60は、25℃で校正した直後の回転角度センサの角度誤差が0であることを示す。プロット61は、1回目の温度サイクルにおいて100℃のときの角度誤差を示す。プロット62は、1回目の温度サイクルの後に25℃に戻ったときの角度誤差を示す。上述したように、一度熱が加わった後の常温での角度誤差(プロット62)は、熱を加える前の角度誤差(プロット60)には戻らない。
 そこでプロット63に示すように、再度校正を行い、25℃において回転角度センサの角度誤差を0にする。
 その後のプロット64及び66は、それぞれ2回目、3回目の温度サイクルにおいて100℃のときの角度誤差を示し、プロット65及び67は、2回目、3回目の温度サイクルの後に25℃に戻ったときの角度誤差を示す。
 1回目の温度サイクルの後に25℃に戻ったときに校正することによって、2回目、3回目の温度サイクルの後に25℃に戻ったときの角度誤差(プロット65及び67)を校正後の角度誤差(プロット60)と同程度に戻すことができる。
 (回転角度センサの製造方法)
 次に、図8を参照して実施形態の回転角度センサの製造方法を説明する。
 ステップS1において、第1MRセンサ素子20及び第2MRセンサ素子21を回路基板11に実装する。
 ステップS2において、磁石10を、モータ2の回転軸3の出力端4と反対側の端部5に固定する。
 ステップS3において、回路基板11を3つ以上の固定手段によって3つ以上の固定点で支持部材12に固定する。
 ステップS4において、回路基板11が固定された支持部材12を加熱処理することにより、回路基板11及び支持部材12を塑性変形させる。
 なお、ステップS1の前にステップS2を実行してもよく、ステップS4の後にステップS2を実行してもよい。
 ステップS5において、支持部材12をモータ2に固定する。
 ステップS6において、常温雰囲気下で第1MRセンサ素子20から出力された正弦信号SIN1及び余弦信号COS1から演算された検出角度θdを校正し、得られた校正データ44をメモリ31に格納する。第2MRセンサ素子21の正弦信号SIN2及び余弦信号COS2についても同様である。その後に処理は終了する。
 (回転角度センサの適用)
 次に、図9を参照して、本実施形態の回転角度センサを、車両の操舵系に付与する操舵補助力を制御する電動パワーステアリング装置に適用した場合の構成例を説明する。
 操向ハンドル101のコラム軸102は減速ギア103、ユニバーサルジョイント104A及び104B、ピニオンラック機構105を経て操向車輪のタイロッド106に連結されている。コラム軸102には、操向ハンドル101の操舵トルクThを検出するトルクセンサ110が設けられており、操向ハンドル101の操舵力を補助するモータ2が減速ギア103を介してコラム軸102に連結されている。
 上述のECU13は、パワーステアリング装置を制御する電子制御ユニットとして使用される。ECU13には、電源であるバッテリ114から電力が供給されると共に、イグニションキー111からイグニションキー信号が入力される。
 ECU13は、上記のように演算したモータ2の回転角度θmと減速ギア103の減速比Nとに基づいて、操向ハンドル101の操舵角θを演算する。ECU13は、操舵角θと、操舵トルクThと、車速センサ112で検出された車速Vhとに基づいて、アシストマップ等を用いてアシスト指令の操舵補助指令値の演算を行い、演算された操舵補助指令値に基づいてモータ2に供給する電流Iを制御する。
 このような構成の電動パワーステアリング装置において、操向ハンドル101から伝達された運転手のハンドル操作による操舵トルクThをトルクセンサ110で検出し、モータ2の回転角度θmに基づいて操舵角θを演算し、操舵トルクTh、操舵角θ及び車速Vhに基づいて算出される操舵補助指令値によってモータ2は駆動制御され、この駆動が運転手のハンドル操作の補助力(操舵補助力)として操舵系に付与される。
 (実施形態の効果)
 (1)実施形態の回転角度センサは、モータ2の回転軸3の出力端4と反対側の端部5に固定された磁石10と、複数のMRセンサ素子が実装された回路基板11と、モータ2に固定される支持部材12と、を備える。回路基板11は、複数のMRセンサ素子が磁石10に近接するように支持部材12に固定されて、モータ2に固定された支持部材12とモータ2との間に配置される。
 これにより、比較的安価なMRセンサ素子を用いて、複数のセンサで1つのモータの回転角度を同時に検出する冗長構成を実現することができる。このため、複数のセンサで1つのモータの回転角度を同時に検出する冗長構成を安価に実現する。
 (2)回路基板11は、3つ以上の固定点で支持部材12に固定され、回路基板11におけるMRセンサ素子の面内位置は、3つ以上の固定点を頂点とする多角形の内側に配置されてもよい。
 これにより、回転角度センサに振動や衝撃が加わった際の磁石10に対するMRセンサ素子の相対位置の変動を抑制できる。
 (3)回路基板11及び支持部材12は、予め加熱処理により塑性変形されていてよい。これにより、出荷後に回転角度センサに熱が加わっても、常温時に戻ったときの角度誤差を出荷時の角度誤差に戻すことができる。
 (4)回路基板11及び支持部材12は、回路基板11が支持部材12に固定された状態で加熱処理されて塑性変形されていてよい。これにより、加熱による塑性変形に伴う回路基板11と支持部材12との固定状態の変化による角度誤差の変化を軽減できる。
 (5)実施形態の回転角度センサは、MRセンサ素子の出力信号を校正するための校正データ44を記憶するためのメモリ31を更に備えてよい。加熱処理により回路基板11及び支持部材12を塑性変形させた後に、常温雰囲気下で磁気抵抗センサ素子を校正して生成した校正データ44をメモリ31に格納してよい。
 このように、加熱処理後に校正を行うことにより、常温雰囲気下での回転角度センサの検出精度を向上することができる。
 1...センサユニット
 2...モータ
 3...回転軸
 4...出力端
 5...端部
 10...磁石
 11...回路基板
 12...支持部材
 13...電子制御ユニット(ECU)
 14...ハーネス
 20、21...磁気抵抗(MR)センサ素子
 22、23、24、25、26...固定手段
 27...カバー(又はヒートシンク)
 28...パワー基板
 29...インサート部材
 30...プロセッサ
 31...メモリ
 32、33、34、35...アナログディジタル変換器(ADC)
 40...加算器
 41、45...減算器
 42...角度演算部
 43...補正部
 44...校正データ
 101...操向ハンドル
 102...コラム軸
 103...減速ギア
 104A、104B...ユニバーサルジョイント
 105...ピニオンラック機構
 106...タイロッド
 110...トルクセンサ
 111...イグニションキー
 112...車速センサ
 114...バッテリ

