WO2021149626A1 - クレーン装置、吊上げ方法及び吊上げプログラム - Google Patents
クレーン装置、吊上げ方法及び吊上げプログラム Download PDFInfo
- Publication number
- WO2021149626A1 WO2021149626A1 PCT/JP2021/001426 JP2021001426W WO2021149626A1 WO 2021149626 A1 WO2021149626 A1 WO 2021149626A1 JP 2021001426 W JP2021001426 W JP 2021001426W WO 2021149626 A1 WO2021149626 A1 WO 2021149626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- suspended load
- ecolyzer
- hoisting
- ground cutting
- sensor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/16—Applications of indicating, registering, or weighing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
- B66C13/22—Control systems or devices for electric drives
Definitions
- the present invention relates to a crane device, a lifting method, and a lifting program, and particularly relates to a crane device for lifting a suspended load such as a heavy object at a work site.
- Crane equipment has been used for lifting heavy loads at work sites such as factories and warehouses.
- Crane devices include, for example, those having a gantry structure (gantry crane) and overhead cranes used in buildings. These crane devices have a function of lifting a suspended load (vertical movement function), a function of moving the suspended load along a specific horizontal direction (traveling direction) (traveling function), and a horizontal direction orthogonal to the traveling direction (traveling direction). It has a function (traverse function) to move along the traverse direction), and the suspended load can be freely moved from one place to another.
- gantry crane gantry crane
- These crane devices have a function of lifting a suspended load (vertical movement function), a function of moving the suspended load along a specific horizontal direction (traveling direction) (traveling function), and a horizontal direction orthogonal to the traveling direction (traveling direction). It has a function (traverse function) to move along the traverse direction), and the suspended load can be freely moved from one place to another.
- a trolley 1 that can move along a traveling direction and a traversing direction has a winding device 11, and the winding device 11 winds up and lowers a wire 4 to cause a suspended load 6.
- a configuration that can be raised or lowered is disclosed.
- the suspension since the suspended load is transported in a suspended state, the suspension is prevented from swinging when the trolley / girder is stopped, and the swing of the suspended load is suppressed by a simple operation. Therefore, an invention is disclosed to the effect that the model speed of a suspended load is calculated and the speed of the trolley is controlled based on the model speed.
- the work may be temporarily interrupted due to the shaking, or the lifting state of the suspended load may become unstable. In some cases, it may collide with surrounding objects or people. Therefore, there is a demand for a proposal that can prevent unexpected shaking when the suspended load is cut off, and can safely and stably lift the suspended load.
- the present invention has been made in view of the above circumstances, and reduces the misalignment of a suspended load such as a heavy object when cutting the ground to prevent unnecessary shaking of the suspended load and improve the efficiency of the lifting operation.
- An exemplary task is to provide a crane device, hoisting method and hoisting program that can contribute to the conversion, stabilization and hazard prevention.
- the crane device as an exemplary aspect of the present invention has the following configuration.
- a traveling device that can move linearly along the traveling direction in a horizontal plane, A traversing device capable of linearly moving along a traversing direction orthogonal to the traveling direction in a horizontal plane, A hoisting device that is conveyed by the traveling device and the traversing device and can move freely in a horizontal plane.
- a crane device having the traveling device, the traversing device, and a control device for controlling the operation of the hoisting device.
- the hoisting device is A hoisting drum that can wind up and down the wire rope that lifts the suspended load, An ecolyzer in which the wire rope is wound to relay the lifting of the suspended load, and It has a ground cutting sensor that detects the ground cutting of the suspended load.
- the ecolyzer An ecolyzer sheave that can be rotated by winding the wire rope is provided.
- the control device is A crane device that controls the operation of the hoisting device based on the ground cutting information of the suspended load detected by the ground cutting sensor.
- the crane device as another exemplary aspect of the present invention has the following configuration.
- a traveling device that can move linearly along the traveling direction in a horizontal plane, A traversing device capable of linearly moving along a traversing direction orthogonal to the traveling direction in a horizontal plane, A hoisting device that is conveyed by the traveling device and the traversing device and can move freely in a horizontal plane.
- a crane device having the traveling device, the traversing device, and a control device for controlling the operation of the hoisting device.
- the hoisting device is A hoisting drum that can wind up and down the wire rope that lifts the suspended load, An ecolyzer in which the wire rope is wound to relay the lifting of the suspended load, and It has a ground cutting sensor that detects the ground cutting of the suspended load.
- the ecolyzer An ecolyzer sheave that can be rotated by winding the wire rope,
- a swing structure capable of swinging around a rotation axis along the traveling direction and / or swinging around a rotation axis along the transverse direction.
- An inclination sensor capable of detecting the inclination angle of the ecolyzer caused by the swing is provided.
- the control device is Information on the ground cutting of the suspended load detected by the ground cutting sensor, information on the tilt angle of the ecolyzer detected by the tilt sensor, and the height direction distance between the hoisting device and the suspended load.
- a crane device that controls the operation of the traveling device and / or the traversing device in a direction of reducing misalignment between the hoisting device and the suspended load based on the information.
- the present invention by reducing the misalignment of a suspended load such as a heavy object when cutting the ground, unnecessary shaking of the suspended load is prevented, which contributes to efficiency, stabilization, and danger prevention of the lifting work. be able to.
- FIG. 1 is an overall configuration diagram of the crane device S according to the embodiment.
- the crane device S is a crane device for lifting and transporting a heavy load 1 at a work site such as a factory, a construction work site, or a container terminal, and is, for example, a gantry crane or an overhead crane. It does not matter whether the crane device S is installed indoors or outdoors.
- the crane device S includes a saddle (traveling device) 2, a club (traverse device) 4, a hoisting unit (hoisting device) 6, and a control unit (control device) 8.
- a traveling rail 16 for the saddle 2 to travel along the X direction a girder 18a for the club 4 to travel (traverse) along the Y direction, and a traversing rail 18b are also installed.
- a wire rope 10, a hook unit 12, and a sling wire 14 (see FIG. 2) attached to the suspended load 1 are also used for lifting the suspended load 1.
- the saddle 2 is a moving body configured to be linearly movable along a traveling direction (X direction in FIG. 1) in a horizontal plane.
- the traveling rail 16 is laid so as to extend along the X direction, and the saddle 2 can reciprocate on the traveling rail 16 based on a control command from the control unit 8.
- a girder 18a is installed on the saddle 2.
- the girder 18a extends along a traversing direction (Y direction in FIG. 1) orthogonal to the traveling direction in the horizontal plane, and a traversing rail 18b is installed above the girder 18a extending in the same direction as the girder 18a. Therefore, the traverse rail 18b can also reciprocate linearly along the X direction together with the saddle 2.
