WO2021152725A1 - 粉砕方法および混合方法 - Google Patents

粉砕方法および混合方法 Download PDF

Info

Publication number
WO2021152725A1
WO2021152725A1 PCT/JP2020/003184 JP2020003184W WO2021152725A1 WO 2021152725 A1 WO2021152725 A1 WO 2021152725A1 JP 2020003184 W JP2020003184 W JP 2020003184W WO 2021152725 A1 WO2021152725 A1 WO 2021152725A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
axis
horizontal axis
rotating frame
small
Prior art date
Application number
PCT/JP2020/003184
Other languages
English (en)
French (fr)
Inventor
文喜 長尾
知春 長尾
Original Assignee
株式会社ナガオシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナガオシステム filed Critical 株式会社ナガオシステム
Priority to JP2020524652A priority Critical patent/JP6777299B1/ja
Priority to PCT/JP2020/003184 priority patent/WO2021152725A1/ja
Priority to DE112020006620.7T priority patent/DE112020006620T5/de
Priority to JP2020164693A priority patent/JP7428863B2/ja
Priority to JP2020164692A priority patent/JP7421700B2/ja
Publication of WO2021152725A1 publication Critical patent/WO2021152725A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/10Mixers with rotating receptacles with receptacles rotated about two different axes, e.g. receptacles having planetary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/40Parts or components, e.g. receptacles, feeding or discharging means
    • B01F29/401Receptacles, e.g. provided with liners
    • B01F29/4011Receptacles, e.g. provided with liners characterised by the shape or cross-section of the receptacle, e.g. of Y-, Z -, S -, or X shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/40Parts or components, e.g. receptacles, feeding or discharging means
    • B01F29/403Disposition of the rotor axis
    • B01F29/4035Disposition of the rotor axis with a receptacle rotating around two or more axes
    • B01F29/40353Disposition of the rotor axis with a receptacle rotating around two or more axes being perpendicular axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/14Mills in which the charge to be ground is turned over by movements of the container other than by rotating, e.g. by swinging, vibrating, tilting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/24Driving mechanisms

