WO2021152928A1 - 蛍光x線分析装置 - Google Patents

蛍光x線分析装置 Download PDF

Info

Publication number
WO2021152928A1
WO2021152928A1 PCT/JP2020/038875 JP2020038875W WO2021152928A1 WO 2021152928 A1 WO2021152928 A1 WO 2021152928A1 JP 2020038875 W JP2020038875 W JP 2020038875W WO 2021152928 A1 WO2021152928 A1 WO 2021152928A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
fluorescent
ray
ray detector
warm air
Prior art date
Application number
PCT/JP2020/038875
Other languages
English (en)
French (fr)
Inventor
拓朗 和泉
哲弥 米田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US17/794,855 priority Critical patent/US20230057233A1/en
Priority to JP2021574456A priority patent/JP7287507B2/ja
Priority to CN202080094677.XA priority patent/CN115023606A/zh
Publication of WO2021152928A1 publication Critical patent/WO2021152928A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2209Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using wavelength dispersive spectroscopy [WDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/079Investigating materials by wave or particle radiation secondary emission incident electron beam and measuring excited X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/31Accessories, mechanical or electrical features temperature control
    • G01N2223/3103Accessories, mechanical or electrical features temperature control cooling, cryostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/31Accessories, mechanical or electrical features temperature control
    • G01N2223/3106Accessories, mechanical or electrical features temperature control heating, furnaces

