WO2021150058A1 - 전자식 브레이크 시스템 및 그 제어방법 - Google Patents

전자식 브레이크 시스템 및 그 제어방법 Download PDF

Info

Publication number
WO2021150058A1
WO2021150058A1 PCT/KR2021/000905 KR2021000905W WO2021150058A1 WO 2021150058 A1 WO2021150058 A1 WO 2021150058A1 KR 2021000905 W KR2021000905 W KR 2021000905W WO 2021150058 A1 WO2021150058 A1 WO 2021150058A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control unit
hydraulic
abs
vibration
Prior art date
Application number
PCT/KR2021/000905
Other languages
English (en)
French (fr)
Inventor
주경진
박진국
Original Assignee
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 만도 filed Critical 주식회사 만도
Priority to EP21743675.7A priority Critical patent/EP4079590B1/en
Priority to US17/794,615 priority patent/US20230061412A1/en
Priority to CN202180010412.1A priority patent/CN114981137B/zh
Priority to KR1020227026025A priority patent/KR20220116310A/ko
Publication of WO2021150058A1 publication Critical patent/WO2021150058A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W50/16Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/10ABS control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/82Brake-by-Wire, EHB
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/84Driver circuits for actuating motor, valve and the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/81Braking systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to an electronic brake system for generating a braking force according to an electrical signal corresponding to a displacement of a brake pedal, and a control method thereof.
  • the integrated electronic brake system separates the direct connection between the master cylinder and the wheel brake when the ABS is activated, so the driver's brake pedal operation is not directly linked to the wheel brake.
  • the driver cannot recognize whether the ABS is operating or not because the kickback phenomenon in which the brake pedal vibrates does not occur when the ABS is operated, and the driver does not recognize whether the ABS is operating because the ABS operation noise is not too great. Defensive driving can be difficult.
  • One aspect is to provide an electronic brake system capable of notifying a driver of whether ABS is operating when ABS is operating, and a control method thereof.
  • the master cylinder to which the brake pedal is connected a hydraulic pressure supply device comprising a motor generating a rotational force and a hydraulic piston movably accommodated in the pressure chamber, and generating hydraulic pressure by movement of the hydraulic piston; a hydraulic control unit for controlling a flow of hydraulic pressure transferred from the hydraulic pressure supply device to the wheel cylinder; a hydraulic block in which the master cylinder, the hydraulic pressure supply device and the hydraulic control unit are integrated; and a control unit for controlling the motor and the hydraulic control unit, wherein the control unit supplies the motor with an excitation current for excitation of the motor to notify the driver of the ABS operation by vibration of the brake pedal during ABS operation
  • An electronic brake system for generating vibration in the motor may be provided.
  • the control unit may generate a vibration simulating a kickback of the brake pedal to the motor in the ABS operation section.
  • the control unit may periodically repeat an ABS operation notification on section in which the excitation current is supplied and an ABS operation notification off section in which the excitation current is not supplied in the ABS operation section.
  • the control unit may supply an excitation current having a frequency not overlapping the ABS operating frequency band to the motor.
  • the controller may generate vibration in the motor to generate a vibration simulating a kickback of the brake pedal in the ABS operation section and to generate a notification sound due to vibration of the vehicle body.
  • the controller may supply currents having a plurality of different frequencies to the motor.
  • the control unit may supply an excitation current in which a first frequency and a second frequency are continuously repeated to the motor so that a notification sound in which two sounds are repeated is generated.
  • the control unit may generate the excitation current by adding the excitation current command for generating the excitation current to the q-axis current command among the d-axis current command and the q-axis current command generated according to the target pressure during the ABS operation. .
  • the master cylinder to which the brake pedal is connected; a hydraulic pressure supply device comprising a motor generating a rotational force and a hydraulic piston movably accommodated in the pressure chamber, and generating hydraulic pressure by movement of the hydraulic piston; a hydraulic control unit for controlling a flow of hydraulic pressure transferred from the hydraulic pressure supply device to the wheel cylinder; a hydraulic block in which the master cylinder, the hydraulic pressure supply device and the hydraulic control unit are integrated; and a control unit for controlling the motor and the hydraulic control unit, wherein the excitation current for excitation of the motor to notify the driver of the ABS operation by vibration of the brake pedal during ABS operation
  • a vibration simulating a kickback of the brake pedal may be generated in the motor in the ABS operation section.
  • the ABS operation notification ON section to which the excitation current is supplied and the ABS operation notification OFF section to which the excitation current is not supplied may be periodically repeated.
  • Vibration may be generated in the motor to generate a vibration simulating a kickback of the brake pedal in the ABS operation section and to generate a notification sound due to vibration of the vehicle body.
  • An excitation current in which the first frequency and the second frequency are continuously repeated may be supplied to the motor to generate a notification sound in which two sounds are repeated.
  • the present invention may notify the driver of whether the ABS is operating when the ABS is operating.
  • FIG. 1 shows a schematic configuration diagram of an electronic brake system according to an embodiment.
  • FIG. 2 shows a schematic perspective view of an electronic brake system according to an embodiment.
  • FIG. 3 shows a control block of an electronic brake system according to an embodiment.
  • FIG. 4 shows a schematic control block of a control unit of an electronic brake system according to an embodiment.
  • FIG. 5 shows a detailed control block of the control unit of the electronic brake system according to the embodiment.
  • FIG. 6 shows another example of a detailed control block of the control unit of the electronic brake system according to the embodiment.
  • FIG. 7 illustrates a connection between an inverter and a motor of the electronic brake system according to an embodiment.
  • FIG. 8 is a diagram illustrating a current with an ABS operation in the electronic brake system according to the embodiment.
  • FIG 9 shows another example of the current with the electronic brake system according to the embodiment.
  • FIG. 10 shows a control flow of the electronic brake system according to the embodiment.
  • the identification code is used for convenience of description, and the identification code does not describe the order of each step, and each step may be performed differently from the specified order unless the specific order is clearly stated in the context. there is.
  • 1 shows a schematic configuration diagram of an electronic brake system according to an embodiment.
  • 2 shows a schematic perspective view of an electronic brake system according to an embodiment.
  • the electronic brake system includes a master cylinder 20 provided in a hydraulic block 30 and pressurizing and discharging a pressurized medium accommodated therein by manipulation of the brake pedal 10 , and hydraulic pressure therein.
  • a hydraulic block 30 provided with a plurality of flow paths and valves for the control of a hydraulic block 30, a wheel brake 40 coupled to the hydraulic block 30 and provided on each wheel, and a hydraulic block 30 coupled to a brake pedal ( 10), a hydraulic pressure supply device 50 that generates hydraulic pressure by driving by an electrical signal corresponding to the displacement and supplies the generated hydraulic pressure to each wheel brake 40 provided on each wheel, and the master cylinder 20 or hydraulic pressure supply
  • a hydraulic control unit 60 that controls the flow of hydraulic pressure transmitted to each wheel brake 40 by the device 50, a hydraulic pressure supply device 50 and a hydraulic pressure control unit 60 based on hydraulic pressure information and pedal displacement information It may include a control unit (ECU) 70 for controlling the.
  • ECU control unit
  • the master cylinder 20 is connected to the brake pedal 10 and includes a master piston and a master chamber that are pressed according to the pedaling force of the brake pedal 10 , and may be configured to generate hydraulic pressure.
  • the master cylinder 20 may include a clevis 21 coupled to the brake pedal 10 and an input shaft 22 coupled to the clevis 21 .
  • a reservoir for storing oil may be coupled to an upper portion of the hydraulic block 30 in which the master cylinder 20 is provided to provide hydraulic pressure to the master cylinder 20 .
  • the hydraulic block 30 has a hexahedral shape and may serve to transmit hydraulic pressure to the wheel brakes 40 provided on each wheel.
  • the hydraulic block 30 may have a flow path formed therein to control the hydraulic pressure transmitted to the wheel brake 40 , and a plurality of valves may be installed in place.
  • a master cylinder 20 may be provided inside the hydraulic block 30 .
  • the hydraulic pressure supply device 50 includes a motor 51 coupled to the side surface of the hydraulic block 30, and a slave cylinder 52 that is coupled to the motor 51 and is pressurized by a power conversion unit that converts rotational force into linear motion. may include.
  • the motor 51 may be a three-phase motor.
  • the motor 51 is a permanent magnet synchronous motor (PMSM).
  • the motor 51 may have a stator and a rotor.
  • the power conversion unit may be provided to have a plurality of gears that receive rotational force from the rotational shaft of the motor 51 and convert rotational motion into linear motion.
  • the power conversion unit may have an assembly structure of a worm and a worm wheel and a rack and a pinion gear to convert rotational force into linear motion.
  • the slave cylinder 52 is installed in the hydraulic block 30 separately from the master cylinder 20 and reciprocates by the rotational force of the motor 51 to generate hydraulic pressure and a slave piston 52a, and the slave piston 52a. It may include a hydraulic chamber (52b) pressurized by the. At this time, the slave piston (52a) may have a rack gear formed on a part of the slave piston (52a) to linearly move through the power conversion unit.
  • the hydraulic pressure supply device 50 may be provided as a device of various methods and structures.
  • the hydraulic control unit 60 may receive hydraulic pressure from the master cylinder 20 or the hydraulic pressure supply device 50 and control the hydraulic pressure transmitted to the wheel brake 40 .
  • the hydraulic control unit 60 may include an electronically opened and closed solenoid valve.
  • the control unit 70 closes the cut valve provided in the flow path between the master cylinder 20 and the wheel brake 40 during ABS operation to prevent the hydraulic pressure discharged from the master cylinder 20 from being transmitted to the wheel brake 40 . there is.
  • control unit 70 may operate the hydraulic pressure supply device 50 to generate hydraulic pressure.
  • hydraulic pressure can be generated in the hydraulic chamber 52b by moving the slave piston 52a by the operation of the motor 51 of the hydraulic pressure supply device 50 .
  • the hydraulic pressure generated by the hydraulic pressure supply device 50 may be supplied to the wheel brake 40 through the hydraulic control unit 60 to generate a braking force on the wheel.
  • the control unit 70 may increase, decrease or maintain the pressure of the wheel brake 40 of the wheel by driving the hydraulic pressure supply device 50 and the hydraulic pressure control unit 60 according to the required ABS target pressure.
  • the electronic brake system according to the embodiment has a structure in which the vibration of the motor 51 can be directly transmitted to the brake pedal 10 because the motor 51 and the brake pedal 10 are mounted together on the same hydraulic block 30 . .
  • the electronic brake system generates a vibration corresponding to the ABS operation in the motor 51 through the motor control, thereby providing a vibration pattern transmitted to the brake pedal 10 and a notification sound generated by the vibration pattern to the driver. to recognize whether ABS is operating.
  • FIG. 3 shows a control block of an electronic brake system according to an embodiment.
  • the electronic brake system may include a controller 70 that performs overall control.
  • the inverter 80 and the valve driving unit 90 may be electrically connected to the output side of the control unit 70 .
  • a pedal displacement sensor (PTS), a pressure sensor (PS), a motor position sensor (MPS), and a motor current sensor (MCS) may be electrically connected to the input side of the control unit 70 .
  • the inverter 80 may drive the motor 51 .
  • the valve driving unit 90 may drive various electromagnetic valves of the electromagnetic brake system.
  • the valve driving unit 90 may drive the solenoid valve of the hydraulic control unit 60 .
  • the pedal displacement sensor PTS may detect the operation and displacement of the brake pedal 10 .
  • the pressure sensor PS may sense the pressure of the wheel brake 40 . Also, the pressure sensor PS may detect the hydraulic pressure transmitted to the wheel brake 40 .
  • the motor position sensor MPS may detect the rotational position and rotational speed of the motor 51 .
  • the motor position sensor MPS may include at least one Hall sensor for detecting the position of the rotor.
  • the Hall sensor is an application of the current magnetic effect called the Hall effect.
  • the Hall effect refers to the generation of an electromotive force (Hall voltage) at both ends of a compound semiconductor when a current flows through it and a magnetic field is applied at a right angle. If the Hall voltage is measured using this phenomenon, it can be determined whether the applied magnetic field is the N pole or the S pole.
  • the Hall sensor is a sensor that detects a change in the pole of a permanent magnet provided in the rotor using this principle to know the position or speed of the rotor.
  • the motor current sensor MCS may detect a current flowing in each phase of the motor 51 .
  • the motor current sensor MCS includes a first current sensor that detects a current flowing in any one of three phases of the motor 51 and a second current that detects a current flowing in any one of the remaining two phases. It may include a sensor.
  • the pedal displacement sensor (PTS), the pressure sensor (PS), the motor position sensor (MPS), and the motor current sensor (MCS) may transmit each detected information to the controller 70 .
  • the control unit 70 may be referred to as an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the controller 70 may include a processor 71 and a memory 72 .
  • the memory 72 temporarily stores the detection data received from the pedal displacement sensor (PTS), the pressure sensor (PS), the motor position sensor (MPS) and the motor current sensor (MCS), and The processing result can be temporarily stored.
  • the memory 72 includes not only volatile memories such as S-RAM and D-RAM, but also flash memory, read-only memory (ROM), erasable programmable read-only memory (EPROM), etc. of non-volatile memory.
  • the processor 71 operates the motor 51 through the inverter 80 based on various information detected through the pedal displacement sensor (PTS), the pressure sensor (PS), the motor position sensor (MPS), and the motor current sensor (MCS). ), and may drive the hydraulic control unit 60 through the valve driving unit 100 .
  • PTS pedal displacement sensor
  • PS pressure sensor
  • MPS motor position sensor
  • MCS motor current sensor
  • the processor 71 drives the motor 51 and the hydraulic control unit 60 to generate hydraulic pressure by the movement of the slave piston 52a and supply the generated hydraulic pressure to the wheel brake 40 provided on the wheel to brake the wheel. can do it