Claims (9)

  1.  モータの回転軸の出力端と反対側の端部に固定された磁石と、
     複数の磁気抵抗センサ素子が実装された回路基板と、
     前記モータに固定される支持部材と、を備え、
     前記回路基板は、前記モータに固定された前記支持部材と前記モータとの間に配置されて、前記複数の磁気抵抗センサ素子が前記磁石に近接するように前記支持部材に固定される、ことを特徴とする回転角度センサ。
  2.  前記回路基板は、3つ以上の固定点で前記支持部材に固定され、
     前記回路基板における前記磁気抵抗センサ素子の面内位置は、前記3つ以上の固定点を頂点とする多角形の内側に配置されることを特徴とする請求項1に記載の回転角度センサ。
  3.  前記回路基板及び前記支持部材は、加熱処理により塑性変形されていることを特徴とする請求項1又は2に記載の回転角度センサ。
  4.  前記回路基板及び前記支持部材は、前記回路基板が前記支持部材に固定された状態で加熱処理されて塑性変形されていることを特徴とする請求項2に記載の回転角度センサ。
  5.  前記磁気抵抗センサ素子の出力信号を校正するための校正データを記憶するためのメモリを更に備え、
     前記回路基板及び前記支持部材が加熱処理により塑性変形された後に前記磁気抵抗センサ素子を校正して生成した校正データが前記メモリに格納されている、
     ことを特徴とする請求項3又は4に記載の回転角度センサ。
  6.  請求項1~5のいずれか一項に記載の回転角度センサと、モータと、を備え、
     前記回転角度センサによって検出された前記モータの回転角度に基づいて、前記モータによって車両の操舵系に操舵補助力を付与することを特徴とする電動パワーステアリング装置。
  7.  複数の磁気抵抗センサ素子を回路基板に実装し、
     モータの回転軸の出力端と反対側の端部に磁石を固定し、
     前記回路基板を支持部材に固定し、
     前記支持部材を前記モータに固定することにより、前記複数の磁気抵抗センサ素子が前記磁石に近接するように前記支持部材と前記モータとの間に前記回路基板を配置する、
     ことを特徴とする回転角度センサの製造方法。
  8.  前記回路基板を前記支持部材に固定した後に、前記回路基板及び前記支持部材を加熱処理により塑性変形させることを特徴とする請求項7に記載の回転角度センサの製造方法。
  9.  前記回路基板及び前記支持部材を加熱処理により塑性変形させた後に、前記磁気抵抗センサ素子を校正することを特徴とする請求項8に記載の回転角度センサの製造方法。
PCT/JP2020/047701 2020-01-31 2020-12-21 回転角度センサ、電動パワーステアリング装置及び回転角度センサの製造方法 WO2021153097A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20916243.7A EP3964790B1 (en) 2020-01-31 2020-12-21 Rotation angle sensor, electric power steering device, and production method for rotation angle sensor
CN202080049958.3A CN114096797B (zh) 2020-01-31 2020-12-21 旋转角度传感器、电动助力转向装置以及旋转角度传感器的制造方法
JP2021561997A JP7047986B2 (ja) 2020-01-31 2020-12-21 回転角度センサ、電動パワーステアリング装置及び回転角度センサの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-015126 2020-01-31
JP2020015126 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153097A1 true WO2021153097A1 (ja) 2021-08-05

Family

ID=77078739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047701 WO2021153097A1 (ja) 2020-01-31 2020-12-21 回転角度センサ、電動パワーステアリング装置及び回転角度センサの製造方法

