WO2021153069A1 - 回転角度算出装置の校正方法、回転角度算出装置の校正装置、回転角度算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置 - Google Patents

回転角度算出装置の校正方法、回転角度算出装置の校正装置、回転角度算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2021153069A1
WO2021153069A1 PCT/JP2020/047011 JP2020047011W WO2021153069A1 WO 2021153069 A1 WO2021153069 A1 WO 2021153069A1 JP 2020047011 W JP2020047011 W JP 2020047011W WO 2021153069 A1 WO2021153069 A1 WO 2021153069A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
data
time
calibration
unit
Prior art date
Application number
PCT/JP2020/047011
Other languages
English (en)
French (fr)
Inventor
優介 西岡
義宏 青崎
浩之 山村
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN202080006955.1A priority Critical patent/CN113490830B/zh
Priority to US17/299,921 priority patent/US11292519B2/en
Priority to JP2021512456A priority patent/JP6888752B1/ja
Priority to EP20891414.3A priority patent/EP3885698B1/en
Publication of WO2021153069A1 publication Critical patent/WO2021153069A1/ja
Priority to US17/670,925 priority patent/US11753075B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/05Determination of the rotor position by using two different methods and/or motor models

Definitions

  • the present invention relates to a method for calibrating a rotation angle calculation device, a calibration device for a rotation angle calculation device, a rotation angle calculation device, a motor control device, an electric actuator product, and an electric power steering device.
  • a rotation angle calculation device that calculates the rotation angle of a rotating body based on a detection signal output from a sensor according to the rotation of the rotating body is known.
  • an angle detection device having a sensor unit that detects the rotation angle of a rotating body and outputs a sin signal and a cos signal is known.
  • calibrate the rotation angle calculation device by comparing the rotation angle calculated from the output signal of the sensor with the measurement data of the rotation angle of the rotating body separately measured. Is preferable.
  • Patent Document 2 describes a time stamping unit that assigns a time stamp ATi to the detection signal Ai of the sensor A and a time stamp BTj to the detection signal Bj of the sensor B, and a detection signal based on the time stamps ATi and BTi.
  • a synchronization signal search unit for searching the storage unit for the detection signal Bj most synchronized with Ai, and a vernier calculation means for calculating the angle difference of the synchronization signal searched by the synchronization signal search unit and performing the vernier calculation are described.
  • a calibration method of a rotation angle calculation device for calculating the rotation angle of a rotating body based on a detection signal output from a sensor according to the rotation of the rotating body is provided.
  • the rotation angle calculation device calculates the rotation angle of the rotating body based on the detection signal, transmits the rotation angle data indicating the rotation angle from the rotation angle calculation device to the calibration device, and captures the detection signal from the sensor.
  • the time difference data related to the time difference from the time when the rotation angle data is transmitted is transmitted from the rotation angle calculation device to the calibration device, the calibration device measures the rotation angle of the rotating body, and the calibration device measures the rotation angle of the rotating body.
  • the measured time and the communication time when the rotation angle data was transmitted or received were measured by the calibration device, and the rotation angle and rotation angle data of the rotating body measured by the calibration device at a time retroactive by the time difference from this communication time.
  • the calibration data of the rotation angle data is acquired by comparing.
  • a calibration device for a rotation angle calculation device that calculates the rotation angle of the rotating body based on the detection signal output from the sensor according to the rotation of the rotating body.
  • the constituent device receives the rotation angle data indicating the rotation angle of the rotating body calculated based on the detection signal from the rotation angle calculation device, and transmits the rotation angle data after the rotation angle calculation device captures the detection signal from the sensor.
  • a receiver that receives time difference data related to the time difference until And, the timing unit that measures the communication time when the rotation angle data is transmitted or received is compared with the rotation angle data of the rotating body measured by the rotation angle measurement unit at a time retroactive by a time difference from this communication time.
  • a sensor that outputs a detection signal according to the rotation of the rotating body, a rotation angle calculation unit that calculates the rotation angle of the rotating body based on the detection signal, and a rotation angle calculation.
  • a receiving unit that receives calibration data for calibrating the rotation angle of the rotating body calculated by the unit, a storage unit that stores the received calibration data, and a storage unit that stores the rotation angle of the rotating body calculated by the rotation angle calculation unit.
  • the correction unit that corrects with the calibrated data and the rotation angle data that indicates the rotation angle that is calculated by the rotation angle calculation unit and is not corrected by the correction unit are transmitted, and the rotation angle data is transmitted after capturing the detection signal from the sensor.
  • a rotation angle calculation device including a transmission unit for transmitting time difference data relating to the time difference until the time difference is provided.
  • the above-mentioned rotation angle calculation device that calculates the rotation angle of the rotation shaft of the motor as a rotating body, and the motor according to the rotation angle of the rotation shaft corrected by the correction unit.
  • a motor control device comprising a drive unit to drive is provided.
  • an electric actuator product comprising the motor control device described above and a motor controlled by the motor control device.
  • the motor control device and the motor controlled by the motor control device are provided, and the steering assisting force is applied to the steering system of the vehicle by the motor.
  • An electric power steering device is provided.
  • the rotation angle calculated by the rotation angle calculation device is synchronized with the rotation angle measured by an external measuring device different from the rotation angle calculation device, and the calibration data of the rotation angle calculation device is generated. can.
  • the calibration system 1 of the embodiment calibrates a rotation angle calculation device that calculates the rotation angle of the rotation shaft 11 of the motor 10 which is a rotating body.
  • the object of the present invention is not limited to the rotation angle calculation device that calculates the rotation angle of the rotation shaft 11 of the motor 10.
  • the present invention can be applied to a rotation angle calculation device that calculates the rotation angles of various rotating bodies.
  • the calibration system 1 includes a rotation angle calculation device calibrated by the calibration system 1 and a calibration device 40.
  • the rotation angle calculation device includes a sensor unit 20 and a control device 30.
  • the sensor unit 20 outputs a detection signal corresponding to the rotation of the rotating shaft 11 to the control device 30. See FIG.
  • the sensor unit 20 includes a magnet 21, a circuit board 22, and a support member 23.
  • the magnet 21 is fixed to an end 14 opposite to the output end 12 of the rotating shaft 11 of the motor 10 and has different magnetic poles (S pole and N pole) arranged along the circumferential direction of the rotating shaft 11. There is.
  • An MR (Magnetic Resistance) sensor element (Integrated Circuit) 24 for detecting magnetic flux is mounted on the circuit board 22.
  • a plurality of MR sensor elements may be mounted on the circuit board 22 to form a redundant system in which the rotation axis 11 is calculated separately based on the detection signals of each MR sensor element.
  • the circuit board 22 is fixed to the support member 23 by fixing means such as a fastening screw or caulking (not shown). Similarly, the support member 23 is also fixed to the motor 10 by a fixing means (not shown). The position where the circuit board 22 is fixed to the support member 23 and the position where the support member 23 is fixed to the motor 10 are when the circuit board 22 is fixed to the support member 23 and the support member 23 is fixed to the motor 10. The circuit board 22 is arranged between the support member 23 and the motor 10, and the MR sensor element 24 is determined to be close to the magnet 21.
  • the MR sensor element 24 detects the change in the magnetic flux of the magnet 21 according to the rotation angle, and responds to the rotation of the rotation shaft 11 of the motor 10. Output the detection signal.
  • the MR sensor element 24 outputs the sinusoidal signal sin ⁇ m and the cosine signal cos ⁇ m corresponding to the rotation angle ⁇ m of the rotation shaft 11 of the motor 10 as detection signals corresponding to the rotation of the rotation shaft 11 of the motor 10.
  • the sensor used by the rotation angle calculation device of the present invention is not limited to the MR sensor.
  • the rotation angle calculation device of the present invention may detect the rotation angle ⁇ m of the rotation shaft 11 of the motor 10 by a sensor of a type other than the MR sensor.
  • the support member 23 is, for example, a cover that covers the circuit board 22.
  • the support member 23 has, for example, a recess that opens downward in FIG. 1, and the circuit board 22 is fixed in the recess of the support member 23.
  • the opening of the recess of the support member 23 is shielded by the motor 10, and the circuit board 22 is housed in the recess of the support member 23 and the internal space defined by the motor 10.
  • the support member 23 may be formed of a metal having good thermal conductivity such as an aluminum alloy and may serve as a heat sink. Further, the support member 23 may be the heat sink itself.
  • the control device 30 which is an electronic control unit (ECU) separate from the sensor unit 20, is connected to the sensor unit 20 by a harness 25.
  • the detection signal output from the MR sensor element 24 in response to the rotation of the rotation shaft 11 of the motor 10 is transmitted to the control device 30 via the harness 25.
  • the control device 30 calculates the rotation angle ⁇ m of the rotation shaft 11 of the motor 10 based on the detection signal by the MR sensor element 24, controls the power semiconductor switching element according to the calculated rotation angle ⁇ m, and drives the motor 10. do.
  • the control device 30 includes a processor 31 such as a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit), a storage device 32 such as a memory, and analog-to-digital converters (ADCs) 33 and 34. , A drive circuit 35 and a communication I / F (interface) circuit 36 are provided.
  • the function of the control device 30 described below is realized, for example, by the processor 31 executing a computer program stored in the storage device 32.
  • the control device 30 may be formed in addition to or in place of the processor 31 by dedicated hardware for executing each information processing described below.
  • the control device 30 may include a functional logic circuit set in a general-purpose semiconductor integrated circuit.
  • the control device 30 may have a programmable logic device (PLD: Programmable Logic Device) such as a field-programmable gate array (FPGA).
  • PLD Programmable Logic Device
  • FPGA field-programmable gate array
  • Outputs COS cos ⁇ m.
  • the control device 30 reads the sinusoidal signal SIN and the cosine signal COS converted into digital signals by the ADC 33 and the ADC 34.
  • the control device 30 calculates the detection angle ⁇ c of the rotation angle of the rotation shaft 11 of the motor 10 based on the sine signal SIN and the cosine signal COS.
  • the detection angle ⁇ c is a value theoretically calculated based on the sine signal SIN and the cosine signal COS, and is a theoretical value before calibration.
  • the control device 30 receives the calibration data Dc for calibrating the detection angle ⁇ c from the external measuring device 43 of the calibration device 40 shown in FIG. 1 via the communication I / F circuit 36.
  • the control device 30 corrects the detection angle ⁇ c calculated based on the sine signal SIN and the cosine signal COS based on the calibration data Dc received from the external measuring device 43, thereby correcting the rotation angle ⁇ m of the rotation shaft 11 of the motor 10. Is calculated.
  • the control device 30 controls the drive circuit 35 (for example, an inverter or the like) according to the calculated rotation angle ⁇ m to drive the motor 10.
  • the control device 30 includes a rotation angle calculation unit 50, a correction unit 51, a drive signal generation unit 52, a timekeeping unit 53, a transmission data generation unit 54, a transmission unit 55, a reception unit 56, and a calibration data acquisition unit. 57 is provided.
  • the rotation angle calculation unit 50 calculates the detection angle ⁇ c of the rotation angle of the rotation shaft 11 of the motor 10 based on the sinusoidal signal SIN and the cosine signal COS converted into digital signals by the ADC 33 and the ADC 34.
  • the rotation angle calculation unit 50 includes an adder 60, a subtractor 61, and a calculation unit 62.
  • the calculation unit 62 calculates the detection angle ⁇ c based on the output of the adder 60 (COS + SIN) and the output of the subtractor 61 (COS-SIN).
  • the correction unit 51 reads out the calibration data Dc stored in the storage device 32, corrects the detection angle ⁇ c based on the calibration data Dc, and acquires the rotation angle ⁇ m of the rotation shaft 11 of the motor 10.
  • the calibration data Dc is data that corrects an error (so-called linearity error) between the actual rotation angle ⁇ m to be detected and the detection angle ⁇ c.
  • the horizontal axis shows the actual rotation angle ⁇ m of the rotation axis 11 of the motor 10, and the vertical axis shows the reference angle ⁇ r (single point chain line) and the detection angle ⁇ c (solid line) which are the reference when calibrating the detection angle ⁇ c. ..
  • the reference angle ⁇ r ideally coincides with the actual rotation angle ⁇ m.
  • the calibration data Dc is, for example, data in which the difference ( ⁇ c ⁇ r) between the detection angle ⁇ c and the reference angle ⁇ r is associated with the detection angle ⁇ c and stored in the storage device 32. See FIG.
  • the drive signal generation unit 52 generates a drive signal for controlling the drive circuit 35 based on the corrected rotation angle ⁇ m, and outputs the drive signal to the drive circuit 35.
  • the drive signal generation unit 52 outputs a gate signal for turning on / off the switching element mounted on the drive circuit 35.
  • the control device 30 drives the motor 10 according to the rotation angle ⁇ m of the rotation shaft 11 of the motor 10.
  • the control device 30 operates a mode in which the rotation angle calculation unit 50, the correction unit 51, and the drive signal generation unit 52 are operated to drive the motor 10 as described above (hereinafter, may be referred to as “motor drive mode”). , As one of the operation modes of the control device 30.
  • the control device 30 outputs data indicating the detection angle ⁇ c calculated by the rotation angle calculation unit 50 and before being corrected by the correction unit 51 (hereinafter, “data output mode””. As one of the operation modes of the control device 30).