- the club 4 is a moving body configured to be movable on the traverse rail 18b. The club 4 can reciprocate on the traverse rail 18b along the Y direction based on the control signal from the control unit 8.
- the hoisting unit 6 is installed on the club 4.
- the hoisting unit 6 can freely move in the X direction and the Y direction in the horizontal plane together with the club 4.
- the hoisting unit 6 has a hoisting drum 20 and an ecolyzer 22.
- the hoisting drum 20 is a rotating body capable of hoisting and lowering the wire rope 10 for hoisting the suspended load 1, and is connected to a hoisting motor (not shown) to be connected to a control command from the control unit 8 (see FIG. 5). Based on the above, forward and reverse rotation is possible. Note that FIG. 2 is shown in the direction of looking at the plane (vertical surface) including the Y direction (traverse direction) and the vertical direction.
- a hook unit 12 for hanging the sling wire 14 attached to the suspended load 1 or the suspended load 1 is moored to the wire rope 10.
- the hook unit 12 has a hook portion 12a for hanging the suspended load 1 or the sling wire 14, and a sheave 12b for mooring the hook unit 12 to the wire rope 10.
- the hook unit 12 holds two sheaves 12b in parallel, and a wire rope 10 is wound around each of the sheaves 12b.
- FIG. 3 is a schematic diagram illustrating a situation in which the wire rope 10 is routed.
- the tip 10a of the wire rope 10 is fixed to the hoisting drum 20.
- the wire rope 10 hangs down from the tip to reach the hook unit 12, is wound around the first sheave 12b, and then reaches the ecolyzer 22.
- the wire rope 10 is wound around the ecolyzer sheave 26 (described later) in the ecolyzer 22 and then wound around the second sheave 12b of the hook unit 12 again, and then returns to the hoisting drum 20 again.
- the rear end 10b is fixed to the hoisting drum 20.
- the winding direction of the wire rope 10 on the winding drum 20 shown in FIGS. 1 and 3 is different from the winding direction of the wire rope 10 on the winding drum 20 shown in FIGS. 2 and 7.
- the winding direction of the wire rope 10 to the winding drum 20 may be any direction, and the winding direction does not affect the gist of the present invention.
- the front end and the rear end of the wire rope 10 are fixed to the hoisting drum 20, the ecolyzer sheave 26 of the ecolyzer 22 is located at a substantially central length position of the wire rope 10, and the hoisting drum 20 and the ecolyzer 22
- the hook unit 12 hangs in the meantime so that the load is held by.
- the hoisting operation of the hoisting drum 20 causes the hook unit 12 to move upward, and the hoisting operation causes the hook unit 12 to move downward.
- the operating load during the hoisting operation of the hoisting drum 20 is 1/2 of the weight load of the suspended load 1.
- FIG. 4 is a schematic structural diagram of the ecolyzer 22.
- FIG. 4 is illustrated in a direction in which a plane (vertical surface) including the X direction (traveling direction) and the vertical direction is viewed as an arrow.
- the ecolyzer 22 is for winding the wire rope 10 and relaying the lifting of the suspended load 1.
- the ecolyzer 22 has an ecolyzer sheave 26, an inclination sensor 28, a ground cutting sensor 30, a tension sensor 32, a swing structure 34, a buffer structure 36, and a base substrate 38.
- the ecolyzer sheave 26, the inclination sensor 28, the ground cutting sensor 30, and the tension sensor 32 as the main parts of the ecolyzer 22 are arranged on the base substrate 38.
- the ecolyzer sheave 26 is arranged so as to be vertically movable on the base substrate 38 via the buffer structure 36.
- the base substrate 38 is suspended on a predetermined pedestal (not shown) in the hoisting unit 6 by the swing structure 34, and can swing with respect to the club 4 by the function of the swing structure 34.
- a shaft 34a extending along the X direction (traveling direction) is fitted into the fitting hole, and the base substrate 38 can swing around the shaft 34a so that the shaft 34a can swing around the axis in the X direction.
- the swing of is realized.
- a shaft 34b extending along the Y direction (a transverse direction and a direction perpendicular to the paper surface of FIG. 4) is fitted into the fitting hole, and a base is formed around the shaft 34b.
- the base substrate 38 is capable of both swinging around the X-direction axis and swinging around the Y-direction axis.
- the ecolyzer sheave 26 is a sheave around which the wire rope 10 is wound, and is rotatable around a shaft 26a extending in the Y direction.
- the ecolyzer sheave 26 is attached so as to be vertically movable with respect to the base substrate 38 via the buffer structure 36.
- the detailed structure and operation of the buffer structure 36 will be described later.
- the tilt sensor 28 is a sensor for detecting the tilt angle ⁇ of the ecolyzer 22 generated as a result of swinging by the swing structure 34.
- the tilt sensor 28 is fixed to the base substrate 38, and both the tilt angle ⁇ x around the X-direction axis and the tilt angle ⁇ y around the Y-direction axis of the ecolyzer 22 can be detected, but depending on the embodiment. , Only the inclination angle ⁇ x around the axis in the X direction, or only the inclination angle ⁇ y around the axis in the Y direction may be detected.
- the tilt sensor 28 can transmit the output signal as the detection result to the control unit 8 (see FIG. 5).
- the inclination angle ⁇ x around the X-direction axis is the inclination angle in the vertical plane including the Y direction and the vertical direction
- the inclination angle ⁇ y around the Y-direction axis is in the vertical plane including the X direction and the vertical direction.
- the ground cutting sensor 30 is a sensor for detecting the ground cutting of the suspended load 1, and in the embodiment, a limit switch is used.
- the ground cutting sensor 30 is attached to the base substrate 38 and is arranged at a position where on / off can be detected by the vertical movement of the ecolyzer sheave 26 suspended by the buffer structure 36.
- the ground cutting means the situation at the moment when the suspended load 1 is lifted from the ground G (or the ground plane) and separated from the ground G, or before and after that, but in the present application, “the ground cutting is detected”.
- the ground cutting sensor 30 at least a part of the suspended load 1 is still in contact with the ground G and is restrained by the ground G and does not swing, but the wire rope 10 is tensioned and is not loosened. Is detected.
- the shaft 26a of the ecolyzer sheave 26 is arranged on a moving substrate 27 suspended by a buffer structure 36, and the moving substrate 27 is provided with, for example, a detection dog 26b protruding downward.
- the ecolyzer sheave 26, the shaft 26a, and the detection dog 26b are integrally movable with respect to the base substrate 38.
- the ground cutting sensor 30 does not detect the detection dog 26b and its output signal is off.
- the ecolyzer sheave 26 moves downward.