Definitions

  • the present invention relates to a pulverization method and a mixing method using a rotating device capable of three-dimensional rotation.
  • a ball mill is known as a type of crushing device.
  • a hard ball such as ceramic or metal and an object to be crushed are placed in a cylindrical container and rotated (uniaxial rotation, two-dimensional rotation) to grind the object to be crushed to produce fine powder.
  • the ball draws a complicated trajectory along the inner wall surface of the spherical container, and the entire surface of the spherical container can be used, which is sufficient. A crushing effect can be expected.
  • a rotating device related to three-dimensional rotation As a rotating device related to three-dimensional rotation (two-axis rotation), a device in which an external motor rotates the first axis together with an internal motor and an internal motor rotates a container or the like around the second axis is common (for example, Patent Document 1). ).
  • Patent Document 2 a rotating device having a transmission mechanism instead of the internal motor has been proposed (for example, Patent Document 2).
  • the rotating device according to Patent Document 2 is composed of a device main body, a housing, a drive motor, and a support panel.
  • the rotational driving force of the driving motor is transmitted to the main body device via the pulley.
  • the main body device is composed of an outer frame, an inner frame (container holding structure), a first disk (vertical), a second disk (horizontal), a first rotation axis, and a second rotation axis.
  • the rotational driving force of the drive motor is transmitted to the first rotating shaft via the pulley.
  • the outer frame and the second rotation axis rotate around the first rotation axis.
  • Rubber is arranged on the peripheral surface of the first disk and abuts on the lower surface of the second disk to form a transmission mechanism.
  • the rotational force of the first disk is transmitted to the second disk.
  • the second disk and the inner frame rotate around the second rotation axis.
  • the container rotates around the X-axis and the Z-axis, that is, around the two axes. This is called three-dimensional rotation.
  • the ball draws a complicated trajectory in the spherical container, and a sufficient crushing effect can be expected.
  • the transmission mechanism eliminates the need for an internal motor, which enables miniaturization, weight reduction, high-speed rotation (for example, 400 rpm), and suppression of heat generation.
  • the container of Patent Document 2 is spherical.
  • the spherical container When the spherical container is rotated three-dimensionally at a constant speed, the ball follows a constant trajectory in the spherical container.
  • the rotating device of Patent Document 2 (basic form of the present application), it was considered that the steady state was preferable.
  • the present invention solves the above-mentioned problems, and an object of the present invention is to provide a technique for obtaining a further crushing effect in crushing using a rotating device capable of three-dimensional rotation.
  • the present invention that solves the above problems is a pulverization method using a rotating device capable of rotating a container three-dimensionally.
  • the container is an elliptical spherical container.
  • a hard ball and an object to be crushed are placed in the elliptical spherical container, and the elliptical spherical container is rotated three-dimensionally.
  • the specific gravity of the object to be crushed is half or less of the specific gravity of the hard ball. More preferably, it is 1/4 or less.
  • the object to be crushed is placed in the elliptical spherical container via a small container.
  • the small container has an elliptical spherical shape.
  • the rotary device includes a first rotary drive device, a first horizontal shaft rotated by the first rotary drive device, an outer rotary frame coupled to the first horizontal shaft, and the above.
  • a second rotation drive device provided on the side opposite to the first rotation drive device, a second rotation drive device provided on the side opposite to the first horizontal axis, penetrating one side surface of the outer rotation frame, and being rotated by the second rotation drive device.
  • a driven disc having a plate surface in a direction perpendicular to the above, a transmission mechanism for transmitting the rotational force of the driven disc to the driven disc, and outputs of the first rotary drive device and the second rotary drive device are individually output. It is provided with a control device for controlling.
  • the rotary device penetrates one side surface of the rotary drive device, the horizontal axis rotated by the rotary drive device, the outer rotary frame coupled to the horizontal axis, and the outer rotary frame.
  • the driving disk which is coupled to the horizontal axis and has a plate surface in a direction perpendicular to the horizontal axis, and the axial core direction of the horizontal axis in a direction orthogonal to the axial core direction, are attached to the outer rotating frame.
  • An orthogonal axis provided, an inner rotating frame coupled to the orthogonal axis and holding the container, a driven disk coupled to the orthogonal axis and having a plate surface in a direction perpendicular to the orthogonal axis, and the driving circle. It includes a transmission mechanism that transmits the rotational force around the plate to the driven disk, and a control device that controls the output of the rotational drive device.
  • Biaxial rotation can be realized by one drive device.
  • the transmission mechanism has a hollow tube structure, and adjusts the hollow pressure in the hollow tube structure.
  • the hollow pressure can be adjusted to a high pressure state, a medium pressure state, and a low pressure state.
  • the high pressure condition enables reliable transmission.
  • the medium pressure state causes an intentional slip, and a further crushing effect can be obtained.
  • the three-dimensional rotation can be changed to the two-dimensional rotation.
  • the present invention that solves the above problems is a mixing method using a rotating device capable of rotating a container three-dimensionally.
  • the container is an elliptical spherical container.
  • the mixture is placed in the elliptical spherical container, and the elliptical spherical container is rotated three-dimensionally.
  • the mixture is substance A and substance B having a specific density of less than half the specific density of the substance A.
  • a further mixing effect can be obtained with the elliptical spherical container. Moreover, the mixing effect can be obtained even at a relatively low speed rotation. Furthermore, the time required to reach a steady state due to high-speed rotation is short. As a result, the mixing time can be shortened.
  • a further crushing effect can be obtained in crushing using a rotating device capable of three-dimensional rotation.
  • FIG. 1 and 2 are schematic views of an example of a rotating device.
  • FIG. 1 is a cross-sectional view
  • FIG. 2 is a perspective view.
  • the rotating device is composed of a main body of the device, a housing, motors 1 and 4 which are rotation driving devices, and a support plate.
  • the main body of the apparatus includes a first horizontal axis 2, an outer rotating frame 3, a second horizontal axis 5, a driving disk 6, an orthogonal axis 7, an inner rotating frame 8, a driven disk 9, and a transmission mechanism 10. And a control device 30.
  • the output shaft of the electric motor 1 is connected to the first horizontal shaft 2 via a pulley. Further, the first horizontal axis 2 is coupled to the outer rotating frame 3. That is, by driving the electric motor 1, the outer rotating frame 3 rotates around the first horizontal axis 2 times (around the axis XX line).
  • the output shaft of the electric motor 4 is connected to the second horizontal shaft 5 via a pulley.
  • the second horizontal shaft 5 is provided on the side opposite to the first horizontal shaft 2 and penetrates one side surface of the outer rotating frame 3.
  • a ball bearing is provided between the second horizontal shaft 5 and the outer rotating frame 3.
  • the second horizontal axis 5 is connected to the driving disk 6.
  • the driving disk 6 has a plate surface in a direction perpendicular to the second horizontal axis 5.
  • the driving disk 6 rotates about 5 times on the second horizontal axis (around the XX line).
  • the driving force of the electric motor 4 is not directly transmitted to the outer rotating frame 3.
  • the orthogonal axes 7 and 7 are provided on the outer rotating frame 3.
  • a ball bearing is provided between the orthogonal axes 7 and 7 and the outer rotating frame 3.
  • the orthogonal axes 7 and 7 have an axis direction perpendicular to the axis directions of the first horizontal axis 2 and the second horizontal axis 5. Further, the orthogonal axes 7 and 7 are coupled to the inner rotating frame 8.
  • the inner rotating frame 8 is arranged inside the outer rotating frame 3, and is rotatable around the orthogonal axis 7 (ZZ line) in the outer rotating frame 3.
  • the orthogonal axis 7 is connected to the driven disk 9. That is, as the driven disk 9 rotates around the orthogonal axis 7, the inner rotating frame 8 also rotates around the orthogonal axis 7 (ZZ line). Even if the inner rotating frame 8 and the driven disk 9 rotate around the orthogonal axis 7, this rotational force is not directly transmitted to the outer rotating frame 3.
  • the transmission mechanism 10 transmits the rotational force of the driving disk 6 to the driven disk 9 in a state where the peripheral end surface of the driving disk 6 faces the outer peripheral portion of the plate surface of the driven disk 9.
  • the container 22 is held in the inner rotating frame 8 (see FIGS. 5 and 6).
  • the control device 30 can individually control the outputs of the electric motor 1 and the electric motor 4.