Country Status (4)

Country Link
EP (1) EP3964790B1 (ja)
JP (1) JP7047986B2 (ja)
CN (1) CN114096797B (ja)
WO (1) WO2021153097A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190803A (ja) * 1993-12-27 1995-07-28 Tokyo Cosmos Electric Co Ltd 磁気的角度センサ
CN201885728U (zh) * 2010-12-03 2011-06-29 北京经纬恒润科技有限公司 霍尔式电机转子位置传感器
JP2012215415A (ja) * 2011-03-31 2012-11-08 Oriental Motor Co Ltd アブソリュートエンコーダ装置及びモータ
JP2014225998A (ja) * 2013-05-17 2014-12-04 株式会社デンソー 駆動装置
WO2017017806A1 (ja) * 2015-07-29 2017-02-02 三菱電機株式会社 回転角検出器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163148A (en) * 1995-10-17 2000-12-19 Seiko Epson Corporation Sensor, drive force auxiliary device using the sensor, and torque sensor zero point adjusting mechanism of the drive force auxiliary device
JP4170023B2 (ja) * 2002-06-07 2008-10-22 アルプス電気株式会社 回転型センサ
JP5234647B2 (ja) * 2009-03-31 2013-07-10 新日鉄住金化学株式会社 複合接着フィルムおよびそれを用いた多層回路基板並びにその製造方法
JP5287635B2 (ja) * 2009-09-24 2013-09-11 株式会社ジェイテクト 回転角センサ、モータ、回転角検出装置、及び電動パワーステアリング装置
CN108227408B (zh) * 2013-04-30 2020-02-14 株式会社尼康 曝光装置及曝光方法
CN207585795U (zh) * 2017-12-28 2018-07-06 宁波中车时代传感技术有限公司 一种轴端温速集成传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190803A (ja) * 1993-12-27 1995-07-28 Tokyo Cosmos Electric Co Ltd 磁気的角度センサ
CN201885728U (zh) * 2010-12-03 2011-06-29 北京经纬恒润科技有限公司 霍尔式电机转子位置传感器
JP2012215415A (ja) * 2011-03-31 2012-11-08 Oriental Motor Co Ltd アブソリュートエンコーダ装置及びモータ
JP2014225998A (ja) * 2013-05-17 2014-12-04 株式会社デンソー 駆動装置
WO2017017806A1 (ja) * 2015-07-29 2017-02-02 三菱電機株式会社 回転角検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3964790A4 *

Also Published As

Publication number Publication date
CN114096797A (zh) 2022-02-25
EP3964790B1 (en) 2023-03-01
CN114096797B (zh) 2024-03-22
EP3964790A1 (en) 2022-03-09
EP3964790A4 (en) 2022-07-27
JPWO2021153097A1 (ja) 2021-08-05
JP7047986B2 (ja) 2022-04-05

Similar Documents

Publication Publication Date Title
US7743875B2 (en) Power steering apparatus having failure detection device for rotation angle sensors
JP5611238B2 (ja) 相対角度検出装置、回転角度検出装置、相対角度検出方法および回転角度検出方法
US6948382B2 (en) Angle detection device and torque sensor incorporating angle detection device
US7076352B2 (en) Electric power steering apparatus and angle compensating method therefor
WO2012066942A1 (ja) 電動パワーステアリング装置の調整装置及び調整方法
US11753075B2 (en) Calibration method for rotation angle calculation device, calibration device for rotation angle calculation device, rotation angle calculation device, motor control device, electric actuator product, and electric power
US6994181B2 (en) Electric power steering device and method and apparatus for manufacturing the same
JP6672652B2 (ja) 操舵制御装置
JP2020159994A (ja) 検出ユニット
US9150243B2 (en) Harmonic pinion torque correction
WO2021153097A1 (ja) 回転角度センサ、電動パワーステアリング装置及び回転角度センサの製造方法
JP7458144B2 (ja) 角度演算装置
JP3838499B2 (ja) アクチュエータの温度検出方法および電気式動力舵取装置
JP2010139395A (ja) トルクセンサ及び同センサを備えたステアリング
JP7211515B2 (ja) 位相調整方法、補正値算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP6885531B1 (ja) 検出信号補正方法、モータ制御装置及び電動パワーステアリング装置
US20160046320A1 (en) Steering device
JP5910621B2 (ja) 電動パワーステアリング装置、キャリブレーション装置及びキャリブレーション方法
JP2007155641A (ja) レゾルバ装置及びそれを用いたトルクセンサ
WO2021250917A1 (ja) 検出信号補正方法、モータ制御装置及び電動パワーステアリング装置
EP4101744B1 (en) Steering angle detection device and electric power steering device
JP2012141276A (ja) 回転角度検出装置
JP2022000621A (ja) トルクセンサ、トルク検出装置、車両操向装置及びトルクセンサの製造方法
JP2005186775A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561997

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020916243

Country of ref document: EP

Effective date: 20211203

NENP Non-entry into the national phase

Ref country code: DE