  • the data indicating the detection angle ⁇ c output in the data output mode (hereinafter, may be referred to as “rotation angle data Da”) can be used by the calibration device 40 outside the control device 30 to generate the calibration data Dc. ..
  • rotation angle data Da the rotation angle calculation unit 50, the timekeeping unit 53, the transmission data generation unit 54, and the transmission unit 55 operate.
  • the timekeeping unit 53 measures the time. For example, the time measuring unit 53 may time the elapsed time from a predetermined time point (for example, the time when the operation mode of the control device 30 is switched to the data output mode) as a time, or may always operate to measure the current time. good.
  • the transmission data generation unit 54 receives a timing signal St indicating the timing at which the control device 30 has captured the detection signals (sine signal SIN and cosine signal COS) from the MR sensor element 24.
  • the timing signal St may be a signal indicating the sample hold timing of the ADC 33 and the ADC 34. Further, when the conversion time from the analog signal to the digital signal by the ADC 33 and the ADC 34 is sufficiently short, it may be a signal indicating the output timing of the ADC 33 and the ADC 34.
  • the transmission data generation unit 54 acquires the time measured by the time measuring unit 53 at the timing indicated by the timing signal St as the acquisition time ct1 of the detection signal of the MR sensor element 24.
  • the transmission data generation unit 54 receives the detection angle ⁇ c calculated by the rotation angle calculation unit 50, and generates transmission data in which the rotation angle data Da indicating the detection angle ⁇ c is stored.
  • the transmission data generated by the transmission data generation unit 54 is transmitted by the transmission unit 55 to the external measurement device 43 of the calibration device 40 via the communication I / F circuit 36.
  • the transmission unit 55 may transmit transmission data using a CAN (Controller Area Network) communication protocol for a predetermined digital signal.
  • the transmission data generation unit 54 may generate transmission data in a predetermined data format according to the communication protocol.
  • An example of the data format of the transmitted data is shown in FIG.
  • the transmission data has a data format in which the rotation angle data Da and the time difference data Dt are stored in the same frame.
  • the transmission data may include status information indicating a state of whether or not the rotation angle data Da is usable data. The status information is not essential.
  • the rotation angle data Da and the time difference data Dt corresponding to each MR sensor element may be stored in the same frame, or may be divided into a plurality of frames. You may send it. Further, when a redundant system is configured by a plurality of MR sensor elements, it may be transmitted as an angle difference with respect to a predetermined rotation angle data Da of the MR sensor element. For example, in the case of a three-system redundant system, the rotation angle data of the first system is 100 degrees, the rotation angle data of the second system is 102 degrees, and the rotation angle data of the third system is 99 degrees.
  • the time difference data Dt is data relating to the time difference from the capture time ct1 in which the detection signal is captured from the MR sensor element 24 to the transmission of the transmission data.
  • the time point at which the transmission data generation unit 54 stores the time difference data Dt in the transmission data is a time point before the time point at which the transmission data is transmitted. Therefore, the transmission data generation unit 54 cannot time the time when the transmission data is transmitted at the time when the transmission data is generated. Therefore, for example, the transmission data generation unit 54 may generate the time difference data Dt indicating the time difference from the capture time tc1 to the completion of generation of the transmission data.
  • the processing time t required for the transmission unit 55 to transmit the transmission data is a fixed known processing time. Therefore, the time difference data Dt can indirectly represent the time difference from the capture time ct1 to the transmission of the transmission data by adding the processing time t.
  • the timing unit 53 clocks at the storage timing of these data. The time may be acquired to predict the generation completion time of the transmission data.
  • the transmission unit 55 When the transmission data generation unit 54 generates transmission data storing the rotation angle data Da and the time difference data Dt, the transmission unit 55 outputs the transmission data to the outside at a known processing time t from the time when the transmission data generation is completed. do. For example, the transmission unit 55 transmits the transmission data to the external measuring device 43 of the calibration device 40.
  • the transmission form of the rotation angle data Da and the time difference data Dt by the transmission unit 55 is not limited to the above.
  • the transmission data generation unit 54 may generate the time difference data Dt after transmitting the rotation angle data Da, and the transmission unit 55 may transmit the time difference data Dt after transmitting the rotation angle data Da.
  • the transmission data generation unit 54 acquires the time measured by the time counting unit 53 when the transmission unit 55 transmits the rotation angle data Da, and the rotation angle starts from the capture time ct1 in which the detection signal is captured from the MR sensor element 24.
  • the time difference data Dt that directly represents the time difference until the data Da is transmitted may be generated.
  • the rotation angle data Da and the time difference data Dt are used by the calibration device 40 to generate the calibration data Dc.
  • the control device 30 has a calibration data receiving mode for receiving the calibration data Dc as one of the operation modes of the control device 30. In the calibration data receiving mode, the receiving unit 56 and the calibration data acquisition unit 57 operate. The receiving unit 56 receives the calibration data Dc from the outside. For example, the receiving unit 56 receives the calibration data Dc from the external measuring device 43 of the calibration device 40. The calibration data acquisition unit 57 stores the calibration data Dc received by the reception unit 56 in the storage device 32.
  • the calibration device 40 includes a drive motor 41, a rotation angle measuring unit 42, and an external measuring device 43.
  • the rotary shaft 44 of the drive motor 41 is connected to the rotary shaft 11 of the motor 10 by a connecting portion 45. By rotating the rotary shaft 44, the drive motor 41 rotates the rotary shaft 11 of the motor 10 and changes the rotation angle ⁇ m of the rotary shaft 11 to various angles.
  • the rotation angle measuring unit 42 generates a reference angle measurement signal Sr for measuring the reference angle ⁇ r which is the reference for the calibration of the rotation angle calculation device (that is, the calibration of the detection angle ⁇ c). For example, the rotation angle measuring unit 42 generates a signal for measuring the rotation angle of the rotation shaft 44 of the drive motor 41 connected to the rotation shaft 11 of the motor 10 as a reference angle measurement signal Sr. The rotation angle measuring unit 42 outputs the reference angle measuring signal Sr to the external measuring device 43.
  • the rotation angle measurement unit 42 may be, for example, an encoder that outputs a number of pulses corresponding to the amount of rotation of the rotation shaft 44 as a reference angle measurement signal Sr.
  • the external measuring device 43 may measure the reference angle ⁇ r by counting (accumulating) the number of pulses output by the rotation angle measuring unit 42.
  • the rotation angle measuring unit 42 is not limited to the encoder, and may be another type of rotation angle measuring device (for example, a calibrated rotation angle measuring device) or the like.
  • the external measuring device 43 generates calibration data Dc based on the rotation angle data Da and the time difference data Dt transmitted from the control device 30 and the reference angle measurement signal Sr, and transmits the calibration data Dc to the control device 30.
  • the external measuring device 43 includes a processor 46 such as a CPU and an MPU, a storage device 47 such as a memory, a communication I / F circuit 48, and an I / F (interface circuit) 49.
  • the external measuring device 43 receives the rotation angle data Da and the time difference data Dt from the control device 30 via the communication I / F circuit 48. Further, the calibration data Dc is transmitted to the control device 30 via the communication I / F circuit 48.
  • the external measuring device 43 receives the reference angle measurement signal Sr from the rotation angle measuring unit 42 via the I / F 49.
  • the function of the external measuring device 43 described below is realized, for example, by the processor 46 executing a computer program stored in the storage device 47.
  • the external measuring device 43 may be formed in addition to or in place of the processor 46 by dedicated hardware for executing each information processing described below.
  • the external measuring device 43 may include a functional logic circuit set in a general-purpose semiconductor integrated circuit.
  • the external measuring device 43 may have a PLD such as an FPGA.
  • the external measuring device 43 includes a receiving unit 70, a rotation angle measuring unit 71, a time measuring unit 72, a capturing time calculation unit 73, a calibration data generating unit 74, and a transmitting unit 75.
  • the receiving unit 70 receives the transmission data transmitted from the control device 30.
  • the receiving unit 70 outputs the rotation angle data Da included in the transmission data to the calibration data generation unit 74, and outputs the time difference data Dt included in the transmission data to the acquisition time calculation unit 73.
  • the rotation angle measurement unit 71 receives the reference angle measurement signal Sr output from the rotation angle measurement unit 42, and measures the reference angle ⁇ r based on the reference angle measurement signal Sr.
  • the reference angle ⁇ r may be measured by counting (accumulating) the number of pulses output from the rotation angle measuring unit 71, which is an encoder.
  • the timekeeping unit 72 clocks the time.
  • the time measuring unit 72 may time the elapsed time from a predetermined time point as a time, or may measure the current time.
  • the time measuring unit 72 of the external measuring device 43 does not have to be synchronized with the time measuring unit 53 of the control device 30. That is, the time measured by the time measuring unit 72 and the time measured by the time measuring unit 53 may be different at the same time point.
  • the time difference between the time measured by the time measuring unit 72 and the time measured by the measuring unit 53 at the same time point is output from the measurement cycle by the rotation angle measuring unit 71 (for example, the rotation angle measuring unit 71 which is an encoder). It may be longer than the pulse interval).
  • the acquisition time calculation unit 73 monitors a communication line (for example, a bus) for transmitting transmission data from the control device 30 to the external measurement device 43, and monitors the timing at which the control device 30 transmits the transmission data at high speed.
  • the acquisition time calculation unit 73 acquires the time measured by the time counting unit 72 at the timing when the transmission data is transmitted as the communication time tt of the transmission data.
  • the acquisition time calculation unit 73 monitors the timing at which the transmission data is received by the reception unit 70 at high speed, and sets the time measured by the clock unit 72 at the timing when the transmission data is received as the communication time tt of the transmission data. You may get it.
  • the acquisition time calculation unit 73 is the time that should have been obtained when the acquisition time of the detection signal of the MR sensor element 24 is measured by the timing unit 72 of the external measuring device 43 (hereinafter referred to as “acquisition time tk2”). Is calculated based on the communication time tt and the time difference data Dt. That is, the capture time tc2 of the detection signal of the MR sensor element 24 is calculated as the time measured by the time measuring unit 72.
  • the acquisition time calculation unit 73 sets the time retroactive from the communication time tt by the time difference from the acquisition time ct1 of the detection signal of the MR sensor element 24, which can be known based on the time difference data Dt, to the transmission of the transmission data. Calculated as the capture time tc2. For example, the acquisition time calculation unit 73 adds the known processing time t required for the transmission unit 55 to transmit the transmission data to the time difference td indicated by the time difference data Dt, and the time is as far back as the communication time tt. Is calculated as the capture time ct2.
  • the time difference data Dt is transmitted after the rotation angle data Da.
  • the time retroactive from the communication time tt to the time difference indicated by the time difference data Dt is calculated as the capture time ct2.
  • the calibration data generation unit 74 receives the reference angle ⁇ r output by the rotation angle measurement unit 71. Further, the time measured by the time measuring unit 72 at the timing when the reference angle ⁇ r is measured is acquired as the measurement time tm of the reference angle ⁇ r. For example, the calibration data generation unit 74 acquires the time when the pulse is output from the rotation angle measurement unit 71, which is an encoder, as the measurement time tm. The calibration data generation unit 74 stores the reference angle ⁇ r in association with the measurement time tm.
  • the calibration data generation unit 74 searches the reference angle ⁇ r measured at the capture time ct2 from the stored reference angles ⁇ r at each measurement time tm by comparing the capture time ct2 with the measurement time tm. That is, the calibration data generation unit 74 searches for the reference angle ⁇ r synchronized with the detection signal of the MR sensor element 24 captured at the capture time ct2. That is, the reference angle ⁇ r synchronized with the detection angle ⁇ c indicated by the rotation angle data Da is searched.
  • the above-mentioned "reference angle ⁇ r measured at the capture time ct2" may be the reference angle ⁇ r at the measurement time tm closest to the capture time ct2, and the measurement time within a predetermined allowable time range from the capture time ct2. It may be the reference angle ⁇ r at tm.
  • the calibration data generation unit 74 calculates the difference ( ⁇ c ⁇ r) between the detection angle ⁇ c indicated by the rotation angle data Da and the reference angle ⁇ r, associates the difference ( ⁇ c ⁇ r) with the detection angle ⁇ c, and obtains the calibration data Dc. Generate. Further, the calibration data Dc may be reconstructed from the obtained plurality of detection angles ⁇ c and the corresponding plurality of calibration data Dc by using an interpolation method or the like. By doing so, it is possible to obtain more detailed calibration data Dc.
  • the ADC 33 and the ADC 34 start converting the detection signals (sine signal SIN, cosine signal COS) of the MR sensor element 24.
  • the transmission data generation unit 54 of the control device 30 takes in the time t10 and acquires it as the time tc1.
  • the times t10 to t19 in FIG. 9 represent the times on the time axis measured by the time measuring unit 53 of the control device 30.