Definitions

  • the present disclosure relates to a wavelength dispersive fluorescent X-ray analyzer.
  • the fluorescent X-ray analyzer detects the elements contained in the sample by detecting the fluorescent X-rays (characteristic X-rays) emitted from the sample when the sample is irradiated with excitation X-rays (radiation) or electron beams. It is a device for analysis. Fluorescent X-ray analyzers are classified into energy dispersion type and wavelength dispersion type according to the method of analyzing the energy (wavelength) of fluorescent X-rays.
  • a wavelength dispersive fluorescent X-ray analyzer includes a spectroscopic crystal that disperses fluorescent X-rays emitted from a sample and an X-ray detector that detects X-rays that are spectroscopically dispersed by the spectroscopic crystal. These devices are housed inside the housing.
  • Patent Document 1 discloses a wavelength dispersive fluorescent X-ray analyzer provided inside a housing with a temperature control device for maintaining a constant temperature of a spectroscopic crystal. There is.
  • This temperature control device includes a temperature sensor that detects the temperature of the spectral crystal and a hot air generator (heater and fan) that generates hot air.
  • a hot air generator that generates hot air.
  • the temperature inside the housing is maintained at a target temperature higher than the environmental temperature outside the housing by controlling the operation and stop of the hot air generator based on the output of the temperature sensor. It is possible to do.
  • the detection sensitivity may decrease due to the influence of thermal noise. Therefore, some X-ray detectors are recommended to be used at a temperature lower than the target temperature maintained by the temperature controller.
  • the present disclosure has been made to solve the above problems, and it is recommended that the object of the present disclosure be used at a temperature lower than the target temperature while maintaining the temperature of the spectroscopic crystal at the target temperature. It is to realize a fluorescent X-ray analyzer that can use the existing X-ray detector.
  • the fluorescent X-ray analyzer includes a spectroscopic crystal that disperses fluorescent X-rays emitted from a sample, an X-ray detector that detects fluorescent X-rays dispersed by the spectroscopic crystal, and a temperature of the spectroscopic crystal. It is provided with a warm air generator that generates warm air to maintain the temperature at the target temperature, and a Pelche element that cools the X-ray detector so that the temperature of the X-ray detector becomes lower than the target temperature.
  • the temperature of the spectroscopic crystal is kept constant at the target temperature by the warm air generated by the warm air generator, and the X-ray detector is locally cooled by the Perche element to target.
  • the temperature can be lower than the temperature.
  • a fluorescent X-ray analyzer that can use an X-ray detector that is recommended to be used at a temperature lower than the target temperature while maintaining the temperature of the spectroscopic crystal at the target temperature. can.
  • the 1 which shows typically an example of the structure of the fluorescent X-ray analyzer. It is a flowchart which shows an example of the processing procedure of a control device. It is a figure (the 2) which shows typically an example of the structure of the fluorescent X-ray analyzer.
  • FIG. 1 is a diagram schematically showing an example of the configuration of the wavelength dispersive type fluorescent X-ray analyzer 1 according to the present embodiment.
  • the fluorescent X-ray analyzer 1 is an apparatus that analyzes the elements contained in the sample 12 by detecting the fluorescent X-rays emitted from the sample 12 when the sample 12 is irradiated with X-rays (radiation) for excitation. be.
  • the fluorescent X-ray analyzer 1 of the type that irradiates the sample 12 with X-rays will be described, but the sample 12 may be irradiated with an electron beam instead of the X-rays.
  • the fluorescent X-ray analyzer 1 includes an X-ray tube 11, a spectroscopic crystal 13, an X-ray detector 14, a temperature sensor 16, a warm air generator 20, a Perche element 30, a heat sink 40, and a control device 100. And.
  • the X-ray tube 11, the spectroscopic crystal 13, the X-ray detector 14, the temperature sensor 16, the warm air generator 20, the Perche element 30, and the heat sink 40 are provided inside the analysis chamber 10 covered with the housing 10a.
  • the spectroscopic crystal 13 and the X-ray detector 14 are further covered with a housing 15 inside the analysis chamber 10.
  • the sample 12 is installed at a predetermined position inside the housing 15 by the user.
  • the X-ray tube 11 is configured to emit X-rays for excitation toward the sample 12 installed inside the housing 15 in response to a command from the control device 100.
  • the sample 12 that has received the X-rays for excitation emits fluorescent X-rays.
  • the spectroscopic crystal 13 disperses the fluorescent X-rays emitted from the sample 12 by wavelength, and diffracts the X-rays having a specific wavelength corresponding to the element to be analyzed in the direction of the X-ray detector 14.
  • the wavelength of the X-rays diffracted from the spectroscopic crystal 13 in the direction of the X-ray detector 14 is determined by the angle ⁇ formed by the fluorescent X-rays incident on the spectroscopic crystal 13 and the crystal lattice plane of the spectroscopic crystal 13.
  • the X-ray detector 14 detects the X-rays diffracted by the spectroscopic crystal 13 and outputs a signal indicating the detection result to the control device 100.
  • the X-ray detector 14 is configured using, for example, a proportional counter.
  • the temperature sensor 16 is arranged outside the housing 15 at a position thermally close to the spectroscopic crystal 13, specifically, at a position adjacent to the spectroscopic crystal 13 with the housing 15 interposed therebetween. In order for the temperature sensor 16 to appropriately detect the temperature of the spectroscopic crystal 13, it is desirable that the thickness of the housing 15 arranged between the temperature sensor 16 and the spectroscopic crystal 13 is 50 mm or less. When an air layer is formed between the housing 15 and the temperature sensor 16, it is desirable that the thickness of the air layer is 10 mm or less.
  • the temperature sensor 16 detects the temperature of the housing 15 in the vicinity of the spectroscopic crystal 13 as the temperature of the spectroscopic crystal 13 and outputs the temperature to the control device 100.
  • the warm air generator 20 includes a heater 21 and a fan 22.
  • the heater 21 operates in response to a command from the control device 100 to generate heat.
  • the fan 22 operates in response to a command from the control device 100 to send the heat generated by the heater 21 to the inside of the analysis chamber 10. As a result, the heat of the heater 21 is circulated inside the analysis chamber 10 as warm air.
  • the perche element 30 is arranged outside the housing 15 at a position thermally close to the X-ray detector 14, specifically, at a position adjacent to the X-ray detector 14 with the housing 15 interposed therebetween.
  • the perche element 30 operates in response to a command from the control device 100, and cools the X-ray detector 14 by absorbing heat from the housing 15 in the vicinity of the X-ray detector 14.
  • the Perche element 30 includes a heat absorbing portion 30a and a heat radiating portion 30b.
  • the endothermic unit 30a abuts on the housing 15 near the X-ray detector 14 and absorbs the heat of the housing 15 near the X-ray detector 14.
  • the heat radiating section 30b is provided on the side farther from the X-ray detector 14 than the heat absorbing section 30a, and releases the heat of the heat absorbing section 30a to the outside.
  • the Pelche element 30 functions as a so-called heat pump that transfers heat from the endothermic unit 30a to the heat radiating unit 30b.
  • the heat sink 40 is provided so as to be in contact with the heat radiating portion 30b of the Pelche element 30.
  • the heat sink 40 has a plurality of heat radiating pins, and releases the heat of the heat radiating portion 30b of the Pelche element 30 to the air in the analysis chamber 10 via the heat radiating pins. As a result, heat transfer from the heat radiating portion 30b of the Pelche element 30 to the air in the analysis chamber 10 is promoted.