  • the outer rotating frame 3 rotates around the XX line via the first horizontal shaft 2.
  • the orthogonal axes 7 and 7 provided on the outer rotating frame 3 also rotate around the XX line. Further, the inner rotating frame 8 and the driven disk 9 also rotate around the XX line via the orthogonal axes 7 and 7.
  • the driving disk 6 rotates around the XX line via the second horizontal shaft 5.
  • the driving disk 6 and the driven disk 9 rotate individually around the XX line, and a difference in rotation speed occurs.
  • the difference in rotational speed around the XX line is transmitted to the driven disk 9 via the transmission mechanism 10, and the driven disk 9 rotates around the orthogonal axis 7 (around the ZZ line), and the inner rotating frame. 8 also rotates around the ZZ line.
  • the inner rotating frame 8 and the container 22 rotate around the XX line and also around the ZZ line. In other words, it rotates in two axes (three-dimensional rotation).
  • the individual control of the electric motor 1 and the electric motor 4 tends to be complicated.
  • the contact transmission mechanism may slip due to contact, which may cause a problem in speed control accuracy.
  • the contact (contact) transmission mechanism tends to cause contact slip.
  • the transmission mechanism of FIGS. 1 and 2 is a non-contact type, and is composed of a plurality of first magnets 11 and a plurality of second magnets 12. A space 13 is formed between the first magnet 11 and the second magnet 12. That is, the first magnet 11 and the second magnet 12 are not in contact with each other.
  • a plurality of first magnets 11 are arranged on the peripheral end surface of the driving disk 6 so that N poles and S poles alternate.
  • a plurality of second magnets 12 are arranged on the outer peripheral portion of the plate surface of the driven disk 9 so that N poles and S poles alternate.
  • the first magnet 11 When the driving disk 6 rotates, the first magnet 11 also rotates.
  • the north pole of the first magnet 11 repels the north pole of the second magnet 12 and tries to attract the south pole of the second magnet 12.
  • the S pole of the first magnet 11 repels the S pole of the second magnet 12 and tries to attract the N pole of the second magnet 12.
  • the rotation device is not limited to the above as long as it is a rotating device capable of rotating the container three-dimensionally.
  • FIG. 3 is a modified example of the rotating device. Since there is no electric motor 4 and the horizontal shaft 5 is fixed, the driving disk 6 is also fixed.
  • the outer rotating frame 3 rotates around the XX line via the horizontal shaft 2.
  • the orthogonal axes 7 and 7 provided on the outer rotating frame 3 also rotate around the XX line. Further, the inner rotating frame 8 and the driven disk 9 also rotate around the XX line via the orthogonal axes 7 and 7.
  • the driven disk 9 rotates along the outer circumference of the driven disk 6.
  • the rotational force around the XX line is transmitted to the driven disk 9 via the transmission mechanism 10, and the driven disk 9 rotates around the orthogonal axis 7 (around the ZZ line), and the inner rotating frame 8 Also rotates around the ZZ line.
  • the inner rotating frame 8 and the container 22 rotate around the XX line and also around the ZZ line. In other words, it rotates in two axes (three-dimensional rotation).
  • the number of rotations (rotational speed) around the ZZ line is proportional to the number of rotations (rotational speed) around the XX line.
  • Individual control is not possible while the rotating device is operating.
  • the control can be simplified as compared with the individual control of the two motors.
  • FIG. 4 is another modification of the rotating device. Specifically, it is a modification of the transmission mechanism 10.
  • the transmission mechanism of FIGS. 1 and 2 is a non-contact type, whereas the transmission mechanism of FIG. 4 is a contact type (contact type).
  • An elastic body for example, a rubber band having a large coefficient of friction is attached to the peripheral surface of the driving disk 6. Further, the rubber band is provided with a groove. As a result, the peripheral surface of the driving disk 6 is pressed against the driven disk 9 via the rubber 10, and a frictional resistance force is generated between the two.
  • An annular and planar rubber may be attached to the outer periphery of the plate surface of the driven disk 9. That is, it suffices that an elastic body is provided on either abutting surface or both.
  • a tooth meshing mechanism (not shown) may be used.
  • FIG. 5 is a schematic perspective view of an example of the container holding mechanism.
  • the spherical container 22 is provided inside the inner rotating frame 8 via the container holding plates 21 and 21.
  • the center of the spherical container 22 coincides with the center of rotation of the rotating device (that is, the intersection of the XX line and the ZZ line).
  • the container holding plate 21 is provided with an opening corresponding to the size of the spherical container 22.
  • the spherical container 22 is sandwiched between the two container holding plates 21, and the container holding plate 21 is attached to the inner rotating frame 8. As a result, the spherical container 22 is held.
  • the spherical container 22 is formed by joining two hemispheres.
  • the opening size of the container holding plate 21 By changing the opening size of the container holding plate 21, it is possible to change the size of the spherical container 22. Further, it can be applied not only to the spherical container 22, but also to the ellipsoidal container 23, the spindle-shaped container (not shown), the oval container (not shown), and the like. The spindle-shaped container and the oval container may have the same effect as the ellipsoidal container 23.
  • FIG. 6 is an example in which the container holding mechanism is applied to the ellipsoidal sphere container 23.
  • the ellipsoidal sphere container 23 is sandwiched between the two container holding plates 21, and the container holding plate 21 is attached to the inner rotating frame 8.
  • the major axis direction of the ellipsoidal container 23 protrudes from the opening of the container holding plate 21. As a result, the ellipsoidal container 23 is held.
  • the ellipsoidal major axis is preferably about 1.2 to 3 times the elliptical minor axis. If it is less than 1.2 times, the effect of the spherical container is not sufficient, and if it exceeds 3 times, the inner rotating frame becomes flat and the rotation balance needs to be reexamined.
  • the elliptical major axis is about 1.5 times the elliptical minor axis.
  • the container is also made of the same material as the hard ball (for example, zirconia or alumina). Stainless steel may be used.
  • hard balls are made of ceramic or metal.
  • Zirconia a type of ceramic, has a specific gravity of about 5.7 g / cm 3.
  • the specific gravity of the object to be crushed is less than half of the specific gravity of the ball.
  • the specific gravity of the object to be crushed is 1/4 or less of the specific gravity of the balls, the following defects (insufficient crushing) become remarkable.
  • FIG. 7 is a diagram for explaining the difference in effect between the spherical container 22 and the ellipsoidal container 23.
  • FIG. 8 is a diagram for explaining the difference in the crushing test results of moxa between the spherical container 22 and the ellipsoidal container 23.
  • FIG. 9 is a diagram for explaining the difference between the silk crushing test results of the spherical container 22 and the ellipsoidal container 23.
  • the hard ball moves along the inner wall surface of the spherical container 22 due to centrifugal force. After a lapse of a predetermined time, it becomes a steady orbit.
  • the hard ball moves along the inner wall surface of the ellipsoidal container 23 due to centrifugal force.
  • a part of the hard ball moving along the inner wall surface of the ellipsoidal container 23 changes its trajectory, separates from the inner wall surface, and passes near the center of the ellipsoidal container 23. At this time, it comes into contact with the object to be crushed having a light specific density that gathers near the center of the ellipsoidal container 23, and a sufficient crushing effect can be expected.
  • FIG. 10 is a diagram for explaining the difference in different effects between the spherical container 22 and the ellipsoidal container 23.
  • the specific gravity of the hard ball is relatively heavy (example: zirconia specific density of about 5.7 g / cm 3 and alumina specific gravity of about 4.0 g / cm 3 ).
  • the influence of the hard ball's own weight is large, and there is a possibility that the hard ball cannot run up the inner wall of the spherical container 22 in the three-dimensional rotation of low speed rotation (for example, about 50 rpm).
  • the three-dimensional rotation of high-speed rotation for example, about 200 rpm
  • the rotating device of the present application is capable of high-speed rotation of 400 rpm.
  • ⁇ Small container in large container> The inventor of the present application repeated various crushing tests and examined the performance limit of the three-dimensional rotary ball mill. For example, when the particle size to be crushed is extremely small (for example, 1/50 or less of the container diameter, especially 1/100 or less of the container diameter), or a small amount (for example, 1/200 or less of the container capacity, especially 1/200 of the container capacity). In the case of 1000 or less), I noticed that a sufficient crushing effect could not be obtained.
  • the inventor of the present application has developed a rotating device and uses a container 22 having an inner diameter of 80 to 200 mm in order to perform various crushing tests, mixing tests, and separation tests.
  • the inner diameter of the container is set to 100 mm.
  • the hard ball diameter is set to about 8 to 25 mm.
  • the hard ball diameter is set to 15 mm.