  • the times t20 to t23 represent times on the time axis measured by the time measuring unit 72 of the external measuring device 43.
  • the rotation angle calculation unit 50 of the control device 30 starts the calculation of the detection angle ⁇ c of the rotation angle of the rotation shaft 11 of the motor 10.
  • the calculation of the detection angle ⁇ c is completed at time t12.
  • the transmission data generation unit 54 starts generating the rotation angle data Da indicating the detection angle ⁇ c, the time difference data Dt, and the transmission data including the status information at the subsequent time t13.
  • the generation of transmission data is completed at time t14.
  • the transmission unit 55 of the control device 30 transmits the transmission data to the external measurement device 43 at a known processing time t from the time t14.
  • the acquisition time calculation unit 73 detects the transmission of the transmission data at the time t21 measured by the timing unit 72 of the external measurement device 43, and the transmission data is transmitted.
  • the time t21 is acquired as the time tt.
  • the same time at which the transmission data is transmitted is set to the time measuring unit 53 of the control device 30 and the time measuring unit 72 of the external measuring device 43. These are the times measured by. Therefore, the acquisition time calculation unit 73 of the external measuring device 43 adds the processing time t to the time difference td1 indicated by the time difference data Dt from the communication time t21 (as shown in the “timing processing” column in the figure). The time t20 that goes back by the length (td1 + t) is calculated. As a result, the capture time calculation unit 73 can acquire the capture time ct2 (time t20) that should have been obtained when the capture time of the detection signal of the MR sensor element 24 is timed by the timing unit 72.
  • the calibration data generation unit 74 associates the difference ( ⁇ c ⁇ r) between the reference angle ⁇ r measured at the capture time tc2 (t20) and the detection angle ⁇ c indicated by the rotation angle data Da with the detection angle ⁇ c, and calibrates the calibration data. Generate Dc.
  • the control device 30 converts the detection signal of the MR sensor element 24 into a digital signal (time t15 to t16), calculates the detection angle ⁇ c (time t16 to t17), in the same manner as the operation at times t10 to t14.
  • the transmission data is generated (time t18 to time t19), and the transmission data is transmitted to the external measuring device 43 (time t19 to (time t19 + t)).
  • the external measuring device 43 acquires the time t23 as the communication time tt at which the transmission data is transmitted. Further, the external measuring device 43 sets the time t22, which is traced back from the communication time t23 by the time length (td2 + t) obtained by adding the processing time t to the time difference td2 indicated by the time difference data Dt, to the detection signal of the MR sensor element 24 by the time measuring unit 72. It is acquired as the capture time ct2 that should have been obtained when the capture time was timed.
  • the external measuring device 43 generates calibration data Dc by associating the difference ( ⁇ c ⁇ r) between the reference angle ⁇ r measured at the capture time tc2 (t22) and the detection angle ⁇ c indicated by the rotation angle data Da with the detection angle ⁇ c. do.
  • the reference angle synchronized with the detection angle ⁇ c indicated by the rotation angle data Da ⁇ r can be obtained.
  • the reference angle ⁇ r synchronized with the detection angle ⁇ c indicated by the rotation angle data Da can be acquired.
  • the time difference (td1 + t, td2 + t) from the capture time tc1 of the detection signal of the MR sensor element 24 to the transmission of the transmission data may differ depending on the transmission data.
  • the waiting time (t12 to t13) from the first calculation of the detection angle ⁇ c to the start of generation of transmission data is determined by, for example, the control device 30 in parallel with other processing. By being executed, it is longer than the second waiting time (t17 to t18).
  • the synchronization of the above can be ensured, and the calibration data Dc of the rotation angle calculation device can be generated according to these detection signals and the reference angle ⁇ r. See FIG.
  • the transmission unit 75 of the external measuring device 43 transmits the calibration data Dc generated by the calibration data generation unit 74 to the control device 30.
  • the control device 30 may have a second data output mode that outputs the calibrated angle ⁇ cc obtained by correcting the detection angle ⁇ c based on the calibration data Dc.
  • the detection signal is taken in again from the MR sensor element 24, the detection angle ⁇ c is calculated by the rotation angle calculation unit 50, and the detection angle ⁇ c is corrected by the correction unit 51 based on the calibration data Dc. Calculate the calibrated angle ⁇ cc.
  • the transmission data generation unit 54 generates transmission data in which the rotation angle data Da indicating the calibrated angle ⁇ cc is stored instead of the detection angle ⁇ c before the correction by the correction unit 51. That is, the transmission data generation unit 54 includes at least the rotation angle data Da indicating the calibrated angle ⁇ cc and the Dt related to the time difference from the capture time ct1 when the detection signal is captured from the MR sensor element 24 to the transmission of the transmission data. To generate.
  • the external measuring device 43 When the external measuring device 43 receives the transmission data including the rotation angle data Da indicating the calibrated angle ⁇ cc, the external measuring device 43 sets the capture time tc2 of the detection signal of the MR sensor element 24 to the time measuring unit of the external measuring device 43 in the same manner as described above. Calculated as the time clocked by 72.
  • the external measuring device 43 calculates an error ( ⁇ cc ⁇ r) between the reference angle ⁇ r measured at the capture time ct2 and the calibrated angle ⁇ cc indicated by the rotation angle data Da, and the error ( ⁇ cc ⁇ r) is within a predetermined error range. If it does not fit in, the calibration data Dc is generated again. When the error ( ⁇ cc ⁇ r) is within the predetermined error range, the generation of the calibration data Dc is completed.
  • step S1 the ADC 33 and the ADC 34 incorporate the detection signal from the MR sensor element 24 into the control device 30 by converting it into a digital signal.
  • the transmission data generation unit 54 of the control device 30 acquires the capture time ct1 of the detection signal of the MR sensor element 24 by the timekeeping unit 53.
  • the rotation angle measuring unit 71 of the external measuring device 43 measures the reference angle ⁇ r.
  • the calibration data generation unit 74 acquires the measurement time tm of the reference angle ⁇ r by the time measuring unit 72.
  • step S2 the rotation angle calculation unit 50 of the control device 30 calculates the detection angle ⁇ c of the rotation angle of the rotation shaft 11 of the motor 10 based on the output signals of the ADC 33 and the ADC 34.
  • step S3 the transmission data generation unit 54 generates transmission data in which the rotation angle data Da indicating the detection angle ⁇ c and the time difference data Dt are stored.
  • the time difference data Dt is data relating to the time difference from the capture time ct1 to the transmission of the rotation angle data Da.
  • step S4 the transmission unit 55 of the control device 30 transmits the transmission data to the external measurement device 43 of the calibration device 40.
  • the receiving unit 70 of the external measuring device 43 receives the transmission data.
  • the acquisition time calculation unit 73 of the external measuring device 43 sets the time when the control device 30 transmits the transmission data or the time when the transmission data is received by the reception unit 70 by the time measuring unit 72, and the communication time tt of the transmission data is set. Get as.
  • step S5 the capture time calculation unit 73 clocks the capture time ct2 in which the control device 30 captures the detection signal of the MR sensor element 24 by the timing unit 72 based on the communication time tt and the time difference data Dt. Calculated as time.
  • step S6 the calibration data generation unit 74 compares the reference angle ⁇ r measured at the capture time tc2 with the detection angle ⁇ c indicated by the rotation angle data Da, and generates calibration data Dc.
  • step S7 the calibration data generation unit 74 determines whether or not the calibration data Dc for one round of the rotating shaft 11 of the motor 10 has been obtained. If the calibration data Dc for one lap has not been obtained yet (step S7: N), the process proceeds to step S8. When the calibration data Dc for one lap is obtained (step S7: Y), the process proceeds to step S9. By rotating the drive motor 41 in step S8, the rotation angle ⁇ m of the rotation shaft 11 of the motor 10 is changed. After that, the process returns to step S1.
  • step S9 it is determined whether or not the value obtained by correcting the detection angle ⁇ c calculated by the rotation angle calculation unit 50 using the calibration data Dc generated in steps S1 to S8 is within a predetermined error range. Specifically, the operation mode of the control device 30 is switched to the second data output mode, and the calibrated angle ⁇ cc obtained by correcting the detection angle ⁇ c based on the calibration data Dc is obtained from the control device 30 by the external measuring device 43. Send to.
  • the external measuring device 43 calculates an error ( ⁇ cc ⁇ r) between the reference angle ⁇ r and the calibrated angle ⁇ cc, and the error ( ⁇ cc ⁇ r) is within a predetermined error range over the entire rotation angle range of the rotation shaft 11. Determine if it fits in.
  • the process returns to step S1 and regenerates the calibration data Dc.
  • the process ends when the error ( ⁇ cc ⁇ r) is within the predetermined error range (step S9: Y).
  • step S7 it is determined whether or not the calibration data Dc for one lap has been acquired, but the calibration data Dc for one cycle or more may be acquired. In this case, a plurality of calibration data Dc obtained with respect to the detection angle ⁇ c may be averaged to obtain calibration data Dc. This makes it possible to reduce noise.
  • the column shaft 102 of the steering handle 101 is connected to the tie rod 106 of the steering wheel via the reduction gear 103, the universal joints 104A and 104B, and the pinion rack mechanism 105.
  • the column shaft 102 is provided with a torque sensor 110 that detects the steering torque Th of the steering handle 101, and a motor 10 that assists the steering force of the steering handle 101 is connected to the column shaft 102 via the reduction gear 103. Has been done.
  • the control device 30 described above is used as an electronic control unit that controls the power steering device. Power is supplied to the control device 30 from the battery 114, which is a power source, and an ignition key signal is input from the ignition key 111.
  • the control device 30 calculates the steering angle ⁇ of the steering handle 101 based on the rotation angle ⁇ m of the motor 10 calculated as described above and the reduction ratio N of the reduction gear 103.
  • the control device 30 calculates the steering assist command value of the assist command using the assist map or the like based on the steering angle ⁇ , the steering torque Th, and the vehicle speed Vh detected by the vehicle speed sensor 112, and is calculated.
  • the current I supplied to the motor 10 is controlled based on the steering assist command value.
  • the torque sensor 110 detects the steering torque Th by the driver's handle operation transmitted from the steering handle 101, and calculates the steering angle ⁇ based on the rotation angle ⁇ m of the motor 10. Then, the motor 10 is driven and controlled by the steering assist command value calculated based on the steering torque Th, the steering angle ⁇ , and the vehicle speed Vh, and this drive is applied to the steering system as an auxiliary force (steering assist force) for the driver's steering wheel operation. Granted.
  • the calibration system 1 calibrates a rotation angle calculation device that calculates the rotation angle of the rotating body based on a detection signal output from the MR sensor element 24 according to the rotation of the rotating body, and a rotation angle calculation device.
  • the calibration device 40 of the above is provided.
  • the rotation angle calculation device includes a sensor unit 20 on which the MR sensor element 24 is mounted and a control device 30.
  • the control device 30 calculates the rotation angle of the rotating body based on the detection signal of the MR sensor element 24, and transmits the rotation angle data Da indicating the rotation angle from the control device 30 to the calibration device 40. Further, the control device 30 transmits the time difference data Dt relating to the time difference from the acquisition of the detection signal from the MR sensor element 24 to the transmission of the rotation angle data Da from the control device 30 to the calibration device 40.
  • the calibration device 40 measures the rotation angle ⁇ r of the rotating body, and measures the measurement time tm at which the rotation angle ⁇ r is measured and the communication time tt at which the rotation angle data Da is transmitted or received.
  • the calibrator 40 has a rotation angle ⁇ r measured by the calibrator 40 at a time ct2 retroactive from the communication time tt by the time difference between the time when the detection signal is captured from the MR sensor element 24 and the time when the rotation angle data Da is transmitted, and the rotation angle data. By comparing with Da, the calibration data Dc of the rotation angle data Da is acquired.
  • the control device 30 transmits the transmission data in which the rotation angle data Da and the time difference data Dt are stored in the same frame to the calibration device 40.
  • the communication overhead can be reduced as compared with the case where the rotation angle data Da and the time difference data Dt are stored in separate frames and transmitted.
  • the frequency of transmission of the rotation angle data Da can be increased, so that the time required for the calibration process can be reduced.
  • the control device 30 stores the rotation angle data Da to generate transmission data to be transmitted to the calibration device 40, and then transmits the transmission data to the calibration device 40 at a known processing time t.
  • the control device 30 generates the time difference data Dt indicating the time difference from the acquisition of the detection signal from the MR sensor element 24 to the completion of the generation of the transmission data.
  • the calibration device 40 rotates the rotating body by the drive motor 41 and acquires calibration data Dc at a plurality of rotation angles of the rotating body. This makes it possible to generate calibration data Dc at a plurality of rotation angles of different rotating bodies.
  • rotation angle calculation unit 51 ... correction unit, 52 ... drive signal generation unit, 53 ... timing unit, 54 ... transmission data generation unit, 55 ... transmission unit, 56 ... receiver, 57 ... calibration data acquisition unit, 60 ... adder, 61 ... subtractor, 62 ... arithmetic unit, 70 ... receiver, 71 ... rotation angle Measuring unit, 72 ... Measuring unit, 73 ... Importing time calculation unit, 74 ... Calibration data generation unit, 75 ... Transmission unit, 101 ... Steering handle, 102 ... Column axis , 103 ... reduction gear, 104A, 104B ... universal joint, 105 ... pinion rack mechanism, 106 ... tie rod, 110 ... torque sensor, 111 ... ignition key, 112 ... vehicle speed Sensor, 114 ... Battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