  • the reason why the heat sink 40 is provided with the heat radiating pin instead of the heat radiating fin is to reduce the air resistance and to make it difficult to generate vibration when the warm air from the hot air generator 20 comes into contact with the heat sink 40.
  • the hot air generator 20 is provided at a position where the hot air sent from the hot air generator 20 directly abuts on the heat sink 40. This promotes heat dissipation by the heat sink 40. Since the temperature of the hot air sent from the hot air generator 20 (for example, 35 ° C.) is lower than the temperature of the heat sink 40 (for example, about 50 ° C.) in contact with the heat radiating portion 30b of the Pelche element 30, the hot air generator 20 When the sent hot air comes into contact with the heat sink 40, heat dissipation by the heat sink 40 is promoted.
  • the position of the warm air generator 20 is not necessarily limited to the position shown in FIG. 1, and can be any position in the analysis chamber 10. That is, since the warm air sent from the warm air generator 20 is circulated inside the analysis chamber 10 covered with the housing 10a, as long as the warm air generator 20 is arranged inside the analysis chamber 10, it is warm. The warm air from the wind generator 20 comes into contact with the heat sink 40.
  • the control device 100 includes a CPU (Central Processing Unit), a memory, an interface, etc. (not shown).
  • the control device 100 comprehensively controls the X-ray tube 11, the warm air generator 20, the Perche element 30, and the X-ray detector 14.
  • the control device 100 analyzes the elements contained in the sample 12 by acquiring the output signal from the X-ray detector 14 and determining the X-ray dose incident on the X-ray detector 14.
  • the control device 100 can display the analysis result on a display or the like (not shown).
  • the control device 100 when analyzing the elements contained in the sample 12, the control device 100 has a target temperature (for example, about 35 ° C.) in which the temperature of the spectral crystal 13 detected by the temperature sensor 16 is higher than the environmental temperature outside the analysis chamber 10. ) Is performed to perform "temperature control control" in which the warm air generator 20 (heater 21 and fan 22) is feedback-controlled so as to be maintained at).
  • the detection sensitivity may decrease due to the influence of thermal noise. Therefore, some X-ray detectors 14 are recommended to be used at a temperature lower than the target temperature for temperature control control (for example, about 28 ° C.).
  • the temperature of the entire inside of the analysis chamber 10 is maintained at the target temperature by the temperature control, the temperature around the X-ray detector 14 also becomes the target temperature, and it is recommended to use the temperature lower than the target temperature.
  • the X-ray detector 14 cannot be used.
  • a water-cooled cooling device for circulating cooling water for cooling the X-ray detector 14 between the inside and the outside of the analysis chamber 10 is provided, the entire fluorescent X-ray analyzer 1 is provided. As the structure becomes complicated, it can be a factor of a large increase in cost.
  • a perche element 30 for cooling the X-ray detector 14 is provided inside the analysis chamber 10.
  • the perche element 30 can be miniaturized as compared with the water-cooled cooling device described above, and the X-ray detector 14 can be locally cooled. Therefore, the temperature of the spectroscopic crystal 13 can be kept constant at the target temperature by temperature control, and the X-ray detector 14 can be locally cooled by the Perche element 30 to be lower than the target temperature.
  • the fluorescent X-ray emitted from the sample 12 should be detected with high sensitivity and high accuracy by using the X-ray detector 14 which is recommended to be used at a temperature lower than the target temperature for temperature control.
  • the structure of the Perche element 30 can be simplified as compared with a water-cooled cooling device in which cooling water is circulated between the inside and the outside of the analysis chamber 10, and a significant increase in cost can be suppressed. Can be done.
  • the fluorescent X-ray analyzer 1 is provided with a heat sink 40 that abuts on the heat radiating portion 30b of the Pelche element 30.
  • the power consumption of the Pelche element 30 can be suppressed. That is, when the Perche element 30 is operated, the heat radiating portion 30b of the Perche element 30 can reach a temperature higher than the target temperature (for example, about 35 ° C.) (for example, about 50 ° C.). If such a state continues, the load on the perche element 30 becomes high, and the power consumption of the perche element 30 may increase.
  • the load on the Perche element 30 is reduced by providing a heat sink 40 that abuts on the heat radiation portion 30b of the Perche element 30 and cooling the heat dissipation portion 30b of the Perche element 30 with the heat sink 40.
  • the power consumption of the element 30 can be suppressed.
  • the warm air (for example, about 35 ° C.) sent from the hot air generator 20 directly reaches the heat sink 40, which can reach a temperature higher than the target temperature (for example, about 50 ° C.).
  • a warm air generator 20 is provided at a position where the hot air generator 20 comes into contact with the target.
  • heat dissipation by the heat sink 40 can be promoted by the warm air from the warm air generator 20. Therefore, the heat radiating portion 30b of the Pelche element 30 can be cooled more efficiently.
  • the heat dissipation by the heat sink 40 is promoted, the air in the analysis chamber 10 rises at an early stage, so that the operating time of the heater 21 by the temperature control control can be shortened and the power consumption of the heater 21 can be reduced. Further, since the heat dissipation of the Pelche element 30 can be utilized, the electric power required for the warm air generator 20 can be saved, and energy saving can be achieved.
  • the temperature sensor 16 is arranged in the vicinity of the spectroscopic crystal 13, and the control device 100 keeps the temperature of the spectroscopic crystal 13 detected by the temperature sensor 16 at the target temperature. "Temperature control" for feedback control of the wind generator 20 is executed. Thereby, the temperature fluctuation of the spectroscopic crystal 13 can be appropriately suppressed.
  • the temperature sensor 16 is arranged at a place away from the spectroscopic crystal 13, if temperature unevenness inside the analysis chamber 10 occurs due to fluctuations in the environmental temperature outside the analysis chamber 10, the temperature sensor 16 A divergence is likely to occur between the temperature detected by 16 and the actual temperature of the spectroscopic crystal 13, and as a result, the temperature of the spectroscopic crystal 13 fluctuates, making it impossible to detect fluorescent X-rays with high accuracy. Is assumed.
  • the temperature sensor 16 is arranged in the vicinity of the spectroscopic crystal 13, even if the temperature unevenness inside the analysis chamber 10 occurs, the temperature detected by the temperature sensor 16 and the actual spectroscopy The temperature of the crystal 13 is less likely to deviate from the temperature, and as a result, fluorescent X-rays can be detected with high accuracy.
  • the temperature sensor 16 is arranged at a position closer to the spectroscopic crystal 13 than the Perche element 30. Therefore, it is possible to easily prevent the temperature detected by the temperature sensor 16 from deviating from the actual temperature of the spectroscopic crystal 13 due to the influence of the temperature fluctuation caused by the Perche element 30.
  • FIG. 2 is a flowchart showing an example of a processing procedure performed when the control device 100 executes temperature control control. This flowchart is started when, for example, the user performs a predetermined analysis start operation while the sample 12 is installed inside the housing 15.
  • control device 100 operates the fan 22 and the Pelche element 30 (step S10).
  • the wind sent from the fan 22 is circulated inside the analysis chamber 10 to prevent temperature unevenness inside the analysis chamber 10, and the X-ray detector 14 is cooled by the Perche element 30.
  • control device 100 acquires the temperature of the spectroscopic crystal 13 detected by the temperature sensor 16 (step S12).
  • control device 100 determines whether or not the temperature of the spectroscopic crystal 13 acquired in step S12 is lower than a predetermined target temperature (for example, about 35 ° C.) (step S14).