  • the particle size of the object to be crushed is 1 mm, and the grain size is 1000.
  • the number of times the hard ball and the object to be crushed come into contact with each other is small, and a sufficient crushing effect cannot be obtained (Reference Example 1 in FIG. 11).
  • the inventor of the present application used a hard ball having a small particle size (for example, a particle size of 5 mm) in a small container having an inner diameter of 30 mm, and tried to rotate the container three-dimensionally. Sufficient crushing power was not obtained, and a sufficient crushing effect could not be obtained (Reference Example 2 in FIG. 11).
  • the crushing effect is remarkably improved and the heat generation in the container due to the ball collision is remarkably suppressed as compared with the general ball mill device (two-dimensional rotation).
  • the inventor of the present application considered the principle of suppressing heat generation in a container, in a general ball mill device, the balls and the balls and the inner wall collide linearly, whereas in a three-dimensional rotating ball mill, the container 3 It was speculated that the balls also rotated three-dimensionally along with the dimensional rotation, and there is a possibility that the balls and the balls and the inner wall may be in contact with each other while rotating and rubbing against each other.
  • the inner diameter of the small container 24 is preferably about 10 to 30% of the inner diameter of the large container 22. If it is less than 10%, the amount of substance to be crushed that can be put in the small container 24 is limited. Moreover, a sufficient crushing effect cannot be obtained. If it exceeds 30%, the small container 24 is restricted from freely moving in the large container 22.
  • the small container 24 is preferably made of the same material as the large container 22.
  • the inner diameter of the large container 22 is 100 mm
  • the inner diameter of the small container 24 is 20 mm (large diameter / small diameter ratio 20%).
  • the particle size of the object to be crushed becomes 1/20 (5%) of the inner diameter of the small container 24, and the amount of the object to be crushed becomes 1/8 (12.5%) of the capacity of the small container 24.
  • the object to be crushed has an appropriate particle size and an appropriate amount with respect to the small container 24 (does not have an excessively small particle size or a small amount).
  • FIG. 11 is a conceptual diagram of a small container inside a large container. For comparison, three-dimensional rotation images of Reference Example 1 (large container) and Reference Example 2 (small container) are shown.
  • Example 1 only the small container 24 is placed in the large container 22, and a large-diameter hard ball is not used.
  • the object to be crushed and a small-diameter hard ball (for example, a diameter of 1 to 3 mm) are placed in the small container 24.
  • a small-diameter hard ball for example, a diameter of 1 to 3 mm
  • one small container 24 acts like a hard ball with respect to the other small container 24. That is, the small containers 24 come into contact with each other while rotating.
  • the small-diameter hard ball comes into contact with the object to be crushed while rotating. It is also possible to put different substances in a plurality of small containers 24, which is suitable for a small amount and various kinds of crushing operations.
  • Example 2 a small container 24 and a large-diameter hard ball are placed in the large container 22. Further, the object to be crushed and a small diameter hard ball (for example, a diameter of 1 to 3 mm) are placed in the small container 24. The large-diameter hard ball and the small container 24 rotate and come into contact with each other, and further, in the small container 24, the small-diameter hard ball comes into contact with the object to be crushed while rotating. Suitable for small amount and small amount crushing work.
  • Example 3 a small container 24 and a large-diameter hard ball are placed in the large container 22. Further, the object to be crushed is put into the small container 24. The large-diameter hard ball and the small container 24 rotate and come into contact with each other, and in the small container 24, the object to be crushed rotates and comes into contact with the inner wall of the small container 24.
  • Example 3 As a modification of Example 3 (not shown), a plurality of small containers 24 may be placed in the large container 22, and the object to be crushed may be further placed in the small container 24.
  • One small container 24 acts like a hard ball with respect to the other small container 24.
  • crushing the chemicals into fine powder has the effect of improving absorption into the body.
  • newly developed chemicals are expensive and are often produced in small quantities. In such a case, crushing with a small container inside a large container is preferable.
  • FIG. 12 is a conceptual diagram in the case where an ellipsoidal sphere container is used for the large container and / and the small container in the small container inside the large container.
  • the particle size of the object to be crushed by the ellipsoidal container may gradually decrease, and the number of contacts may decrease.
  • a reliable crushing effect can be expected due to the synergistic effect of combining the ellipsoidal container and the small container inside the large container.
  • Example 4 a spherical container is used as the large container, and an ellipsoidal container is used as the small container.
  • Example 5 an ellipsoidal sphere container is used as the large container, and an ellipsoidal sphere container is used as the small container.
  • Example 6 an ellipsoidal sphere container is used as the large container, and a spherical container is used as the small container.
  • the transmission mechanism 10 is an essential configuration in the rotating device of the present application, but is not limited as long as the rotational force of the driving disk 6 can be transmitted to the driven disk 9.
  • the transmission mechanism shown in FIGS. 1 to 3 illustrates a non-contact type by magnetism.
  • a contact (contact) type using rubber is illustrated.
  • the magnetic non-contact transmission mechanism suppresses slippage, but its configuration is slightly complicated, and the weight of the magnet cannot be ignored. While the rubber contact transmission mechanism is simple and lightweight, it can slip.
  • the transmission mechanism 10 of the present embodiment has a hollow tube structure, and the hollow pressure in the hollow tube structure can be adjusted.
  • FIG. 12 is an operation explanatory view for adjusting the hollow pressure in the hollow tube structure of the transmission mechanism 10 to (A) high pressure state, (B) medium pressure state, and (C) low pressure state.
  • the hollow pressure state is imaged by the thickness of the arrow.
  • the transmission mechanism with a hollow tube structure can realize the simplicity and lightness of the configuration similar to the transmission mechanism with rubber, and can also realize the slip suppression similar to the transmission mechanism with magnets.
  • slip In a medium pressure state, slip can be intentionally generated to realize an unsteady trajectory. Adjust to a hollow pressure that produces reliable transmission and moderate slip.
  • non-transmission can be performed between the driving disk 6 and the driven disk 9.
  • the rotation around the XX line and the rotation around the ZZ line can be controlled individually. Therefore, by setting one of the rotation speeds to zero, the three-dimensional rotation can be made into a two-dimensional rotation (one-axis rotation).
  • the three-dimensional rotation can be changed to the two-dimensional rotation (one-axis rotation). can.
  • substance A and substance B (having a specific density of half or less) having different specific densities are placed in an elliptical spherical container 23 and rotated three-dimensionally.
  • a small container 24 is placed in a large container 22, and a small amount or / and a small particle size of chemical powder A and chemical powder B are further placed in the small container 24 and rotated three-dimensionally.
  • the rotating device used for the hollow tube structure may be used for mixing in the transmission mechanism 10.
  • the hollow pressure By setting the hollow pressure to a high pressure state, slip can be suppressed while maintaining the characteristics of a simple structure and light weight.
  • slip By setting the hollow pressure to the medium pressure state, slip is intentionally generated and a further mixing effect can be obtained.
  • the hollow pressure By setting the hollow pressure to a low pressure state, the three-dimensional rotation can be changed to the two-dimensional rotation even in one electric motor drive type.
  • a further mixing effect can be obtained by appropriately combining an elliptical spherical container, a small container inside a large container, and a transmission mechanism with a hollow tube structure.
  • a small container 24 is put in a large container 22, and a complex substance C composed of a small amount or / and a small size substance A and a substance B is further put in the small container 24 and rotated three-dimensionally.
  • the rotating device used for the hollow tube structure may be used for mixing in the transmission mechanism 10.
  • the hollow pressure By setting the hollow pressure to a high pressure state, slip can be suppressed while maintaining the characteristics of a simple structure and light weight.
  • the hollow pressure By setting the hollow pressure to the medium pressure state, slip is intentionally generated and a further separation effect can be obtained.
  • the hollow pressure By setting the hollow pressure to a low pressure state, the three-dimensional rotation can be changed to the two-dimensional rotation even in one electric motor drive type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Crushing And Grinding (AREA)
  • Accessories For Mixers (AREA)