- the ground cutting sensor 30 When the detection dog 26b is detected by the ground cutting sensor 30 due to the downward movement of the ecolyzer sheave 26, the ground cutting sensor 30 outputs an ON signal. As a result, the ground cutting of the suspended load 1 can be determined on the control unit 8 side to which the output signal from the ground cutting sensor 30 is input.
- the ground cutting sensor 30 is arranged on the ecolyzer 22 so that the ground cutting of the suspended load 1 can be detected according to the tension of the wire rope 10, but the ground cutting sensor 30 is not necessarily ecological. It does not have to be arranged on the riser 22.
- a ground cutting sensor is configured to detect the tension of the wire rope 10 applied to the sheave (not shown) in which the wire rope 10 is wound and is arranged in a place other than the ecolyzer 22 and is different from the ecolyzer sheave 26.
- the strain sensor that detects the tension of the wire rope 10 itself can be used as a ground cutting sensor.
- the ground cutting sensor 30 does not necessarily have to be a limit switch, and may be, for example, an optical sensor such as a photo interrupter or other detection device.
- the buffer structure 36 is not necessarily a configuration essential for detecting ground cutting by the ground cutting sensor 30 in the present invention.
- the strain sensor or the pressure sensor is used as the ground cutting sensor 30 to detect the tension of the wire rope 10 and the ground cutting is determined based on the detection result, the ecolyzer 22 has the buffer structure 36. Even if it is not, the ground cutting of the suspended load 1 can be detected.
- the tension sensor 32 is for detecting the change in tension of the wire rope 10 before the ground cutting of the suspended load 1, and in the embodiment, the limit switch is used as the tension sensor 32 as in the ground cutting sensor 30.
- the tension sensor 32 is attached to the base substrate 38 and is arranged at a position where on / off can be detected by the vertical movement of the ecolyzer sheave 26 suspended by the buffer structure 36.
- the moving substrate 27 on which the shaft 26a of the ecolyzer sheave 26 is arranged is provided with, for example, a detection dog 26c that projects upward.
- a detection dog 26c that projects upward.
- the ecolyzer sheave 26 and the detection dog 26c start to move downward against the urging force of the buffer structure 36.
- the tension sensor 32 sets the output signal as an off signal. That is, the change in the tension of the wire rope 10 is detected by the on / off signal of the tension sensor 32. Then, after the output signal of the tension sensor 32 is switched from on to off, when the tension of the wire rope 10 further increases and the suspended load 1 is grounded, the output signal of the ground cutting sensor 30 is turned off to on. It switches to.
- the timing of the ground cutting is near before the ground cutting is detected by the ground cutting sensor 30.
- the hoisting drum 20 executes high-speed hoisting, and after detection by the tension sensor 32, the hoisting speed by the hoisting drum 20 is reduced, and then the ground cutting sensor 30.
- the ground cutting it is possible to control the operation so that the hoisting operation is stopped at an appropriate timing without delay before the suspended load 1 separates from the ground G. It is possible to achieve both high speed (time reduction) in the lifting process and prevention of overrun in ground cutting detection with a higher effect.
- the tension sensor 32 is a sensor that detects that the time for ground cutting of the suspended load 1 is approaching. It can also be said that it is a sensor that detects the deceleration timing of the hoisting operation by the hoisting drum 20.
- the tension sensor 32 is not an indispensable configuration, and it is possible to appropriately detect the ground cutting of the suspended load 1 without arranging the tension sensor 32.
- the tension sensor 32 does not necessarily have to be arranged in the ecolyzer 22, and the optical sensor such as a photo interrupter and other detection devices can be applied without being limited to the limit switch. The same is true.
- the buffer structure 36 is a structure for reducing the change in tension of the wire rope 10 before the ground cutting of the suspended load 1.
- the cushioning structure 36 has a spring 40 as an elastic member, and has a structure in which the ecolyzer sheave 26 is suspended by the spring 40 (compression spring in FIG. 4) with respect to the base substrate 38 of the ecolyzer 22.
- One end of the spring 40 (lower end in FIG. 4) is fixed or locked to the base substrate 38, and the other end of the spring 40 (upper end in FIG. 4) is fixed or locked to the moving board 27.
- the moving board 27 can move up and down with respect to the base board 38 together with the ecolyzer sheave 26 and the detection dogs 26b and 26c.
- the ecolyzer sheave 26 can move upward on the base substrate 38 by the urging force of the spring 40, and can move downward on the base substrate 38 against the urging force of the spring 40.
- the urging force of the spring 40 urges the ecolyzer sheave 26 toward the upper side of the base substrate 38.
- the moving substrate 27 abuts on, for example, the upper stopper (not shown) of the base substrate 38.
- the detection dog 26c is detected by the tension sensor 32.
- the ecolyzer sheave 26 moves downward on the base substrate 38 against the urging force of the spring 40 due to the action of the tension. do.
- the detection dog 26c is removed from the detection by the tension sensor 32, and when the ecolyzer sheave 26 is further moved downward, the detection dog 26b is detected by the ground cutting sensor 30.
- the ecolyzer sheave 26 and the moving board 27 move up and down on the base board 38 according to the tension of the wire rope 10.
- the tension of the wire rope 10 and the urging force of the spring 40 are maintained in a balanced state, and the spring 40 is compressed. Will be done.
- the spring 40 that functions as a buffer member By compressing the spring 40 that functions as a buffer member, a sudden increase in tension on the wire rope 10 is prevented, and as a result, the detection of the ground cutting sensor 30 is turned on after the detection of the tension sensor 32 is turned off.
- the magnitude of the tension generated in the wire rope 10 until the wire rope becomes stable is maintained substantially constant as compared with the case where the buffer structure 36 is not provided, and the change in tension is reduced.
- FIG. 5 is a block configuration diagram of the control unit 8 of the crane device S.
- the control unit 8 may be installed on the club 4, may be arranged in the vicinity of the saddle 2 or the traverse rail 18b, or may be installed in a different place away from them.
- the control unit 8 is connected to a saddle 2, a club 4, a hoisting drum 20, an inclination sensor 28, a ground cutting sensor 30, and a tension sensor 32. Further, the control unit 8 is mainly configured to include a computer, and has a CPU 8a and a memory 8b inside.
- a centering program (lifting program) P for reducing misalignment between the suspended load 1 and the hook unit 12 is stored in the memory 8b.
- the CPU 8a cooperates with the saddle 2, the club 4, the hoisting drum 20, the tilt sensor 28, the ground cutting sensor 30, and the tension sensor 32 connected to the crane device.
- a centering method (lifting method) using S is realized.
- the misalignment between the suspended load 1 and the hook unit 12 is substantially equivalent to the misalignment between the suspended load 1 and the hoisting unit 6.