  • the processor 71 may determine the target pressure (command pressure) according to the pedal displacement detected through the pedal displacement sensor PTS in the normal braking mode.
  • the processor 71 may determine a target pressure (command pressure) according to the ABS situation in the ABS mode.
  • the processor 71 may detect the motor position through the motor position sensor MPS.
  • the processor 71 may determine the movement amount of the slave piston 52a from the change in the motor position. It is possible to determine the amount of movement of the slave piston 52a from the origin position to the current position from the change in the motor position.
  • the processor 71 may determine the pressure by converting the movement amount of the slave piston 52a into a pressure value. As the slave piston 52a moves forward, the volume of the hydraulic chamber 52b may decrease and the pressure may increase. The processor 71 may convert the pressure from the amount of movement of the slave piston 52a in the same volume. The reverse is also possible.
  • the processor 71 may determine the pressure of the wheel brake 40 detected through the pressure sensor PS as the circuit pressure.
  • the processor 71 detects the displacement of the brake pedal 10 through the pedal displacement sensor PTS in the normal braking mode, determines the target pressure based on the detected brake pedal displacement, and sets the determined target pressure to the wheel brake ( 40), the pressure of the wheel brake 40 is detected through the pressure sensor PS, and the rotational force of the motor 51 is adjusted so that the detected pressure of the wheel brake 40 reaches the set target pressure. It is used to move the slave piston 52a to generate hydraulic pressure.
  • the processor 71 may convert the normal drafting mode to the ABS mode.
  • the processor 71 sets the target pressure according to the ABS control situation as the target pressure of the wheel brake 40 , detects the pressure of the wheel brake 40 through the pressure sensor PS, and the detected wheel
  • the motor 51 and the hydraulic control unit 60 may be operated so that the pressure of the brake 40 reaches a set target pressure.
  • the processor 71 may transmit vibration to the brake pedal 10 by vibrating the motor 51 by excitation/vibration so that the driver may recognize the ABS operation when the ABS mode is operated.
  • the processor 71 applies a dithering signal to the current command of the motor 51 when driving the motor 51 to generate hydraulic pressure when operating in the ABS mode, thereby minimizing the influence of pressure control through motor excitation. Vibration is induced in the brake pedal 10 so that the driver can recognize whether the ABS is operating.
  • the vibration generated in the motor 51 is transmitted to the brake pedal 10 coupled to the same hydraulic block 30 as the motor 51 to give a kickback to the brake pedal 10 .
  • a simulated vibration may occur.
  • the driver may recognize whether the ABS is operating by feeling the vibration of the brake pedal 10 .
  • FIG. 4 shows a schematic control block of a control unit of an electronic brake system according to an embodiment.
  • control unit 70 may include a pressure control unit 100 , a speed control unit 110 , a current control unit 120 , and an excitation current control unit 130 .
  • the pressure controller 100 may output a speed command for adjusting the speed of the motor 51 so that the actual pressure of the wheel brake 40 reaches the command pressure.
  • the pressure control unit 100 may output a speed command to the speed control unit 110 .
  • the speed controller 110 may output a current command for adjusting the current of the motor 51 so that the actual speed of the motor 51 reaches the command speed.
  • the speed controller 110 may output a current command to the current controller 120 .
  • the current controller 120 may output a voltage command for adjusting the voltage of the motor 51 so that the actual current of the motor 51 reaches the command current.
  • the current controller 120 may output a voltage command to the motor 51 .
  • the excitation current control unit 130 may output an excitation current command for excitation of the motor 51 .
  • the excitation current control unit 130 may output an excitation current command to the current control unit 120 .
  • FIG. 5 shows a detailed control block of the control unit of the electronic brake system according to the embodiment.
  • the pressure controller 100 includes a pressure controller 111 that controls the overall operation of the pressure controller 100 , and the speed controller 110 controls the overall operation of the speed controller 110 .
  • the current controller 120 includes a current controller 121 or a current controller 121 / coordinate converter 122 for controlling the overall operation of the current controller 120
  • the excitation current controller ( 130 may include an excitation current controller 131 for controlling the overall operation of the excitation current controller 130 .
  • the motor 51 may be controlled by the inverter 80 .
  • the inverter 80 may be controlled by the current controller 121 .
  • the speed controller 111 may receive a speed command according to a pressure difference between the command pressure and the actual pressure from the pressure controller 101 and provide a current command to the current controller 121 .
  • the current controller 121 may output a three-phase voltage command to the inverter 80 , and the inverter 80 may provide a three-phase current to the motor 51 according to the three-phase voltage command.
  • the motor 51 is equipped with a motor position sensor MPS, and the motor position sensor MPS may detect the speed of the rotor of the motor 51 .
  • the detected speed of the rotor may be used for feedback control in the speed controller 111 .
  • the current controller 121 receives the d-axis current command (Id*) and the q-axis current command (Iq*), which are the current commands (Id*, Iq*) of the synchronous coordinate system, from the speed controller 111, and synchronizes them.
  • the voltage command (Vd*, Vq*) of the coordinate system is transmitted to the coordinate converter 122, and the coordinate converter 122 converts the voltage command of the synchronous coordinate system into a three-phase voltage command (a-phase, b-phase, c-phase). It may be provided to the inverter 80 .
  • the inverter 80 provides a three-phase current to the motor 51 through the duty of PWM (Pulse Width Modulation) of the three-phase switching circuit based on the received three-phase voltage command (a-phase, b-phase, c-phase).
  • PWM Pulse Width Modulation
  • the function of the current controller 121 and the function of the coordinate converter 122 may be integrated to be implemented as a single controller, the current controller 121 (see FIG. 6 ).
  • FIG. 7 is a diagram illustrating a connection between an inverter and a motor of an electronic brake system according to an exemplary embodiment.
  • the inverter 80 may be electrically connected to a vehicle battery (B+) serving as a DC power source and a DC link capacitor (C) for smoothing a voltage signal.
  • the DC link capacitor C may be connected in parallel to the battery B+.
  • the DC link capacitor C may smooth the DC voltage supplied from the vehicle battery B+.
  • a DC voltage smoothed by the DC link capacitor C may be supplied to the inverter 80 .
  • the inverter 80 may drive the motor 51 by converting the DC voltage into a three-phase AC voltage in the form of a pulse having an arbitrary variable frequency through pulse width modulation (PWM).
  • the inverter 80 may include a plurality of power switching devices and a plurality of diodes.
  • the inverter 80 may include six power switching devices Q1-Q6 and six diodes D1-D6.
  • the inverter 80 turns on or off the power switching elements Q1-Q6 according to the three-phase voltage command (a-phase, b-phase, c-phase) provided from the current controller 121, thereby supplying the power supplied from the battery B+.
  • the current can be converted from a direct current to an alternating current and supplied to the motor 51 .
  • the voltage of the battery B+ may be boosted by the converter and supplied to the inverter 80 .
  • Each phase terminal of the motor 51 is connected to the inverter 80 .
  • the motor 51 may have three coils: an a-phase coil, a b-phase coil, and a c-phase coil.
  • the a-phase coil, the b-phase coil and the c-phase coil may constitute a Y connection.
  • an alternating current having a phase difference of 120 degrees may be applied to each coil. Thereby, the rotating shaft of the motor 51 can rotate.
  • the current controller 121 may apply a voltage command to the inverter 80 so that the measured value of the driving current supplied by the inverter 80 to the motor 51 follows the current command.
  • a motor current sensor (MCS) for detecting a driving current supplied from the inverter 80 to the motor 51 may be provided between the inverter 80 and the motor 51 .
  • the motor current sensor MCS may measure two or more currents among the three-phase driving currents, and may be fed back to the current controller 121 .
  • the current controller 121 may perform feedback control so that the measured driving current detection values Id and Iq follow the current commands Id* and Iq* received from the speed controller 111 .
  • the excitation current controller 131 transmits the q-axis current command (Iq*) from the speed controller 111 to the current controller 121, the current command (Ie) or O with the q-axis current command (Iq*). It can be added and transmitted to the current controller 121 . That is, by sending the excitation current command (Ie) to the q-axis current command (Iq*), the motor 51 is to be vibrated by the excitation current command (Ie) carried in the q-axis current command (Iq*) when driving the motor. can
  • the processor 71 excites the motor 51 so that the driver can recognize the ABS operation when operating in the ABS mode to generate vibration in the brake pedal 10 and shake the vehicle body due to the motor vibration. may cause a warning sound that the driver can hear.
  • the vibration and the notification sound may each repeat a preset pattern.
  • the processor 71 drives the motor 51 to generate hydraulic pressure during ABS mode operation
  • the current command of the motor 51 is loaded with an excitation current command to minimize the influence of the pressure control and a specific value through motor excitation.
  • a notification sound can make the driver recognize whether ABS is operating.
  • FIG. 8 is a diagram illustrating a current with an ABS operation in the electronic brake system according to the embodiment.
  • the excitation current command is injected into the q-axis current command (Iq*) during the ABS notification on section so that the driver can reliably recognize the ABS operation and the ABS release in the ABS operation section, and during the ABS notification off section Do not inject into the q-axis current command (Iq*).
  • the excitation current may have a preset amplitude and a preset frequency.
  • the excitation current may have a frequency that is ‘ ⁇ ’ to the basic command current for the brake pedal feeling according to the ABS operation.
  • the frequency of the excitation current can be determined in a region that does not overlap the ABS operating frequency.
  • the amplitude and period of the excitation current may be changed according to the capacity of the motor 51 and the size of the load.
  • the total amplitude value may be assigned from 0 to 100 based on 0, or ⁇ 50 based on 50 may be assigned. Based on an arbitrary reference value, a specific value determined according to the reference value can be assigned as ⁇ .
  • the amplitude value is determined in the + direction or the amplitude value is determined in the - direction based on the q-axis current. That is, it is also possible to give an amplitude in one direction.
  • the overall excitation duty of the excitation current pattern may be adjusted in order to minimize the effect on the pressure control.
  • the load may be distributed by applying a pattern of excitation current at 25% duty from the total excitation duty.
  • the load may be distributed by applying the pattern of the excitation current at 50% duty from the total excitation duty.
  • At least one of the amplitude and the period of the excitation current may be changed.
  • vibration is applied to the motor driving pattern to transmit the vibration to the driver's brake pedal, thereby allowing the driver to recognize that ABS is being braked.
  • the excitation current may periodically repeat the ABS notification on section and the ABS notification off section in the ABS operation section.
  • Excitation current can be discontinuously repeated in the ABS operation section.
  • a notification sound due to vibration of the vehicle body may be generated along with vibration in the ABS operation section.
  • FIG 9 shows another example of the current with the electronic brake system according to the embodiment.
  • the current in the ABS operation section can mix two or more different frequencies instead of a single frequency.
  • the excitation current may include a first frequency having a first period and a second frequency having a second period.
  • the excitation current may continuously repeat the first frequency and the second frequency.
  • the excitation current may have a first frequency and a second frequency to diversify a pattern of a notification sound.
  • the motor vibration may cause car body vibration, and the car body vibration may generate a notification sound such as a beep sound in which two sounds are repeated. Accordingly, the driver may recognize whether the ABS is operating through a notification sound together with the feeling of the brake pedal.
  • FIG. 10 shows a control flow of the electronic brake system according to the embodiment.
  • the controller 70 may determine whether ABS control is required ( 200 ).
  • control unit 70 may determine a command pressure according to the ABS control situation ( 202 ).
  • the controller 70 may generate a d-axis current command and a q-axis current command according to the determined command pressure ( 204 ).
  • the control unit 70 may add the current command with the q-axis current command ( 206 ).
  • the control unit 70 may drive the motor 51 through the inverter 80 according to the d-axis current command and the q-axis current command to which the excitation current command is added ( 208 ). Accordingly, the motor 51 may generate vibration by the excitation current added to the command current, and the vibration may be transmitted to the brake pedal 10 to generate vibration similar to the kickback phenomenon in the brake pedal 10 . In addition, the vibration of the vehicle body may generate a notification sound in the form of a beep sound by a change in the frequency of the excitation current. Accordingly, the driver may recognize whether the ABS is operating through the vibration of the brake pedal and the notification sound.
  • control unit and/or its components may include one or more processor/microprocessor(s) coupled with a computer-readable recording medium storing computer-readable code/algorithm/software.
  • the processor/microprocessor(s) may execute the computer-readable code/algorithm/software stored in the computer-readable recording medium to perform the above-described functions, operations, steps, and the like.
  • the above-described control unit and/or its components may further include a memory implemented as a computer-readable non-transitory recording medium or a computer-readable temporary recording medium.
  • the memory may be controlled by the above-described control unit and/or components thereof, and configured to store data transmitted to or received from the above-described control unit and/or components or by the above-described control unit and/or components thereof. It may be configured to store data to be processed or to be processed.
  • the disclosed embodiment can also be implemented as computer-readable code/algorithm/software on a computer-readable recording medium.
  • the computer-readable recording medium may be a computer-readable non-transitory recording medium such as a data storage device capable of storing data readable by a processor/microprocessor. Examples of computer-readable recording media include hard disk drives (HDDs), solid state drives (SSDs), silicon disk drives (SDDs), read-only memory (ROM), CD-ROMs, magnetic tapes, floppy disks, optical data storage devices. etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Regulating Braking Force (AREA)