Abstract

3次元回転させることのできる回転装置を用いる粉砕において、更なる粉砕効果が得られる技術を提供する。容器を3次元回転(2軸回転)させることのできる回転装置(ボールミル)を用いて粉砕する。回転装置は、主動円板6と従動円板9と伝達機構10を有する。伝達機構10を介してX軸周りの駆動回転がz軸周りの容器回転に変換される。被粉砕物を楕円球容器23に入れる。被粉砕物を小容器24を介して楕円球容器23に入れるとさらによい。伝達機構10に中空チューブ構造を用い、中空圧を適宜調整するとさらによい。

Description

粉砕方法および混合方法
 本発明は、3次元回転させることのできる回転装置を用いる粉砕方法および混合方法に関するものである。
 粉砕装置の1種としてボールミルが知られている。ボールミルでは、セラミックや金属などの硬質のボールと、被粉砕物を円筒形の容器にいれて回転(1軸回転,2次元回転)させることによって、被粉砕物をすりつぶして微細な粉末を作る。
 2次元回転(1軸回転)は円周方向のみであるから、その回転により遠心力を受けたボールは円筒容器内壁に向かって駆け上がり落下する。ボールの移動は限定的であり、充分な粉砕効果も限定的である。
 これに対し、3次元回転(2軸回転)させることのできる回転装置(ボールミル)によれば、ボールは球状容器内壁面に沿って複雑な軌道を描き、球状容器全面を利用できるため、充分な粉砕効果が期待できる。
 3次元回転(2軸回転)に係る回転装置として、外部モータにより内部モータとともに第1軸回転させ、内部モータにより第2軸周りに容器等を回転させる装置が一般的である(例えば特許文献1)。
 外部モータにより内部モータ自体を回転させる結果、高速回転させると、内部モータに大きな遠心力が作用し、故障の原因になる。また、内部モータ自体を回転させるには外部モータを大型化する必要がある。これにともない、多くのエネルギーを必要とし、熱損失も発生する。
 これに対し、内部モータに換えて伝達機構を有する回転装置が提案されている(例えば、特許文献2)。
 特許文献2に係る回転装置は、装置本体と筺体と駆動モータと支持盤とから構成される。駆動モータの回転駆動力はプーリを介して本体装置に伝達される。
 本体装置は、外枠と内枠(容器保持構造)と第1円板(縦置)と第2円板(横置)と第1回転軸と第2回転軸とから構成されている。
 駆動モータの回転駆動力はプーリを介して、第1回転軸に伝達される。第1回転軸まわりに、外枠、第2回転軸が回転する。
 第1円板周面にはゴムが配設され、第2円板下面に当接されて、伝達機構を構成する。第1円板の回転力は第2円板に伝達される。第2回転軸まわりに、第2円板および内枠が回転する。
 これにより、容器はX軸周りおよびZ軸周り、すなわち2軸周りに回転する。これを3次元回転と呼ぶ。
 このように、球形容器内においてボールは複雑な軌道を描き、充分な粉砕効果が期待できる。さらに、伝達機構により内部モータは不要となり、小型化、軽量化、高速回転化(たとえば400rpm)、発熱抑制を図ることができる。
特開2002-316899号公報 特開2012-176331号公報
 特許文献2の容器は球形である。球形容器を定速で3次元回転させると、ボールは球形容器内にて一定の軌道を描くようになる。本願発明者が、特許文献2の回転装置(本願基本形)を開発した当時は、定常状態の方が好ましいと考えていた。
 本願発明者は様々な粉砕試験を繰り返すうちに、この定常軌道が3次元回転ボールミルの性能を制限していると考えるようになった。
 本発明は上記課題を解決するものであり、3次元回転させることのできる回転装置を用いる粉砕において、更なる粉砕効果が得られる技術を提供することを目的とする。
 上記課題を解決する本発明は、容器を3次元回転させることのできる回転装置を用いる粉砕方法である。前記容器は楕円球形容器である。前記楕円球形容器に硬質ボールと被粉砕物を入れ、前記楕円球形容器を3次元回転させる。
 楕円球形容器により更なる粉砕効果が得られる。また、比較的低速回転でも粉砕効果が得られる。さらに、高速回転による定常状態になるまでの時間が短い。その結果、粉砕時間を短縮できる。
 上記発明において、好ましくは、前記被粉砕物の比重は前記硬質ボールの比重の半分以下である。さらに好ましくは1/4以下である。
 このような比重差がある場合でも、充分な粉砕効果が得られる。
 上記発明において、好ましくは、前記楕円球形容器に、小容器を介して、前記被粉砕物を入れる。
 これにより、被粉砕物が小粒径または/および少量の場合でも、充分な粉砕効果が得られる。
 上記発明において、好ましくは、前記小容器は楕円球形である。
 小容器においても、楕円球形による効果を奏する。
 上記発明において、好ましくは、前記回転装置は、第1回転駆動装置と、前記第1回転駆動装置により回転される第1水平軸と、前記第1水平軸に結合される外側回転枠と、前記第1回転駆動装置と反対側に設けられる第2回転駆動装置と、前記第1水平軸と反対側に設けられ、前記外側回転枠の一側面を貫通し、前記第2回転駆動装置により回転される第2水平軸と、前記第2水平軸に結合され、前記第2水平軸に垂直な方向に板面を有する主動円板と、前記第1水平軸および前記第2水平軸の軸芯方向とは直交方向に軸芯方向を有し、前記外側回転枠に設けられる直交軸と、前記直交軸に結合され、前記容器を保持する内側回転枠と、前記直交軸に結合され、前記直交軸に垂直な方向に板面を有する従動円板と、前記主動円板の回転力を前記従動円板に伝達する伝達機構と、前記第1回転駆動装置および第2回転駆動装置の出力を個別に制御する制御装置と、を備える。
 上記回転装置により、3次元高速回転を実現できる。2軸回転を個別に制御できる。
 上記発明において、好ましくは、前記回転装置は、回転駆動装置と、前記回転駆動装置により回転される水平軸と、前記水平軸に結合される外側回転枠と、前記外側回転枠の一側面を貫通して前記水平軸に結合され、前記水平軸に垂直な方向に板面を有する主動円板と、前記水平軸の軸芯方向とは直交方向に軸芯方向を有し、前記外側回転枠に設けられる直交軸と、前記直交軸に結合され、前記容器を保持する内側回転枠と、前記直交軸に結合され、前記直交軸に垂直な方向に板面を有する従動円板と、前記主動円板まわりの回転力を前記従動円板に伝達する伝達機構と、前記回転駆動装置の出力を制御する制御装置と、を備える。
 上記回転装置により、3次元高速回転を実現できる。1つの駆動装置により、2軸回転を実現できる。
 上記発明において、前記伝達機構は、中空チューブ構造であり、中空チューブ構造内の中空圧を調整する。
 中空圧を高圧状態、中圧状態、低圧状態と調整できる。高圧状態により、確実な伝達が可能となる。中圧状態により、意図的なスリップを発生させ、更なる粉砕効果が得られる。低圧状態により、3次元回転を2次元回転とすることができる。
 上記課題を解決する本発明は、容器を3次元回転させることのできる回転装置を用いる混合方法である。前記容器は楕円球形容器である。前記楕円球形容器に被混合物を入れ、前記楕円球形容器を3次元回転させる。被混合物は、物質Aと前記物質Aの比重の半分以下の比重の物質Bである。
 楕円球形容器により更なる混合効果が得られる。また、比較的低速回転でも混合効果が得られる。さらに、高速回転による定常状態になるまでの時間が短い。その結果、混合時間を短縮できる。
 本発明では、3次元回転させることのできる回転装置を用いる粉砕において、更なる粉砕効果が得られる。
回転装置の一例(断面図) 回転装置の一例(斜視図) 回転装置の別例(斜視図) 回転装置の別例(斜視図) 容器の保持構造の一例(斜視図) 容器の保持構造の適用例(楕円球形容器) 楕円球形容器による効果 楕円球形容器による効果(試験結果) 楕円球形容器による効果(試験結果) 楕円球形容器による効果 大容器内小容器の概念図 大容器内小容器の変形例 伝達機構の変形例
 <回転装置基本構成>
 図1および図2は、回転装置の一例の概略図である。図1は断面図であり、図2は斜視図である。回転装置は、装置本体と筺体と回転駆動装置であるモータ1,4と支持盤とから構成される。
 装置本体は、第1水平軸2と、外側回転枠3と、第2水平軸5と、主動円板6と、直交軸7と、内側回転枠8と、従動円板9と、伝達機構10と、制御装置30とを備える。
 電動モータ1の出力軸はプーリを介して第1水平軸2に結合されている。また、第1水平軸2は、外側回転枠3に結合されている。すなわち、電動モータ1の駆動により、外側回転枠3は第1水平軸2回り(軸心X-Xラインの回り)で回転する。
 電動モータ4の出力軸はプーリを介して第2水平軸5に結合されている。第2水平軸5は、第1水平軸2と反対側に設けられ、外側回転枠3の一側面を貫通する。第2水平軸5と外側回転枠3との間には、ボールベアリングが設けられている。また、第2水平軸5は、主動円板6に結合されている。主動円板6は第2水平軸5に垂直な方向に板面を有する。
 すなわち、電動モータ4の駆動により、主動円板6は第2水平軸5回り(X-Xラインの回り)で回転する。一方で、第2水平軸5は外側回転枠3と縁が切れているため、電動モータ4の駆動力は外側回転枠3に直接伝達されない。
 直交軸7,7は外側回転枠3に設けられる。直交軸7,7と外側回転枠3との間には、ボールベアリングが設けられている。直交軸7,7は、第1水平軸2および第2水平軸5の軸芯方向とは直交方向に軸芯方向を有する。また、直交軸7,7は、内側回転枠8に結合されている。
 すなわち、内側回転枠8は外側回転枠3の内側に配置され、外側回転枠3内において直交軸7回り(Z-Zライン)に回転自在となっている。
 さらに、直交軸7は、従動円板9に結合されている。すなわち、従動円板9の直交軸7回りの回転に伴い、内側回転枠8も直交軸7回り(Z-Zライン)で回転する。なお、内側回転枠8および従動円板9が直交軸7回りで回転しても、この回転力は外側回転枠3に直接伝達されない。
 伝達機構10は、主動円板6の周端面が従動円板9の板面外周部に対向した状態で、主動円板6の回転力を従動円板9に伝達する。
 内側回転枠8内には容器22が保持されている(図5,図6参照)。
 <回転装置基本動作>
 制御装置30は、電動モータ1および電動モータ4の出力を個別に制御可能である。
 電動モータ1を駆動させると、第1水平軸2を介して、外側回転枠3はX-Xラインの回りで回転する。
 外側回転枠3の回転に伴い、外側回転枠3に設けられた直交軸7,7もX-Xラインの回りで回転する。さらに直交軸7,7を介して内側回転枠8および従動円板9も、同様に、X-Xラインの回りで回転する。
 電動モータ4を駆動させると、第2水平軸5を介して、主動円板6はX-Xラインの回りで回転する。