- the CPU 8a can output an operation control command to the saddle 2, the club 4, and the hoisting drum 20. That is, the saddle 2 reciprocates on the traveling rail 16 and the club 4 reciprocates on the traversing rail 18b based on the operation control command from the CPU 8a. Is designed to wind up or down the wire rope 10. That is, the CPU 8a substantially functions as the signal output means 81a.
- the signal output means 81a realizes a function of outputting an operation control command to the saddle 2, the club 4, and the hoisting drum 20 based on the output signals from each sensor received by the signal input means 81b described later.
- the CPU 8a can receive (input) an output signal as a detection result from the tilt sensor 28, the ground cutting sensor 30, and the tension sensor 32. That is, the CPU 8a substantially functions as the signal input means 81b.
- the signal input means 81b realizes a function of causing the tilt sensor 28 to detect the tilt angle ⁇ ( ⁇ x, ⁇ y) of the ecolyzer 22 by receiving the output signal from the tilt sensor 28.
- the signal input means 81b realizes a function of causing the ground cutting sensor 30 to detect the ground cutting of the suspended load 1 by receiving the output signal from the ground cutting sensor 30.
- the signal input means 81b realizes a function of causing the tension sensor 32 to detect a change in the tension of the wire rope 10 before the ground cutting of the suspended load 1.
- FIG. 6 is a flowchart for explaining a centering method using the crane device S.
- FIG. 7 is an explanatory diagram for explaining a method of centering the suspended load 1 in the vertical plane including the Y direction (traverse direction) and the vertical direction. The same centering method for the suspended load 1 is performed in the vertical plane including the X direction (traveling direction) and the vertical direction, but the illustration thereof is omitted.
- This centering method is realized by executing the centering program P.
- the centering method is used when the suspended load 1 is grounded (in a situation where the center of gravity of the suspended load 1 and the center of gravity of the hook unit 12 are misaligned, that is, there is a lateral deviation (deviation in the horizontal plane). Or, at the stage before ground cutting), the center of gravity of the suspended load 1 and the center of gravity of the hook unit 12 are centered.
- center of gravity position of suspended load 1 and center of gravity position of hook unit 12 centering, misalignment, left-right misalignment (deviation in the horizontal plane), etc. are simply referred to as “suspended load 1 and hook unit.
- the wording of "center of gravity position” may be omitted, such as centering, centering deviation, left-right deviation (deviation in the horizontal plane) of "12 and".
- the hoisting drum 20 is wound down and the wire rope 10 is sufficiently loosened.
- a slinging operation is performed in which the hook portion 12a of the hook unit 12 is hooked on the slinging wire 14 of the suspended load 1 (S.1).
- the hook unit 12 is locked to the sling wire 14, but the suspended load 1 is in contact with the ground G, the wire rope 10 is loosened, and the suspended load 1 and the hook unit 12 are misaligned.
- the method of centering the suspended load 1 is executed. Specifically, the execution of the centering program P is started by operating the operation unit 8c (see FIG. 5) connected to the control unit 8 (S.2).
- the inclination sensor 28 detects the inclination angle ⁇ of the ecolyzer 22
- the ground cutting sensor 30 detects the ground cutting of the suspended load 1
- the tension sensor 32 detects the tension change of the wire rope 10. Is started (S.3).
- the hoisting operation by the hoisting drum 20 is started (S.4: hoisting process).
- the output signal of the ground cutting sensor 30 is in the off state (the state where the detection dog 26b is not detected and the ground cutting of the suspended load 1 is not detected), and the output signal of the tension sensor 32 is in the on state (the detection dog 26c is not detected). It is in a state where it is detected and the tension change of the wire rope 10 is not detected).
- the influences of the weight of the wire rope 10, the weight of the ecolyzer sheave 26 and other sheaves, the frictional load, and the like are ignored.
- the control unit 8 transmits a control command instructing the hoisting drum 20 to decelerate, and the hoisting operation of the hoisting drum 20 becomes low speed (S.6: deceleration step). ..
- the detection dog 26b is detected by the ground cutting sensor 30, and the output signal of the ground cutting sensor 30 is turned on (S.7: Ground cutting detection). Process). That is, the ground cutting sensor 30 detects the ground cutting of the suspended load 1.
- the control unit 8 transmits a control command instructing the hoisting drum 20 to stop hoisting, and the hoisting operation of the hoisting drum 20 is stopped (S.8).
- the tilt angle ⁇ x around the X-direction axis and the tilt angle ⁇ y around the Y-direction axis detected by the tilt sensor 28 are output from the tilt sensor 28 to the control unit 8.
- the allowable values ⁇ xo and ⁇ yo as appropriate ranges corresponding to the inclination angles ⁇ x and ⁇ y are stored.
- the permissible values ⁇ xo and ⁇ yo are values having a range width from the lower limit value to the upper limit value, and may be values having a plus na-minus permissible width centered on the ideal angle ⁇ r described later.
- the control unit 8 collates the received value of the tilt angle ⁇ x with the permissible value ⁇ xo (S.9: tilt angle detection step). If the inclination angle ⁇ x is within the allowable value ⁇ xo, it is determined that the inclination of the ecolyzer 22 around the X direction axis is within the normal range, and the centering in the Y direction is completed without performing the operation of the club 4 (the centering in the Y direction is completed). S.10). As a result of collating the received value of the tilt angle ⁇ x with the permissible value ⁇ xo, if the tilt angle ⁇ x is out of the range of the permissible value ⁇ xo (S.9), the control unit 8 is centered in the Y direction (X).
- An operation control command for moving a predetermined distance Ly in the Y direction is transmitted to the club 4 in order to perform centering around the direction axis (S.11: adjustment step).
- the operation control of the club 4 for centering in the Y direction will be described later with reference to FIG. 7.
- the inclination angle ⁇ x is larger than the permissible value ⁇ xo (that is, as shown in FIG. 7, the hook unit.
- the club 4 is moved to the left in FIG. 7 by a predetermined distance Ly.
- the inclination angle ⁇ x is smaller than the permissible value ⁇ xo (that is, the hook unit 12 is misaligned to the left in FIG. 7 with respect to the suspended load 1)
- the club 4 is moved by a predetermined distance Ly. Move to the right in FIG. 7.
- the control unit 8 collates the value of the tilt angle ⁇ x with the permissible value ⁇ xo (S.9) and collates the received value of the tilt angle ⁇ y with the permissible value ⁇ yo (S.12: tilt angle detection step). If the inclination angle ⁇ y is within the allowable value ⁇ yo, it is determined that the inclination of the ecolyzer 22 around the Y direction axis is within the normal range, and the centering in the X direction is completed without operating the saddle 2 (the centering in the X direction is completed). S.10).