  • a predetermined target temperature for example, about 35 ° C.
  • the control device 100 When it is determined that the temperature of the spectroscopic crystal 13 is lower than the target temperature (YES in step S14), the control device 100 operates the heater 21. As a result, the heat generated by the heater 21 is circulated inside the analysis chamber 10 as warm air from the fan 22, and the temperature inside the analysis chamber 10 rises, so that the temperature of the spectral crystal 13 approaches the target temperature. On the other hand, when it is not determined that the temperature of the spectroscopic crystal 13 is lower than the target temperature (NO in step S14), the control device 100 stops the heater 21. As a result, the temperature of the wind sent from the fan 22 is lowered and the temperature inside the analysis chamber 10 is lowered, so that the temperature of the spectroscopic crystal 13 is brought closer to the target temperature. By repeating the operation and stop of the heater 21, the temperature of the spectroscopic crystal 13 is maintained at the target temperature.
  • the control device 100 determines whether or not the temperature of the spectroscopic crystal 13 is stably maintained at the target temperature by temperature control, and the temperature of the spectroscopic crystal 13 is the target temperature.
  • X-rays for excitation are irradiated from the X-ray tube 11 toward the sample 12 at the timing when it is determined that the X-rays are stably maintained, and the fluorescent X-rays emitted from the sample 12 and diffracted by the spectroscopic crystal 13 are emitted. Is detected by the X-ray detector 14.
  • control device 100 determines whether or not the detection of the fluorescent X-ray by the X-ray detector 14 is completed (step S20). When the detection of the fluorescent X-ray is not completed (NO in step S20), the control device 100 returns the process to step S12 and repeats the processes after step S12.
  • step S20 when the detection of the fluorescent X-ray is completed (YES in step S20), the control device 100 stops the heater 21 (step S22), and further stops the fan 22 and the Pelche element 30 (step S24).
  • the spectroscopic crystal 13 that disperses the fluorescent X-ray emitted from the sample 12 is provided inside the analysis chamber 10 covered with the housing 10a.
  • a Pelche element 30 that cools the X-ray detector 14 so that the temperature of the X-ray detector 14 becomes lower than the target temperature is provided.
  • the temperature of the spectroscopic crystal 13 is kept constant at the target temperature by the warm air generated by the warm air generator 20, and the X-ray detector 14 is locally cooled by the Perche element 30 to a temperature lower than the target temperature. Can be.
  • the fluorescent X-rays emitted from the sample 12 are increased by using the X-ray detector 14 which is recommended to be used at a temperature lower than the target temperature while maintaining the temperature of the spectroscopic crystal 13 at the target temperature. It can be detected with high sensitivity and high accuracy.
  • Modification example 1 (Modification example 1)
  • the temperature sensor 16 is arranged at a position adjacent to the spectroscopic crystal 13 outside the housing 15, but the position where the temperature sensor 16 is arranged may be inside the analysis chamber 10.
  • the position is not necessarily limited to the position shown in FIG.
  • the temperature sensor 16 may be arranged inside the housing 15. Further, the temperature sensor 16 may be arranged at a position away from the spectroscopic crystal 13.
  • FIG. 3 is a diagram schematically showing an example of the configuration of the fluorescent X-ray analyzer 1A according to the present modification 1.
  • the fluorescent X-ray analyzer 1A is different from the fluorescent X-ray analyzer 1 shown in FIG. 1 in that the temperature sensor 16 is arranged at a position away from the spectroscopic crystal 13.
  • the temperature sensor 16 since the temperature sensor 16 is arranged at a position away from the spectroscopic crystal 13, a discrepancy occurs between the temperature detected by the temperature sensor 16 and the actual temperature of the spectroscopic crystal 13.
  • the Pelche element 30 for cooling the X-ray detector 14 is provided, the X-ray detector 14 recommended to be used at a temperature lower than the target temperature can be used.
  • Mode 2 In the flowchart shown in FIG. 2 above, an example of switching the operation and stop of the heater 21 depending on whether or not the temperature of the spectral crystal 13 is lower than the target temperature is shown, but the heater 21 is stopped so as not to cause hunting in the switching. Hysteresis may be provided between the condition for operating the heater 21 and the condition for stopping the operating heater 21. For example, when the temperature of the spectroscopic crystal 13 drops below the lower limit temperature which is a predetermined value lower than the target temperature while the heater 21 is stopped, the heater 21 is operated, and the temperature of the spectroscopic crystal 13 is lower than the target temperature while the heater 21 is operating. The heater 21 may be stopped when the upper limit temperature, which is higher than the predetermined value, is exceeded.
  • the fluorescent X-ray analyzer includes a spectroscopic crystal that disperses fluorescent X-rays emitted from a sample, an X-ray detector that detects fluorescent X-rays that are spectroscopically dispersed by the spectroscopic crystal, and spectroscopy.
  • a warm air generator that generates warm air to maintain the crystal temperature at the target temperature and a Pelche element that cools the X-ray detector so that the temperature of the X-ray detector is lower than the target temperature. Be prepared.
  • the temperature of the spectroscopic crystal is kept constant at the target temperature by the warm air generated by the warm air generator, and the X-ray detector is locally operated by the Perche element. It can be cooled to a temperature lower than the target temperature.
  • a fluorescent X-ray analyzer that can use an X-ray detector that is recommended to be used at a temperature lower than the target temperature while maintaining the temperature of the spectroscopic crystal at the target temperature.
  • the temperature of the spectroscopic crystal is maintained at the target temperature by circulating the warm air generated by the warm air generator inside the analysis chamber covered with the housing.
  • the X-ray detector can be locally cooled by the Perche element to a temperature lower than the target temperature.
  • the Perche element is from a heat absorbing part that absorbs heat from the X-ray detector and cools the X-ray detector, and a heat absorbing part. Is also provided on the side far from the X-ray detector, and includes a heat radiating part that releases heat from the heat absorbing part to the outside.
  • the fluorescent X-ray analyzer further includes a heat sink that contacts the heat radiating portion of the Pelche element.
  • the heat radiating portion of the Pelche element can be cooled by a heat sink.
  • the load on the Perche element can be reduced, and the power consumption of the Perche element can be suppressed.
  • the hot air generator is arranged at a position where the hot air sent from the hot air generator comes into contact with the heat sink.
  • heat dissipation by the heat sink can be promoted by the warm air from the warm air generator. Therefore, the heat radiating portion of the Pelche element can be cooled more efficiently.
  • the fluorescent X-ray analyzer has a temperature sensor arranged at a position closer to the spectroscopic crystal than the Perche element, and the temperature detected by the temperature sensor. It is further equipped with a control device that controls a warm air generator so that the target temperature is maintained.
  • the temperature detected by the temperature sensor is between the actual temperature of the spectroscopic crystal. It becomes difficult for divergence to occur. As a result, the actual temperature of the spectroscopic crystal can be maintained at the target temperature with high accuracy, and fluorescent X-rays can be detected with high accuracy.
  • 1,1A X-ray analyzer 10 analysis room, 10a, 15 housing, 11 X-ray tube, 12 sample, 13 spectroscopic crystal, 14-ray detector, 16 temperature sensor, 20 warm air generator, 21 heater, 22 fan , 30 Perche element, 30a heat absorption part, 30b heat dissipation part, 40 heat sink, 100 control device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