 主動円板6と従動円板9は個別にX-Xラインの回りで回転し、回転速度差が発生する。X-Xラインの回りの回転速度差は伝達機構10を介して従動円板9に伝達され、従動円板9が直交軸7の回り(Z-Zラインの回り)で回転し、内側回転枠8もZ-Zラインの回りで回転する。
 すなわち、内側回転枠8および容器22は、X-Xラインの回りで回転するとともに、Z-Zラインの回りでも回転する。言い換えると、2軸回転(3次元回転)する。
 <伝達機構例>
 電動モータ1および電動モータ4の出力を個別に制御することにより、X-Xラインの回りでの回転数(回転速度)とZ-Zラインの回りでの回転数(回転速度)を個別に制御することができる。これにより、更に複雑な挙動を実現できる。
 一方で、電動モータ1および電動モータ4の個別制御は複雑な制御になりやすい。回転速度を増していくと、接触伝達機構では当接のスリップが発生し、速度制御の精度にかかる課題が発生するおそれがある。特に、主動円板6も従動円板9もX-Xラインの回りで回転すると、接触(当接)伝達機構では当接のスリップが発生しやすい。
 さらに、回転速度を周期的に増減させる様な複雑な制御を想定する場合、伝達が追従できず、当接スリップが発生するおそれがある。
 図1および図2の伝達機構は非接触式であり、複数の第1磁石11と複数の第2磁石12とから構成される。第1磁石11と第2磁石12との間にスペース13が形成されている。つまり、第1磁石11と第2磁石12とは非接触である。
 第1磁石11は、主動円板6の周端面に、N極とS極とが交互になる様に複数配設される。第2磁石12は、従動円板9の板面外周部に、N極とS極とが交互になる様に複数配設される。
 主動円板6が回転すると、第1磁石11も回転する。第1磁石11のN極は、第2磁石12のN極と反発しあい、第2磁石12のS極と引き合おうとする。第1磁石11のS極は、第2磁石12のS極と反発しあい、第2磁石12のN極と引き合おうとする。これを繰り返すことにより、主動円板6のX-Xラインの回りの回転力が従動円板9に伝達され、従動円板9はZ-Zラインの回りで回転する。
 非接触伝達機構においては、当接スリップは発生しない。その結果、精度のよい速度制御が可能である。また、回転力伝達に伴い発熱しない。回転速度を周期的に増減させるような複雑な制御も可能となる。
 <回転装置変形例>
 容器を3次元回転させることのできる回転装置であれば、上記に限定されない。
 図3は、回転装置の変形例である。電動モータ4がなく、水平軸5が固定されることにより、主動円板6も固定されている。
 電動モータ1を駆動させると、水平軸2を介して、外側回転枠3はX-Xラインの回りで回転する。
 外側回転枠3の回転に伴い、外側回転枠3に設けられた直交軸7,7もX-Xラインの回りで回転する。さらに直交軸7,7を介して内側回転枠8および従動円板9も、同様に、X-Xラインの回りで回転する。
 このとき、従動円板9は主動円板6外周に沿って回転する。X-Xラインの回りの回転力は伝達機構10を介して従動円板9に伝達され、従動円板9が直交軸7の回り(Z-Zラインの回り)で回転し、内側回転枠8もZ-Zラインの回りで回転する。
 内側回転枠8および容器22は、X-Xラインの回りで回転するとともに、Z-Zラインの回りでも回転する。言い換えると、2軸回転(3次元回転)する。
 このとき、Z-Zラインの回りでの回転数(回転速度)はX-Xラインの回りでの回転数(回転速度)に比例する。回転装置作動中は、個別制御ができない。一方で、2つのモータの個別制御に比べ、制御を単純化できる。
 図4は、回転装置の別の変形例である。具体的には伝達機構10の変形例である。図1および図2の伝達機構は非接触式であるのに対し、図4の伝達機構は接触式(当接式)である。
 主動円板6の周面に、摩擦係数が大きな弾性体(例えば、ゴムバンド)が取り付けられている。さらにゴムバンドには溝が設けられている。これにより、主動円板6の周面はゴム10を介して従動円板9に圧接し、両者間に摩擦抵抗力が発生する。
 従動円板9の板面外周に環状かつ面状のゴムが貼付されていてもよい。すなわち、どちらかの当接面または両方に弾性体が設けられていればよい。
 伝達機構10の変形例として歯の噛み合わせ機構(図示省略)としてもよい。
 <容器保持機構>
 図5は容器保持機構の一例の概略斜視図である。球状容器22が、容器保持板21,21を介して内側回転枠8の内部に設けられている。球状容器22の中心は、回転装置の回転中心(すなわちX-XラインとZ-Zラインとの交点)と一致する。
 容器保持板21には球状容器22サイズに対応する開口が設けられている。2枚の容器保持板21により球状容器22を挟み込み、容器保持板21を内側回転枠8に取付ける。これにより、球状容器22が保持される。なお、球状容器22は2つの半球の接合により形成される。
 容器保持板21の開口サイズを変えることにより、球状容器22のサイズ変更に対応可能である。また、球状容器22だけでなく楕円球容器23や紡錘形容器(図示省略)、長円球容器(図示省略)などにも適用できる。なお、紡錘形容器や長円球容器は、楕円球容器23と類似効果が得られる可能性がある。
 図6は容器保持機構を楕円球容器23に適用した例である。2枚の容器保持板21により楕円球容器23を挟み込み、容器保持板21を内側回転枠8に取付ける。楕円球容器23の長軸方向が容器保持板21の開口より突出する。これにより、楕円球容器23が保持される。
 楕円球容器23において、楕円長軸は楕円短軸に対し、1.2倍~3倍程度であることが好ましい。1.2倍未満では、円球容器による効果が充分でなく、3倍超になると内側回転枠が扁平になり、回転バランスについて再検討が必要となる。なお、説明の便宜の為、図6例示では、楕円長軸は楕円短軸に対し1.5倍程度としている。
 紡錘形容器や長円球容器を用いる場合は、上記長軸短軸比を参考に形状を設定する。
 なお、図示では半透明容器となっているが、容器も硬質ボールと同等の材質(例えば、ジルコニアやアルミナ)であることが好ましい。ステンレスを用いてもよい。
 <楕円球容器による効果>
 本願発明者は様々な粉砕試験を繰り返し、3次元回転ボールミルの性能限界について検討した。たとえば、ボールの比重に比べて、被粉砕物の比重が明らかに軽い(例えば半分以下)場合、球状容器22では充分な粉砕効果が得られないことに気が付いた。
 一般に用いられる硬質ボールはセラミック製や金属製である。セラミックの1種であるジルコニアの比重は5.7g/cm程度である。金属の1種であるアルミナの比重は4.0g/cm程度である。
 被粉砕物としてもぐさ(比重0.2cm程度)やシルク(比重1.3cm程度)を想定すると、被粉砕物の比重は、ボール比重の半分以下である。なお、被粉砕物の比重がボール比重の1/4以下となると、下記不具合(粉砕不充分)は顕著となる。
 図7は球状容器22と楕円球容器23との効果の違いを説明する図である。図8は球状容器22と楕円球容器23とのもぐさの粉砕試験結果の違いを説明する図である。図9は球状容器22と楕円球容器23とのシルクの粉砕試験結果の違いを説明する図である。
 球状容器22を3次元回転させると、遠心力により、硬質ボールは球状容器22の内壁面に沿って移動する。所定時間経過すると、定常軌道になる。
 一方で、比重の軽い被粉砕物は球状容器22中心付近に集まる傾向にある。その結果、硬質ボールは被粉砕物に接触することが少なく、充分な粉砕効果が得られない。
 粉砕試験結果においても、もぐさは粉砕されず塊のままであり、硬質ボールと混合されていないままである(図8)。シルクは粉砕されず、嵩張っている(図9)。
 楕円球容器23を3次元回転させると、遠心力により、硬質ボールは楕円球容器23の内壁面に沿って移動する。楕円球容器23の内壁面に沿って移動する硬質ボールの一部は、軌道を変えて内壁面から離れ、楕円球容器23の中心付近を通過する。この際、楕円球容器23中心付近に集まる比重の軽い被粉砕物と接触し、充分な粉砕効果が期待できる。
 粉砕試験結果においても、もぐさは粉砕され微粉となり、硬質ボールと混合されている(図8)。シルクは粉砕され、嵩が減っている(図9)。
 なお、様々な物質を粉砕し微粉として利用する需要がある。たとえば、シルクを微粉として、化粧品クリームに混ぜると、美白効果、保湿効果が期待できる。
 図10は球状容器22と楕円球容器23との別の効果の違いを説明する図である。
 ボールミルによる粉砕効果を確実にするため、硬質ボールの比重は比較的重い(例:ジルコニア比重5.7g/cm程度、アルミナ比重4.0g/cm程度)。
 その結果、硬質ボール自重の影響が大きく、低速回転(例えば50rpm程度)の3次元回転では、硬質ボールが球状容器22の内壁を駆け上がることができないおそれがある。高速回転(例えば200rpm程度)の3次元回転としても、硬質ボールが球状容器22の内壁を駆け上がり、球状容器全面に軌跡を描くようになるまで、所定時間を要する。
 これに対し、3次元回転において、楕円球容器23の長軸が水平となる際、硬質ボールが楕円球容器23の内壁を駆け上がりやすくなる。低速回転(例えば50rpm程度)の3次元回転でも、楕円球容器23の内壁を駆け上がることができる。高速回転(例えば200rpm程度)の3次元回転とすると、硬質ボールが球状容器22の内壁を駆け上がり、短時間で、球状容器全面に軌跡を描くようになる。その結果、粉砕時間が短くなる。なお、本願回転装置は400rpmの高速回転が可能である。
 <大容器内小容器>
 本願発明者は様々な粉砕試験を繰り返し、3次元回転ボールミルの性能限界について検討した。たとえば、被粉砕物が極めて小粒径(たとえば容器径の1/50以下、特に容器径の1/100以下)の場合や、少量(たとえば容器容量の1/200以下、とくに容器容量の1/1000以下)場合、充分な粉砕効果が得られないことに気が付いた。
 本願発明者は、様々な粉砕試験、混合試験、分離試験をおこなうために、回転装置を開発し、内径80~200mmの容器22を用いている。説明の便宜上、容器内径を100mmとする。充分な粉砕効果を得るために、硬質ボール径8~25mm程度としている。説明の便宜上、硬質ボール径を15mmとする。
 例えば、被粉砕物の粒径を1mmの粒とし、当該粒を1000粒とする。このような小粒径および小容量を粉砕する場合、硬質ボールと被粉砕物とが接触する回数は少なく、充分な粉砕効果が得られない(図11参考例1)。
 このような不具合に対し、本願発明者は、内径30mmの小容器に小粒径(例えば粒径5mm)の硬質ボールを用い、容器を3次元回転させてみたところ、容器およびボールの小径化により充分な粉砕力が得られず、充分な粉砕効果が得られなかった(図11参考例2)。