校正方法では、回転角度算出装置(20、30)が、センサの検出信号に基づいて回転角度θcを算出し(S2)、回転角度θcを示す回転角度データDaを校正装置(40)へ送信し(S3)、検出信号を取り込んでから回転角度データを送信するまでの時間差に関する時間差データDtを校正装置へ送信する(S3)。校正装置が、回転角度θrを測定し(S1)、回転角度θrを測定した測定時刻tmと、回転角度データが送信又は受信された通信時刻ttを計時し(S1、S4)、検出信号を取り込んでから回転角度データを送信するまでの時間差だけ通信時刻ttから遡った時刻tc2に測定した回転角度θrと、回転角度データDaとを比較することにより、回転角度データの校正データDcを取得する(S5、S6)。

Description

回転角度算出装置の校正方法、回転角度算出装置の校正装置、回転角度算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
 本発明は、回転角度算出装置の校正方法、回転角度算出装置の校正装置、回転角度算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置に関する。
 回転体の回転に応じてセンサから出力される検出信号に基づいて回転体の回転角度を算出する回転角度算出装置が知られている。例えば、下記特許文献1には、回転体の回転角を検知してsin信号及びcos信号を出力するセンサ部を有する角度検出装置が知られている。
 このような回転角度算出装置を使用する場合には、センサの出力信号から算出した回転角度と、別途測定した回転体の回転角度の測定データとを比較して、回転角度算出装置を校正することが好ましい。
 異なるセンサで得られた検出信号を比較する技術としては、下記特許文献2に記載の発明が知られている。特許文献2には、センサAの検出信号AiにタイムスタンプATiを付与し、センサBの検出信号BjにタイムスタンプBTjを付与するタイムスタンプ付与部と、タイムスタンプATi及びBTiに基づいて、検出信号Aiに最も同期した検出信号Bjを格納部から検索する同期信号検索部と、同期信号検索部で検索された同期信号の角度差の演算及びバーニア演算を行うバーニア演算手段が記載されている。
特開2018-185198号公報 特開2014-210472号公報
 回転角度算出装置とは別の外部測定装置による測定データを用いて回転角度算出装置を校正する場合、回転角度算出装置が算出した回転角度と、外部測定装置の測定データとの間の同期を確保する必要がある。
 上記特許文献2のようにタイムスタンプの比較によって同期を確保する場合、回転角度算出装置の計時手段と外部測定装置の計時手段とが同期していないと、回転角度算出装置が算出した回転角度と外部測定装置で得た測定データとの同期を確保できない。
 本発明は、このような問題に鑑みてなされたものであり、回転角度算出装置が算出した回転角度と、回転角度算出装置とは別の外部測定装置で測定した回転角度との同期を確保して、回転角度算出装置の校正データを生成することを目的とする。
 本発明の一態様によれば、回転体の回転に応じてセンサから出力される検出信号に基づいて回転体の回転角度を算出する回転角度算出装置の校正方法が与えられる。校正方法では、回転角度算出装置が、検出信号に基づいて回転体の回転角度を算出し、回転角度を示す回転角度データを、回転角度算出装置から校正装置へ送信し、センサから検出信号を取り込んでから回転角度データを送信するまでの時間差に関する時間差データを、回転角度算出装置から校正装置へ送信し、校正装置が、回転体の回転角度を測定し、校正装置が回転体の回転角度を測定した測定時刻と、回転角度データが送信又は受信された通信時刻を、校正装置で計時し、この通信時刻より時間差だけ遡った時刻に校正装置が測定した回転体の回転角度と、回転角度データとを比較することにより、回転角度データの校正データを取得する。
 本発明の他の一形態によれば、回転体の回転に応じてセンサから出力される検出信号に基づいて回転体の回転角度を算出する回転角度算出装置の校正装置が与えられる。構成装置は、検出信号に基づいて算出された回転体の回転角度を示す回転角度データを回転角度算出装置から受信するとともに、回転角度算出装置が検出信号をセンサから取り込んでから回転角度データを送信するまでの時間差に関する時間差データを、回転角度算出装置から受信する受信部と、回転体の回転角度を測定する回転角度測定部と、回転角度測定部が回転体の回転角度を測定した測定時刻、及び回転角度データが送信又は受信された通信時刻を計時する計時部と、この通信時刻より時間差だけ遡った時刻に回転角度測定部が測定した回転体の回転角度と、回転角度データとを比較することにより、回転角度データの校正データを生成する校正データ生成部と、を備える。
 本発明の更なる他の一形態によれば、回転体の回転に応じた検出信号を出力するセンサと、検出信号に基づいて回転体の回転角度を算出する回転角度算出部と、回転角度算出部が算出した回転体の回転角度を校正する校正データを受信する受信部と、受信した校正データを記憶する記憶部と、回転角度算出部が算出した回転体の回転角度を、記憶部に記憶した校正データで補正する補正部と、回転角度算出部により算出され且つ補正部によって補正されていない回転角度を示す回転角度データを送信するとともに、センサから検出信号を取り込んでから回転角度データを送信するまでの時間差に関する時間差データを送信する送信部と、を備える回転角度算出装置が与えられる。
 本発明の更なる他の一形態によれば、回転体としてモータの回転軸の回転角度を算出する上記の回転角度算出装置と、補正部によって補正された回転軸の回転角度に応じてモータを駆動する駆動部と、を備えるモータ制御装置が与えられる。
 本発明の更なる他の一形態によれば、上記のモータ制御装置と、モータ制御装置によって制御されるモータと、を備える電動アクチュエータ製品が与えられる。
 本発明の更なる他の一形態によれば、上記のモータ制御装置と、モータ制御装置によって制御されるモータと、を備え、モータによって車両の操舵系に操舵補助力を付与することを特徴とする電動パワーステアリング装置が与えられる。
 本発明によれば、回転角度算出装置が算出した回転角度と、回転角度算出装置とは別の外部測定装置で測定した回転角度との同期を確保して、回転角度算出装置の校正データを生成できる。
実施形態の回転角度算出装置の校正システムの一例の概略構成図である。 実施形態の回転角度算出装置の一例の概略を示す分解図である。 実施形態の回転角度算出装置の概略構成図である。 図3の制御装置の機能構成の一例の説明図である。 図4の回転角度算出部の機能構成の一例の説明図である。 校正データの一例の説明図である。 図4の送信データ生成部が生成する送信データのフォーマットの一例の説明図である。 図1の外部測定装置の機能構成の一例の説明図である。 制御装置と外部測定装置の動作の一例を示すタイミングチャートである。 実施形態の回転角度算出装置の校正方法の一例のフローチャートである。 実施形態の回転角度算出装置を備える電動パワーステアリング装置の一例の概要を示す構成図である。
 本発明の実施形態を、図面を参照しながら詳細に説明する。
 なお、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構成、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 (構成)
 図1を参照する。実施形態の校正システム1は、回転体であるモータ10の回転軸11の回転角度を算出する回転角度算出装置を校正する。なお、本発明の対象は、モータ10の回転軸11の回転角度を算出する回転角度算出装置に限定されない。本発明は、様々な回転体の回転角度を算出する回転角度算出装置に適用できる。
 校正システム1は、校正システム1により校正される回転角度算出装置と、校正装置40とを備える。回転角度算出装置は、センサユニット20と制御装置30とを備える。
 センサユニット20は、回転軸11の回転に応じた検出信号を制御装置30に出力する。図2を参照する。センサユニット20は、磁石21と、回路基板22と、支持部材23とを備える。
 磁石21は、モータ10の回転軸11の出力端12と反対側の端部14に固定され、回転軸11の周方向に沿って配列された異なる磁極(S極及びN極)を有している。
 回路基板22には磁束を検出するMR(磁気抵抗:Magnetic Resistance)センサ素子(Integrated Circuit)24が実装されている。回路基板22に複数のMRセンサ素子を実装して、各々のMRセンサ素子の検出信号に基づいて回転軸11を別個に算出する冗長系を構成してもよい。
 回路基板22は図示しない締結ネジやかしめなどの固定手段によって支持部材23に固定されている。また、支持部材23も同様に図示しない固定手段によってモータ10に固定されている。
 回路基板22が支持部材23に固定される位置と、支持部材23がモータ10に固定される位置は、回路基板22が支持部材23に固定され且つ支持部材23がモータ10に固定されたときに、支持部材23とモータ10との間に回路基板22が配置されて、MRセンサ素子24が磁石21に近接するように決定されている。
 これによりMRセンサ素子24は、モータ10の回転軸11の回転に伴って磁石21が回転すると、回転角度に応じた磁石21の磁束変化を検出し、モータ10の回転軸11の回転に応じた検出信号を出力する。
 例えば、MRセンサ素子24は、モータ10の回転軸11の回転角度θmに応じた正弦信号sinθmと余弦信号cosθmを、モータ10の回転軸11の回転に応じた検出信号として出力する。
 なお、本発明の回転角度算出装置が使用するセンサはMRセンサに限定されない。本発明の回転角度算出装置は、MRセンサ以外の方式のセンサによってモータ10の回転軸11の回転角度θmを検出してもよい。
 支持部材23は、例えば回路基板22を覆うカバーである。支持部材23は、例えば、図1において下方に開口する凹部を有しており、回路基板22は支持部材23の凹部内に固定される。支持部材23をモータ10に固定すると、支持部材23の凹部の開口部がモータ10によって遮蔽され、支持部材23の凹部とモータ10によって画成される内部空間内に回路基板22が収納される。これにより、外部からの衝撃や異物から回路基板22が保護される。
 支持部材23は、例えばアルミ合金などの熱伝導性のよい金属で形成されて、ヒートシンクとしての役割を果たしてよい。また、支持部材23はヒートシンクそのものであってもよい。
 センサユニット20とは別体の電子制御ユニット(ECU:Electronic Control Unit)である制御装置30は、ハーネス25によりセンサユニット20と接続される。モータ10の回転軸11の回転に応じてMRセンサ素子24から出力される検出信号は、ハーネス25を経由して制御装置30に伝達される。
 制御装置30は、MRセンサ素子24による検出信号に基づいてモータ10の回転軸11の回転角度θmを演算し、演算した回転角度θmに応じてパワー半導体スイッチング素子を制御して、モータ10を駆動する。
 図3を参照する。制御装置30は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)等のプロセッサ31と、メモリ等である記憶装置32と、アナログディジタル変換器(ADC:Analog-Digital Converter)33及び34と、駆動回路35と、通信I/F(インタフェース)回路36を備える。