- the control unit 8 confirms that the saddle 2 and the club 4 are stopped (S.14). Since the degree of slack of the wire rope 10 may change due to the moving operation of the saddle 2 and the club 4, the control unit 8 again confirms the on / off of the ground cutting sensor 30 (S.15). If the ground cutting sensor 30 is in the ON state, the output signal of the tilt sensor 28 is checked again without operating the hoisting drum 20, and the value of the tilt angle ⁇ x is collated with the permissible value ⁇ xo (S.9), and the tilt is tilted. The value of the angle ⁇ y and the permissible value ⁇ yo are collated (S.12).
- FIG. 7 shows a state in which the vertical plane including the Y direction (traverse direction) and the vertical direction is viewed as an arrow.
- an operation control for moving the club 4 in the Y direction and centering the suspended load 1 and the hook unit 12 in the Y direction based on the detected value of the inclination angle ⁇ x around the axis in the X direction will be described.
- the club 4 and the hook unit 12 shown by the solid line are in a state of being misaligned in the right direction in FIG. 7 with respect to the suspended load 1.
- the club 4 and the hook unit 12 (shown on the left side in the figure rather than those shown by the solid line) shown by the broken line are in an ideal state with no misalignment with respect to the suspended load 1.
- the suspension load 1 and the hook unit 12 are located exactly at the intermediate point between the hoisting drum 20 and the ecolyzer 22 in a state where there is no misalignment. That is, the wire rope 10 exhibits an inverted isosceles right triangle between the hoisting drum 20 and the hook unit 12 and the ecolyzer 22. At this time, the angle formed by the wire rope 10 between the hook unit 12 and the ecolyzer 22 and the vertical direction is defined as the ideal angle ⁇ r.
- the inclination angle ⁇ x as a result of detection by the inclination sensor 28 is out of the allowable value ⁇ xo. It becomes.
- the predetermined distance Ly to which the club 4 should move in order to reduce the misalignment may be approximately calculated by, for example, the following mathematical formula (1).
- h is substantially the height direction distance between the hook unit 12 and the hoisting unit 6, but can be considered to be approximately the height direction distance between the suspended load 1 and the hoisting unit 6.
- h can be considered to be approximately the distance in the height direction from the ground G to the club 4. That is, when the installation height of the club 4 from the ground G is known in advance and the value is stored in, for example, the memory 8b, the value of the installation height can be substituted for h.
- the crane device S described in the first embodiment has a swing structure 34 and an inclination sensor 28, but the crane device S may not have these. Even in this case, the crane device S can detect the ground cutting of the suspended load 1 by the ground cutting sensor 30, and the control unit 8 stops the hoisting operation by the hoisting unit 6 based on the ground cutting detection information. be able to.
- the suspended load 1 is inadvertently lifted from the ground G in the misaligned state. Can be prevented. If the hoisting operation is stopped at the timing of ground cutting, the operator operating the crane device S at that time can confirm the presence or absence of misalignment. When there is misalignment, the operator can operate the saddle 2 and club 4 to reduce or eliminate the misalignment before the suspended load 1 rises from the ground G due to ground cutting, so that the suspension can be suspended. It is possible to avoid an accident or a dangerous state due to careless shaking of the load 1.
- the crane device S has the buffer structure 36 and the tension sensor 32 in the detection of ground cutting, but these configurations are not essential.
- the ecolyzer 22 can swing around the X-direction axis and the Y-direction axis by the swing structure 34 having the shaft 34a extending along the X direction and the shaft 34b extending along the Y direction. Yes, but not limited to it.
- the swing structure 34 may have only a shaft 34a extending along the X direction and the ecolyzer 22 may swing only around the X direction axis, or the swing structure 34 may extend along the Y direction. It may have only 34b and the ecolyzer 22 may swing only about the Y direction axis.
- a hoisting amount detecting means for detecting the hoisting amount of the wire rope 10 by the hoisting unit 6 and a tension detecting means for detecting the tension of the wire rope 10 (the ground cutting sensor 30 can be substituted.
- the control unit 8 may calculate a constant height h0 of the table B on which the suspended load 1 is placed based on the detection results thereof.
- a measuring means that directly measures the distance (height h0) between the suspended load 1 and the ground G, and between the hoisting unit 6 and the suspended load 1. It is also possible to apply a measuring means for directly measuring the distance hb in the height direction of the above.
- the height direction distance hb between the suspended load 1 and the hoisting unit 6 is controlled based on the hoisting amount of the wire rope 10 at the time when the ground cutting of the suspended load 1 is detected by the tension detecting means such as the ground cutting sensor 30. Calculated by unit 8.
- the height direction distance hb instead of the height direction distance h in the above formula (1), proper centering operation is possible even when the suspended load 1 is placed on the table B. It becomes.
- the present invention includes the following gist.
- a traveling device that can move linearly along the traveling direction in a horizontal plane, A traversing device capable of linearly moving along a traversing direction orthogonal to the traveling direction in a horizontal plane, A hoisting device that is conveyed by the traveling device and the traversing device and can move freely in a horizontal plane.
- a crane device having the traveling device, the traversing device, and a control device for controlling the operation of the hoisting device.
- the hoisting device is A hoisting drum that can wind up and down the wire rope that lifts the suspended load, An ecolyzer in which the wire rope is wound to relay the lifting of the suspended load, and It has a ground cutting sensor that detects the ground cutting of the suspended load.
- the ecolyzer An ecolyzer sheave that can be rotated by winding the wire rope is provided.
- the control device is A crane device that controls the operation of the hoisting device based on the ground cutting information of the suspended load detected by the ground cutting sensor.
- the ecolyzer A swing structure capable of swinging around a rotation axis along the traveling direction and / or swinging around a rotation axis along the transverse direction.
- An inclination sensor capable of detecting the inclination angle of the ecolyzer caused by the swing is further provided.
- the control device is Based on the information on the ground cutting of the suspended load, the information on the tilt angle of the ecolyzer detected by the tilt sensor, and the information on the height direction distance between the hoisting device and the suspended load, the said The operation of the traveling device and / or the traversing device may be controlled in a direction of reducing the misalignment between the hoisting device and the suspended load.
- the hoisting device is It may further have a tension sensor that detects a change in tension of the wire rope before the ground cutting of the suspended load.
- the hoisting device is It may further have a buffer structure for reducing the change in tension of the wire rope before the ground cutting of the suspended load.
- the cushioning structure may have a structure in which the ecolyzer sheave is movably held in the vertical direction by an elastic member, and the ecolyzer sheave moves up and down according to the tension of the wire rope.
- the ground cutting sensor may be a limit switch that detects on / off according to the position of the ecolyzer sheave.