蛍光X線分析装置(1)は、筐体(10a)で覆われた分析室(10)の内部に、X線管(11)と、試料(12)から放出される蛍光X線を分光する分光結晶(13)と、分光結晶(13)により分光された蛍光X線を検出するX線検出器(14)と、分光結晶(13)の温度を目標温度に維持するための温風を発生する温風発生器(20)と、X線検出器(14)を冷却するペルチェ素子(30)とを備える。

Description

蛍光X線分析装置
 本開示は、波長分散型の蛍光X線分析装置に関する。
 蛍光X線分析装置は、励起用のX線(放射線)あるいは電子線を試料に照射したときに試料から放出される蛍光X線(特性X線)を検出することによって、試料に含まれる元素を分析する装置である。蛍光X線分析装置は、蛍光X線のエネルギ(波長)の分析の仕方により、エネルギ分散型と波長分散型とに分類される。一般的に、波長分散型の蛍光X線分析装置は、試料から放出される蛍光X線を分光する分光結晶と、分光結晶によって分光されたX線を検出するX線検出器とを備える。これらの機器は、筐体内部に収容されている。
 波長分散型の蛍光X線分析装置においては、装置外部の環境温度などの影響によって分光結晶の温度が変動すると、分光結晶の格子面間隔が変動すること等に起因して分析精度が低下し得る。そのため、分光結晶の温度が変動しないように温度を調整することが望ましい。たとえば特開2015-81783号公報(特許文献1)には、分光結晶の温度を一定に維持するための温調装置を筐体内部に備えた波長分散型の蛍光X線分析装置が開示されている。この温調装置は、分光結晶の温度を検出する温度センサと、温風を発生する温風発生器(ヒータおよびファン)とを備える。この蛍光X線分析装置においては、温度センサの出力に基づいて温風発生器の作動および停止を制御することによって、筐体内部の温度を、筐体外部の環境温度よりも高い目標温度に維持することが可能である。
特開2015-81783号公報
 X線検出器は、高温になると、熱ノイズの影響で検出感度が低下し得る。そのため、X線検出器のなかには、温調装置によって維持される目標温度よりも低い温度で使用する事が推奨されているものが存在する。
 しかしながら、特許文献1に記載された蛍光X線分析装置のように、温調装置として温風発生器が筐体内部に設けられる場合には、温風発生器が発生する温風によって筐体内部全体の温度が目標温度に維持されてしまうため、X線検出器の周辺も目標温度となり、目標温度よりも低い温度で使用する事が推奨されているX線検出器を使用することができない。
 本開示は、上記の問題を解決するためになされたものであり、本開示の目的は、分光結晶の温度を目標温度に維持しつつ、目標温度よりも低い温度で使用する事が推奨されているX線検出器を使用可能な蛍光X線分析装置を実現することである。
 本開示の態様に係る蛍光X線分析装置は、試料から放出される蛍光X線を分光する分光結晶と、分光結晶により分光された蛍光X線を検出するX線検出器と、分光結晶の温度を目標温度に維持するための温風を発生する温風発生器と、X線検出器の温度が目標温度よりも低い温度となるようにX線検出器を冷却するペルチェ素子とを備える。
 上記の蛍光X線分析装置によれば、温風発生器が発生する温風によって分光結晶の温度を目標温度に一定に維持しつつ、ペルチェ素子でX線検出器を局所的に冷却して目標温度よりも低い温度にすることができる。その結果、分光結晶の温度を目標温度に維持しつつ、目標温度よりも低い温度で使用する事が推奨されているX線検出器を使用可能な蛍光X線分析装置を実現することができる。
 本開示においては、分光結晶の温度を目標温度に維持しつつ、目標温度よりも低い温度で使用する事が推奨されているX線検出器を使用可能な蛍光X線分析装置を実現することができる。
蛍光X線分析装置の構成の一例を概略的に示す図(その1)である。 制御装置の処理手順の一例を示すフローチャートである。 蛍光X線分析装置の構成の一例を概略的に示す図(その2)である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
 図1は、本実施の形態による波長分散型の蛍光X線分析装置1の構成の一例を概略的に示す図である。
 蛍光X線分析装置1は、励起用のX線(放射線)を試料12に照射したときに試料12から放出される蛍光X線を検出することによって、試料12に含まれる元素を分析する装置である。なお、本実施の形態では試料12にX線を照射するタイプの蛍光X線分析装置1について説明するが、X線に代えて電子線を試料12に照射するようにしてもよい。
 蛍光X線分析装置1は、X線管11と、分光結晶13と、X線検出器14と、温度センサ16と、温風発生器20と、ペルチェ素子30と、ヒートシンク40と、制御装置100とを備える。X線管11、分光結晶13、X線検出器14、温度センサ16、温風発生器20、ペルチェ素子30、およびヒートシンク40は、筐体10aで覆われた分析室10の内部に設けられる。分光結晶13およびX線検出器14は、分析室10の内部において、さらに筐体15で覆われている。試料12は、ユーザによって筐体15内部の所定の位置に設置される。
 X線管11は、制御装置100からの指令に応じて、励起用のX線を筐体15内部に設置された試料12に向けて出射するように構成される。励起用のX線を受けた試料12は、蛍光X線を放出する。
 分光結晶13は、試料12から放出された蛍光X線を波長分散させ、分析対象となる元素に対応した特定波長のX線をX線検出器14の方向に回折する。分光結晶13からX線検出器14の方向に回折されるX線の波長は、分光結晶13に入射する蛍光X線と分光結晶13の結晶格子面とのなす角度θによって決定される。なお、分光結晶13の格子面間隔を「d」とし、正の整数を「n」とするとき、波長λのX線は、ブラッグの条件により、2d・sinθ=n・λを満たす角度2θの方向に分光される。蛍光X線は元素毎に固有の波長を持つため、分光結晶13の格子面間隔dが予め決まっていれば、ブラッグの条件から、分光結晶13で分光される蛍光X線の分光角度2θも元素毎に固有の値となる。このような特性を利用して試料12に含まれる元素を分析することができる。
 X線検出器14は、分光結晶13により回折されたX線を検出し、検出結果を示す信号を制御装置100へ出力する。X線検出器14は、たとえば比例計数管を用いて構成される。
 温度センサ16は、筐体15の外部における分光結晶13に熱的に近い位置、具体的には筐体15を挟んで分光結晶13と隣接する位置に配置される。分光結晶13の温度を温度センサ16で適切に検出するためには、温度センサ16と分光結晶13との間に配置される筐体15の厚みを50mm以下にすることが望ましい。また、筐体15と温度センサ16との間に空気層が形成される場合には、その空気層の厚みを10mm以下にすることが望ましい。温度センサ16は、分光結晶13近傍の筐体15の温度を分光結晶13の温度として検出して制御装置100に出力する。
 温風発生器20は、ヒータ21とファン22とを含む。ヒータ21は、制御装置100からの指令に応じて作動して熱を発生する。ファン22は、制御装置100からの指令に応じて作動してヒータ21が発生した熱を分析室10の内部に送出する。これにより、ヒータ21の熱が温風として分析室10の内部に循環される。
 ペルチェ素子30は、筐体15の外部におけるX線検出器14に熱的に近い位置、具体的には筐体15を挟んでX線検出器14と隣接する位置に配置される。ペルチェ素子30は、制御装置100からの指令に応じて作動し、X線検出器14近傍の筐体15の熱を吸収することによってX線検出器14を冷却する。
 具体的には、ペルチェ素子30は、吸熱部30aと放熱部30bとを含む。吸熱部30aは、X線検出器14近傍の筐体15に当接し、X線検出器14近傍の筐体15の熱を吸収する。放熱部30bは、吸熱部30aよりもX線検出器14から遠い側に設けられ、吸熱部30aの熱を外部に放出する。ペルチェ素子30に制御装置100からの指令に応じた電力が供給されることによって、吸熱部30aでの吸熱および放熱部30bでの放熱が起こる。これにより、ペルチェ素子30は、吸熱部30aから放熱部30bへ熱を移動させる、いわゆるヒートポンプとして機能する。