 以下に説明する制御装置30の機能は、例えばプロセッサ31が、記憶装置32に格納されたコンピュータプログラムを実行することにより実現される。
 制御装置30は、プロセッサ31に加えて又は代えて、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。
 例えば、制御装置30は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えば制御装置30は、フィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
 上記のとおり、MRセンサ素子24は、モータ10の回転軸11とともに回転する磁石21の磁束を検出することにより、モータ10の回転軸11の回転角度θmに応じた正弦信号SIN=sinθmと余弦信号COS=cosθmを出力する。
 制御装置30は、ADC33及びADC34によってディジタル信号に変換された正弦信号SIN及び余弦信号COSを読み取る。
 制御装置30は、正弦信号SIN及び余弦信号COSに基づいてモータ10の回転軸11の回転角度の検出角度θcを算出する。検出角度θcは、正弦信号SIN及び余弦信号COSに基づいて理論的に算出された値であり、校正前の理論値である。
 制御装置30は、検出角度θcを校正するための校正データDcを、図1に示す校正装置40の外部測定装置43から通信I/F回路36を経由して受信する。
 制御装置30は、正弦信号SIN及び余弦信号COSに基づいて算出した検出角度θcを、外部測定装置43から受信した校正データDcに基づいて補正することにより、モータ10の回転軸11の回転角度θmを演算する。
 制御装置30は、演算した回転角度θmに応じて駆動回路35(例えばインバータなど)を制御して、モータ10を駆動する。
 図4を参照して、制御装置30の機能構成の一例を説明する。
 制御装置30は、回転角度算出部50と、補正部51と、駆動信号生成部52と、計時部53と、送信データ生成部54と、送信部55と、受信部56と、校正データ取得部57を備える。
 回転角度算出部50は、ADC33及びADC34によってディジタル信号に変換された正弦信号SIN及び余弦信号COSに基づいて、モータ10の回転軸11の回転角度の検出角度θcを算出する。
 図5を参照する。回転角度算出部50は、加算器60と、減算器61と、演算部62を備える。
 演算部62は、加算器60の出力(COS+SIN)と、減算器61の出力(COS-SIN)とに基づいて検出角度θcを算出する。
 図4を参照する。補正部51は、記憶装置32に格納された校正データDcを読み出し、校正データDcに基づいて検出角度θcを補正し、モータ10の回転軸11の回転角度θmを取得する。
 校正データDcは、検出対象である実際の回転角度θmと検出角度θcとの誤差(いわゆるリニアリティ誤差)を補正するデータである。
 図6を参照する。横軸はモータ10の回転軸11の実際の回転角度θmを示し、縦軸は、検出角度θcを校正する際の基準となる基準角度θr(一点鎖線)と、検出角度θc(実線)を示す。基準角度θrは、理想的には実際の回転角度θmと一致する。
 校正データDcは、例えば、検出角度θcと基準角度θrの差分(θc-θr)を検出角度θcに対応付けて記憶装置32に格納したデータである。
 図4を参照する。補正部51は、検出角度θcに関連付けられて記憶された校正データDc=(θc-θr)を記憶装置32から読み出して、検出角度θcから減じることにより補正後の回転角度θr=θmを算出する。
 駆動信号生成部52は、補正後の回転角度θmに基づいて、駆動回路35を制御する駆動信号を生成し、駆動回路35に出力する。例えば、駆動信号生成部52は、駆動回路35に実装されたスイッチング素子をオンオフするゲート信号を出力する。
 以上により、制御装置30はモータ10の回転軸11の回転角度θmに応じてモータ10を駆動する。
 制御装置30は、上記のように回転角度算出部50と補正部51と駆動信号生成部52とを作動させてモータ10を駆動するモード(以下「モータ駆動モード」と表記することがある)を、制御装置30の動作モードの一つとして有する。
 一方で制御装置30は、モータ駆動モードに加えて、回転角度算出部50により算出され、かつ補正部51によって補正される前の検出角度θcを示すデータを出力するモード(以下「データ出力モード」と表記することがある)を、制御装置30の動作モードの一つとして有する。
 データ出力モードで出力される検出角度θcを示すデータ(以下「回転角度データDa」と表記することがある)は、制御装置30の外部の校正装置40が校正データDcを生成するために使用できる。
 データ出力モードでは、回転角度算出部50と、計時部53と、送信データ生成部54と、送信部55が作動する。
 計時部53は、時刻を計時する。例えば、計時部53は所定の時点(例えば制御装置30の動作モードがデータ出力モードに切り替わった時点)からの経過時間を時刻として計時してもよく、常時作動して現在時刻を計時してもよい。
 送信データ生成部54は、MRセンサ素子24からの検出信号(正弦信号SIN及び余弦信号COS)を制御装置30が取り込んだタイミングを示すタイミング信号Stを受信する。
 例えば、タイミング信号Stは、ADC33及びADC34のサンプルホールドタイミングを示す信号であってよい。また、ADC33及びADC34によるアナログ信号からディジタル信号への変換時間が十分短い場合には、ADC33及びADC34の出力タイミングを示す信号であってもよい。
 送信データ生成部54は、タイミング信号Stが示すタイミングで計時部53が計時した時刻を、MRセンサ素子24の検出信号の取り込み時刻tc1として取得する。
 また、送信データ生成部54は、回転角度算出部50が算出した検出角度θcを受信し、検出角度θcを示す回転角度データDaを格納した送信データを生成する。送信データ生成部54が生成した送信データは、送信部55により通信I/F回路36を経由して校正装置40の外部測定装置43へ送信される。
 例えば、送信部55は、所定のディジタル信号用のCAN(Controller Area Network)通信プロトコルを用いて送信データを送信してよい。送信データ生成部54は、通信プロトコルに従った所定のデータフォーマットの送信データを生成してよい。
 送信データのデータフォーマットの一例を図7に示す。送信データは、回転角度データDaと時間差データDtとが同一のフレームに格納されるデータフォーマットを有する。
また例えば、送信データは、回転角度データDaが使用可能なデータであるか否かの状態を示すステータス情報が含んでもよい。なお、ステータス情報は必須ではない。
 また、複数のMRセンサ素子にて冗長系を構成する場合、それぞれのMRセンサ素子に対応する回転角度データDa及び時間差データDtを同一のフレームに格納しても良いし、複数のフレームに分割して送信しても良い。また、複数のMRセンサ素子にて冗長系を構成する場合、予め定めたMRセンサ素子の回転角度データDaに対する角度差分として送信して良い。例えば、3系統の冗長系の場合、第1系統の回転角度データを100度、第2系統の回転角度データを102度、第3系統の回転角度データを99度とする。第1系統の回転角度データとして100度を送信し、第2系統及び第3系統の回転角度データとして、第1系統の回転角度データとの差分である+2度及び-1度を回転角度データとして送信しても良い。このようにすることで送信データの圧縮が図れる。
 時間差データDtは、MRセンサ素子24から検出信号を取り込んだ取り込み時刻tc1から送信データを送信するまでの時間差に関するデータである。
 ここで、送信データ生成部54が時間差データDtを送信データに格納する時点は、送信データが送信される時点以前の時点である。したがって、送信データ生成部54は、送信データを生成する時点では、送信データが送信される時点を計時することができない。このため、例えば送信データ生成部54は、取り込み時刻tc1から送信データの生成完了までの時間差を示す時間差データDtを生成してよい。
 送信部55が送信データを送信するのに要する処理時間tは、固定された既知の処理時間である。したがって、時間差データDtは、処理時間tが加算されることにより、取り込み時刻tc1から送信データを送信するまでの時間差を間接的に表すことができる。
 送信データ生成部54は、回転角度算出部50から検出角度θcを受信して回転角度データDa及びステータス情報を送信データに格納する。そして、送信データ生成部54は、計時部53が計時した時刻teを取得し、時間差td=te-tcを示す時間差データDtを送信データに格納して送信データの生成を完了する。
 なお、検出角度θcを受信してから送信データの生成完了までに要する時刻が既知の固定時間である場合には、検出角度θcの受信タイミングで計時部53が計時した時刻を取得して送信データの生成完了時刻を予測してもよい。また、回転角度データDaやステータス情報を送信データに格納してから送信データの生成完了までに要する時刻が既知の固定時間である場合には、これらのデータの格納タイミングで計時部53が計時した時刻を取得して送信データの生成完了時刻を予測してもよい。
 送信データ生成部54により、回転角度データDa及び時間差データDtを格納した送信データが生成されると、送信部55は、送信データの生成完了時点から既知の処理時間tで送信データを外部に出力する。例えば送信部55は、送信データを校正装置40の外部測定装置43へ送信する。
 なお、送信部55による回転角度データDa及び時間差データDtの送信形態は上記に限定されない。送信データ生成部54は、回転角度データDaを送信した後に時間差データDtを生成し、送信部55は、回転角度データDaを送信した後に時間差データDtを送信してもよい。この場合に送信データ生成部54は、送信部55が回転角度データDaを送信した時点で計時部53が計時した時刻を取得し、MRセンサ素子24から検出信号を取り込んだ取り込み時刻tc1から回転角度データDaを送信するまでの時間差を直接表す時間差データDtを生成してもよい。
 回転角度データDa及び時間差データDtは、校正装置40が校正データDcを生成するために使用される。制御装置30は、校正データDcを受信する校正データ受信モードを、制御装置30の動作モードの一つとして有する。
 校正データ受信モードでは、受信部56と校正データ取得部57が作動する。
 受信部56は、校正データDcを外部から受信する。例えば、受信部56は、校正装置40の外部測定装置43から校正データDcを受信する。
 校正データ取得部57は、受信部56が受信した校正データDcを、記憶装置32に格納する。
 次に、校正データDcを生成する校正装置40について説明する。図1を参照する。校正装置40は、駆動モータ41と、回転角度測定部42と、外部測定装置43を備える。
 駆動モータ41の回転軸44は、連結部45によりモータ10の回転軸11に連結されている。駆動モータ41は、回転軸44を回転させることにより、モータ10の回転軸11を回転させて回転軸11の回転角度θmを様々な角度に変更する。
 回転角度測定部42は、回転角度算出装置の校正(すなわち検出角度θcの校正)の基準となる基準角度θrを測定するための基準角度測定信号Srを生成する。例えば、回転角度測定部42は、モータ10の回転軸11と連結された駆動モータ41の回転軸44の回転角度を測定するための信号を、基準角度測定信号Srとして生成する。回転角度測定部42は、基準角度測定信号Srを外部測定装置43へ出力する。