 ところで、3次元回転ボールミルにおいては、一般的なボールミル装置(2次元回転)に比べて、格段に粉砕効果が向上するとともに、ボール衝突による容器内発熱が顕著に抑制されている。本願発明者は、容器内発熱抑制の原理について考察したところ、一般的なボールミル装置においては、ボール同士およびボールと内壁が直線的に衝突するのに対し、3次元回転ボールミルにおいては、容器の3次元回転に伴い、ボールも3次元回転し、ボール同士およびボールと内壁が回転しながら擦れあって接触している可能性があると推察した。
 上記推察から類推すれば、大容器22内に小容器24を入れ、大容器22を3次元回転させれば、小容器24は大容器22内壁面に沿って移動するとともに、小容器24自体も3次元回転する。
 小容器24内に小粒径または/および少量の被粉砕物をいれることにより、小容器24内で3次元回転が実現される。小容器24は大容器内22内で大きく移動しているため、充分な粉砕力が得られる。その結果、被粉砕物が小粒径または/および少量であっても、充分な粉砕効果が得られる。
 小容器24内径は大容器22内径の10~30%程度が好ましい。10%未満であると、小容器24内に入れられる被粉砕物量が制限される。また、充分な粉砕効果が得られない。30%超であると小容器24が大容器22内で自由に移動することが制限される。小容器24は大容器22材質と同等の材質であることが好ましい。
 説明の便宜上、大容器22内径を100mmとし、小容器24内径を20mmとする(大径小径比20%)。これにより、被粉砕物粒径は小容器24内径の1/20(5%)となり、被粉砕物量は小容器24容量の1/8(12.5%)となる。被粉砕物は小容器24に対し適度な粒径や適度な量を有する(過度な小粒径や少量とならない)。
 図11は大容器内小容器の概念図である。比較の為、参考例1(大容器)および参考例2(小容器)の3次元回転イメージを示す。
 実施例1では、大容器22内に小容器24のみをいれ、大径硬質ボールを用いない。小容器24に被粉砕物と小径硬質ボール(例えば径1~3mm)を入れる。複数の小容器24を大容器22内に入れることにより、一の小容器24が他の小容器24に対し硬質ボールの様に作用する。すなわち、小容器24同士が回転しながら接触する。小容器24内において、小径硬質ボールが被粉砕物と回転しながら接触する。複数の小容器24に異なる物質を入れることもでき、少量多種の粉砕作業に好適である。
 実施例2では、大容器22内に小容器24と大径硬質ボールをいれる。さらに小容器24に被粉砕物と小径硬質ボール(例えば径1~3mm)を入れる。大径硬質ボールと小容器24とが回転しながら接触し、さらに、小容器24内において、小径硬質ボールが被粉砕物と回転しながら接触する。少量少種の粉砕作業に好適である。
 実施例3では、大容器22内に小容器24と大径硬質ボールをいれる。さらに小容器24に被粉砕物を入れる。大径硬質ボールと小容器24とが回転しながら接触し、さらに、小容器24内において、被粉砕物が回転しながら小容器24内壁に接触する。
 実施例3の変形例(図示省略)として、大容器22内に複数の小容器24とをいれ、さらに小容器24に被粉砕物を入れてもよい。一の小容器24が他の小容器24に対し硬質ボールの様に作用する。
 なお、薬品を粉砕して微粉とすると体内への吸収が良くなる等の効果がある。一般に、新規開発された薬品は高価であり、少量生産されることが多い。このような場合、大容器内小容器による粉砕が好適である。
 <楕円球容器との相乗効果>
 図12は大容器内小容器において、大容器または/および小容器に楕円球容器を用いる場合の概念図である。
 小粒径または/および少量の被粉砕物においても、容器中心付近に集まる傾向にある。また、硬質ボールの比重に比べて、薬品等の比重が明らかに軽い(例えば半分以下)場合も多い。大容器内小容器と楕円球容器とを組み合わせることの相乗効果により、確実な粉砕効果が期待できる。
 また、楕円球容器により粉砕する被粉砕物は徐々に小粒径化し、接触回数が減るおそれもある。楕円球容器と大容器内小容器とを組み合わせることの相乗効果により、確実な粉砕効果が期待できる。
 実施例4では、大容器に球形容器を用い、小容器に楕円球容器を用いる。実施例5では、大容器に楕円球容器を用い、小容器に楕円球容器を用いる。実施例6では、大容器に楕円球容器を用い、小容器に球形容器を用いる。
 実施例4~6において、実施例1~3を参考に、適宜大径硬質ボールや小径硬質ボールを適宜用いる。
 <空気圧当接式伝達機構>
 本願回転装置において伝達機構10は本質的構成であるが、主動円板6の回転力を従動円板9に伝達できれば、限定されない。
 図1~3の伝達機構では、磁気による非接触式を例示している。図4の伝達機構では、ゴムによる接触(当接)式を例示している。
 磁気による非接触式の伝達機構もゴムによる接触式の伝達機構も一長一短を有する。磁気による非接触式の伝達機構では、スリップを抑制する一方、構成が若干複雑で、磁石の自重を無視できない。ゴムによる接触式の伝達機構は、構成が簡単で、軽量である一方、スリップのおそれがある。
 本願では、上記不具合を考慮して、別方式の伝達機構を提案する。
 本実施形態の伝達機構10は中空チューブ構造であり、中空チューブ構造内の中空圧を調整可能である。
 図12は、伝達機構10の中空チューブ構造内の中空圧を、(A)高圧状態、(B)中圧状態、(C)低圧状態に調整する動作説明図である。中空圧状態を矢印の太さでイメージしている。
 高圧状態において、ゴム接触以上の弾性状態を実現できる。中空圧の押圧により、主動円板6周面が伝達機構10を介して従動円板9の板面外周部に確実に当接する。
 中空チューブ構造による伝達機構は、ゴムによる伝達機構に準ずる構成の単純性および軽量性を実現できるとともに、磁石による伝達機構に準ずるスリップ抑制を実現できる。
 中圧状態において、意図的にスリップを発生させ、非定常軌跡を実現できる。確実な伝達と適度なスリップが発生する中空圧に調整する。
 本願発明者が本願回転装置の基本モデルを開発した当時は、定常軌道の方が好ましいと考えていた。したがって、意図しないスリップは好ましくないと考えていた。しかし、本願発明者は様々な粉砕試験を繰り返すうちに、繰り返し微小変化を与えたほうが、更なる粉砕効果が得られると考えるに至った。
 意図的にスリップ発生を上記楕円球容器や大容器内小容器と適宜組み合わせることで、更なる粉砕効果が得られる。
 低圧状態において、主動円板6と従動円板9との間を非伝達とすることができる。
 図1に示す2つの電動モータ駆動式では、X-Xラインの回りで回転と、Z-Zラインの回りでの回転を個別に制御できる。したがって、一方の回転数をゼロとすることにより、3次元回転を2次元回転(1軸回転)とすることもできる。
 一方で、図3に示す1つの電動モータ駆動式では、X-Xラインの回りで回転に従動してZ-Zラインの回りでの回転が発生する。したがって、3次元回転を2次元回転(1軸回転)とすることができない。
 主動円板6と従動円板9との間を非伝達とすることで、1つの電動モータ駆動式(図3参照)においても、3次元回転を2次元回転(1軸回転)とすることができる。
 <混合方法>
 以上、3次元回転させることのできる回転装置をボールミル(粉砕装置)として用いるときの粉砕効果向上について説明してきたが、本願回転装置を混合に用いてもよい。
 たとえば、比重の異なる物質Aと物質B(比重半分以下)を楕円球形容器23に入れ、3次元回転させる。
 球状容器22に物質Aと物質Bを入れ3次元回転させても充分な混合効果が得られない場合でも、楕円球形容器23に入れ3次元回転させることで充分な混合効果が得られる。
 たとえば、大容器22内に小容器24をいれ、さらに、小容器24に少量または/および小粒径の薬品粉末Aと薬品粉末Bを入れ、3次元回転させる。
 大容器22に薬品粉末Aと薬品粉末Bを入れ3次元回転させても充分な混合効果が得られない場合でも、小容器24に薬品粉末Aと薬品粉末Bを入れ3次元回転させても充分な混合効果が得られない場合でも、大容器22内に小容器24をいれ、さらに、小容器24に少量または/および小粒径の薬品粉末Aと薬品粉末Bを入れ、3次元回転させることで充分な混合効果が得られる。
 たとえば、伝達機構10に中空チューブ構造に用いた回転装置を混合に用いてもよい。中空圧を高圧状態とすることで、単純な構成、軽量と言う特徴を維持しながら、スリップを抑制できる。中空圧を中圧状態とすることで、意図的にスリップを発生させ、更なる混合効果が得られる。中空圧を低圧状態とすることで、1つの電動モータ駆動式においても、3次元回転を2次元回転とすることができる。
 楕円球形容器と大容器内小容器と中空チューブ構造による伝達機構を適宜組み合わせることで、更なる混合効果が得られる。
 <分離方法>
 以上、3次元回転させることのできる回転装置をボールミル(粉砕装置)として用いるときの粉砕効果向上について説明してきたが、本願回転装置を分離に用いてもよい。
 たとえば、大容器22内に小容器24をいれ、さらに、小容器24に少量または/および小サイズの物質Aと物質Bとから構成される複合物質Cを入れ、3次元回転させる。
 大容器22に複合物質Cを入れ3次元回転させても充分な分離効果が得られない場合でも、小容器24に複合物質Cを入れ3次元回転させても充分な分離効果が得られない場合でも、大容器22内に小容器24をいれ、さらに、小容器24に少量または/および小サイズの複合物質Cを入れ、3次元回転させることで、物質Aと物質Bに分離でき、充分な分離効果が得られる。
 なお、近年、半導体等の精密電子部品は極めて小型化する傾向がある。このような場合、大容器内小容器による分離が好適である。基盤に用いる樹脂と回路に用いる金属を分離できる。
 たとえば、伝達機構10に中空チューブ構造に用いた回転装置を混合に用いてもよい。中空圧を高圧状態とすることで、単純な構成、軽量と言う特徴を維持しながら、スリップを抑制できる。中空圧を中圧状態とすることで、意図的にスリップを発生させ、更なる分離効果が得られる。中空圧を低圧状態とすることで、1つの電動モータ駆動式においても、3次元回転を2次元回転とすることができる。
 楕円球形容器と大容器内小容器と中空チューブ構造による伝達機構を適宜組み合わせることで、更なる分離効果が得られる。
 1  駆動モータ
 2  第1水平軸
 3  外側回転枠
 4  駆動モータ 
 5  第2水平軸
 6  主動円板
 7  直交軸
 8  内側回転枠
 9  従動円板
 10 非接触伝達機構
 11 第1磁石
 12 第2磁石
 13 スペース
 21 容器保持板
 22 球状容器
 23 楕円球容器
 24 小容器