 ヒートシンク40は、ペルチェ素子30の放熱部30bに接するように設けられる。ヒートシンク40は、複数の放熱ピンを有し、ペルチェ素子30の放熱部30bの熱を放熱ピンを介して分析室10内の空気に放出する。これにより、ペルチェ素子30の放熱部30bから分析室10内の空気への熱移動が促進される。なお、ヒートシンク40に放熱フィンではなく放熱ピンを設けるのは、空気抵抗をより少なくして、温風発生器20からの温風が当接したときの振動を生じ難くするためである。
 温風発生器20は、図1に示すように、温風発生器20から送出される温風がヒートシンク40に直接的に当接する位置に設けられる。これにより、ヒートシンク40による放熱が促進される。温風発生器20から送出される温風の温度(たとえば35℃)は、ペルチェ素子30の放熱部30bに接するヒートシンク40の温度(たとえば50℃程度)よりも低いため、温風発生器20から送出される温風がヒートシンク40に当接することによって、ヒートシンク40による放熱が促進される。
 なお、温風発生器20の位置は、必ずしも図1に示す位置に限定されず、分析室10内の任意の位置とすることができる。すなわち、温風発生器20から送出される温風は筐体10aで覆われた分析室10の内部に循環されるため、温風発生器20が分析室10の内部に配置される限り、温風発生器20からの温風はヒートシンク40に当接することになる。
 制御装置100は、図示しないCPU(Central Processing Unit)、メモリ、インターフェースなどを含む。制御装置100は、X線管11、温風発生器20、ペルチェ素子30、およびX線検出器14を統括的に制御する。制御装置100は、X線検出器14からの出力信号を取得し、X線検出器14に入射したX線量を判定することによって、試料12に含まれる元素を分析する。制御装置100は、分析結果を図示しないディスプレイ等に表示することができる。
 上記のような構成を有する蛍光X線分析装置1においては、分析室10外部の環境温度などの影響によって分光結晶13の温度が変動すると、格子面間隔dの変動などに起因して分析精度が低下し得る。そのため、制御装置100は、試料12に含まれる元素を分析する際には、温度センサ16によって検出された分光結晶13の温度が分析室10外部の環境温度よりも高い目標温度(たとえば35℃程度)に維持されるように温風発生器20(ヒータ21およびファン22)をフィードバック制御する「温調制御」を実行する。
 一方、X線検出器14は、高温になると、熱ノイズの影響で検出感度が低下し得る。そのため、X線検出器14のなかには、温調制御の目標温度よりも低い温度(たとえば28℃程度)で使用する事が推奨されているものが存在する。
 しかしながら、温調制御によって分析室10内部全体の温度が目標温度に維持されてしまうため、X線検出器14の周辺も目標温度となり、目標温度よりも低い温度で使用する事が推奨されているX線検出器14を使用することができない。その対策として、仮にX線検出器14を冷却するための冷却水を分析室10の内部と外部との間で循環させるような水冷式の冷却装置を設けると、蛍光X線分析装置1全体の構造が複雑化するとともにコストの大幅な増加の要因ともなり得る。
 そこで、本実施の形態による蛍光X線分析装置1においては、分析室10の内部に、X線検出器14を冷却するペルチェ素子30が設けられる。ペルチェ素子30は、上述の水冷式の冷却装置に比べて小型化することができ、X線検出器14を局所的に冷却することができる。そのため、温調制御によって分光結晶13の温度を目標温度に一定に維持しつつ、ペルチェ素子30でX線検出器14を局所的に冷却して目標温度よりも低い温度にすることができる。その結果、温調制御の目標温度よりも低い温度で使用する事が推奨されているX線検出器14を用いて、試料12から放出される蛍光X線を高感度および高精度で検出することができる。また、ペルチェ素子30は、冷却水を分析室10の内部と外部との間で循環させるような水冷式の冷却装置に比べて構造を簡素化することができ、コストの大幅な増加を抑えることができる。
 さらに、本実施の形態による蛍光X線分析装置1においては、ペルチェ素子30の放熱部30bに当接するヒートシンク40が備えられる。これにより、ペルチェ素子30の消費電力を抑えることができる。すなわち、ペルチェ素子30を作動させるとペルチェ素子30の放熱部30bは目標温度(たとえば35℃程度)よりも高い温度(たとえば50℃程度)に達し得る。このような状態が続くと、ペルチェ素子30の負荷が高くなり、ペルチェ素子30の消費電力が増大し得る。そこで、本実施の形態においては、ペルチェ素子30の放熱部30bに当接するヒートシンク40を設けてペルチェ素子30の放熱部30bをヒートシンク40で冷却することによって、ペルチェ素子30の負荷を軽減し、ペルチェ素子30の消費電力を抑えることができる。
 さらに、本実施の形態においては、温風発生器20から送出される温風(たとえば35℃程度の温風)が、目標温度よりも高い温度(たとえば50℃程度)に達し得るヒートシンク40に直接的に当接する位置に、温風発生器20が設けられる。これにより、温風発生器20からの温風によってヒートシンク40による放熱を促進することができる。そのため、ペルチェ素子30の放熱部30bをより効率的に冷却することができる。また、ヒートシンク40による放熱が促進されることによって分析室10内の空気が早期に上昇するため、温調制御によるヒータ21の作動時間が短縮され、ヒータ21の消費電力も低減し得る。さらに、ペルチェ素子30の放熱を利用することができるため、温風発生器20にかかる電力を節約することができ、省エネルギ化を図ることができる。
 さらに、本実施の形態においては、温度センサ16が分光結晶13近傍に配置されるとともに、制御装置100が、温度センサ16によって検出された分光結晶13の温度が目標温度に維持されるように温風発生器20をフィードバック制御する「温調制御」を実行する。これにより、分光結晶13の温度変動を適切に抑制することができる。すなわち、仮に温度センサ16が分光結晶13とは離れた場所に配置される場合には、分析室10外部の環境温度の変動などに起因して分析室10内部の温度ムラが生じると、温度センサ16によって検出された温度と実際の分光結晶13の温度との間に乖離が生じ易くなり、その結果、分光結晶13の温度が変動し、蛍光X線を高精度で検出することができなくなることが想定される。これに対し、本実施の形態においては、温度センサ16が分光結晶13近傍に配置されるため、分析室10内部の温度ムラが生じたとしても、温度センサ16によって検出された温度と実際の分光結晶13の温度との間に乖離が生じ難くなり、その結果、蛍光X線を高精度で検出することができる。
 また、本実施の形態においては、温度センサ16が、ペルチェ素子30よりも分光結晶13に近い位置に配置される。そのため、ペルチェ素子30による温度変動の影響で温度センサ16によって検出される温度が実際の分光結晶13の温度から乖離してしまうことを抑制し易くすることができる。
 図2は、制御装置100が温調制御を実行する際に行なう処理手順の一例を示すフローチャートである。このフローチャートは、たとえば試料12が筐体15内部に設置された状態でユーザが所定の分析開始操作を行なった場合に開始される。
 まず、制御装置100は、ファン22およびペルチェ素子30を作動させる(ステップS10)。これにより、ファン22から送出される風が分析室10の内部に循環され分析室10内部の温度ムラが生じ難くなるとともに、ペルチェ素子30によるX線検出器14の冷却が行なわれる。