 回転角度測定部42は、例えば、回転軸44の回転量に応じた個数のパルスを基準角度測定信号Srとして出力するエンコーダであってよい。外部測定装置43は、回転角度測定部42が出力するパルスの数をカウントする(累積する)ことにより、基準角度θrを測定してよい。
 なお、回転角度測定部42はエンコーダに限定されるものではなく、他の形式の回転角度測定装置(例えば、校正済の回転角度測定装置)等であってもよい。
 外部測定装置43は、制御装置30から送信される回転角度データDa及び時間差データDtと、基準角度測定信号Srとに基づいて、校正データDcを生成して制御装置30へ送信する。
 外部測定装置43は、CPUやMPU等であるプロセッサ46と、メモリ等である記憶装置47と、通信I/F回路48と、I/F(インタフェース回路)49を備える。
 外部測定装置43は、通信I/F回路48を経由して、制御装置30から回転角度データDa及び時間差データDtを受信する。また、通信I/F回路48を経由して校正データDcを制御装置30へ送信する。
 外部測定装置43は、I/F49を経由して、回転角度測定部42から基準角度測定信号Srを受信する。
 以下に説明する外部測定装置43の機能は、例えばプロセッサ46が、記憶装置47に格納されたコンピュータプログラムを実行することにより実現される。
 外部測定装置43は、プロセッサ46に加えて又は代えて、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。
 例えば、外部測定装置43は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えば外部測定装置43は、FPGA等のPLDを有していてもよい。
 図8を参照して、外部測定装置43の機能構成の一例を説明する。外部測定装置43は、受信部70と、回転角度測定部71と、計時部72と、取込時刻算出部73と、校正データ生成部74と、送信部75を備える。
 受信部70は、制御装置30から送信される送信データを受信する。受信部70は、送信データに含まれる回転角度データDaを校正データ生成部74へ出力し、送信データに含まれる時間差データDtを取込時刻算出部73に出力する。
 回転角度測定部71は、回転角度測定部42から出力される基準角度測定信号Srを受信し、基準角度測定信号Srに基づいて基準角度θrを測定する。例えば、エンコーダである回転角度測定部71から出力されるパルスの数をカウントする(累積する)ことにより、基準角度θrを測定してよい。
 計時部72は、時刻を計時する。例えば、計時部72は所定の時点からの経過時間を時刻として計時してもよく、現在時刻を計時してもよい。
 なお、外部測定装置43の計時部72は、制御装置30の計時部53と同期していなくてもよい。すなわち、同一の時点で計時部72が計時した時刻と計時部53が計時した時刻が異なっていてもよい。例えば、同一の時点で計時部72が計時した時刻と計時部53が計時した時刻との間の時間差は、回転角度測定部71による測定周期(例えばエンコーダである回転角度測定部71から出力されるパルスの間隔)よりも長くてもよい。
 取込時刻算出部73は、制御装置30から送信データを外部測定装置43へ送信する通信回線(例えばバス)を監視して、制御装置30が送信データを送信したタイミングを高速監視する。取込時刻算出部73は、送信データが送信されたタイミングで計時部72が計時した時刻を、送信データの通信時刻ttとして取得する。
 または、取込時刻算出部73は、受信部70で送信データを受信したタイミングを高速監視して、送信データが受信されたタイミングで計時部72が計時した時刻を、送信データの通信時刻ttとして取得してもよい。
 取込時刻算出部73は、外部測定装置43の計時部72によって、MRセンサ素子24の検出信号の取り込み時刻を計時した場合に得られたはずの時刻(以下「取り込み時刻tc2」と表記する)を、通信時刻ttと時間差データDtとに基づいて算出する。すなわち、MRセンサ素子24の検出信号の取り込み時刻tc2を計時部72により計時される時刻として算出する。
 例えば、取込時刻算出部73は、時間差データDtに基づいて知得できるMRセンサ素子24の検出信号の取り込み時刻tc1から送信データを送信するまでの時間差だけ、通信時刻ttから遡った時刻を、取り込み時刻tc2として算出する。
 例えば、取込時刻算出部73は、時間差データDtが示す時間差tdに、送信部55が送信データを送信するのに要する既知の処理時間tを加えた時間長だけ、通信時刻ttから遡った時刻を、取り込み時刻tc2として算出する。
 また例えば、上記のように、MRセンサ素子24の検出信号の取り込み時刻tc1から回転角度データDaを送信するまでの時間差を直接表す時間差データDtを、回転角度データDaの後に送信する場合には、時間差データDtが示す時間差に通信時刻ttから遡った時刻を、取り込み時刻tc2として算出する。
 校正データ生成部74は、回転角度測定部71が出力する基準角度θrを受信する。また、基準角度θrが測定されたタイミングで計時部72が計時した時刻を、基準角度θrの測定時刻tmとして取得する。例えば、校正データ生成部74は、エンコーダである回転角度測定部71からパルスが出力された時刻を測定時刻tmとして取得する。校正データ生成部74は、測定時刻tmと関連付けて基準角度θrを記憶する。
 校正データ生成部74は、取り込み時刻tc2と測定時刻tmとを比較することにより、記憶した各測定時刻tmにおける基準角度θrの中から、取り込み時刻tc2に測定された基準角度θrを検索する。
 すなわち、校正データ生成部74は、取り込み時刻tc2に取り込まれたMRセンサ素子24の検出信号と同期した基準角度θrを検索する。すなわち、回転角度データDaが示す検出角度θcと同期した基準角度θrを検索する。
 なお、上記の「取り込み時刻tc2に測定された基準角度θr」は、取り込み時刻tc2に最も近い測定時刻tmにおける基準角度θrであってもよく、取り込み時刻tc2から所定の許容時間範囲内の測定時刻tmにおける基準角度θrであってもよい。
 校正データ生成部74は、回転角度データDaが示す検出角度θcと基準角度θrとの差分(θc-θr)を算出し、差分(θc-θr)を検出角度θcに関連付けて、校正データDcを生成する。また、得られた複数の検出角度θc及び対応する複数の校正データDcから補間手法等を用いて、校正データDcを再構成するようにしてもよい。このようにすることでより細やかな校正データDcとすることができる。
 図9を参照して、制御装置30と外部測定装置43の動作の一例を説明する。
 時刻t10において、ADC33及びADC34は、MRセンサ素子24の検出信号(正弦信号SIN、余弦信号COS)の変換を開始する。制御装置30の送信データ生成部54は、時刻t10を取り込み時刻tc1として取得する。
 なお、図9の時刻t10~t19は、制御装置30の計時部53により計時される時間軸上の時刻を表す。また、時刻t20~t23は、外部測定装置43の計時部72により計時される時間軸上の時刻を表す。
 時刻t11においてADC33及びADC34における変換処理が完了すると、制御装置30の回転角度算出部50は、モータ10の回転軸11の回転角度の検出角度θcの演算を開始する。検出角度θcの演算は時刻t12に完了する。
 検出角度θcの演算が完了すると、その後の時刻t13において送信データ生成部54は、検出角度θcを示す回転角度データDaと、時間差データDtと、ステータス情報を含んだ送信データの生成を開始し、時刻t14において送信データの生成を完了する。例えば送信データには、取り込み時刻tc1(t10)から送信データの生成完了時刻t14までの時間差td1=(t14-t10)を示す時間差データDtが格納される。
 時刻t14において送信データの生成が完了すると、制御装置30の送信部55は、時刻t14から既知の処理時間tで送信データを外部測定装置43へ送信する。
 送信データが制御装置30から送信されると、取込時刻算出部73は、外部測定装置43の計時部72で計時される時刻t21において送信データの送信を検出し、送信データが送信された通信時刻ttとして時刻t21を取得する。
 ここで、時刻t14から処理時間tが経過した時刻と、時刻t21(時刻tt)は、送信データが送信された同一時刻を、制御装置30の計時部53と外部測定装置43の計時部72とでそれぞれ計時した時刻である。
 そこで、外部測定装置43の取込時刻算出部73は、(図中の「タイミング処理」の欄に示すように)通信時刻t21から、時間差データDtが示す時間差td1に処理時間tを加えた時間長(td1+t)だけ遡った時刻t20を算出する。
 これにより、取込時刻算出部73は、計時部72によってMRセンサ素子24の検出信号の取り込み時刻を計時した場合に得られたはずの取り込み時刻tc2(時刻t20)を取得できる。
 そして、校正データ生成部74は、取り込み時刻tc2(t20)に測定された基準角度θrと回転角度データDaが示す検出角度θcとの差分(θc-θr)を検出角度θcに関連付けて、校正データDcを生成する。
 その後、制御装置30は、時刻t10~t14における動作と同様に、MRセンサ素子24の検出信号をディジタル信号へ変換し(時刻t15~t16)、検出角度θcを演算し(時刻t16~t17)、送信データを生成し(時刻t18~時刻t19)、送信データを外部測定装置43へ送信する(時刻t19~(時刻t19+t))。
 外部測定装置43は、送信データが送信された通信時刻ttとして時刻t23を取得する。
 また外部測定装置43は、通信時刻t23から、時間差データDtが示す時間差td2に処理時間tを加えた時間長(td2+t)だけ遡った時刻t22を、計時部72によってMRセンサ素子24の検出信号の取り込み時刻を計時した場合に得られたはずの取り込み時刻tc2として取得する。
 外部測定装置43は、取り込み時刻tc2(t22)に測定された基準角度θrと回転角度データDaが示す検出角度θcとの差分(θc-θr)を検出角度θcに関連付けて、校正データDcを生成する。
 以上のようにしてMRセンサ素子24の検出信号の取り込み時刻tc2を外部測定装置43の計時部72により計時される時刻として算出することにより、回転角度データDaが示す検出角度θcと同期した基準角度θrを取得できる。
 これにより、仮に、制御装置30の計時部53が外部測定装置43の計時部72と同期していなくても、回転角度データDaが示す検出角度θcと同期した基準角度θrを取得できる。
 なお、MRセンサ素子24の検出信号の取り込み時刻tc1から送信データを送信するまでの時間差(td1+t、td2+t)は、送信データによって異なっていることがある。例えば、図9に示す例では、1回目に検出角度θcを演算してから送信データの生成を開始するまでの待機時間(t12~t13)は、例えば制御装置30が並列して他の処理が実行されていることによって、2回目の待機時間(t17~t18)よりも長くなっている。
 このように、時間差(td1+t、td2+t)が送信データによって異なっていても、時間差データDtに基づいて取り込み時刻tc2を算出することにより、回転角度データDaが示す検出角度θcと基準角度θrの同期を確保できる。
 以上のようにして、実施形態の校正システム1によれば、制御装置30にて取り込んだMRセンサ素子24の検出信号と、制御装置30とは別の外部測定装置43で測定した基準角度θrとの同期を確保することができ、これら検出信号及び基準角度θrに応じて、回転角度算出装置の校正データDcを生成できる。