Claims (8)

  1.  容器を3次元回転させることのできる回転装置を用い、
     前記容器は楕円球形容器であり、
     前記楕円球形容器に硬質ボールと被粉砕物を入れ、
     前記楕円球形容器を3次元回転させる
     ことを特徴とする粉砕方法。
  2.  前記被粉砕物の比重は前記硬質ボールの比重の半分以下である
     ことを特徴とする請求項1記載の粉砕方法。
  3.  前記楕円球形容器に、小容器を介して、前記被粉砕物を入れる
     ことを特徴とする請求項1または2記載の粉砕方法。
  4.  前記小容器は楕円球形である
     ことを特徴とする請求項3記載の粉砕方法。
  5.  前記回転装置は、
     第1回転駆動装置と、
     前記第1回転駆動装置により回転される第1水平軸と、
     前記第1水平軸に結合される外側回転枠と、
     前記第1回転駆動装置と反対側に設けられる第2回転駆動装置と、
     前記第1水平軸と反対側に設けられ、前記外側回転枠の一側面を貫通し、前記第2回転駆動装置により回転される第2水平軸と、
     前記第2水平軸に結合され、前記第2水平軸に垂直な方向に板面を有する主動円板と、
     前記第1水平軸および前記第2水平軸の軸芯方向とは直交方向に軸芯方向を有し、前記外側回転枠に設けられる直交軸と、
     前記直交軸に結合され、前記容器を保持する内側回転枠と、
     前記直交軸に結合され、前記直交軸に垂直な方向に板面を有する従動円板と、
     前記主動円板の回転力を前記従動円板に伝達する伝達機構と、
     前記第1回転駆動装置および第2回転駆動装置の出力を個別に制御する制御装置と、
     を備える
     ことを特徴とする請求項1~4記載の粉砕方法。
  6.  前記回転装置は、
     回転駆動装置と、
     前記回転駆動装置により回転される水平軸と、
     前記水平軸に結合される外側回転枠と、
     前記外側回転枠の一側面を貫通して前記水平軸に結合され、前記水平軸に垂直な方向に板面を有する主動円板と、
     前記水平軸の軸芯方向とは直交方向に軸芯方向を有し、前記外側回転枠に設けられる直交軸と、
     前記直交軸に結合され、前記容器を保持する内側回転枠と、
     前記直交軸に結合され、前記直交軸に垂直な方向に板面を有する従動円板と、
     前記主動円板まわりの回転力を前記従動円板に伝達する伝達機構と、
     前記回転駆動装置の出力を制御する制御装置と、
     を備える
     ことを特徴とする請求項1~4記載の粉砕方法。
  7.  前記伝達機構は、中空チューブ構造であり、
     中空チューブ構造内の中空圧を調整する
     ことを特徴とする請求項5または6記載の粉砕方法。
  8.  容器を3次元回転させることのできる回転装置を用い、
     前記容器は楕円球形容器であり、
     前記楕円球形容器に物質Aと前記物質Aの比重の半分以下の比重の物質Bを入れ、
     前記楕円球形容器を3次元回転させる
     ことを特徴とする混合方法。
PCT/JP2020/003184 2020-01-29 2020-01-29 粉砕方法および混合方法 WO2021152725A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020524652A JP6777299B1 (ja) 2020-01-29 2020-01-29 粉砕方法および混合方法
PCT/JP2020/003184 WO2021152725A1 (ja) 2020-01-29 2020-01-29 粉砕方法および混合方法
DE112020006620.7T DE112020006620T5 (de) 2020-01-29 2020-01-29 Pulverisierungsverfahren und Mischverfahren
JP2020164693A JP7428863B2 (ja) 2020-01-29 2020-09-30 粉砕方法および混合方法
JP2020164692A JP7421700B2 (ja) 2020-01-29 2020-09-30 回転装置、粉砕方法および混合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003184 WO2021152725A1 (ja) 2020-01-29 2020-01-29 粉砕方法および混合方法

Publications (1)

Publication Number Publication Date
WO2021152725A1 true WO2021152725A1 (ja) 2021-08-05

Family

ID=72916123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003184 WO2021152725A1 (ja) 2020-01-29 2020-01-29 粉砕方法および混合方法

Country Status (3)

Country Link
JP (3) JP6777299B1 (ja)
DE (1) DE112020006620T5 (ja)
WO (1) WO2021152725A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075473A1 (ja) * 2020-10-09 2022-04-14 三菱マテリアル株式会社 回転装置および微粒子作製方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777299B1 (ja) * 2020-01-29 2020-10-28 株式会社ナガオシステム 粉砕方法および混合方法
CN113399082A (zh) * 2021-07-19 2021-09-17 广州市花都区福咪医疗有限公司 一种生物制药用的粉碎装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329383A (ja) * 2004-05-20 2005-12-02 Yasunobu Yoshida 粉砕機
JP2012176331A (ja) * 2009-06-27 2012-09-13 Nagao System:Kk 三次元回転機構及びそれを備えたボールミル及び混練装置
JP2017159262A (ja) * 2016-03-10 2017-09-14 国立大学法人大阪大学 エマルションの製造方法および製造装置
JP2020016284A (ja) * 2018-07-25 2020-01-30 株式会社亀山鉄工所 回転装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167571A (ja) * 1974-12-10 1976-06-11 Keisuke Kurose Shinkukyuugekishikikaitengataseisenshokuhinfunsaihosoki
JP3680288B2 (ja) * 1995-06-08 2005-08-10 有限会社ナガオシステム 脱泡、混合機
JP3595513B2 (ja) 2001-04-12 2004-12-02 三菱重工業株式会社 タンパク質結晶化装置及びタンパク質結晶化方法
ITTO20040694A1 (it) 2004-10-08 2005-01-08 Stardale Ltd Macchina miscelatrice
CN100376327C (zh) 2005-12-30 2008-03-26 中山大学 行星式球磨机
JP5666220B2 (ja) 2010-09-10 2015-02-12 株式会社ナガオシステム 三次元ボールミル
JP3190993U (ja) 2014-03-20 2014-06-05 正裕 岩永 混合攪拌装置
WO2017187550A1 (ja) 2016-04-27 2017-11-02 株式会社ナガオシステム 混合方法および回転装置
JP6777299B1 (ja) 2020-01-29 2020-10-28 株式会社ナガオシステム 粉砕方法および混合方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329383A (ja) * 2004-05-20 2005-12-02 Yasunobu Yoshida 粉砕機
JP2012176331A (ja) * 2009-06-27 2012-09-13 Nagao System:Kk 三次元回転機構及びそれを備えたボールミル及び混練装置
JP2017159262A (ja) * 2016-03-10 2017-09-14 国立大学法人大阪大学 エマルションの製造方法および製造装置
JP2020016284A (ja) * 2018-07-25 2020-01-30 株式会社亀山鉄工所 回転装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075473A1 (ja) * 2020-10-09 2022-04-14 三菱マテリアル株式会社 回転装置および微粒子作製方法

Also Published As

Publication number Publication date
JPWO2021152725A1 (ja) 2021-08-05
JP2021115568A (ja) 2021-08-10
JP2021115567A (ja) 2021-08-10
DE112020006620T5 (de) 2023-03-09
JP7421700B2 (ja) 2024-01-25
JP6777299B1 (ja) 2020-10-28
JP7428863B2 (ja) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2021152725A1 (ja) 粉砕方法および混合方法
KR101056693B1 (ko) 나사산 구동식 다면체 초음파 모터
EP2251564B1 (en) Ball speed reducer and rotary table device using same
TW201402974A (zh) 球帶面磁性耦合傳動機構及其應用
CN110285195A (zh) 差动摆线变速装置
US20080167156A1 (en) Electric variable inertia apparatus
JP6813853B2 (ja) 回転装置
JP2022083314A (ja) 回転装置および微粒子作製方法
CN100369675C (zh) 行星式球磨机用的球磨罐及带有该球磨罐的球磨机
JP2022063167A (ja) 容器、回転装置および微粒子作製方法
WO2022075473A1 (ja) 回転装置および微粒子作製方法
JPH09280341A (ja) 回転伝達装置
JPH09257116A (ja) 駆動伝達手段
CN208289946U (zh) 毛发修剪器传动机构
CN208084395U (zh) 毛发修剪器传动机构
US4982906A (en) Multi-chamber inclined ball mill
CN109494960A (zh) 一种异形永磁体在大相对转角下磁扭矩平稳的传动机构
KR101864539B1 (ko) 진동 저감 기능을 갖는 유성형 볼 밀 장치
JPH04105544A (ja) 回転伝達装置
JP2003028269A (ja) 変速装置
JP5270999B2 (ja) 磁気カップリング
JP5931658B2 (ja) 振動ミル
Muratov et al. Lapping machine with a cycloid tool trajectory
JP2912541B2 (ja) キャッパーのキャッピング頭部
US20190107181A1 (en) Rotation transmitting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020524652

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917228

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20917228

Country of ref document: EP

Kind code of ref document: A1