 次に、制御装置100は、温度センサ16によって検出された分光結晶13の温度を取得する(ステップS12)。
 次に、制御装置100は、ステップS12で取得された分光結晶13の温度が予め定められた目標温度(たとえば35℃程度)よりも低いか否かを判定する(ステップS14)。
 分光結晶13の温度が目標温度よりも低いと判定された場合(ステップS14においてYES)、制御装置100は、ヒータ21を作動させる。これにより、ヒータ21で発生した熱がファン22からの温風として分析室10の内部に循環されて分析室10内部の温度が上昇するため、分光結晶13の温度が目標温度に近づけられる。一方、分光結晶13の温度が目標温度よりも低いと判定されない場合(ステップS14においてNO)、制御装置100は、ヒータ21を停止させる。これにより、ファン22から送出される風の温度が低下し分析室10内部の温度が低下するため、分光結晶13の温度が目標温度に近づけられる。このようなヒータ21の作動および停止が繰り返されることによって分光結晶13の温度が目標温度に維持される。
 なお、図2には示していないが、制御装置100は、温調制御によって分光結晶13の温度が目標温度に安定的に維持されているか否かを判定し、分光結晶13の温度が目標温度に安定的に維持されていると判定されたタイミングでX線管11から試料12に向けて励起用のX線を照射させるとともに、試料12から放出されて分光結晶13で回折された蛍光X線をX線検出器14によって検出する。
 その後、制御装置100は、X線検出器14による蛍光X線の検出が完了したか否かを判定する(ステップS20)。蛍光X線の検出が完了していない場合(ステップS20においてNO)、制御装置100は、処理をステップS12に戻し、ステップS12以降の処理を繰り返す。
 一方、蛍光X線の検出が完了した場合(ステップS20においてYES)、制御装置100は、ヒータ21を停止し(ステップS22)、さらに、ファン22およびペルチェ素子30を停止する(ステップS24)。
 以上のように、本実施の形態による蛍光X線分析装置1においては、筐体10aで覆われた分析室10の内部に、試料12から放出される蛍光X線を分光する分光結晶13と、分光結晶13により分光された蛍光X線を検出するX線検出器14と、分光結晶13の温度を目標温度に維持するための温風を発生する温風発生器20と、X線検出器14の温度が目標温度よりも低い温度となるようにX線検出器14を冷却するペルチェ素子30とが備えられる。そのため、温風発生器20が発生する温風によって分光結晶13の温度を目標温度に一定に維持しつつ、ペルチェ素子30でX線検出器14を局所的に冷却して目標温度よりも低い温度にすることができる。その結果、分光結晶13の温度を目標温度に維持しつつ、目標温度よりも低い温度で使用する事が推奨されているX線検出器14を用いて試料12から放出される蛍光X線を高感度および高精度で検出することができる。
 [変形例]
 (変形例1)
 上述の図1においては温度センサ16が筐体15の外部において分光結晶13と隣接する位置に配置される例が示されるが、温度センサ16が配置される位置は、分析室10の内部であれば、必ずしも図1に示す位置に限定されない。たとえば、温度センサ16を筐体15の内部に配置するようにしてもよい。また、温度センサ16を分光結晶13から離れた位置に配置するようにしてもよい。
 図3は、本変形例1による蛍光X線分析装置1Aの構成の一例を概略的に示す図である。蛍光X線分析装置1Aは、図1に示す蛍光X線分析装置1に対して、温度センサ16を分光結晶13から離れた位置に配置した点が異なる。この蛍光X線分析装置1Aにおいては、温度センサ16が分光結晶13から離れた位置に配置されるため、温度センサ16によって検出された温度と実際の分光結晶13の温度との間に乖離が生じ易くはなるが、X線検出器14を冷却するペルチェ素子30とが備えられるため、目標温度よりも低い温度で使用する事が推奨されているX線検出器14を用いることができる。
 (変形例2)
 上述の図2に示すフローチャートでは分光結晶13の温度が目標温度よりも低いか否かに応じてヒータ21の作動および停止を切り替える例が示されるが、切り替えにハンチングが生じないように、停止中のヒータ21を作動する条件と作動中のヒータ21を停止する条件との間でヒステリシスを設けるようにしてもよい。たとえば、ヒータ21の停止中に分光結晶13の温度が目標温度よりも所定値低い下限温度未満に低下した場合にヒータ21を作動し、ヒータ21の作動中に分光結晶13の温度が目標温度よりも所定値高い上限温度を超えた場合にヒータ21を停止するようにしてもよい。
 [態様]
 上述した実施の形態およびその変形例は、以下の態様の具体例であることが当業者により理解される。
 (第1項) 一態様に係る蛍光X線分析装置は、試料から放出される蛍光X線を分光する分光結晶と、分光結晶により分光された蛍光X線を検出するX線検出器と、分光結晶の温度を目標温度に維持するための温風を発生する温風発生器と、X線検出器の温度が目標温度よりも低い温度となるようにX線検出器を冷却するペルチェ素子とを備える。
 第1項に記載の蛍光X線分析装置によれば、温風発生器が発生する温風によって分光結晶の温度を目標温度に一定に維持しつつ、ペルチェ素子でX線検出器を局所的に冷却して目標温度よりも低い温度にすることができる。その結果、分光結晶の温度を目標温度に維持しつつ、目標温度よりも低い温度で使用する事が推奨されているX線検出器を使用可能な蛍光X線分析装置を実現することができる。
 (第2項) 第1項に記載の蛍光X線分析装置において、分光結晶、X線検出器、温風発生器、およびペルチェ素子は、筐体で覆われた分析室の内部に設けられる。
 第2項に記載の蛍光X線分析装置によれば、温風発生器が発生する温風を筐体で覆われた分析室の内部に循環させることによって分光結晶の温度を目標温度に維持しつつ、ペルチェ素子でX線検出器を局所的に冷却して目標温度よりも低い温度にすることができる。
 (第3項) 第1項または第2項に記載の蛍光X線分析装置において、ペルチェ素子は、X線検出器の熱を吸収してX線検出器を冷却する吸熱部と、吸熱部よりもX線検出器から遠い側に設けられ、吸熱部の熱を外部に放出する放熱部とを含む。蛍光X線分析装置は、ペルチェ素子の放熱部に当接するヒートシンクをさらに備える。
 第3項に記載の蛍光X線分析装置によれば、ペルチェ素子の放熱部をヒートシンクで冷却することができる。これにより、ペルチェ素子の負荷が軽減され、ペルチェ素子の消費電力を抑えることができる。
 (第4項) 第3項に記載の蛍光X線分析装置において、温風発生器は、温風発生器から送出される温風がヒートシンクに当接する位置に配置される。
 第4項に記載の蛍光X線分析装置によれば、温風発生器からの温風によってヒートシンクによる放熱を促進することができる。そのため、ペルチェ素子の放熱部をより効率的に冷却することができる。
 (第5項) 第1項に記載の蛍光X線分析装置において、蛍光X線分析装置は、ペルチェ素子よりも分光結晶に近い位置に配置された温度センサと、温度センサによって検出された温度が目標温度に維持されるように温風発生器を制御する制御装置とをさらに備える。
 第5項に記載の蛍光X線分析装置によれば、温度センサがペルチェ素子よりも分光結晶に近い位置に配置されるため、温度センサによって検出された温度と実際の分光結晶の温度との間に乖離が生じ難くなる。その結果、実際の分光結晶の温度を目標温度に精度よく維持することができ、蛍光X線を高精度で検出することができる。
 今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 1,1A X線分析装置、10 分析室、10a,15 筐体、11 X線管、12 試料、13 分光結晶、14 線検出器、16 温度センサ、20 温風発生器、21 ヒータ、22 ファン、30 ペルチェ素子、30a 吸熱部、30b 放熱部、40 ヒートシンク、100 制御装置。