 図8を参照する。外部測定装置43の送信部75は、校正データ生成部74が生成した校正データDcを制御装置30へ送信する。
 なお、校正データDcを制御装置30へ送信した後に、校正データDcにより補正された検出角度θcが所定の誤差範囲に収まっているか否かを判定することが好ましい。
 このため、制御装置30は、校正データDcに基づいて検出角度θcを補正して得られる校正済角度θccを出力する第2のデータ出力モードを有してもよい。
 第2のデータ出力モードでは、MRセンサ素子24から検出信号を再度取り込んで、回転角度算出部50により検出角度θcを算出し、補正部51により校正データDcに基づいて検出角度θcを補正して校正済角度θccを算出する。
 送信データ生成部54は、補正部51による補正前の検出角度θcに代えて、校正済角度θccを示す回転角度データDaを格納した送信データを生成する。
 すなわち、送信データ生成部54は、校正済角度θccを示す回転角度データDaと、MRセンサ素子24から検出信号を取り込んだ取り込み時刻tc1から送信データを送信するまでの時間差に関するDtを少なくとも含む送信データを生成する。
 外部測定装置43は、校正済角度θccを示す回転角度データDaを含んだ送信データを受信すると、上記と同様にして、MRセンサ素子24の検出信号の取り込み時刻tc2を外部測定装置43の計時部72により計時される時刻として算出する。
 外部測定装置43では、取り込み時刻tc2に測定された基準角度θrと回転角度データDaが示す校正済角度θccとの誤差(θcc-θr)を算出し、誤差(θcc-θr)が所定の誤差範囲に収まっていない場合には、校正データDcを再度生成する。誤差(θcc-θr)が所定の誤差範囲に収まっている場合には、校正データDcの生成を完了する。
 (回転角度算出装置の校正方法)
 次に、図10を参照して、実施形態の回転角度算出装置の校正方法について説明する。
 ステップS1においてADC33及びADC34は、MRセンサ素子24からの検出信号をディジタル信号へ変換することにより、制御装置30に取り込む。制御装置30の送信データ生成部54は、MRセンサ素子24の検出信号の取り込み時刻tc1を、計時部53により取得する。
 一方で、外部測定装置43の回転角度測定部71は、基準角度θrを測定する。校正データ生成部74は、基準角度θrの測定時刻tmを計時部72により取得する。
 ステップS2において制御装置30の回転角度算出部50は、ADC33及びADC34の出力信号に基づいてモータ10の回転軸11の回転角度の検出角度θcを算出する。
 ステップS3において送信データ生成部54は、検出角度θcを示す回転角度データDaと、時間差データDtとを格納した送信データを生成する。上記の通り、時間差データDtは、取り込み時刻tc1から回転角度データDaを送信するまでの時間差に関するデータである。
 ステップS4において制御装置30の送信部55は、送信データを校正装置40の外部測定装置43へ送信する。外部測定装置43の受信部70は、送信データを受信する。
 このとき、外部測定装置43の取込時刻算出部73は、制御装置30が送信データを送信した時刻又は受信部70で送信データを受信した時刻を、計時部72によって、送信データの通信時刻ttとして取得する。
 ステップS5において取込時刻算出部73は、通信時刻ttと時間差データDtとに基づいて、制御装置30がMRセンサ素子24の検出信号を取り込んだ取込時刻tc2を、計時部72により計時される時刻として算出する。
 ステップS6において校正データ生成部74は、取り込み時刻tc2に測定された基準角度θrと回転角度データDaが示す検出角度θcとを比較して、校正データDcを生成する。
 ステップS7において校正データ生成部74は、モータ10の回転軸11の1周分の校正データDcが得られたか否かを判定する。まだ1周分の校正データDcが得られていない場合(ステップS7:N)に処理はステップS8に進む。1周分の校正データDcが得られた場合(ステップS7:Y)に処理はステップS9に進む。
 ステップS8において駆動モータ41を回転させることにより、モータ10の回転軸11の回転角度θmを変更する。その後に処理はステップS1へ戻る。
 ステップS9において、回転角度算出部50が算出した検出角度θcを、ステップS1~S8により生成した校正データDcを用いて補正した値が、所定の誤差範囲に収まっているか否かを判定する。
 具体的には、制御装置30の動作モードを第2のデータ出力モードに切り替え、校正データDcに基づいて検出角度θcを補正して得られる校正済角度θccを、制御装置30から外部測定装置43へ送信する。
 外部測定装置43は、基準角度θrと校正済角度θccとの誤差(θcc-θr)を算出し、回転軸11の回転角度範囲に全てに亘って、誤差(θcc-θr)が所定の誤差範囲に収まっているか否かを判定する。
 誤差(θcc-θr)が所定の誤差範囲に収まっていない場合(ステップS9:N)に処理はステップS1に戻り、校正データDcを生成し直す。誤差(θcc-θr)が所定の誤差範囲に収まっている場合(ステップS9:Y)に処理は終了する。
 ステップS7では、1周分の校正データDcを収得したかを判定しているが、1周期以上の校正データDcを収得するようにしても良い。この場合、検出角度θcに対して得られた複数の校正データDcを平均処理して校正データDcとして良い。これによりノイズを低減できる。
 (回転角度センサの適用)
 次に、図11を参照して、本実施形態の回転角度算出装置を、車両の操舵系に付与する操舵補助力を制御する電動パワーステアリング装置に適用した場合の構成例を説明する。
 操向ハンドル101のコラム軸102は減速ギア103、ユニバーサルジョイント104A及び104B、ピニオンラック機構105を経て操向車輪のタイロッド106に連結されている。コラム軸102には、操向ハンドル101の操舵トルクThを検出するトルクセンサ110が設けられており、操向ハンドル101の操舵力を補助するモータ10が減速ギア103を介してコラム軸102に連結されている。
 上述の制御装置30は、パワーステアリング装置を制御する電子制御ユニットとして使用される。制御装置30には、電源であるバッテリ114から電力が供給されると共に、イグニションキー111からイグニションキー信号が入力される。
 制御装置30は、上記のように演算したモータ10の回転角度θmと減速ギア103の減速比Nとに基づいて、操向ハンドル101の操舵角θを演算する。制御装置30は、操舵角θと、操舵トルクThと、車速センサ112で検出された車速Vhとに基づいて、アシストマップ等を用いてアシスト指令の操舵補助指令値の演算を行い、演算された操舵補助指令値に基づいてモータ10に供給する電流Iを制御する。
 このような構成の電動パワーステアリング装置において、操向ハンドル101から伝達された運転手のハンドル操作による操舵トルクThをトルクセンサ110で検出し、モータ10の回転角度θmに基づいて操舵角θを演算し、操舵トルクTh、操舵角θ及び車速Vhに基づいて算出される操舵補助指令値によってモータ10は駆動制御され、この駆動が運転手のハンドル操作の補助力(操舵補助力)として操舵系に付与される。
 (実施形態の効果)
 (1)校正システム1は、回転体の回転に応じてMRセンサ素子24から出力される検出信号に基づいて回転体の回転角度を算出する回転角度算出装置と、回転角度算出装置を校正するための校正装置40を備える。回転角度算出装置は、MRセンサ素子24が搭載されたセンサユニット20と制御装置30とを備える。
 制御装置30は、MRセンサ素子24の検出信号に基づいて回転体の回転角度を算出し、回転角度を示す回転角度データDaを、制御装置30から校正装置40へ送信する。
 また、制御装置30は、MRセンサ素子24から検出信号を取り込んでから回転角度データDaを送信するまでの時間差に関する時間差データDtを、制御装置30から校正装置40へ送信する。
 校正装置40は、回転体の回転角度θrを測定し、回転角度θrを測定した測定時刻tmと、回転角度データDaが送信又は受信された通信時刻ttを計時する。
 校正装置40は、MRセンサ素子24から検出信号を取り込んでから回転角度データDaを送信するまでの時間差だけ通信時刻ttから遡った時刻tc2に校正装置40が測定した回転角度θrと、回転角度データDaとを比較することにより、回転角度データDaの校正データDcを取得する。
 これにより、回転角度算出装置が算出した回転角度と、回転角度算出装置とは別の校正装置40で測定した回転角度との同期を確保して、回転角度算出装置の校正データを生成することができる。
 例えば、回転角度算出装置の計時部53が、校正装置40の計時部72と同期していなくても、回転角度算出装置が算出した回転角度と、回転角度算出装置とは別の校正装置40で測定した回転角度との同期を確保できる。
 (2)制御装置30は、回転角度データDaと時間差データDtとが同一のフレームに格納された送信データを校正装置40に送信する。これにより、回転角度データDaと時間差データDtとを別個のフレームに格納して送信するよりも、通信のオーバヘッドを低減できる。この結果、回転角度データDaの送信頻度をより高くすることができるので、校正処理に要する時間を低減できる。
 (3)制御装置30は、回転角度データDaを格納して校正装置40に送信される送信データを生成した後に、既知の処理時間tで送信データを校正装置40へ送信する。制御装置30は、MRセンサ素子24から検出信号を取り込んでから送信データの生成完了までの時間差を示す時間差データDtを生成する。
 これにより、時間差データDtが示す時間差に既知の処理時間tを加算することにより、MRセンサ素子24から検出信号を取り込んでから送信データを送信するまでの時間長を間接的に表すことができる。この結果、送信データを送信するまでの時間差に関する情報を、この送信データに格納することができる。
 (4)校正装置40は、駆動モータ41により回転体を回転させて、回転体の複数の回転角度における校正データDcを取得する。
 これにより、回転体の異なる複数の回転角度における校正データDcを生成できる。
 1...校正システム、10...モータ、11...回転軸、12...出力端、14...端部、20...センサユニット、21...磁石、22...回路基板、23...支持部材、24...MRセンサ素子、25...ハーネス、30...制御装置、31...プロセッサ、32...記憶装置、33、34...アナログディジタル変換器(ADC)、35...駆動回路、36...通信I/F回路、40...校正装置、41...駆動モータ、42...回転角度測定部、43...外部測定装置、44...回転軸、45...連結部、46...プロセッサ、47...記憶装置、48...通信I/F回路、49...I/F、50...回転角度算出部、51...補正部、52...駆動信号生成部、53...計時部、54...送信データ生成部、55...送信部、56...受信部、57...校正データ取得部、60...加算器、61...減算器、62...演算部、70...受信部、71...回転角度測定部、72...計時部、73...取込時刻算出部、74...校正データ生成部、75...送信部、101...操向ハンドル、102...コラム軸、103...減速ギア、104A、104B...ユニバーサルジョイント、105...ピニオンラック機構、106...タイロッド、110...トルクセンサ、111...イグニションキー、112...車速センサ、114...バッテリ