Abstract

전자식 브레이크 시스템은 브레이크 페달이 연결된 마스터 실린더와, 회전력을 발생시키는 모터와, 압력챔버 내부에 이동 가능하게 수용되는 유압 피스톤을 포함하고 유압 피스톤의 이동에 의해 액압을 발생시키는 액압 공급장치와, 액압 공급장치로부터 휠 실린더로 전달되는 액압의 흐름을 제어하는 유압 제어유닛과, 상기 마스터 실린더, 액압 공급장치 및 유압 제어유닛이 내부에 통합된 유압 블록 및 모터와 유압 제어유닛을 제어하는 제어부를 포함하고, 제어부는 ABS 작동 시 브레이크 페달의 진동에 의해 ABS 작동을 운전자에게 알리도록 모터를 가진시키기 위한 가진 전류를 모터에 공급하여 모터에 진동을 발생시킨다.

Description

전자식 브레이크 시스템 및 그 제어방법
본 발명은 브레이크 페달의 변위에 대응하는 전기적 신호에 따라 제동력을 발생시키는 전자식 브레이크 시스템 및 그 제어방법에 관한 것이다.
친환경 및 안전에 대한 지속적인 요구, 긴급 제동 및 자율 주행을 위한 준비의 일환으로, 마스터 실린더, 부스터, ABS(Anti-lock Brake System)/ESC(Electric Stability Control) 장치 간의 기구적 연결을 전기전자적 연결로 대체하여 전장화하는 브레이크-바이-와이어(Brake-By-Wire) 시스템에 대한 개발이 급속도로 진행 중이다. 특히 마스터 실린더와 액추에이터를 하나의 블록에 통합시켜 엔진 부하를 감소시키고 중량을 저감시키며 설계 유연성을 확보할 수 있는 통합형 전자식 브레이크 시스템에 대한 개발 요구사항이 점점 증가하고 있는 추세이다.
이러한 통합형 전자식 브레이크 시스템은 기존 브레이크 시스템과 달리 ABS 작동시 마스터 실린더와 휠 브레이크 간의 직접적인 연결이 분리되기 때문에 운전자의 브레이크 페달 작동이 휠 브레이크로 직접 연동되지 않는다. 이로 인해, ABS 작동시 브레이크 페달에 진동이 발생되는 킥백(kick back) 현상이 발생되지 않기 때문에 운전자가 ABS 작동 여부를 인지할 수 없고, ABS 작동소음도 크지 않기 때문에 운전자가 ABS 작동 여부를 인지하지 못하여 방어 운전에 어려움을 겪을 수 있다.
따라서, 통합형 전자식 브레이크 시스템에서는 ABS 작동 시 운전자에게 ABS 작동 여부를 인지시키기 위한 새로운 방안이 필요하다.
일 측면은 ABS 작동시 운전자에게 ABS 작동 여부를 알릴 수 있는 전자식 브레이크 시스템 및 그 제어방법을 제공하고자 한다.
일 측면에 따르면, 브레이크 페달이 연결된 마스터 실린더; 회전력을 발생시키는 모터와, 압력챔버 내부에 이동 가능하게 수용되는 유압 피스톤을 포함하고, 상기 유압 피스톤의 이동에 의해 액압을 발생시키는 액압 공급장치; 상기 액압 공급장치로부터 휠 실린더로 전달되는 액압의 흐름을 제어하는 유압 제어유닛; 상기 마스터 실린더, 액압 공급장치 및 유압 제어유닛이 내부에 통합된 유압 블록; 및 상기 모터와 상기 유압 제어유닛을 제어하는 제어부를 포함하고, 상기 제어부는 ABS 작동 시 상기 브레이크 페달의 진동에 의해 상기 ABS 작동을 운전자에게 알리도록 상기 모터를 가진시키기 위한 가진 전류를 상기 모터에 공급하여 상기 모터에 진동을 발생시키는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제어부는 ABS 작동 구간에서 상기 모터에 상기 브레이크 페달의 킥백(kick back)을 모사한 진동을 발생시킬 수 있다.
상기 제어부는 ABS 작동 구간에서 상기 가진 전류가 공급되는 ABS 작동 알림 온 구간과, 상기 가진 전류가 공급되지 않는 ABS 작동 알림 오프 구간을 주기적으로 반복시킬 수 있다.
상기 제어부는 ABS 작동 주파수 대역과 겹치지 않는 주파수의 가진 전류를 상기 모터에 공급할 수 있다.
상기 제어부는 ABS 작동 구간에서 상기 브레이크 페달의 킥백(kick back)을 모사한 진동이 발생되도록 함과 함께 차체 떨림으로 인한 알림음이 발생되도록 상기 모터에 진동을 발생시킬 수 있다.
상기 제어부는 서로 다른 복수의 주파수를 가진 가진 전류를 상기 모터에 공급할 수 있다.
상기 제어부는 2가지 음향이 반복되는 알림음이 발생되도록 제1 주파수와 제2 주파수가 연속적으로 반복되는 가진 전류를 상기 모터에 공급할 수 있다.
상기 제어부는 상기 ABS 작동시 목표 압력에 따라 생성되는 d축 전류 지령과 q축 전류 지령 중 상기 q축 전류 지령에 상기 가진 전류를 생성시키기 위한 가진 전류 지령을 가산시켜 상기 가진 전류를 생성할 수 있다.
다른 측면에 따르면, 브레이크 페달이 연결된 마스터 실린더; 회전력을 발생시키는 모터와, 압력챔버 내부에 이동 가능하게 수용되는 유압 피스톤을 포함하고, 상기 유압 피스톤의 이동에 의해 액압을 발생시키는 액압 공급장치; 상기 액압 공급장치로부터 상기 휠 실린더로 전달되는 액압의 흐름을 제어하는 유압 제어유닛; 상기 마스터 실린더, 액압 공급장치 및 유압 제어유닛이 내부에 통합된 유압 블록; 및 상기 모터와 상기 유압 제어유닛을 제어하는 제어부를 포함하는 전자식 브레이크 시스템의 제어방법에 있어서, ABS 작동시 상기 브레이크 페달의 진동에 의해 상기 ABS 작동을 운전자에게 알리도록 상기 모터를 가진시키기 위한 가진 전류를 상기 모터에 공급하여 상기 모터에 진동을 발생시키는 전자식 브레이크 시스템의 제어방법이 제공될 수 있다.
ABS 작동 구간에서 상기 모터에 상기 브레이크 페달의 킥백(kick back)을 모사한 진동을 발생시킬 수 있다.
ABS 작동 구간에서 상기 가진 전류가 공급되는 ABS 작동 알림 온 구간과, 상기 가진 전류가 공급되지 않는 ABS 작동 알림 오프 구간을 주기적으로 반복시킬 수 있다.
ABS 작동 구간에서 상기 브레이크 페달의 킥백(kick back)을 모사한 진동이 발생되도록 함과 함께 차체 떨림으로 인한 알림음이 발생되도록 상기 모터에 진동을 발생시킬 수 있다.
ABS 작동 구간에서 서로 다른 복수의 주파수를 가진 가진 전류를 상기 모터에 공급할 수 있다.
2가지 음향이 반복되는 알림음이 발생되도록 제1 주파수와 제2 주파수가 연속적으로 반복되는 가진 전류를 상기 모터에 공급할 수 있다.
본 발명은 ABS 작동시 운전자에게 ABS 작동 여부를 알릴 수 있다.
도 1은 실시예에 따른 전자식 브레이크 시스템의 개략적인 구성도를 도시한다.
도 2는 실시예에 따른 전자식 브레이크 시스템의 개략적인 사시도를 도시한다.
도 3은 실시예에 따른 전자식 브레이크 시스템의 제어블록을 도시한다.
도 4는 실시예에 따른 전자식 브레이크 시스템의 제어부의 개략적인 제어블록을 도시한다.
도 5는 실시예에 따른 전자식 브레이크 시스템의 제어부의 세부적인 제어블록을 도시한다.
도 6은 실시예에 따른 전자식 브레이크 시스템의 제어부의 세부적인 제어블록의 다른 예를 도시한다.
도 7은 실시예에 따른 전자식 브레이크 시스템의 인버터와 모터의 연결을 도시한다.
도 8은 실시예에 따른 전자식 브레이크 시스템에서 ABS 작동시 가진 전류를 도시한다.
도 9는 실시예에 따른 전자식 브레이크 시스템에서 가진 전류의 다른 예를 도시한다.
도 10은 실시예에 따른 전자식 브레이크 시스템의 제어 흐름을 도시한다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 본 명세서가 실시예들의 모든 요소들을 설명하는 것은 아니며, 개시된 발명이 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 ‘부, 모듈, 부재, 블록’이라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 ‘부, 모듈, 부재, 블록’이 하나의 구성요소로 구현되거나, 하나의 ‘부, 모듈, 부재, 블록’이 복수의 구성요소들을 포함하는 것도 가능하다.
명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 간접적으로 연결되어 있는 경우를 포함하고, 간접적인 연결은 무선 통신망을 통해 연결되는 것을 포함한다.
또한, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
명세서 전체에서, 어떤 부재가 다른 부재 “상에”위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
제1, 제2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 전술된 용어들에 의해 제한되는 것은 아니다. 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.
각 단계들에 있어 식별부호는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다.
도 1은 실시예에 따른 전자식 브레이크 시스템의 개략적인 구성도를 도시한다. 도 2는 실시예에 따른 전자식 브레이크 시스템의 개략적인 사시도를 도시한다.
도 1 및 도 2를 참조하면, 전자식 브레이크 시스템은 유압 블록(30) 내에 마련되고 브레이크 페달(10)의 조작에 의해 내부에 수용된 가압매체를 가압 및 토출하는 마스터 실린더(20)와, 내부에 액압의 조절을 위한 다수의 유로 및 밸브가 마련되는 유압 블록(30)과, 이 유압 블록(30)과 결합되고 각 차륜에 마련된 휠 브레이크(40)와, 유압 블록(30)과 결합되고 브레이크 페달(10)의 변위에 대응하는 전기적 신호에 의해 구동하여 액압을 발생시키고 발생된 액압을 각 차륜에 마련된 각 휠 브레이크(40)에 공급하는 액압 공급장치(50)와, 마스터 실린더(20) 또는 액압 공급장치(50)에 의해 각 휠 브레이크(40)로 전달되는 액압의 흐름을 제어하는 유압 제어유닛(60), 액압 정보 및 페달 변위 정보에 근거하여 액압 공급장치(50) 및 유압 제어유닛(60)을 제어하는 제어부(ECU)(70)를 포함할 수 있다.
마스터 실린더(20)는 브레이크 페달(10)과 연결되어 브레이크 페달(10)의 답력에 따라 가압되는 마스터 피스톤과 마스터 챔버를 포함하고 액압을 발생시키도록 이루어질 수 있다.
마스터 실린더(20)는 브레이크 페달(10)과 결합되는 클래비스(21) 및 클래비스(21)와 결합된 입력축(22)을 포함할 수 있다.
마스터실린더(20)가 마련되는 유압 블록(30)의 상부에는 오일을 저장하는 리저버가 결합되어 마스터 실린더(20)로 액압을 제공하도록 마련될 수 있다.
유압 블록(30)은 육면체의 형태를 갖추어 액압을 각 차륜에 마련된 휠 브레이크(40)로 전달하는 역할을 수행할 수 있다.
유압 블록(30)은 휠 브레이크(40)로 전달되는 액압을 제어하기 위하여 내부에 유로가 형성되고, 복수의 밸브가 적소에 설치될 수 있다.
유압 블록(30)의 내부에는 마스터 실린더(20)가 마련될 수 있다.
액압 공급장치(50)는 유압 블록(30)의 측면에 결합되는 모터(51)와, 이 모터(51)와 결합되어 회전력을 직선운동으로 변환하는 동력변환유닛에 의해 가압되는 슬레이브 실린더(52)를 포함할 수 있다.
모터(51)는 3상 모터일 수 있다. 예를 들면, 모터(51)는 영구자석 동기모터(Parmanent Magnet Synchronous Motor; PMSM)이다. 모터(51)는 고정자와 회전자를 가질 수 있다. 동력변환유닛은 모터(51)의 회전축으로부터 회전력을 전달받아 회전운동을 직선운동으로 변환시키는 복수의 기어를 갖도록 마련될 수 있다. 예를 들면, 동력변환유닛은 웜과 웜휠 및 렉과 피니언 기어의 조립구조를 갖추어 회전력을 직선운동으로 변환하도록 이루어질 수 있다.
슬레이브 실린더(52)는 마스터 실린더(20)와 별도로 유압 블록(30) 내에 설치되어 모터(51)의 회전력에 의해 왕복 이동하며 액압을 발생하는 슬레이브 피스톤(52a)과, 이 슬레이브 피스톤(52a)에 의해 가압되는 액압 챔버(52b)를 포함할 수 있다. 이때, 슬레이브 피스톤(52a)은 동력변환유닛을 통해 직선운동하도록 슬레이브 피스톤(52a)의 일부에 렉 기어가 형성될 수 있다.
액압 공급장치(50)는 다양한 방식 및 구조의 장치로 마련될 수 있다.
유압 제어유닛(60)은 마스터 실린더(20) 또는 액압 공급장치(50)로부터 액압을 공급받아 휠 브레이크(40)로 전달되는 액압을 제어할 수 있다.
유압 제어유닛(60)은 전자적으로 개폐되는 솔레노이드 밸브를 포함할 수 있다.
이하에서는 상기한 구성요소들을 갖춘 전자식 브레이크 시스템의 ABS 제어 작동을 설명한다.
제어부(70)는 ABS 작동시 마스터 실린더(20)와 휠 브레이크(40) 사이의 유로에 마련된 컷밸브를 폐쇄시켜 마스터 실린더(20)에서 토출되는 액압이 휠 브레이크(40)로 전달되지 않게 할 수 있다.
이와 함께 제어부(70)는 액압 공급장치(50)를 작동시켜 액압을 발생시킬 수 있다. 예를 들면, 액압 공급장치(50)의 모터(51)의 작동에 의해 슬레이브 피스톤(52a)을 이동시킴으로써 액압 챔버(52b)에 액압을 발생시킬 수 있다. 액압 공급장치(50)에 의해 발생된 액압은 유압 제어유닛(60)를 통해 휠 브레이크(40)로 공급되어 차륜에 제동력을 발생시킬 수 있다. 이때, 제어부(70)는 요구되는 ABS 목표압력에 따라 액압 공급장치(50)와 유압 제어유닛(60)을 구동시킴으로써 차륜의 휠 브레이크(40)의 압력을 증가, 감소 또는 유지시킬 수 있다.
상술한 바와 같이, 상기한 구성을 갖는 전자식 브레이크 시스템은 ABS 작동시 마스터 실린더(20)와 휠 브레이크(40) 간의 직접적인 연결이 분리되기 때문에 운전자의 브레이크 페달 작동이 휠 브레이크(40)로 직접 연동되지 않는다. 이로 인해, ABS 작동시 브레이크 페달(10)에 진동이 발생되는 킥백 현상이 발생되지 않고, ABS 작동소음도 크지 않기 때문에 운전자가 ABS 작동 여부를 인지하지 못할 수 있다.
따라서, ABS 작동 시 운전자에게 ABS 작동 여부를 인지시키기 위한 새로운 방안이 필요하다.
실시예에 따른 전자식 브레이크 시스템은 동일한 유압 블록(30)에 모터(51)와 브레이크 페달(10)이 함께 장착되기 때문에 모터(51)의 진동이 브레이크 페달(10)에 직접 전달될 수 있는 구조이다.
따라서, 실시예에 따른 전자식 브레이크 시스템은 모터 제어를 통해 모터(51)에 ABS 작동에 대응하는 진동을 발생시킴으로써 브레이크 페달(10)에 전달되는 진동 패턴과 그 진동 패턴에 의해 발생되는 알림음으로 운전자로 하여금 ABS 작동여부를 인식하게 할 수 있다.
도 3은 실시예에 따른 전자식 브레이크 시스템의 제어블록을 도시한다.
도 3을 참조하면, 전자식 브레이크 시스템은 전반적인 제어를 수행하는 제어부(70)를 포함할 수 있다.
제어부(70)의 출력측에는 인버터(80)와 밸브구동부(90)가 전기적으로 연결되어 있을 수 있다.
제어부(70)의 입력측에는 페달변위센서(PTS), 압력센서(PS) 및 모터위치센서(MPS) 및 모터전류센서(MCS)가 전기적으로 연결되어 있을 수 있다.
인버터(80)는 모터(51)를 구동시킬 수 있다.
밸브구동부(90)는 전자식 브레이크 시스템의 각종 전자밸브들을 구동시킬 수 있다.
밸브구동부(90)는 유압 제어유닛(60)의 솔레노이드 밸브를 구동시킬 수 있다.
페달변위센서(PTS)는 브레이크 페달(10)의 작동 및 변위를 감지할 수 있다.
압력센서(PS)는 휠 브레이크(40)의 압력을 감지할 수 있다. 또한, 압력센서(PS)는 휠 브레이크(40)로 전달되는 액압을 검출할 수 있다.
모터위치센서(MPS)는 모터(51)의 회전위치와 회전속도를 검출할 수 있다. 모터위치센서(MPS)는 회전자의 위치를 검출하는 적어도 하나의 홀 센서를 포함할 수 있다. 홀 센서는 홀 효과(Hall effect)라고 하는 전류자기효과를 응용한 것이다. 홀 효과란 화합물 반도체에 전류를 흐르게 하고 자기장을 직각으로 가하면 그 양단에 기전력(홀전압)이 발생하는 것을 말한다. 이 현상을 이용하여 홀전압을 측정하면, 가해지는 자기장이 N극인지 S극인지 판별할 수 있다. 홀 센서는 이와 같은 원리를 이용하여 회전자에 마련된 영구자석의 극의 변화를 감지하여 회전자의 위치 또는 속도를 알 수 있게 하는 센서이다.
모터전류센서(MCS)는 모터(51)의 각 상에 흐르는 전류를 검출할 수 있다. 예를 들면, 모터전류센서(MCS)는 모터(51)의 3상 중 어느 한 상에 흐르는 전류를 검출하는 제1 전류센서와 나머지 2개의 상 중 어느 한 상에 흐르는 전류를 검출하는 제2 전류센서를 포함할 수 있다.
페달변위센서(PTS), 압력센서(PS), 모터위치센서(MPS) 및 모터전류센서(MCS)는 검출된 각각의 정보를 제어부(70)에 전송할 수 있다.
제어부(70)는 전자제어유닛(Electronic Control Unit; ECU)로 명명될 수 있다.
제어부(70)는 프로세서(71)와 메모리(72)를 포함할 수 있다.
메모리(72)는 페달변위센서(PTS), 압력센서(PS), 모터위치센서(MPS) 및 모터전류센서(MCS)로부터 수신된 검출데이터를 임시로 기억하고, 프로세서(71)의 검출데이터의 처리 결과를 임시로 기억할 수 있다.
메모리(72)는 S램(S-RAM), D램(D-RAM) 등의 휘발성 메모리뿐만 아니라 플래시 메모리, 롬(Read Only Memory, ROM), 이피롬(Erasable Programmable Read Only Memory: EPROM) 등의 비휘발성 메모리를 포함할 수 있다.
프로세서(71)는 페달변위센서(PTS), 압력센서(PS), 모터위치센서(MPS) 및 모터전류센서(MCS)를 통해 검출된 각종 정보들을 근거로 하여 인버터(80)를 통해 모터(51)를 구동시키고, 밸브구동부(100)를 통해 유압 제어유닛(60)을 구동시킬 수 있다.
프로세서(71)는 모터(51) 및 유압 제어유닛(60)을 구동시킴으로써 슬레이브 피스톤(52a)의 이동에 의해 액압을 발생시키고 발생된 액압을 차륜에 마련된 휠 브레이크(40)에 공급함으로써 차륜을 제동시킬 수 있다.
프로세서(71)는 정상 제동 모드시 페달변위센서(PTS)를 통해 검출된 페달 변위에 따라 목표 압력(지령 압력)을 판단할 수 있다.
프로세서(71)는 ABS 모드시 ABS 상황에 따른 목표 압력(지령 압력)을 판단할 수 있다.
프로세서(71)는 모터위치센서(MPS)를 통해 모터위치를 검출할 수 있다.
프로세서(71)는 모터위치 변화로부터 슬레이브 피스톤(52a)의 이동량을 판단할 수 있다. 모터위치 변화로부터 슬레이브 피스톤(52a)이 원점위치에서 현재위치까지 이동한 이동량을 판단할 수 있다.
프로세서(71)는 슬레이브 피스톤(52a)의 이동량을 압력값으로 환산하여 압력을 판단할 수 있다. 슬레이브 피스톤(52a)이 전진할수록 액압 챔버(52b)의 부피가 줄어들면서 압력이 상승할 수 있다. 프로세서(71)는 슬레이브 피스톤(52a)이 동일한 부피에서 이동하는 이동량으로부터 압력을 환산할 수 있다. 그 반대도 가능하다.
프로세서(71)는 압력센서(PS)를 통해 검출된 휠 브레이크(40)의 압력을 서킷압력으로 판단할 수 있다.
프로세서(71)는 정상 제동 모드시 페달 변위센서(PTS)를 통해 브레이크 페달(10)의 변위를 검출하고, 검출된 브레이크 페달 변위를 근거로 목표압력을 판단하고, 판단된 목표압력을 휠 브레이크(40)의 목표압력으로 설정하고, 압력센서(PS)를 통해 휠 브레이크(40)의 압력을 검출하고, 검출된 휠 브레이크(40)의 압력이 설정된 목표압력에 도달하도록 모터(51)의 회전력을 이용하여 슬레이브 피스톤(52a)을 이동시켜 액압을 발생시킬 수 있다.
프로세서(71)는 정상 제동 모드 제어 중 ABS 제어상황이 발생하면, 정상 제도 모드를 ABS 모드로 전환시킬 수 있다.
프로세서(71)는 ABS 모드 제어시 ABS 제어상황에 따른 목표 압력을 휠 브레이크(40)의 목표압력으로 설정하고, 압력센서(PS)를 통해 휠 브레이크(40)의 압력을 검출하고, 검출된 휠 브레이크(40)의 압력이 설정된 목표압력에 도달하도록, 모터(51) 및 유압 제어유닛(60)을 작동시킬 수 있다.
프로세서(71)는 ABS 모드 작동시 운전자가 ABS 작동을 인지할 수 있도록 모터(51)를 가진(excitation/vibration)시켜 모터(51)를 진동시킴으로써 브레이크 페달(10)에 진동을 전달할 수 있다.
프로세서(71)는 ABS 모드 작동시 액압을 발생시키기 위해 모터(51)를 구동시킬 때 모터(51)의 전류 지령에 디더링(dithering) 신호를 인가함으로써 압력 제어의 영향성을 최소화하면서 모터 가진을 통해 브레이크 페달(10)에 진동을 유발시켜 운전자로 하여금 ABS 작동 여부를 인지하도록 할 수 있다.
ABS 모드 작동시 모터(51)를 가진시키면, 모터(51)에 발생된 진동이 모터(51)와 동일한 유압 블록(30)에 결합된 브레이크 페달(10)에 전해져 브레이크 페달(10)에 킥백을 모사한 형태의 진동이 발생할 수 있다.
운전자는 이러한 브레이크 페달(10)의 진동을 느낌으로써 ABS 작동 여부를 인식할 수 있다.
도 4는 실시예에 따른 전자식 브레이크 시스템의 제어부의 개략적인 제어블록을 도시한다.
도 4를 참조하면, 제어부(70)는 압력제어부(100), 속도제어부(110), 전류제어부(120) 및 가진전류제어부(130)를 포함할 수 있다.
압력 제어부(100)는 휠 브레이크(40)의 실제 압력이 지령 압력에 도달하도록 모터(51)의 속도를 조절하기 위한 속도 지령을 출력할 수 있다.
압력 제어부(100)는 속도 지령을 속도 제어부(110)에 출력할 수 있다.
속도 제어부(110)는 모터(51)의 실제 속도가 지령 속도에 도달하도록 모터(51)의 전류를 조절하기 위한 전류 지령을 출력할 수 있다.
속도 제어부(110)는 전류 지령을 전류 제어부(120)에 출력할 수 있다.
전류 제어부(120)는 모터(51)의 실제 전류가 지령 전류에 도달하도록 모터(51)의 전압을 조절하기 위한 전압 지령을 출력할 수 있다.
전류 제어부(120)는 전압 지령을 모터(51) 측으로 출력할 수 있다.
가진전류 제어부(130)는 모터(51)를 가진시키키 위한 가진 전류 지령을 출력할 수 있다.
가진전류 제어부(130)는 가진 전류 지령을 전류 제어부(120)에 출력할 수 있다.
도 5는 실시예에 따른 전자식 브레이크 시스템의 제어부의 세부적인 제어블록을 도시한다.
도 5를 참조하면, 압력 제어부(100)는 압력 제어부(100)의 전반적인 동작을 제어하는 압력 제어기(111)를 포함하고, 속도 제어부(110)는 속도 제어부(110)의 전반적인 동작을 제어하는 속도 제어기(111)를 포함하며, 전류 제어부(120)는 전류 제어부(120)의 전반적인 동작을 제어하는 전류 제어기(121) 또는 전류 제어기(121)/좌표 변환기(122)를 포함하고, 가진전류 제어부(130)는 가진전류 제어부(130)의 전반적인 동작을 제어하는 가진전류 제어기(131)를 포함할 수 있다.
모터(51)는 인버터(80)에 의해 제어될 수 있다.
인버터(80)는 전류 제어기(121)에 의해 제어될 수 있다.
속도 제어기(111)는 압력 제어기(101)로부터 지령 압력과 실제 압력 간의 압력 차이에 따른 속도 지령을 받아 전류 제어기(121)로 전류 지령을 제공할 수 있다.
전류 제어기(121)는 인버터(80)에 3상 전압 지령을 출력하고, 인버터(80)는 3상 전압 지령에 따라 모터(51)에 3상 전류를 제공할 수 있다.
모터(51)에는 모터위치센서(MPS)가 장착되고, 모터위치센서(MPS)는 모터(51)의 회전자의 속도를 검출할 수 있다. 검출된 회전자의 속도는 속도 제어기(111)에서 피드백 제어하는데 이용될 수 있다.
구체적으로, 전류 제어기(121)는 속도 제어기(111)로부터 동기좌표계의 전류 지령(Id*, Iq*)인 d축 전류 지령(Id*)와 q축 전류 지령(Iq*)을 입력받아, 동기좌표계의 전압 지령(Vd*, Vq*)을 좌표 변환기(122)로 전달하고, 좌표 변환기(122)는 동기좌표계의 전압 지령을 3상 전압 지령(a상, b상, c상)으로 변환하여 인버터(80)에 제공할 수 있다. 인버터(80)는 제공받은 3상 전압지령(a상, b상, c상)을 기반으로 3상 스위칭 회로의 PWM(Pulse Width Modulation)의 듀티(duty)를 통해 모터(51)에 3상의 전류를 제공할 수 있다.
전류 제어기(121)의 기능과 좌표 변환기(122)의 기능을 통합하여 하나의 제어기인 전류 제어기(121)로 구현할 수도 있다(도 6 참조).
도 7은 일실시예에 따른 전자식 브레이크 시스템의 인버터와 모터의 연결을 도시한다.
도 7을 참조하면, 인버터(80)에는 직류 전원인 차량의 배터리(B+)와 전압 신호를 평활하는 직류링크 커패시터(C)가 전기적으로 연결되어 있을 수 있다. 직류링크 커패시터(C)는 배터리(B+)에 병렬로 접속될 수 있다. 직류링크 커패시터(C)는 차량용 배터리(B+)로부터 공급된 직류 전압을 평활할 수 있다. 직류링크 커패시터(C)에 의해 평활된 직류 전압을 인버터(80)에 공급될 수 있다.
인버터(80)는 직류 전압을 펄스 폭 변조(Pulse Width Modualation; PWM)를 통해 임의의 가변주파수를 가진 펄스 형태의 3상 교류 전압으로 변환하여 모터(51)를 구동할 수 있다. 인버터(80)는 복수 개의 전력 스위칭소자 및 복수 개의 다이오드를 포함할 수 있다. 예를 들면, 인버터(80)는 6개의 전력 스위칭소자(Q1-Q6) 및 6개의 다이오드(D1-D6)를 포함할 수 있다.
인버터(80)는 전류 제어기(121)로부터 제공된 3상 전압 지령(a상, b상, c상)에 의해 전력 스위칭소자(Q1-Q6)를 턴 온 또는 턴 오프시킴으로써 배터리(B+)로부터 공급된 전류를, 직류 전류로부터 교류 전류로 변환하여 모터(51)에 공급할 수 있다. 이때, 배터리(B+)의 전압을 컨버터에 의해 승압하여 인버터(80)에 공급할 수 있다.
모터(51)의 각 위상단자는 인버터(80)에 연결되어 있다.
모터(51)는 a상 코일, b상 코일 및 c상 코일의 3개의 코일을 가질 수 있다. 예를 들면, a상 코일, b상 코일 및 c상 코일은 Y 결선을 구성할 수 있다. 모터(51)는 120도 위상 차이를 가진 교류 전류가 각 코일에 통전될 수 있다. 이것에 의해, 모터(51)의 회전축이 회전할 수 있다.
다시 도 5 또는 도 6을 참조하면, 인버터(80)가 모터(51)로 공급하는 구동 전류의 측정값이 전류 지령을 추종하도록 전류 제어기(121)가 인버터(80)로 전압 지령을 인가할 수 있다. 인버터(80)와 모터(51) 사이에는 인버터(80)에서 모터(51)로 공급하는 구동전류를 검출하는 모터전류센서(MCS)가 마련될 수 있다. 모터전류센서(MCS)는 3상의 구동전류 중 2개 이상의 전류를 측정하여 다시 전류 제어기(121)로 피드백될 수 있다. 전류 제어기(121)는 실측된 구동전류의 검출값(Id, Iq)이 속도 제어기(111)으로부터 입력받은 전류 지령(Id*, Iq*)을 추종하도록 피드백 제어할 수 있다.
한편, 가진 전류 제어기(131)는 속도 제어기(111)로부터 전류 제어기(121)에 q축 전류 지령(Iq*)을 전달할 때 q축 전류 지령(Iq*)에 가진 전류 지령(Ie) 또는 O을 가산시켜 전류 제어기(121)에 전달시킬 수 있다. 즉, q축 전류 지령(Iq*)에 가진 전류 지령(Ie)을 실어 보냄으로써 모터 구동시 q축 전류 지령(Iq*)에 실린 가진 전류 지령(Ie)에 의해 모터(51)가 진동되도록 할 수 있다.
다시 도 3을 참조하면, 프로세서(71)는 ABS 모드 작동시 운전자가 ABS 작동을 인지할 수 있도록 모터(51)를 가진시켜 브레이크 페달(10)에 진동을 발생시킴과 함께 모터 진동에 의해 차체 떨림을 유발하여 운전자가 청취할 수 있는 알림음을 발생시킬 수 있다. 진동과 알림음은 각각 미리 설정된 패턴을 반복하는 형태일 수 있다.
프로세서(71)는 ABS 모드 작동시 액압을 발생시키기 위해 모터(51)를 구동시킬 때 모터(51)의 전류 지령에 가진 전류 지령을 실어 보냄으로써 압력 제어의 영향성을 최소화하면서 모터 가진을 통해 특정한 음향 패턴을 유발시켜 알림음으로 운전자로 하여금 ABS 작동 여부를 인지하도록 할 수 있다.
도 8은 실시예에 따른 전자식 브레이크 시스템에서 ABS 작동시 가진 전류를 도시한다.
도 8을 참조하면, ABS 작동 구간에서 운전자가 ABS 작동과 ABS 해제를 확실하게 인지할 수 있도록 ABS 알림 온 구간 동안에는 가진 전류 지령을 q축 전류 지령(Iq*)에 주입하고, ABS 알림 오프 구간 동안에는 q축 전류 지령(Iq*)에 주입하지 않는다.
가진 전류는 미리 설정된 진폭과 미리 설정된 주파수를 가질 수 있다.
가진 전류는 ABS 작동에 따른 브레이크 페달감을 위해 기본 지령 전류에 ‘±’ 해주는 주파수를 가질 수 있다.
가진 전류의 주파수는 ABS 작동 주파수와 겹치지 않는 영역에서 결정될 수 있다.
모터(51)의 용량 및 부하의 크기에 따라 가진 전류의 진폭과 주기는 변경될 수 있다.
가진 전류의 진폭은 q축 전류를 기준으로 들어가는 부하량과 빼주는 부하량이 동일하도록 제공됨으로써 모터의 속도에는 약간의 리플이 생길 수 있지만 압력 측면에서는 압력 변동을 최소화할 수 있다.
가진 전류의 진폭은 전체 진폭값을 0을 기준으로 0~100로 부여할 수도 있고, 50을 기준으로 ±50을 부여할 수도 있다. 임의의 기준값을 기준으로 그 기준값에 따라 정해지는 특정값을 ± 로 부여할 수 있다.
참고로, 가진 전류의 진폭은 q축 전류를 기준으로 + 방향으로 진폭값이 정해지거나, - 방향으로 진폭값이 정해지는 것도 가능하다. 즉, 한쪽 방향으로 진폭을 주는 것도 가능하다.
또한, 압력 제어에 미치는 영향을 최소화하기 위하여 가진 전류 패턴의 전체 가진 듀티를 조정할 수 있다.
예를 들면, 가진 전류의 패턴을 전체 가진 듀티에서 25% 듀티로 인가하여 부하가 분산되도록 할 수 있다.
또한, 가진 전류의 패턴을 전체 가진 듀티에서 50% 듀티로 인가하여 부하가 분산되도록 할 수 있다.
이와 같이, 가진 전류의 진폭과 주기 중 적어도 하나를 변경할 수 있다.
이와 같이, ABS 작동 시, 가진 전류 지령을 부하 전류 지령에 추가 인가함으로써 모터 구동 패턴에 진동을 주어 운전자의 브레이크 페달에 진동을 전달함으로써 운전자가 ABS 제동 중임을 인지하게 해 줄 수 있다.
이와 같이, ABS 모드 작동시 압력 제어의 영향성을 최소화하면서 모터 가진을 통해 특정한 알림음을 유발시켜 알림음으로 운전자로 하여금 ABS 작동 여부를 인지하도록 할 수 있다.
가진 전류는 ABS 작동 구간에서 ABS 알림 온 구간과 ABS 알림 오프 구간이 주기적으로 반복될 수 있다.
가진 전류는 ABS 작동 구간에서 불연속적으로 반복될 수 있다. 이럴 경우, ABS 작동 구간에서 진동과 함께 차체 떨림으로 인한 알림음이 발생할 수 있다.
도 9는 실시예에 따른 전자식 브레이크 시스템에서 가진 전류의 다른 예를 도시한다.
도 9를 참조하면, ABS 작동 구간에서 가진 전류의 진동 주기를 가변시킴으로써 모터 진동과 특정한 음색을 가진 알림음을 발생시킬 수 있다.
ABS 작동 구간에서 가진 전류는 단일 주파수가 아닌 2가지 이상의 서로 다른 주파수를 혼합할 수 있다.
예를 들면, 가진 전류는 제1 주기를 가진 제1 주파수와 제2 주기를 가진 제2 주파수를 포함할 수 있다.
가진 전류는 제1 주파수와 제2 주파수를 연속적으로 반복할 수 있다.
가진 전류는 제1 주파수와 제2 주파수를 가짐으로써 알림음의 패턴을 다양화할 수 있다. 2가지 서로 다른 주파수에 따라 모터 진동이 차체 떨림을 유발시키고, 차체 떨림은 2가지 음향이 반복되는 비프음과 같은 알림음을 발생시킬 수 있다. 이로 인해, 운전자는 ABS 작동여부를 브레이크 페달감과 함께 알림음을 통해 인식할 수 있다.
도 10은 실시예에 따른 전자식 브레이크 시스템의 제어 흐름을 도시한다.
도 10을 참조하면, 먼저, 제어부(70)는 ABS 제어가 필요한지를 판단할 수 있다(200).
작동모드 200의 판단결과 ABS 제어가 필요한 것으로 판단되면, 제어부(70)는 ABS 제어상황에 따른 지령 압력을 판단할 수 있다(202).
제어부(70)는 판단된 지령 압력에 따라 d축 전류 지령과 q축 전류 지령을 생성할 수 있다(204).
제어부(70)는 q축 전류 지령에 가진 전류 지령을 가산시킬 수 있다(206).
제어부(70)는 d축 전류 지령과, 가진 전류 지령이 가산된 q축 전류 지령에 따라 인버터(80)를 통해 모터(51)를 구동시킬 수 있다(208). 따라서, 모터(51)는 지령 전류에 가산된 가진 전류에 의해 진동을 발생시키고, 이 진동은 브레이크 페달(10)에 전달되어 브레이크 페달(10)에 킥백 현상과 유사한 진동을 발생시킬 수 있다. 또한, 가진 전류의 주파수 변화에 의해 차체 떨림이 비프음 형태의 알림음을 발생시킬 수 있다. 이로 인해, 운전자는 브레이크 페달의 진동과 알림음을 통해 ABS 작동 여부를 인식할 수 있다.
상기한 실시예에서는 q축 전류 지령에 가진 전류 지령을 가산하는 것에 대하여 설명하고 있지만, 이에 한정되지 않고 d축 전류 지령에 가진 전류 지령을 가산하는 것도 가능할 수 있다.
한편, 전술한 제어부 및/또는 그 구성요소는 컴퓨터가 읽을 수 있는 코드/알고리즘/소프트웨어를 저장하는 컴퓨터가 읽을 수 있는 기록 매체와 결합된 하나 이상의 프로세서/마이크로프로세서(들)를 포함할 수 있다. 프로세서/마이크로프로세서(들)는 컴퓨터로 읽을 수 있는 기록 매체에 저장된 컴퓨터가 읽을 수 있는 코드/알고리즘/소프트웨어를 실행하여 전술한 기능, 동작, 단계 등을 수행할 수 있다.
상술한 제어부 및/또는 그 구성요소는 컴퓨터로 읽을 수 있는 비 일시적 기록 매체 또는 컴퓨터로 읽을 수 있는 일시적인 기록 매체로 구현되는 메모리를 더 포함할 수 있다. 메모리는 전술한 제어부 및/또는 그 구성요소에 의해 제어될 수 있으며, 전술한 제어부 및/또는 그 구성요소에 전달되거나 그로부터 수신되는 데이터를 저장하도록 구성되거나 전술한 제어부 및/또는 그 구성요소에 의해 처리되거나 처리될 데이터를 저장하도록 구성될 수 있다.
개시된 실시예는 또한 컴퓨터로 읽을 수 있는 기록 매체에 컴퓨터가 읽을 수 있는 코드/알고리즘/소프트웨어로 구현하는 것이 가능하다. 컴퓨터로 읽을 수 있는 기록 매체는 프로세서/마이크로프로세서에 의해 읽혀질 수 있는 데이터를 저장할 수 있는 데이터 저장 장치와 같은 컴퓨터로 읽을 수 있는 비 일시적 기록 매체 일 수 있다. 컴퓨터 판독 가능 기록 매체의 예로는 하드 디스크 드라이브(HDD), 솔리드 스테이트 드라이브(SSD), 실리콘 디스크 드라이브(SDD), 읽기 전용 메모리 (ROM), CD-ROM, 자기 테이프, 플로피 디스크, 광학 데이터 저장 장치 등이 있다.

Claims (14)

  1. 브레이크 페달이 연결된 마스터 실린더;
    회전력을 발생시키는 모터와, 압력챔버 내부에 이동 가능하게 수용되는 유압 피스톤을 포함하고, 상기 유압 피스톤의 이동에 의해 액압을 발생시키는 액압 공급장치;
    상기 액압 공급장치로부터 휠 실린더로 전달되는 액압의 흐름을 제어하는 유압 제어유닛;
    상기 마스터 실린더, 액압 공급장치 및 유압 제어유닛이 내부에 통합된 유압 블록; 및
    상기 모터와 상기 유압 제어유닛을 제어하는 제어부를 포함하고,
    상기 제어부는 ABS 작동 시 상기 브레이크 페달의 진동에 의해 상기 ABS 작동을 운전자에게 알리도록 상기 모터를 가진시키기 위한 가진 전류를 상기 모터에 공급하여 상기 모터에 진동을 발생시키는 전자식 브레이크 시스템.
  2. 제1항에 있어서,
    상기 제어부는 ABS 작동 구간에서 상기 모터에 상기 브레이크 페달의 킥백(kick back)을 모사한 진동을 발생시키는 전자식 브레이크 시스템.
  3. 제2항에 있어서,
    상기 제어부는 ABS 작동 구간에서 상기 가진 전류가 공급되는 ABS 작동 알림 온 구간과, 상기 가진 전류가 공급되지 않는 ABS 작동 알림 오프 구간을 주기적으로 반복시키는 전자식 브레이크 시스템.
  4. 제1항에 있어서,
    상기 제어부는 ABS 작동 주파수 대역과 겹치지 않는 주파수의 가진 전류를 상기 모터에 공급하는 전자식 브레이크 시스템.
  5. 제1항에 있어서,
    상기 제어부는 ABS 작동 구간에서 상기 브레이크 페달의 킥백(kick back)을 모사한 진동이 발생되도록 함과 함께 차체 떨림으로 인한 알림음이 발생되도록 상기 모터에 진동을 발생시키는 전자식 브레이크 시스템.
  6. 제5항에 있어서,
    상기 제어부는 서로 다른 복수의 주파수를 가진 가진 전류를 상기 모터에 공급하는 전자식 브레이크 시스템.
  7. 제6항에 있어서,
    상기 제어부는 2가지 음향이 반복되는 알림음이 발생되도록 제1 주파수와 제2 주파수가 연속적으로 반복되는 가진 전류를 상기 모터에 공급하는 전자식 브레이크 시스템.
  8. 제1항에 있어서,
    상기 제어부는 상기 ABS 작동시 목표 압력에 따라 생성되는 d축 전류 지령과 q축 전류 지령 중 상기 q축 전류 지령에 상기 가진 전류를 생성시키기 위한 가진 전류 지령을 가산시켜 상기 가진 전류를 생성하는 전자식 브레이크 시스템.
  9. 브레이크 페달이 연결된 마스터 실린더; 회전력을 발생시키는 모터와, 압력챔버 내부에 이동 가능하게 수용되는 유압 피스톤을 포함하고, 상기 유압 피스톤의 이동에 의해 액압을 발생시키는 액압 공급장치; 상기 액압 공급장치로부터 상기 휠 실린더로 전달되는 액압의 흐름을 제어하는 유압 제어유닛; 상기 마스터 실린더, 액압 공급장치 및 유압 제어유닛이 내부에 통합된 유압 블록; 및 상기 모터와 상기 유압 제어유닛을 제어하는 제어부를 포함하는 전자식 브레이크 시스템의 제어방법에 있어서,
    ABS 작동시 상기 브레이크 페달의 진동에 의해 상기 ABS 작동을 운전자에게 알리도록 상기 모터를 가진시키기 위한 가진 전류를 상기 모터에 공급하여 상기 모터에 진동을 발생시키는 전자식 브레이크 시스템의 제어방법.
  10. 제9항에 있어서,
    ABS 작동 구간에서 상기 모터에 상기 브레이크 페달의 킥백(kick back)을 모사한 진동을 발생시키는 전자식 브레이크 시스템의 제어방법.
  11. 제10항에 있어서,
    ABS 작동 구간에서 상기 가진 전류가 공급되는 ABS 작동 알림 온 구간과, 상기 가진 전류가 공급되지 않는 ABS 작동 알림 오프 구간을 주기적으로 반복시키는 전자식 브레이크 시스템의 제어방법.
  12. 제9항에 있어서,
    ABS 작동 구간에서 상기 브레이크 페달의 킥백(kick back)을 모사한 진동이 발생되도록 함과 함께 차체 떨림으로 인한 알림음이 발생되도록 상기 모터에 진동을 발생시키는 전자식 브레이크 시스템의 제어방법.
  13. 제12항에 있어서,
    ABS 작동 구간에서 서로 다른 복수의 주파수를 가진 가진 전류를 상기 모터에 공급하는 전자식 브레이크 시스템의 제어방법.
  14. 제13항에 있어서,
    2가지 음향이 반복되는 알림음이 발생되도록 제1 주파수와 제2 주파수가 연속적으로 반복되는 가진 전류를 상기 모터에 공급하는 전자식 브레이크 시스템의 제어방법.
PCT/KR2021/000905 2020-01-23 2021-01-22 전자식 브레이크 시스템 및 그 제어방법 WO2021150058A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21743675.7A EP4079590B1 (en) 2020-01-23 2021-01-22 Electronic brake system and control method therefor
US17/794,615 US20230061412A1 (en) 2020-01-23 2021-01-22 Electronic brake system and control method therefor
CN202180010412.1A CN114981137B (zh) 2020-01-23 2021-01-22 电子式制动系统及其控制方法
KR1020227026025A KR20220116310A (ko) 2020-01-23 2021-01-22 전자식 브레이크 시스템 및 그 제어방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200009190 2020-01-23
KR10-2020-0009190 2020-01-23

Publications (1)

Publication Number Publication Date
WO2021150058A1 true WO2021150058A1 (ko) 2021-07-29

Family

ID=76992677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000905 WO2021150058A1 (ko) 2020-01-23 2021-01-22 전자식 브레이크 시스템 및 그 제어방법

Country Status (4)

Country Link
EP (1) EP4079590B1 (ko)
KR (1) KR20220116310A (ko)
CN (1) CN114981137B (ko)
WO (1) WO2021150058A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19753786A1 (de) * 1997-12-04 1999-06-10 Itt Mfg Enterprises Inc Bremsanlage für Kraftfahrzeuge
KR20110036109A (ko) * 2008-07-18 2011-04-06 콘티넨탈 테베스 아게 운트 코. 오하게 차량용 제동 시스템
KR20180094494A (ko) * 2017-02-15 2018-08-23 주식회사 만도 전자식 브레이크 시스템 및 그 제어 방법
US20190233048A1 (en) * 2018-01-26 2019-08-01 Shimano Inc. Brake control device, braking device including brake control device, and brake system
JP2019201536A (ja) * 2018-05-16 2019-11-21 相原 雅彦 電動車両

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641953B2 (ja) * 1997-11-25 2005-04-27 富士電機機器制御株式会社 永久磁石型同期電動機の制御方法
DE10040511A1 (de) * 2000-03-09 2001-09-20 Continental Teves Ag & Co Ohg Anordnung und Vorrichtung zur Erfassung von Gierbewegungen
DE102007045292B4 (de) * 2007-09-22 2016-04-28 Volkswagen Ag Fahrzeugbremsanlage mit einem elektromechanischen Bremskraftverstärker und einem Schlupfregelsystem
KR101400539B1 (ko) * 2008-01-23 2014-05-28 엘지전자 주식회사 모터, 모터의 제어시스템, 모터의 제어방법 및 세탁기
JP2009303435A (ja) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd モータ制御装置
JP5228996B2 (ja) * 2009-02-27 2013-07-03 日産自動車株式会社 電動車両の制振制御装置
KR101126847B1 (ko) * 2009-12-04 2012-03-23 현대자동차주식회사 작동모드 구현 펜던트타입 조정식페달장치
JP2013123972A (ja) * 2011-12-14 2013-06-24 Nissan Motor Co Ltd 車両用制動力制御装置
JP5856465B2 (ja) * 2011-12-16 2016-02-09 トヨタ自動車株式会社 車両
DE102013217257A1 (de) * 2012-09-03 2014-04-03 Robert Bosch Gmbh Hydraulikaggregat einer Fahrzeugbremsanlage mit einem Motorwellenlager
KR101729940B1 (ko) * 2013-07-25 2017-04-25 주식회사 만도 전자제어식 브레이크 시스템의 펌프유닛
KR102016381B1 (ko) * 2014-12-30 2019-10-21 주식회사 만도 전자식 브레이크 시스템
ITUB20156916A1 (it) * 2015-12-09 2017-06-09 Freni Brembo Spa Impianto frenante per veicoli di tipo brake by wire munito di simulatore di feedback idraulico, e metodo di attuazione di un impianto frenante per veicoli
US10870418B2 (en) * 2017-02-15 2020-12-22 Mando Corporation Electronic brake system and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19753786A1 (de) * 1997-12-04 1999-06-10 Itt Mfg Enterprises Inc Bremsanlage für Kraftfahrzeuge
KR20110036109A (ko) * 2008-07-18 2011-04-06 콘티넨탈 테베스 아게 운트 코. 오하게 차량용 제동 시스템
KR20180094494A (ko) * 2017-02-15 2018-08-23 주식회사 만도 전자식 브레이크 시스템 및 그 제어 방법
US20190233048A1 (en) * 2018-01-26 2019-08-01 Shimano Inc. Brake control device, braking device including brake control device, and brake system
JP2019201536A (ja) * 2018-05-16 2019-11-21 相原 雅彦 電動車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079590A4 *

Also Published As

Publication number Publication date
CN114981137B (zh) 2023-12-22
EP4079590A4 (en) 2023-07-26
EP4079590A1 (en) 2022-10-26
CN114981137A (zh) 2022-08-30
KR20220116310A (ko) 2022-08-22
EP4079590B1 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
KR100303011B1 (ko) 엘리베이터의운전제어장치
US5076399A (en) Elevator start control technique for reduced start jerk and acceleration overshoot
KR101149125B1 (ko) 전동지게차 구동용 모터 제어장치
US20070216218A1 (en) Brake by wire type brake system
KR20060003884A (ko) Ac 서보 드라이버의 모터 동력선 단선 검출 방법
US7888893B2 (en) Control apparatus and method for linear synchronous motor
KR20190108301A (ko) 모터 회전속도 제어방법 및 제어시스템
WO2021150058A1 (ko) 전자식 브레이크 시스템 및 그 제어방법
CN1053160C (zh) 起动电梯的方法
WO2021158032A1 (ko) 전자식 브레이크 시스템 및 그 제어방법
JP2009089592A (ja) 電気駆動機械
JP5107167B2 (ja) ハイブリッド型作業機械
JP3565236B2 (ja) 電動機制御装置とその切換え方法
US20210028727A1 (en) Short-circuiting device and robot system including the same
JP2018121461A (ja) 電動式直動アクチュエータおよび電動ブレーキ装置
JP2000078878A (ja) 永久磁石式同期モータの制御装置
JP6707707B2 (ja) エレベーター
JP2001309694A (ja) エレベータ用永久磁石同期電動機の調整方法およびその装置
JP5461006B2 (ja) 同期電動機制御装置
JP2002525003A (ja) 電動機を有する装置に対する緊急動作装置
US20230061412A1 (en) Electronic brake system and control method therefor
JP2687062B2 (ja) 電動機の制御装置
JP2002525003A5 (ko)
JP4211127B2 (ja) 永久磁石式同期モータ駆動エレベータ装置
CN109476444A (zh) 电梯系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227026025

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021743675

Country of ref document: EP

Effective date: 20220720

NENP Non-entry into the national phase

Ref country code: DE