Claims (5)

  1.  試料から放出される蛍光X線を分光する分光結晶と、
     前記分光結晶により分光された前記蛍光X線を検出するX線検出器と、
     前記分光結晶の温度を目標温度に維持するための温風を発生する温風発生器と、
     前記X線検出器の温度が前記目標温度よりも低い温度となるように前記X線検出器を冷却するペルチェ素子とを備える、蛍光X線分析装置。
  2.  前記分光結晶、前記X線検出器、前記温風発生器、および前記ペルチェ素子は、筐体で覆われた分析室の内部に設けられる、請求項1に記載の蛍光X線分析装置。
  3.  前記ペルチェ素子は、
      前記X線検出器の熱を吸収して前記X線検出器を冷却する吸熱部と、
      前記吸熱部よりも前記X線検出器から遠い側に設けられ、前記吸熱部の熱を外部に放出する放熱部とを含み、
     前記蛍光X線分析装置は、前記ペルチェ素子の前記放熱部に当接するヒートシンクをさらに備える、請求項1または2に記載の蛍光X線分析装置。
  4.  前記温風発生器は、前記温風発生器から送出される前記温風が前記ヒートシンクに当接する位置に配置される、請求項3に記載の蛍光X線分析装置。
  5.  前記蛍光X線分析装置は、
      前記ペルチェ素子よりも前記分光結晶に近い位置に配置された温度センサと、
      前記温度センサによって検出された温度が前記目標温度に維持されるように前記温風発生器を制御する制御装置とをさらに備える、請求項1に記載の蛍光X線分析装置。
PCT/JP2020/038875 2020-01-27 2020-10-15 蛍光x線分析装置 WO2021152928A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/794,855 US20230057233A1 (en) 2020-01-27 2020-10-15 X-ray fluorescence analyzer
JP2021574456A JP7287507B2 (ja) 2020-01-27 2020-10-15 蛍光x線分析装置
CN202080094677.XA CN115023606A (zh) 2020-01-27 2020-10-15 荧光x射线分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-010907 2020-01-27
JP2020010907 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021152928A1 true WO2021152928A1 (ja) 2021-08-05

Family

ID=77079721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038875 WO2021152928A1 (ja) 2020-01-27 2020-10-15 蛍光x線分析装置

Country Status (4)

Country Link
US (1) US20230057233A1 (ja)
JP (1) JP7287507B2 (ja)
CN (1) CN115023606A (ja)
WO (1) WO2021152928A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146893A (en) * 1975-06-11 1976-12-16 Matsushita Electric Ind Co Ltd Fluorescent x ray analyzing apparatus
JPS51146892A (en) * 1975-06-11 1976-12-16 Matsushita Electric Ind Co Ltd Fluorescent x ray analyzing apparatus
JP2010175404A (ja) * 2009-01-29 2010-08-12 Shimadzu Corp X線分析装置
JP2013160614A (ja) * 2012-02-03 2013-08-19 Horiba Ltd X線検出装置
JP2014190791A (ja) * 2013-03-27 2014-10-06 Hitachi High-Tech Science Corp 蛍光x線分析装置
JP2015125043A (ja) * 2013-12-26 2015-07-06 株式会社島津製作所 X線発生装置及びx線分析装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329714A (ja) 1999-05-24 2000-11-30 Rigaku Industrial Co 蛍光x線分析装置
JP2003107021A (ja) 2001-09-28 2003-04-09 Ours Tex Kk 蛍光x線分析装置
US7129501B2 (en) 2004-06-29 2006-10-31 Sii Nanotechnology Usa, Inc. Radiation detector system having heat pipe based cooling
JP2015081783A (ja) 2013-10-21 2015-04-27 株式会社島津製作所 蛍光x線分析装置
GB2540000A (en) * 2015-04-23 2017-01-04 Horiba Ltd Radiation detector and radiation detection apparatus
JP6723806B2 (ja) 2015-04-23 2020-07-15 株式会社堀場製作所 放射線検出器及び放射線検出装置
JP6563258B2 (ja) 2015-06-11 2019-08-21 日本電子株式会社 放射線検出器およびその製造方法
JP6576823B2 (ja) 2015-12-25 2019-09-18 日本電子株式会社 固体撮像素子のクリーニング方法および放射線検出装置
US10278273B2 (en) * 2016-06-30 2019-04-30 Shimadzu Corporation X-ray generator and X-ray analyzer
CN207263671U (zh) 2017-10-10 2018-04-20 天津市博智伟业科技股份有限公司 一种x荧光光谱仪探测器冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146893A (en) * 1975-06-11 1976-12-16 Matsushita Electric Ind Co Ltd Fluorescent x ray analyzing apparatus
JPS51146892A (en) * 1975-06-11 1976-12-16 Matsushita Electric Ind Co Ltd Fluorescent x ray analyzing apparatus
JP2010175404A (ja) * 2009-01-29 2010-08-12 Shimadzu Corp X線分析装置
JP2013160614A (ja) * 2012-02-03 2013-08-19 Horiba Ltd X線検出装置
JP2014190791A (ja) * 2013-03-27 2014-10-06 Hitachi High-Tech Science Corp 蛍光x線分析装置
JP2015125043A (ja) * 2013-12-26 2015-07-06 株式会社島津製作所 X線発生装置及びx線分析装置

Also Published As

Publication number Publication date
US20230057233A1 (en) 2023-02-23
JPWO2021152928A1 (ja) 2021-08-05
JP7287507B2 (ja) 2023-06-06
CN115023606A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
US9086316B2 (en) Spectrometry device
KR101389004B1 (ko) 온도 검출 장치 및 온도 검출 방법 및 기판 처리 장치
Kok et al. Temperature‐dependent optical absorption of SrTiO3
EP2784490B1 (en) X-ray Fluorescence Spectrometer
KR101968808B1 (ko) 적외선 흡수 분광법에 의해 샘플 가스 유동에서 적어도 하나의 가스의 농도를 측정하기 위한 장치 및 방법
US20110295539A1 (en) Method and apparatus for measuring intra-die temperature
JP4871852B2 (ja) バーンイン装置
KR20220147112A (ko) 열 처리 시스템 내의 워크피스의 투과 기반 온도 측정
WO2021152928A1 (ja) 蛍光x線分析装置
JPH0214543A (ja) ウエハまたは薄層の温度を測定および制御する方法および装置
JP2023056000A (ja) 分光検出器
US20080075229A1 (en) Generation of Monochromatic and Collimated X-Ray Beams
JP2013160614A (ja) X線検出装置
KR101923505B1 (ko) 저온분광실험장치
WO2012100284A1 (en) An emission spectrometer and method of operation
JP6998034B2 (ja) 放射線分析装置
JP2008196920A (ja) バーンイン装置、バーンイン試験方法および接触状態検知方法
JP5780847B2 (ja) 放射線検出装置および放射線分析装置
JPH0618333A (ja) 赤外輻射スペクトルによる温度測定方法及び装置
JP4204384B2 (ja) レーザ装置
JP6879363B2 (ja) 分光検出器
KR102681084B1 (ko) 흡광 분석 장치
JP2011023727A (ja) 発光光線の重心波長を調整するための装置
US20230268233A1 (en) Laser Spike Annealing Process Temperature Calibration Utilizing Photoluminescence Measurements
Seguin et al. Infrared and microwaves at 5.8 GHz in a catalytic reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916553

Country of ref document: EP

Kind code of ref document: A1