Claims (9)

  1.  回転体の回転に応じてセンサから出力される検出信号に基づいて前記回転体の回転角度を算出する回転角度算出装置の校正方法であって、
     前記回転角度算出装置が、前記検出信号に基づいて前記回転体の回転角度を算出し、
     前記回転角度を示す回転角度データを、前記回転角度算出装置から校正装置へ送信し、
     前記センサから前記検出信号を取り込んでから前記回転角度データを送信するまでの時間差に関する時間差データを、前記回転角度算出装置から前記校正装置へ送信し、
     前記校正装置が、前記回転体の回転角度を測定し、
     前記校正装置が前記回転体の回転角度を測定した測定時刻と、前記回転角度データが送信又は受信された通信時刻を、前記校正装置で計時し、
     前記通信時刻より前記時間差だけ遡った時刻に前記校正装置が測定した前記回転体の回転角度と、前記回転角度データとを比較することにより、前記回転角度データの校正データを取得する、
     ことを特徴とする回転角度算出装置の校正方法。
  2.  前記回転角度算出装置は、前記回転角度データと前記時間差データとが同一のフレームに格納された送信データを前記校正装置に送信することを特徴とする請求項1に記載の校正方法。
  3.  前記回転角度算出装置は、
     前記センサから前記検出信号を取り込んでから前記送信データの生成完了までの時間差を示す前記時間差データを生成し、
     前記送信データの生成完了後に既知の処理時間で前記送信データを前記校正装置へ送信することを特徴とする請求項2に記載の校正方法。
  4.  前記回転体を回転させて、前記回転体の複数の回転角度における前記校正データを取得することを特徴とする請求項1~3のいずれか一項に記載の校正方法。
  5.  回転体の回転に応じてセンサから出力される検出信号に基づいて前記回転体の回転角度を算出する回転角度算出装置の校正装置であって、
     前記検出信号に基づいて算出された前記回転体の回転角度を示す回転角度データを前記回転角度算出装置から受信するとともに、前記回転角度算出装置が前記検出信号を前記センサから取り込んでから前記回転角度データを送信するまでの時間差に関する時間差データを、前記回転角度算出装置から受信する受信部と、
     前記回転体の回転角度を測定する回転角度測定部と、
     前記回転角度測定部が前記回転体の回転角度を測定した測定時刻、及び前記回転角度データが送信又は受信された通信時刻を計時する計時部と、
     前記通信時刻より前記時間差だけ遡った時刻に前記回転角度測定部が測定した前記回転体の回転角度と、前記回転角度データとを比較することにより、前記回転角度データの校正データを生成する校正データ生成部と、
     を備えることを特徴とする校正装置。
  6.  回転体の回転に応じた検出信号を出力するセンサと、
     前記検出信号に基づいて前記回転体の回転角度を算出する回転角度算出部と、
     前記回転角度算出部が算出した前記回転体の回転角度を校正する校正データを受信する受信部と、
     受信した前記校正データを記憶する記憶部と、
     前記回転角度算出部が算出した前記回転体の回転角度を、前記記憶部に記憶した前記校正データで補正する補正部と、
     前記回転角度算出部により算出され且つ前記補正部によって補正されていない前記回転角度を示す回転角度データを送信するとともに、前記センサから前記検出信号を取り込んでから前記回転角度データを送信するまでの時間差に関する時間差データを送信する送信部と、
     を備えることを特徴とする回転角度算出装置。
  7.  前記回転体としてモータの回転軸の回転角度を算出する請求項6に記載の回転角度算出装置と、
     前記補正部によって補正された前記回転軸の回転角度に応じて前記モータを駆動する駆動部と、
     を備えることを特徴とするモータ制御装置。
  8.  請求項7に記載のモータ制御装置と、
     前記モータ制御装置によって制御されるモータと、
     を備えることを特徴とする電動アクチュエータ製品。
  9.  請求項7に記載のモータ制御装置と、
     前記モータ制御装置によって制御されるモータと、
     を備え、前記モータによって車両の操舵系に操舵補助力を付与することを特徴とする電動パワーステアリング装置。
PCT/JP2020/047011 2020-01-31 2020-12-16 回転角度算出装置の校正方法、回転角度算出装置の校正装置、回転角度算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置 WO2021153069A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080006955.1A CN113490830B (zh) 2020-01-31 2020-12-16 旋转角度计算装置及其校正方法和校正装置、马达控制装置、电动致动器产品和电动助力转向装置
US17/299,921 US11292519B2 (en) 2020-01-31 2020-12-16 Calibration method for rotation angle calculation device, calibration device for rotation angle calculation device, rotation angle calculation device, motor control device, electric actuator product, and electric power steering device
JP2021512456A JP6888752B1 (ja) 2020-01-31 2020-12-16 回転角度算出装置の校正方法、回転角度算出装置の校正装置、回転角度算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
EP20891414.3A EP3885698B1 (en) 2020-01-31 2020-12-16 Calibration method for rotation angle calculation device, calibration device for rotation angle calculation device, rotation angle calculation device, motor control equipment, electric actuator product, and electric power steering apparatus
US17/670,925 US11753075B2 (en) 2020-01-31 2022-02-14 Calibration method for rotation angle calculation device, calibration device for rotation angle calculation device, rotation angle calculation device, motor control device, electric actuator product, and electric power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-015125 2020-01-31
JP2020015125 2020-01-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/299,921 A-371-Of-International US11292519B2 (en) 2020-01-31 2020-12-16 Calibration method for rotation angle calculation device, calibration device for rotation angle calculation device, rotation angle calculation device, motor control device, electric actuator product, and electric power steering device
US17/670,925 Division US11753075B2 (en) 2020-01-31 2022-02-14 Calibration method for rotation angle calculation device, calibration device for rotation angle calculation device, rotation angle calculation device, motor control device, electric actuator product, and electric power

Publications (1)

Publication Number Publication Date
WO2021153069A1 true WO2021153069A1 (ja) 2021-08-05

Family

ID=76844969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047011 WO2021153069A1 (ja) 2020-01-31 2020-12-16 回転角度算出装置の校正方法、回転角度算出装置の校正装置、回転角度算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置

Country Status (2)

Country Link
CN (1) CN113490830B (ja)
WO (1) WO2021153069A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034319A (zh) * 2021-11-23 2022-02-11 歌尔科技有限公司 音箱的校准控制方法、装置、设备及可读存储介质
CN114111687A (zh) * 2021-12-03 2022-03-01 中国原子能科学研究院 检测方法、矫正方法和转动系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247747A (ja) * 2010-05-27 2011-12-08 Topcon Corp エンコーダ校正装置
JP2014210472A (ja) 2013-04-17 2014-11-13 日本精工株式会社 電動パワーステアリング装置
JP2018185198A (ja) 2017-04-25 2018-11-22 日本精工株式会社 角度検出装置、相対角度検出装置、トルクセンサ、電動パワーステアリング装置及び車両
JP2019039704A (ja) * 2017-08-23 2019-03-14 Dmg森精機株式会社 エンコーダの校正値生成方法、エンコーダの校正値生成システム及びエンコーダ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263614A (ja) * 2006-03-27 2007-10-11 Oki Electric Ind Co Ltd 受波器位置校正装置及び方法
DE102010003096A1 (de) * 2010-03-22 2011-09-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung einer aktuellen Winkelposition eines drehbaren magnetischen Bauteils in einem elektrischen Antrieb
CN102612802B (zh) * 2010-11-08 2015-01-07 丰田自动车株式会社 转角计算装置及转角计算方法
JP6210284B2 (ja) * 2013-09-18 2017-10-11 株式会社ジェイテクト 回転角検出装置
CN104567787B (zh) * 2013-10-12 2017-05-17 北京航天计量测试技术研究所 动态测角系统测量精度的标定方法
CN105209322B (zh) * 2014-01-17 2017-09-01 日本精工株式会社 电动助力转向装置
CN206177216U (zh) * 2016-11-02 2017-05-17 深圳拓邦股份有限公司 一种角度校准和检测设备
JP2020012634A (ja) * 2016-11-21 2020-01-23 パナソニックIpマネジメント株式会社 ロータリーエンコーダ信号処理装置及びその信号処理方法
CN110411444B (zh) * 2019-08-22 2024-01-09 深圳赛奥航空科技有限公司 一种地面下采掘移动设备用惯性导航定位系统与定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247747A (ja) * 2010-05-27 2011-12-08 Topcon Corp エンコーダ校正装置
JP2014210472A (ja) 2013-04-17 2014-11-13 日本精工株式会社 電動パワーステアリング装置
JP2018185198A (ja) 2017-04-25 2018-11-22 日本精工株式会社 角度検出装置、相対角度検出装置、トルクセンサ、電動パワーステアリング装置及び車両
JP2019039704A (ja) * 2017-08-23 2019-03-14 Dmg森精機株式会社 エンコーダの校正値生成方法、エンコーダの校正値生成システム及びエンコーダ

Also Published As

Publication number Publication date
CN113490830B (zh) 2023-05-05
CN113490830A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
JP6888752B1 (ja) 回転角度算出装置の校正方法、回転角度算出装置の校正装置、回転角度算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
WO2021153069A1 (ja) 回転角度算出装置の校正方法、回転角度算出装置の校正装置、回転角度算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
EP1046884B1 (en) Position sensor
US20160355211A1 (en) Communication system
JP2011033602A (ja) レゾルバ/デジタル変換装置およびレゾルバ/デジタル変換方法
JP2004279231A (ja) R/dコンバータ
KR101885275B1 (ko) 노이즈를 제거한 신호를 이용하여 각도를 결정하는 방법, 엔코더의 출력 신호를 보정하는 방법 및 앱솔루트 엔코더
CN108599772B (zh) 一种编码器信号数字化传输方法
JP3953889B2 (ja) 回転角検出装置とその温度補正方法
KR101240140B1 (ko) 로터 위치 감지장치, 방법 및 그를 이용한 전동식 파워스티어링 시스템
WO2017159089A1 (ja) センサ装置、および、これを用いた電動パワーステアリング装置
Attaianese et al. A low cost resolver-to-digital converter
JP2002340619A (ja) 回転角度検出装置
JP3365063B2 (ja) 回転角度検出方法
JP2009288241A6 (ja) 第1の事象と第2の事象との間の時間差を求める方法
JP2003315166A (ja) 角度検出装置における温度検出方法、角度検出装置及び角度検出装置を備えたアクチュエータ制御システム
JP2021191135A (ja) 回転角度演算装置の補正方法、回転角度演算装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP2009276325A (ja) 回転角度検出装置
JP3708093B2 (ja) モータのサーボ制御システムおよびモータの速度制御に利用されるr/dコンバータ
JP2021191136A (ja) 回転角度演算装置の補正方法、回転角度演算装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP7047986B2 (ja) 回転角度センサ、電動パワーステアリング装置及び回転角度センサの製造方法
JP4763821B2 (ja) 角度補正回路、rdコンバータ及び角度検出装置
JP3758600B2 (ja) レゾルバディジタル変換方法、レゾルバディジタル変換装置および電気式動力舵取装置
JP2007309735A (ja) レゾルバデジタルコンバータ、回転角度位置検出装置および回転機械制御装置
JPH05346322A (ja) 位置検出方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512456

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020891414

Country of ref document: EP

Effective date: 20210531

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE