WO2021149699A1 - 磁気ギアード回転電機 - Google Patents

磁気ギアード回転電機 Download PDF

Info

Publication number
WO2021149699A1
WO2021149699A1 PCT/JP2021/001771 JP2021001771W WO2021149699A1 WO 2021149699 A1 WO2021149699 A1 WO 2021149699A1 JP 2021001771 W JP2021001771 W JP 2021001771W WO 2021149699 A1 WO2021149699 A1 WO 2021149699A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
vibration damping
damping member
electric machine
Prior art date
Application number
PCT/JP2021/001771
Other languages
English (en)
French (fr)
Inventor
隆之 清水
良次 岡部
林 健太郎
崇俊 松下
梅田 彰彦
幹人 佐々木
将之 左海
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP21744618.6A priority Critical patent/EP4075643A4/en
Priority to US17/793,291 priority patent/US20230352994A1/en
Priority to CN202180009219.6A priority patent/CN115023882A/zh
Publication of WO2021149699A1 publication Critical patent/WO2021149699A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0241Fibre-reinforced plastics [FRP]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • H02K7/088Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly radially supporting the rotor directly

Definitions

  • the present disclosure relates to a magnetic geared rotary electric machine.
  • the present application claims priority with respect to Japanese Patent Application No. 2020-0099938 filed in Japan on January 24, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a magnetic geared rotary electric machine in which a low-speed rotor (first rotor), a high-speed rotor (second rotor), and a stator are coaxially rotatable relative to each other.
  • first rotor low-speed rotor
  • second rotor high-speed rotor
  • stator stator
  • the high-speed rotor is rotated by the magnetomotive force of a coil provided on the stator, so that the low-speed rotor, which is an output shaft, rotates at a predetermined reduction ratio due to harmonic flux.
  • a magnetic force having a specific frequency is generated based on the number of poles N l of the low-speed rotor, the number of pole pairs N h of the high-speed rotor, and the number N s of pole pairs of the stator.
  • the low-frequency magnetic force of N l ⁇ N s contributes to driving the high-speed rotor.
  • the high-frequency magnetic force of N l + N s does not contribute to driving the high-speed rotor, but rather causes vibration of the stator. Vibration of the stator may lead to noise and fatigue failure. Therefore, there is an increasing demand for a technique capable of suppressing the vibration of the stator.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a magnetic geared rotary electric machine in which the generation of vibration is suppressed.
  • the magnetic geared rotary electric machine has a stator core that forms an annular shape about an axis, a coil provided in a slot of the stator core, and a circumferential interval inside the stator core.
  • a stator having a plurality of stator magnets provided apart from each other, a first rotor having a plurality of pole pieces provided inside the stator at intervals in the circumferential direction of the axis, and an inside of the first rotor.
  • the rotor core is provided on the rotor core, and a second rotor having a plurality of rotor magnets provided on the rotor core at intervals in the circumferential direction.
  • the stator is made of fiber reinforced plastic and is provided on the inner surface of the stator core. Further provided with a vibration damping member.
  • FIG. 5 is a cross-sectional view taken along the line II-II of FIG. It is a figure which shows the modification of the vibration damping member which concerns on 1st Embodiment of this disclosure. It is a figure which shows the other modification of the vibration damping member which concerns on 1st Embodiment of this disclosure. It is an enlarged sectional view of the main part of the magnetic geared rotary electric machine which concerns on 2nd Embodiment of this disclosure. It is sectional drawing of the magnetic geared rotary electric machine which concerns on 3rd Embodiment of this disclosure.
  • the magnetic geared rotary electric machine 100 includes a stator 1, a first rotor 2, a second rotor 3, a casing 4, and a bearing B.
  • the magnetic geared rotary electric machine 100 is attached to a rotary shaft 6 extending along the axis Ac.
  • the first rotor 2 and the second rotor 3 rotate around the axis Ac to function as an electric motor.
  • a rotational force torque
  • it functions as a generator by the induced electromotive force accompanying the rotation of the first rotor 2 and the second rotor 3.
  • the casing 4 has an annular shape centered on the axis line Ac. A space is formed inside the casing 4.
  • the stator 1 is provided on the inner surface of the casing 4 that faces inward in the radial direction with respect to the axis Ac (casing inner peripheral surface 5A).
  • the stator 1 has a stator core 1A, a plurality of coils C, a plurality of stator magnets 1B, and a vibration damping member 90.
  • the stator core 1A has an annular back yoke 71 centered on the axis Ac, and a plurality of teeth 7T protruding inward in the radial direction from the back yoke 71 and arranged at intervals in the circumferential direction.
  • the teeth 7T has a teeth main body 72 extending radially inward from the back yoke 71, and a teeth tip portion 73 integrally provided at the radial inner end of the teeth main body 72.
  • the tooth tip portion 73 projects toward both sides in the circumferential direction.
  • a coil C is attached to the teeth body 72.
  • the coil C is formed by winding a copper wire or the like around the teeth body 72.
  • the area surrounded by the back yoke 71, the pair of tooth bodies 72 adjacent to each other, and the tip end portion 73 of the teeth is a slot S for accommodating the coil C.
  • a plurality of stator magnets 1B are arranged so as to be adjacent to each other in the circumferential direction on the inner peripheral surface of the stator core 1A, that is, the inner surface of the tooth tip portion 73 in the radial direction.
  • the stator magnet 1B is a permanent magnet such as a ferrite magnet or a neodymium magnet.
  • the poles of the stator magnets 1B adjacent to each other are different. That is, the stator magnets 1B having different poles are alternately arranged in the circumferential direction.
  • the inner peripheral surface defined by the stator magnets 1B is a cylindrical inner peripheral surface 1S as a part of the inner surface of the stator core 1A.
  • a vibration damping member 90 is attached to the inner peripheral surface 1S of the cylinder.
  • the vibration damping member 90 is provided to attenuate the vibration generated in the stator core 1A.
  • a relatively flexible fiber reinforced plastic containing an aramid resin or a Vectran resin is used as the vibration damping member 90.
  • a glass fiber reinforced resin or a carbon fiber reinforced resin can be used as the vibration damping member 90.
  • the vibration damping member 90 itself can absorb and attenuate the vibration of the stator core 1A.
  • the vibration damping member 90 has a cylindrical shape extending along the inner peripheral surface 1S of the cylinder.
  • the first rotor 2 is provided inside the stator 1.
  • the first rotor 2 has a disk portion 5, a first rotor main body 2H, and a pole piece 2P.
  • the disk portion 5 has a disk shape centered on the axis line Ac, and is attached to the rotating shaft 6.
  • the first rotor main body 2H is attached to the outer peripheral side of the disk portion 5.
  • the first rotor main body 2H has a cylindrical tubular portion 21 centered on the axis line Ac, and a pair of support portions 22 projecting outward in the radial direction from the outer peripheral surface of the tubular portion 21.
  • the tubular portion 21 is supported on the inner peripheral surface of the casing 4 via a bearing B (outer bearing B1).
  • a plurality of pole pieces 2P are provided on the radial outer edge of the pair of support portions 22.
  • the pole piece 2P is a magnetic material, and generates a high frequency of magnetic flux by interacting with the magnetic force of the stator magnet 1B and the rotor magnet 3B described later. As shown in FIG. 2, a plurality of pole pieces 2P are provided at intervals in the circumferential direction.
  • the second rotor 3 is provided between the pair of support portions 22 in the first rotor main body 2H.
  • the second rotor 3 has a rotor core 3A and a rotor magnet 3B.
  • the rotor core 3A has an annular shape centered on the axis line Ac.
  • the inner peripheral surface of the rotor core 3A is rotatably supported via the bearing B (inner bearing B2) by the outer peripheral surface of the tubular portion 21 of the first rotor main body 2H.
  • a plurality of rotor magnets 3B are arranged in the circumferential direction on the outer peripheral surface of the rotor core 3A.
  • the rotor magnet 3B faces the pole piece 2P described above from the inner peripheral side.
  • the magnetic geared rotary electric machine 100 when used as a generator, a rotational force (torque) around the axis Ac is applied to the rotary shaft 6. As a result, the first rotor 2 and the second rotor 3 rotate due to the rotation of the rotating shaft 6. An induced electromotive force is generated in the coil C as the first rotor 2 and the second rotor 3 rotate. By taking out this electric power to the outside, the magnetic geared rotary electric machine 100 can be used as a generator.
  • a magnetic force having a specific frequency is generated based on the number of poles N l of the first rotor 2, the number of pole pairs N h of the second rotor 3, and the number of pole pairs N s of the stator 1.
  • the low-frequency magnetic force of N l ⁇ N s contributes to driving the second rotor 3.
  • the high-frequency magnetic force of N l + N s does not contribute to the driving of the second rotor 3, but rather causes the stator 1 to vibrate. The vibration of the stator 1 may lead to noise and fatigue failure.
  • the vibration damping member 90 is provided on the inner surface (cylindrical inner peripheral surface 1S) of the stator 1. According to this configuration, even when vibration is generated in the stator 1, the vibration damping member 90 can absorb and attenuate the vibration. In particular, since fiber reinforced plastic is used as the vibration damping member 90, durability can be ensured as compared with other resin materials that do not contain fibers. Further, since the vibration damping member 90 is made of fiber reinforced plastic, eddy current and heat generation can be suppressed unlike the case where other metal materials are used. As a result, the magnetic geared rotary electric machine 100 can be operated more stably.
  • the vibration damping member 90 is provided on the inner peripheral surface 1S of the cylinder defined by the stator magnet 1B. That is, the vibration damping member 90 is provided over the entire area in the circumferential direction on the inner peripheral side of the stator 1. As a result, the vibration of the stator 1 can be stably absorbed and damped over the entire circumferential direction.
  • the first embodiment of the present disclosure has been described above. It is possible to make various changes and modifications to the above configuration as long as it does not deviate from the gist of the present disclosure. For example, as shown in FIG. 3, it is also possible to form a plurality of holes h that penetrate the vibration damping member 90b in the thickness direction (diameter direction with respect to the axis Ac) in the vibration damping member 90b.
  • the possibility that heat stays in the stator 1 through the hole h can be reduced.
  • the magnetic geared rotary electric machine 100 can be operated more stably.
  • the vibration damping member 90c can be composed of a plurality of vibration damping pieces P arranged at intervals in the axis Ac direction.
  • Each vibration damping piece P has a cylindrical shape centered on the axis line Ac. It is also possible to form each vibration damping piece P by combining a plurality of arc-shaped members.
  • a cavity 8 for accommodating the stator magnet 1B is formed on the inner peripheral surface of the stator core 1A by denting outward in the radial direction.
  • the surface facing inward in the radial direction in the cavity 8 is the bottom surface 8A, and the pair of surfaces facing the circumferential direction are the side surfaces 8B, respectively.
  • the bottom surface 8A and the side surface 8B are a part of the inner surface of the stator core 1A.
  • a thin plate-shaped damping member 91 is provided at least on the bottom surface 8A.
  • the vibration damping member 91 is provided on the side surface 8B in addition to the bottom surface 8A. That is, the stator magnet 1B is surrounded by these vibration damping members 91.
  • the vibration damping member 91 can absorb and attenuate the vibration generated in the stator 1. Further, as compared with the case where the vibration damping member is provided between the stator 1 and the first rotor 2, it is possible to secure a large clearance between the stator 1 and the first rotor 2. As a result, the magnetic geared rotary electric machine 100 can be operated more stably.
  • the second embodiment of the present disclosure has been described above. It is possible to make various changes and modifications to the above configuration as long as it does not deviate from the gist of the present disclosure.
  • the vibration damping member 91 described in the second embodiment and the vibration damping member 90 described in the first embodiment can be used in combination.
  • the vibration damping member 92 is provided on the wall surface 2S of the slot S (described above) in the stator core 1A.
  • the wall surface 2S of the slot S is a surface formed by an inner peripheral surface of the back yoke 71 and a pair of adjacent teeth 7T (teeth body 72), and is a part of the inner surface of the stator core 1A.
  • the vibration damping member 92 is interposed between the coil C and the wall surface 2S.
  • the vibration damping member 92 is provided on the wall surface 2S of the slot S, so that the vibration generated in the stator 1 can be absorbed and damped. Further, since the vibration damping member 92 is firmly pressed against the wall surface 2S by the coil C, the possibility that the vibration damping member 92 falls off can be reduced.
  • the third embodiment of the present disclosure has been described above. It is possible to make various changes and modifications to the above configuration as long as it does not deviate from the gist of the present disclosure.
  • at least one of the vibration damping member 92 described in the third embodiment, the vibration damping member 91 described in the second embodiment, and the vibration damping member 90 described in the first embodiment may be used in combination. Is also possible.
  • the magnetic geared rotary electric machine 100 has an annular stator core 1A centered on an axis Ac, a coil C provided in a slot S of the stator core 1A, and a circumference inside the stator core 1A.
  • a first having a stator 1 having a plurality of stator magnets 1B provided at intervals in the direction, and pole pieces 2P having a plurality of pole pieces 2P provided at intervals in the circumferential direction of the axis Ac inside the stator 1.
  • a rotor 2, a rotor core 3A provided inside the first rotor 2, and a second rotor 3 having a plurality of rotor magnets 3B provided on the rotor core 3A at intervals in the circumferential direction are provided.
  • the stator 1 is further provided with a vibration damping member 90 made of fiber-reinforced plastic and provided on the inner surface of the stator core 1A.
  • the vibration damping member 90 can absorb and attenuate the vibration.
  • fiber reinforced plastic is used as the vibration damping member 90, durability can be ensured as compared with other resin materials that do not contain fibers.
  • the vibration damping member 90 is made of fiber reinforced plastic, eddy current and heat generation can be suppressed.
  • the stator core 1A has a cylindrical inner peripheral surface 1S defined by the plurality of stator magnets 1B as the inner surface, and the vibration damping member 90 has the vibration damping member 90. , Is provided along the inner peripheral surface 1S of the cylinder.
  • the vibration damping member 90 is provided on the inner peripheral surface 1S of the cylinder defined by the stator magnet 1B. That is, the vibration damping member 90 is provided over the entire area in the circumferential direction on the inner peripheral side of the stator 1. As a result, the vibration of the stator 1 can be stably absorbed and damped over the entire circumferential direction.
  • the vibration damping member 90b is formed with a plurality of holes h penetrating the vibration damping member 90b in the radial direction.
  • a plurality of holes h are formed in the vibration damping member 90b.
  • the hole h can reduce the possibility of heat staying in the stator 1.
  • the magnetic geared rotary electric machine 100 can be operated more stably.
  • the vibration damping member 90c has a plurality of vibration damping pieces P arranged at intervals in the axis Ac direction.
  • the vibration damping member 90c is composed of a plurality of vibration damping pieces P. A gap is formed between the damping pieces P. With this interval, the possibility that heat stays in the stator 1 can be reduced. As a result, the magnetic geared rotary electric machine 100 can be operated more stably.
  • the stator core 1A accommodates the stator magnets 1B, is arranged at intervals in the circumferential direction, and faces inward in the radial direction as the inner surface.
  • a plurality of cavities 8 having a bottom surface 8A are formed, and the vibration damping member 91 is provided at least on the bottom surface 8A.
  • the vibration damping member 91 can absorb and attenuate the vibration generated in the stator 1. Further, as compared with the case where the vibration damping member is provided between the stator 1 and the first rotor 2, it is possible to secure a large clearance between the stator 1 and the first rotor 2. As a result, the magnetic geared rotary electric machine 100 can be operated more stably.
  • the vibration damping member 92 is provided between the wall surface 2S of the slot S as the inner surface and the coil C.
  • the vibration damping member 92 is provided on the wall surface 2S of the slot S, so that the vibration generated in the stator 1 can be absorbed and damped. Further, since the vibration damping member 92 is firmly pressed against the wall surface 2S by the coil C, the possibility that the vibration damping member 92 falls off can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Vibration Prevention Devices (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

磁気ギアード回転電機は、軸線を中心として環状をなすステータコア、コイル、及びステータコアの内側に設けられたステータ磁石を有するステータと、複数のポールピースを有する第一ロータと、第一ロータの内側に設けられたロータコア、及びロータコアに設けられた複数のロータ磁石を有する第二ロータと、を備え、ステータは、繊維強化プラスチックからなりステータコアの内面に設けられた制振部材をさらに備える。

Description

磁気ギアード回転電機
 本開示は、磁気ギアード回転電機に関する。
 本願は、2020年1月24日に日本に出願された特願2020-009938号について優先権を主張し、その内容をここに援用する。
 下記特許文献1には、低速ロータ(第一ロータ)、高速ロータ(第二ロータ)、ステータが同軸に相対回転可能とされた磁気ギア―ド回転電機が開示されている。
 磁気ギア―ド回転電機を、例えばモータとして用いる場合には、ステータに設けたコイルの起磁力により高速ロータを回転させることで、高調波磁束により出力軸である低速ロータが所定の減速比で回転する。
特開2014-163431号公報
 上記のような磁気ギアード回転電機では、低速ロータの極数N、高速ロータの極対数N、及びステータの極対数Nに基づいて、特定の周波数の磁力が発生する。このうち、Nl-Nsの低周波磁力は、高速ロータの駆動に寄与する。一方で、Nl +Nsの高周波磁力は、高速ロータの駆動には寄与せず、むしろステータの振動発生の原因となってしまう。ステータの振動は、騒音や疲労破壊につながる虞がある。そこで、ステータの振動を抑制することが可能な技術に対する要請が高まっている。
 本開示は上記課題を解決するためになされたものであって、振動の発生が抑制された磁気ギアード回転電機を提供することを目的とする。
 上記課題を解決するために、本開示に係る磁気ギアード回転電機は、軸線を中心として環状をなすステータコア、該ステータコアのスロット内に設けられたコイル、及び、前記ステータコアの内側に周方向に間隔をあけて複数が設けられたステータ磁石を有するステータと、該ステータの内側で、前記軸線の周方向に間隔をあけて複数が設けられたポールピースを有する第一ロータと、該第一ロータの内側に設けられたロータコア、及び、該ロータコアに周方向に間隔をあけて設けられた複数のロータ磁石を有する第二ロータと、を備え、前記ステータは、繊維強化プラスチックからなり前記ステータコアの内面に設けられた制振部材をさらに備える。
 本開示によれば、振動の発生が抑制された磁気ギアード回転電機を提供することができる。
本開示の第一実施形態に係る磁気ギアード回転電機の構成を示す断面図である。 図1のII-II線における断面図である。 本開示の第一実施形態に係る制振部材の変形例を示す図である。 本開示の第一実施形態に係る制振部材の他の変形例を示す図である。 本開示の第二実施形態に係る磁気ギアード回転電機の要部拡大断面図である。 本開示の第三実施形態に係る磁気ギアード回転電機の断面図である。
(第一実施形態)
(磁気ギアード回転電機の構成)
 以下、本開示の第一実施形態に係る磁気ギアード回転電機100について、図1と図2を参照して説明する。図1に示すように、磁気ギアード回転電機100は、ステータ1と、第一ロータ2と、第二ロータ3と、ケーシング4と、軸受Bと、を備えている。磁気ギアード回転電機100は、軸線Acに沿って延びる回転軸6に取り付けられている。外部から電力供給した場合、第一ロータ2、及び第二ロータ3が軸線Ac回りに回転することで電動機として機能する。一方で、回転軸6に外部から回転力(トルク)を与えた場合、第一ロータ2、及び第二ロータ3の回転に伴う誘導起電力によって発電機として機能する。
(ケーシング、ステータの構成)
 ケーシング4は、軸線Acを中心とする円環状をなしている。ケーシング4の内部には空間が形成されている。ステータ1は、このケーシング4の内面のうち、軸線Acに対する径方向内側を向く面(ケーシング内周面5A)に設けられている。
 図2に示すように、ステータ1は、ステータコア1Aと、複数のコイルCと、複数のステータ磁石1Bと、制振部材90と、を有している。ステータコア1Aは、軸線Acを中心とする円環状のバックヨーク71と、バックヨーク71から径方向内側に突出するとともに、周方向に間隔をあけて配列された複数のティース7Tと、を有している。ティース7Tは、バックヨーク71から径方向内側に延びるティース本体72と、ティース本体72の径方向内側の端部に一体に設けられたティース先端部73と、を有している。ティース先端部73は、周方向の両側に向かって張り出している。
 ティース本体72にはコイルCが取り付けられている。コイルCは、銅線等をティース本体72の周囲に巻き掛けることで形成されている。バックヨーク71と、互いに隣接する一対のティース本体72、及びティース先端部73とによって囲まれた領域は、コイルCを収容するためのスロットSとされている。
 ステータコア1Aの内周面、つまりティース先端部73の径方向内側の面には、周方向に隣接するように複数のステータ磁石1Bが配列されている。ステータ磁石1Bは、例えばフェライト磁石やネオジム磁石のような永久磁石である。互いに隣接するステータ磁石1B同士では、極が異なっている。つまり、異なる極のステータ磁石1Bが周方向に交互に配列されている。これらステータ磁石1Bによって画定される内周側の面は、ステータコア1Aの内面の一部としての円筒内周面1Sとされている。
 この円筒内周面1Sには、制振部材90が取り付けられている。制振部材90は、ステータコア1Aで発生する振動を減衰させるために設けられている。制振部材90として具体的には、アラミド樹脂やベクトラン樹脂を含む、比較的に柔軟な繊維強化プラスチックが用いられる。この他、ガラス繊維強化樹脂や、炭素繊維強化樹脂を制振部材90として用いることも可能である。これにより、制振部材90自身がステータコア1Aの振動を吸収して減衰させることが可能である。制振部材90は、円筒内周面1Sに沿って広がる円筒状をなしている。
(第一ロータの構成)
 図1に示すように、第一ロータ2は、ステータ1の内側に設けられている。第一ロータ2は、円板部5と、第一ロータ本体2Hと、ポールピース2Pと、を有している。円板部5は、軸線Acを中心とする円板状をなし、回転軸6に取り付けられている。円板部5の外周側には、第一ロータ本体2Hが取り付けられている。第一ロータ本体2Hは、軸線Acを中心とする円筒状の筒部21と、この筒部21の外周面から径方向外側に張り出す一対の支持部22と、を有している。筒部21は、軸受B(外側軸受B1)を介してケーシング4の内周面上で支持されている。一対の支持部22の径方向外側の端縁には、複数のポールピース2Pが設けられている。ポールピース2Pは、磁性体であり、ステータ磁石1B、及び後述するロータ磁石3Bの磁力との相互作用により、磁束の高周波を発生させる。図2に示すように、ポールピース2Pは、周方向に間隔をあけて複数設けられている。
(第二ロータの構成)
 図1に示すように、第二ロータ3は、第一ロータ本体2Hにおける一対の支持部22同士の間に設けられている。第二ロータ3は、ロータコア3Aと、ロータ磁石3Bと、を有している。ロータコア3Aは、軸線Acを中心とする円環状をなしている。ロータコア3Aの内周面は、第一ロータ本体2Hにおける筒部21の外周面によって、軸受B(内側軸受B2)を介して回転可能に支持されている。図2に示すように、ロータコア3Aの外周面には、複数のロータ磁石3Bが周方向に複数配列されている。ロータ磁石3Bは、上述のポールピース2Pに対して内周側から対向している。
(作用効果)
 次に、上述の磁気ギアード回転電機100の動作について説明する。磁気ギアード回転電機100を電動機として用いる場合、まずコイルCに外部から電力を供給する。これにより、コイルCが励磁される。このコイルCの磁力によって、第二ロータ3が軸線Ac回りに回転する。さらに、第二ロータ3が回転することによって、第一ロータ2が回転する。第一ロータ2の回転数は、第一ロータ2の極数N、及び第二ロータ3の極対数Nに基づく減速比のもとで減速されている。具体的には、減速比Gは、G=N/Nとなる。
 一方で、磁気ギアード回転電機100を発電機として用いる場合には、回転軸6に軸線Ac回りの回転力(トルク)を与える。これにより、回転軸6の回転によって第一ロータ2、及び第二ロータ3が回転する。第一ロータ2、及び第二ロータ3の回転に伴って、コイルCで誘導起電力が発生する。この電力を外部に取り出すことで、磁気ギアード回転電機100を発電機として用いることが可能となる。
 ところで、磁気ギアード回転電機100では、第一ロータ2の極数N、第二ロータ3の極対数N、及びステータ1の極対数Nに基づいて、特定の周波数の磁力が発生する。このうち、Nl-Nsの低周波磁力は、第二ロータ3の駆動に寄与する。一方で、Nl+Nsの高周波磁力は、第二ロータ3の駆動には寄与せず、むしろステータ1の振動発生の原因となってしまう。ステータ1の振動は、騒音や疲労破壊につながる虞がある。
 そこで、本実施形態では、ステータ1の内面(円筒内周面1S)に制振部材90が設けられている。この構成によれば、ステータ1に振動が発生した場合であっても、制振部材90によってこの振動を吸収し、減衰させることができる。特に、制振部材90として、繊維強化プラスチックを用いていることから、繊維を含まない他の樹脂材料に比べて、耐久性を確保することができる。また、制振部材90が繊維強化プラスチックで形成されていることから、他の金属材料を用いた場合と異なり、うず電流や発熱を抑えることもできる。その結果、磁気ギアード回転電機100をより安定的に運用することが可能となる。
 さらに、上記構成によれば、ステータ磁石1Bによって画定される円筒内周面1Sに制振部材90が設けられている。つまり、制振部材90がステータ1の内周側における周方向の全域に設けられている。これにより、ステータ1の振動を周方向の全域で安定的に吸収・減衰させることができる。
 以上、本開示の第一実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、図3に示すように、制振部材90bに、当該制振部材90bを厚さ方向(軸線Acに対する径方向)に貫通する複数の穴部hを形成することも可能である。
 この構成によれば、穴部hを通じて、ステータ1に熱が滞留してしまう可能性を低減することができる。その結果、磁気ギアード回転電機100をより安定的に運用することができる。
 また、図4に示すように、制振部材90cを、軸線Ac方向に間隔をあけて配列された複数の制振ピースPによって構成することも可能である。各制振ピースPは、軸線Acを中心とする円筒状をなしている。なお、複数の円弧状の部材を組み合わせることで各制振ピースPを構成することも可能である。
 この構成では、制振ピースP同士の間には間隔が形成されている。この間隔を通じて、ステータ1に熱が滞留してしまう可能性を低減することができる。その結果、磁気ギアード回転電機100をより安定的に運用することができる。
(第二実施形態)
 続いて、本開示の第二実施形態について、図5を参照して説明する。なお、上記第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、ステータコア1Aの内周面には、径方向外側に向かって凹むことでステータ磁石1Bを収容するキャビティ8が形成されている。キャビティ8内で径方向内側を向く面は底面8Aとされ、周方向を向く一対の面はそれぞれ側面8Bとされている。これら底面8A、及び側面8Bは、ステータコア1Aの内面の一部である。
 少なくとも底面8Aには、薄板状の制振部材91が設けられている。本実施形態では、底面8Aに加えて側面8Bにも制振部材91が設けられている。つまり、ステータ磁石1Bは、これら制振部材91によって囲まれている。
 上記構成によれば、制振部材91によって、ステータ1で発生した振動を吸収・減衰させることができる。また、ステータ1と第一ロータ2との間に制振部材を設けた場合に比べて、これらステータ1及び第一ロータ2との間のクリアランスを大きく確保することができる。その結果、磁気ギアード回転電機100をより安定的に運用することが可能となる。
 以上、本開示の第二実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記第二実施形態で説明した制振部材91と、第一実施形態で説明した制振部材90とを組み合わせて用いることも可能である。
(第三実施形態)
 次に、本開示の第三実施形態について、図6を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、ステータコア1AにおけるスロットS(上述)の壁面2Sに制振部材92が設けられている。なお、スロットSの壁面2Sは、バックヨーク71の内周面と、隣接する一対のティース7T(ティース本体72)によって形成される面であって、ステータコア1Aの内面の一部である。制振部材92は、コイルCと壁面2Sとの間に介在している。
 上記構成によれば、スロットSの壁面2Sに制振部材92が設けられていることによって、ステータ1で発生した振動を吸収・減衰させることができる。また、制振部材92はコイルCによって壁面2Sに対して強固に押し付けられていることから、当該制振部材92が脱落する可能性を低減することもできる。
 以上、本開示の第三実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記第三実施形態で説明した制振部材92と、上記第二実施形態で説明した制振部材91、及び第一実施形態で説明した制振部材90の少なくとも一方とを組み合わせて用いることも可能である。
[付記]
 各実施形態に記載の磁気ギアード回転電機100は、例えば以下のように把握される。
(1)第1の態様に係る磁気ギアード回転電機100は、軸線Acを中心として環状をなすステータコア1A、該ステータコア1AのスロットS内に設けられたコイルC、及び、前記ステータコア1Aの内側に周方向に間隔をあけて複数が設けられたステータ磁石1Bを有するステータ1と、該ステータ1の内側で、前記軸線Acの周方向に間隔をあけて複数が設けられたポールピース2Pを有する第一ロータ2と、該第一ロータ2の内側に設けられたロータコア3A、及び、該ロータコア3Aに周方向に間隔をあけて設けられた複数のロータ磁石3Bを有する第二ロータ3と、を備え、前記ステータ1は、繊維強化プラスチックからなり前記ステータコア1Aの内面に設けられた制振部材90をさらに備える。
 上記構成によれば、ステータ1に振動が発生した場合であっても、制振部材90によってこの振動を吸収し、減衰させることができる。特に、制振部材90として、繊維強化プラスチックを用いていることから、繊維を含まない他の樹脂材料に比べて、耐久性を確保することができる。また、制振部材90が繊維強化プラスチックで形成されていることから、うず電流や発熱を抑えることもできる。
(2)第2の態様に係る磁気ギアード回転電機100では、前記ステータコア1Aは、前記内面として、前記複数のステータ磁石1Bによって画定される円筒内周面1Sを有し、前記制振部材90は、該円筒内周面1Sに沿って設けられている。
 上記構成によれば、ステータ磁石1Bによって画定される円筒内周面1Sに制振部材90が設けられている。つまり、制振部材90がステータ1の内周側における周方向の全域に設けられている。これにより、ステータ1の振動を周方向の全域で安定的に吸収・減衰させることができる。
(3)第3の態様に係る磁気ギアード回転電機100では、前記制振部材90bには、該制振部材90bを径方向に貫通する複数の穴部hが形成されている。
 上記構成によれば、制振部材90bに複数の穴部hが形成されている。この穴部hにより、ステータ1に熱が滞留してしまう可能性を低減することができる。その結果、磁気ギアード回転電機100をより安定的に運用することができる。
(4)第4の態様に係る磁気ギアード回転電機100では、前記制振部材90cは、前記軸線Ac方向に間隔をあけて配列された複数の制振ピースPを有する。
 上記構成によれば、制振部材90cが複数の制振ピースPによって構成されている。制振ピースP同士の間には間隔が形成されている。この間隔によりステータ1に熱が滞留してしまう可能性を低減することができる。その結果、磁気ギアード回転電機100をより安定的に運用することができる。
(5)第5の態様に係る磁気ギアード回転電機100では、前記ステータコア1Aには、前記ステータ磁石1Bを収容するとともに、周方向に間隔をあけて配列され、前記内面としての径方向内側を向く底面8Aを有する複数のキャビティ8が形成され、前記制振部材91は、少なくとも該底面8Aに設けられている。
 上記構成によれば、制振部材91によって、ステータ1で発生した振動を吸収・減衰させることができる。また、ステータ1と第一ロータ2との間に制振部材を設けた場合に比べて、これらステータ1及び第一ロータ2との間のクリアランスを大きく確保することができる。その結果、磁気ギアード回転電機100をより安定的に運用することが可能となる。
(6)第6の態様に係る磁気ギアード回転電機100では、前記制振部材92は、前記内面としての前記スロットSの壁面2Sと前記コイルCとの間に設けられている。
 上記構成によれば、スロットSの壁面2Sに制振部材92が設けられていることによって、ステータ1で発生した振動を吸収・減衰させることができる。また、制振部材92はコイルCによって壁面2Sに対して強固に押し付けられていることから、当該制振部材92が脱落する可能性を低減することもできる。
 本開示によれば、振動の発生が抑制された磁気ギアード回転電機を提供することができる。
100 磁気ギアード回転電機
1 ステータ
1A ステータコア
1B ステータ磁石
1S 円筒内周面
2 第一ロータ
21 筒部
22 支持部
2H 第一ロータ本体
2P ポールピース
3 第二ロータ
3A ロータコア
3B ロータ磁石
4 ケーシング
5 円板部
5A ケーシング内周面
6 回転軸
B 軸受
B1 外側軸受
B2 内側軸受
71 バックヨーク
72 ティース本体
73 ティース先端部
8 キャビティ
8A 底面
8B 側面
90,90b,90c,91,92 制振部材
Ac 軸線
C コイル
h 穴部
P 制振ピース
S スロット

Claims (6)

  1.  軸線を中心として環状をなすステータコア、該ステータコアのスロット内に設けられたコイル、及び、前記ステータコアの内側に周方向に間隔をあけて複数が設けられたステータ磁石を有するステータと、
     該ステータの内側で、前記軸線の周方向に間隔をあけて複数が設けられたポールピースを有する第一ロータと、
     該第一ロータの内側に設けられたロータコア、及び、該ロータコアに周方向に間隔をあけて設けられた複数のロータ磁石を有する第二ロータと、
     を備え、
     前記ステータは、繊維強化プラスチックからなり前記ステータコアの内面に設けられた制振部材をさらに備える磁気ギアード回転電機。
  2.  前記ステータコアは、前記内面として、前記複数のステータ磁石によって画定される円筒内周面を有し、
     前記制振部材は、該円筒内周面に沿って設けられている請求項1に記載の磁気ギアード回転電機。
  3.  前記制振部材には、該制振部材を径方向に貫通する複数の穴部が形成されている請求項2に記載の磁気ギアード回転電機。
  4.  前記制振部材は、前記軸線方向に間隔をあけて配列された複数の制振ピースを有する請求項1に記載の磁気ギアード回転電機。
  5.  前記ステータコアには、前記ステータ磁石を収容するとともに、周方向に間隔をあけて配列され、前記内面としての径方向内側を向く底面を有する複数のキャビティが形成され、
     前記制振部材は、少なくとも該底面に設けられている請求項1から4のいずれか一項に記載の磁気ギアード回転電機。
  6.  前記制振部材は、前記内面としての前記スロットの壁面と前記コイルとの間に設けられている請求項1から5のいずれか一項に記載の磁気ギアード回転電機。
PCT/JP2021/001771 2020-01-24 2021-01-20 磁気ギアード回転電機 WO2021149699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21744618.6A EP4075643A4 (en) 2020-01-24 2021-01-20 ELECTRIC LATHE WITH MAGNETIC GEAR
US17/793,291 US20230352994A1 (en) 2020-01-24 2021-01-20 Magnetic geared rotary electric machine
CN202180009219.6A CN115023882A (zh) 2020-01-24 2021-01-20 磁齿轮复合旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009938A JP7453004B2 (ja) 2020-01-24 2020-01-24 磁気ギアード回転電機
JP2020-009938 2020-01-24

Publications (1)

Publication Number Publication Date
WO2021149699A1 true WO2021149699A1 (ja) 2021-07-29

Family

ID=76992981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001771 WO2021149699A1 (ja) 2020-01-24 2021-01-20 磁気ギアード回転電機

Country Status (5)

Country Link
US (1) US20230352994A1 (ja)
EP (1) EP4075643A4 (ja)
JP (1) JP7453004B2 (ja)
CN (1) CN115023882A (ja)
WO (1) WO2021149699A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040892A (ja) * 2002-07-02 2004-02-05 Nishishiba Electric Co Ltd 液化ジメチルエーテル浸漬型モータ
JP2009161627A (ja) * 2007-12-28 2009-07-23 Arisawa Mfg Co Ltd 繊維強化樹脂部材の製造方法及びリップルバネ
JP2014163431A (ja) 2013-02-22 2014-09-08 Ihi Corp 磁気波動歯車装置
JP2016096701A (ja) * 2014-11-17 2016-05-26 ジャパンスーパーコンダクタテクノロジー株式会社 超電導回転電機
US20190028015A1 (en) * 2016-01-13 2019-01-24 Magnomatics Limited A Magnetically Geared Apparatus
US20190157962A1 (en) * 2016-01-13 2019-05-23 Magnomatics Limited A Magnetically Geared Apparatus
JP2020009938A (ja) 2018-07-10 2020-01-16 Juki株式会社 画像処理装置、実装装置、画像処理方法及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012478A1 (de) * 2009-03-12 2010-09-16 Sew-Eurodrive Gmbh & Co. Kg Elektromotor
CN106461055B (zh) * 2014-05-20 2018-10-09 株式会社Ihi 磁波齿轮装置
CN105490443B (zh) * 2015-12-18 2018-11-23 北京金风科创风电设备有限公司 用于发电机组件的减振降噪结构及发电机组件、发电机
CN209488311U (zh) * 2019-03-20 2019-10-11 深圳市力辉电机有限公司 一种手持式搅拌器电机结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040892A (ja) * 2002-07-02 2004-02-05 Nishishiba Electric Co Ltd 液化ジメチルエーテル浸漬型モータ
JP2009161627A (ja) * 2007-12-28 2009-07-23 Arisawa Mfg Co Ltd 繊維強化樹脂部材の製造方法及びリップルバネ
JP2014163431A (ja) 2013-02-22 2014-09-08 Ihi Corp 磁気波動歯車装置
JP2016096701A (ja) * 2014-11-17 2016-05-26 ジャパンスーパーコンダクタテクノロジー株式会社 超電導回転電機
US20190028015A1 (en) * 2016-01-13 2019-01-24 Magnomatics Limited A Magnetically Geared Apparatus
US20190157962A1 (en) * 2016-01-13 2019-05-23 Magnomatics Limited A Magnetically Geared Apparatus
JP2020009938A (ja) 2018-07-10 2020-01-16 Juki株式会社 画像処理装置、実装装置、画像処理方法及びプログラム

Also Published As

Publication number Publication date
US20230352994A1 (en) 2023-11-02
JP7453004B2 (ja) 2024-03-19
EP4075643A1 (en) 2022-10-19
EP4075643A4 (en) 2023-02-08
CN115023882A (zh) 2022-09-06
JP2021118602A (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
JP4394115B2 (ja) アキシャルギャップ型モータ
US9537362B2 (en) Electrical machine with improved stator flux pattern across a rotor for providing high torque density
JP4249014B2 (ja) 回転電機
US9071118B2 (en) Axial motor
KR100899913B1 (ko) 모터
JP2011139600A (ja) アキシャルギャップ型回転電機及びそれに用いるロータ
JP2007159394A (ja) トルクリップルを低減する回転電気機械
US20140117792A1 (en) Rotor and rotating electric machine having the same
JP2007159394A5 (ja)
JP2020188611A (ja) ロータ及びそれを備えたモータ
WO2015102106A1 (ja) モータ用コア及びモータ
JP4569632B2 (ja) モータ
JP2007202363A (ja) 回転電機
WO2021149699A1 (ja) 磁気ギアード回転電機
JP2006304532A (ja) アキシャルギャップ型回転電機のロータ構造
JP5017045B2 (ja) アキシャルギャップ型モータ
WO2021149753A1 (ja) 磁気ギアード回転電機、及びステータの製造方法
JP2006304562A (ja) アキシャルギャップ型回転電機のロータ構造
JP2006304453A (ja) 永久磁石モータ
WO2011036723A1 (ja) 同期発電機
WO2023199460A1 (ja) 回転装置
JP4377325B2 (ja) 永久磁石式回転電機、空気圧縮機及びタービン発電機
KR102093309B1 (ko) 토크리플 감소를 위한 노치구조의 전동기
JP7456978B2 (ja) 回転電機
JP5840413B2 (ja) 直流モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021744618

Country of ref document: EP

Effective date: 20220714

NENP Non-entry into the national phase

Ref country code: DE