- It may further have a height sensor that detects the height direction distance between the hoisting device and the suspended load.
- a traveling device that can move linearly along the traveling direction in a horizontal plane, A traversing device capable of linearly moving along a traversing direction orthogonal to the traveling direction in a horizontal plane, A hoisting device that is conveyed by the traveling device and the traversing device and can move freely in a horizontal plane. It has the traveling device, the traversing device, and a control device for controlling the operation of the hoisting device.
- the hoisting device is A hoisting drum that can wind up and down the wire rope that lifts the suspended load, An ecolyzer in which the wire rope is wound to relay the lifting of the suspended load, and It has a ground cutting sensor that detects the ground cutting of the suspended load.
- the ecolyzer A lifting method in which the suspended load is lifted by a crane device provided with an ecolyzer sheave in which the wire rope is wound and rotated.
- the process of detecting the ground cutting of the suspended load by the ground cutting sensor and A lifting method including a step of controlling the operation of the hoisting device by the control device based on the information of the ground cutting of the suspended load.
- a traveling device that can move linearly along the traveling direction in a horizontal plane, A traversing device capable of linearly moving along a traversing direction orthogonal to the traveling direction in a horizontal plane, A hoisting device that is conveyed by the traveling device and the traversing device and can move freely in a horizontal plane. It has a traveling device, a traversing device, and a computer that controls the operation of the hoisting device.
- the hoisting device is A hoisting drum that can wind up and down the wire rope that lifts the suspended load, An ecolyzer in which the wire rope is wound to relay the lifting of the suspended load, and It has a ground cutting sensor that detects the ground cutting of the suspended load.
- the ecolyzer A lifting program for lifting the suspended load by a crane device provided with an ecolyzer sheave in which the wire rope is wound and rotated.
- On the computer A function of causing the ground cutting sensor to detect the ground cutting of the suspended load, A lifting program that realizes a function of controlling the operation of the hoisting device based on the information of the ground cutting of the suspended load.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Control And Safety Of Cranes (AREA)
Abstract
重量物等の吊荷の地切りの際の芯ずれを低減することで吊荷の不必要な揺れを防止し、吊上げ作業の効率化、安定化、危険防止に寄与することのできるクレーン装置を提供すること。サドル2とクラブ4と巻上ユニット6と制御ユニット8とを有するクレーン装置Sであって、巻上ユニット6は、巻上ドラム20とエコライザー22と吊荷1の地切りを検出する地切りセンサ30とを有し、エコライザー22には、エコライザーシーブ26が設けられており、制御ユニット8は、地切りセンサ30による吊荷1の地切りの情報に基づいて、巻上ユニット6の動作を制御する。
Description
本発明は、クレーン装置、吊上げ方法及び吊上げプログラムに係り、特に作業現場において重量物等の吊荷を吊り上げるためのクレーン装置等に関する。
従前より、工場や倉庫等の作業現場において重量物等の吊荷を吊り上げるためにクレーン装置が用いられている。クレーン装置には、例えば門型(ガントリー)構造を有するもの(ガントリークレーン)や建物内で用いられる天井クレーンがある。これらのクレーン装置は、吊荷を吊り上げる機能(上下移動機能)、吊荷を特定の水平方向(走行方向)に沿って移動させる機能(走行機能)、吊荷を走行方向と直交する水平方向(横行方向)に沿って移動させる機能(横行機能)を有し、吊荷を自在にある場所から別の場所に移動することができるようになっている。
例えば、特許文献1には走行方向及び横行方向に沿って移動可能なトロリ1が巻き取り装置11を有し、その巻き取り装置11がワイヤ4の巻上げ、巻下げを行うことで吊荷6の上げ下げが可能な構成が開示されている。また、特許文献1には、吊荷が吊り上げられた状態で運搬されるために、トロリ/ガーダが停止すると吊荷が振れてしまうという課題に対し、簡単な操作で吊荷の振れを抑制すべく、吊荷のモデル速度を算出し、そのモデル速度に基づいてトロリの速度制御を行う趣旨の発明が開示されている。
重量のある吊荷の運搬においては、特許文献1に記載されるような吊上げ状態での移動時のみならず、吊上げ開始時、すなわち重量物が地面から離れるとき(これを、地切りという。)にも思わぬ揺れを生じる場合がある。吊荷の重心位置と吊荷を吊り上げるためのワイヤロープやフックの中心位置とに芯ずれがある場合には、地切りの際に吊荷が芯ずれを解消する方向に移動して(揺れて)しまう場合がある。
この揺れの大きさや揺れの方向が想定外又は想定を超えるものであった場合には、揺れにより作業が一時的に中断してしまったり、吊荷の吊上げ状態が不安定なものとなってしまったり、場合によっては、周囲の物や人に衝突してしまう可能性もある。したがって、吊荷の地切りの際の不測の揺れを未然に防止することができ、安全にかつ安定的に吊荷を吊り上げることのできる提案が望まれている。
本発明は、上記の事情に鑑みて為されたもので、重量物等の吊荷の地切りの際の芯ずれを低減することで吊荷の不必要な揺れを防止し、吊上げ作業の効率化、安定化、危険防止に寄与することのできるクレーン装置、吊上げ方法及び吊上げプログラムを提供することを例示的課題とする。
上記の課題を解決するために、本発明の例示的側面としてのクレーン装置は、以下の構成を有する。
水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有するクレーン装置であって、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられており、
前記制御装置は、
前記地切りセンサにより検出された前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を制御する、クレーン装置。
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有するクレーン装置であって、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられており、
前記制御装置は、
前記地切りセンサにより検出された前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を制御する、クレーン装置。
また、本発明の他の例示的側面としてのクレーン装置は、以下の構成を有する。
水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有するクレーン装置であって、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブと、
前記走行方向に沿った回転軸を中心とする揺動及び/又は前記横行方向に沿った回転軸を中心とする揺動が可能な揺動構造と、
前記揺動により生じた前記エコライザーの傾斜角を検出可能な傾斜センサと、が設けられており、
前記制御装置は、
前記地切りセンサにより検出された前記吊荷の地切りの情報と、前記傾斜センサにより検出された前記エコライザーの傾斜角の情報と、前記巻上装置と前記吊荷との高さ方向距離の情報と、に基づいて、前記巻上装置と前記吊荷との芯ずれを低減する方向に前記走行装置及び/又は前記横行装置の動作を制御する、クレーン装置。
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有するクレーン装置であって、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブと、
前記走行方向に沿った回転軸を中心とする揺動及び/又は前記横行方向に沿った回転軸を中心とする揺動が可能な揺動構造と、
前記揺動により生じた前記エコライザーの傾斜角を検出可能な傾斜センサと、が設けられており、
前記制御装置は、
前記地切りセンサにより検出された前記吊荷の地切りの情報と、前記傾斜センサにより検出された前記エコライザーの傾斜角の情報と、前記巻上装置と前記吊荷との高さ方向距離の情報と、に基づいて、前記巻上装置と前記吊荷との芯ずれを低減する方向に前記走行装置及び/又は前記横行装置の動作を制御する、クレーン装置。
本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。
本発明によれば、重量物等の吊荷の地切りの際の芯ずれを低減することで吊荷の不必要な揺れを防止し、吊上げ作業の効率化、安定化、危険防止に寄与することができる。
[実施形態]
以下、図面を参照しつつ本発明の実施形態について説明する。図1は、実施形態に係るクレーン装置Sの全体構成図である。クレーン装置Sは、工場内、建設作業現場、コンテナターミナル等の作業現場において、重量物である吊荷1を吊り上げて運搬するためのクレーン装置であり、例えばガントリークレーンや天井クレーンである。クレーン装置Sが屋内に設置されるか屋外に設置されるかは問わない。
以下、図面を参照しつつ本発明の実施形態について説明する。図1は、実施形態に係るクレーン装置Sの全体構成図である。クレーン装置Sは、工場内、建設作業現場、コンテナターミナル等の作業現場において、重量物である吊荷1を吊り上げて運搬するためのクレーン装置であり、例えばガントリークレーンや天井クレーンである。クレーン装置Sが屋内に設置されるか屋外に設置されるかは問わない。
<クレーン装置の構成>
クレーン装置Sは、サドル(走行装置)2、クラブ(横行装置)4、巻上ユニット(巻上装置)6、制御ユニット(制御装置)8を有して大略構成される。クレーン装置Sの設置場所には、サドル2がX方向に沿って走行するための走行レール16、クラブ4がY方向に沿って走行(横行)するためのガーダ18a及び横行レール18bも設置されている。また、吊荷1の吊上げには、ワイヤロープ10、フックユニット12、及び吊荷1に取り付ける玉掛ワイヤ14(図2参照)も用いられる。
クレーン装置Sは、サドル(走行装置)2、クラブ(横行装置)4、巻上ユニット(巻上装置)6、制御ユニット(制御装置)8を有して大略構成される。クレーン装置Sの設置場所には、サドル2がX方向に沿って走行するための走行レール16、クラブ4がY方向に沿って走行(横行)するためのガーダ18a及び横行レール18bも設置されている。また、吊荷1の吊上げには、ワイヤロープ10、フックユニット12、及び吊荷1に取り付ける玉掛ワイヤ14(図2参照)も用いられる。
サドル2は、水平面内において走行方向(図1中のX方向)に沿って直線的に移動可能に構成された移動体である。走行レール16がX方向に沿って延びるように敷設されており、サドル2は、その走行レール16上を制御ユニット8からの制御指令に基づいて往復移動可能とされている。
サドル2上にはガーダ18aが設置されている。ガーダ18aは、水平面内において走行方向と直交する横行方向(図1中のY方向)に沿って延びており、その上部に横行レール18bがガーダ18aと同方向に延びて設置されている。したがって、横行レール18bもサドル2と共にX方向に沿って直線的に往復移動可能である。クラブ4は、横行レール18b上を移動可能に構成された移動体である。クラブ4は、横行レール18b上を制御ユニット8からの制御信号に基づいてY方向に沿って往復移動可能である。
クラブ4上に巻上ユニット6が設置されている。巻上ユニット6は、クラブ4と共に、水平面内においてX方向及びY方向に自在に移動可能とされている。巻上ユニット6は、図1及び図2に示すように、巻上ドラム20とエコライザー22とを有している。巻上ドラム20は、吊荷1を吊り上げるためのワイヤロープ10の巻上げ及び巻下げが可能な回転体であり、図示しない巻上モータに連結されて制御ユニット8(図5参照)からの制御指令に基づき、正逆回転が可能とされている。なお、図2はY方向(横行方向)及び上下方向を含む平面(鉛直面)を矢視する方向で図示されている。
ワイヤロープ10には、吊荷1又は吊荷1に取り付けられた玉掛ワイヤ14を掛けるためのフックユニット12が繋留されている。フックユニット12は、吊荷1又は玉掛ワイヤ14を掛けるためのフック部12aとワイヤロープ10にフックユニット12を繋留するためのシーブ12bとを有している。実施形態では、フックユニット12はシーブ12bを2個並列保持し、その各々のシーブ12bにワイヤロープ10が巻回されている。
図3は、ワイヤロープ10の引き回しの状況を説明する模式図である。ワイヤロープ10の先端10aは、巻上ドラム20に固定されている。ワイヤロープ10は、先端から垂れ下がってフックユニット12へと至り、1つ目のシーブ12bに巻き掛けられた後にエコライザー22へと至る。ワイヤロープ10は、エコライザー22内のエコライザーシーブ26(後述)に巻回された後に再びフックユニット12の2つ目のシーブ12bに巻き掛けられ、その後に再び巻上ドラム20へと戻り、その後端10bが巻上ドラム20に固定されている。
なお、図1や図3に示されるワイヤロープ10の巻上ドラム20への巻付け方向と図2や図7に示されるワイヤロープ10の巻上ドラム20への巻付け方向とは異なっているが、ワイヤロープ10の巻上ドラム20への巻付け方向はいずれの方向であってもよく、巻付け方向は本発明の趣旨に影響しない。
つまり、ワイヤロープ10の先端及び後端が巻上ドラム20に固定され、ワイヤロープ10の略中央長さ位置にエコライザー22のエコライザーシーブ26が位置し、巻上ドラム20とエコライザー22とで負荷を保持されるように、その間にフックユニット12がぶら下がっている。巻上ドラム20の巻上動作によりフックユニット12が上方移動し、巻下動作によりフックユニット12が下方移動する。実施形態では、巻上ドラム20の巻上動作時の動作負荷は、吊荷1の重量負荷の1/2となる。
図4は、エコライザー22の概略構造図である。図4は、X方向(走行方向)及び上下方向を含む平面(鉛直面)を矢視する方向で図示されている。エコライザー22は、ワイヤロープ10が巻回されて吊荷1の吊上げを中継するためのものである。エコライザー22は、図4に示すように、エコライザーシーブ26、傾斜センサ28、地切りセンサ30、張力センサ32、揺動構造34、緩衝構造36及びベース基板38を有している。エコライザー22の主要部としてのエコライザーシーブ26、傾斜センサ28、地切りセンサ30、張力センサ32はベース基板38上に配置されている。なお、エコライザーシーブ26は緩衝構造36を介してベース基板38に上下移動可能に配置されている。
ベース基板38は、揺動構造34により巻上ユニット6内の所定の台座(不図示)に懸架され、揺動構造34の機能によってクラブ4に対して揺動可能とされている。揺動構造34では、例えば、X方向(走行方向)に沿って延びる軸34aが嵌合孔に嵌合され、その軸34a周りにベース基板38が揺動可能とされることによりX方向軸周りの揺動が実現されている。また、揺動構造34では、例えば、Y方向(横行方向であって、図4の紙面に垂直な方向)に沿って延びる及び軸34bが嵌合孔に嵌合され、その軸34b周りにベース基板38が揺動可能とされることによりY方向軸周りの揺動が実現されている。実施形態では、ベース基板38は、X方向軸周りの揺動及びY方向軸周りの揺動の両方が可能である。
エコライザーシーブ26は、ワイヤロープ10が巻回されるシーブであって、Y方向に沿って延びる軸26a周りに回転自在とされている。エコライザーシーブ26は、緩衝構造36を介してベース基板38に対して上下移動可能に取り付けられている。緩衝構造36の詳細な構造及び動作については後述する。
傾斜センサ28は、揺動構造34による揺動の結果生じたエコライザー22の傾斜角θを検出するためのセンサである。実施形態では、傾斜センサ28は、ベース基板38に固定されており、エコライザー22のX方向軸回りの傾斜角θxもY方向軸回りの傾斜角θyも検出可能であるが、実施態様によっては、X方向軸回りの傾斜角θxのみ、又は、Y方向軸回りの傾斜角θyのみを検出可能であってもよい。傾斜センサ28は、その検出結果としての出力信号を制御ユニット8へと送信可能である(図5参照)。なお、X方向軸回りの傾斜角θxは、Y方向及び上下方向を含む鉛直面内での傾斜角であり、Y方向軸回りの傾斜角θyは、X方向及び上下方向を含む鉛直面内での傾斜角である。
地切りセンサ30は、吊荷1の地切りを検出するためのセンサであり、実施形態では、リミットスイッチが用いられる。地切りセンサ30は、ベース基板38に取り付けられ、緩衝構造36によって懸架されたエコライザーシーブ26の上下移動によりオンオフを検出することができる位置に配置されている。
ここで、「地切り」とは、吊荷1が地面G(又は接地面)から持ち上げられて地面Gから離れる瞬間又はその前後の状況を意味するが、本出願において「地切りを検出する」とは、地切り間近又は直前の状況を検出することを意味する。すなわち、吊荷1が地面Gに接しているが、地面Gから離れる直前又はそれが間近の状況であり、吊荷1が地面Gに接触しているがワイヤロープ10が弛んでおらず、ワイヤロープ10にテンションが生じている状況や、吊荷1の一部が地面Gから離れているが、他の一部がまだ地面Gに接触している状況を検出することを意味する。換言すれば、地切りセンサ30は、吊荷1の少なくとも一部がまだ地面Gと接触していて地面Gに拘束されて揺動しないが、ワイヤロープ10にテンションが生じていて弛んでいない状況を検出する。
ワイヤロープ10が弛んだ状態では、ワイヤロープ10にはそれ自身の自重によるもの以外の荷重(テンション)が生じることはない。エコライザーシーブ26は緩衝構造36の作用によって上方に付勢された状態を維持する。ワイヤロープ10が巻上げられてその弛みがなくなり、吊荷1がまさに地面Gから持ち上げられる地切りの前後においては、ワイヤロープ10に急激に大きなテンションが生じる。
その際、ワイヤロープ10が巻回されたエコライザーシーブ26には、テンションの作用により下方向への外力が加わる。エコライザーシーブ26が緩衝構造36によってベース基板38に対して上下移動可能に構成されているので、エコライザーシーブ26はベース基板38上を下方移動する。
エコライザーシーブ26の軸26aは、緩衝構造36によって懸架された移動基板27に配置されており、その移動基板27には、例えば下方に向けて突出する検出ドグ26bが設けられている。エコライザーシーブ26、軸26a、検出ドグ26bは、一体となってベース基板38に対して上下移動可能とされている。ワイヤロープ10にテンションが加わらずエコライザーシーブ26が上方位置に維持されている状態では、地切りセンサ30は検出ドグ26bを検出せずその出力信号はオフである。吊荷1が地切りを始めてワイヤロープ10に強いテンションが加わるとエコライザーシーブ26が下方移動する。エコライザーシーブ26の下方移動により検出ドグ26bが地切りセンサ30によって検出されると、地切りセンサ30はオン信号を出力する。それにより、地切りセンサ30からの出力信号が入力される制御ユニット8側で、吊荷1の地切りを判断することができる。
なお、実施形態では、エコライザー22に地切りセンサ30が配置され、ワイヤロープ10のテンションに応じて吊荷1の地切りが検出できるようになっているが、地切りセンサ30は、必ずしもエコライザー22に配置されていなくてもよい。例えば、エコライザーシーブ26とは別の、エコライザー22以外の場所に配置されてワイヤロープ10が巻回されるシーブ(不図示)に加わるワイヤロープ10のテンションを検出する構成を地切りセンサとしたり、ワイヤロープ10自体のテンションを検出する歪みセンサを地切りセンサとしたりすることが可能である。また、地切りセンサ30は必ずしもリミットスイッチである必要がなく、例えばフォトインタラプタ等の光学センサ、その他の検出デバイスであってもよい。
また、緩衝構造36は、本発明における地切りセンサ30による地切りの検出のために必須の構成とは限らない。例えば、歪センサや圧力センサを地切りセンサ30として用いてワイヤロープ10のテンションを検出し、その検出結果に基づき地切りを判断するように構成すれば、エコライザー22が緩衝構造36を有していなくても、吊荷1の地切りを検出することができる。
張力センサ32は、吊荷1の地切り以前におけるワイヤロープ10の張力変化を検出するためのものであり、実施形態では、地切りセンサ30と同様にリミットスイッチを張力センサ32として用いている。張力センサ32は、ベース基板38に取り付けられ、緩衝構造36によって懸架されたエコライザーシーブ26の上下移動によりオンオフを検出することができる位置に配置されている。
エコライザーシーブ26の軸26aが配置された移動基板27には、例えば上方に向けて突出する検出ドグ26cが設けられている。吊荷1の地切り以前の状態において、ワイヤロープ10にテンションが殆ど生じていない場合、エコライザーシーブ26が緩衝構造36によって上方に付勢されている。このとき、ベース基板38上に配置された張力センサ32によって検出ドグ26cが検出され、張力センサ32はオン信号を出力する。
ワイヤロープ10が巻き上げられてワイヤロープ10へのテンションが増大し始めると、緩衝構造36の付勢力に抗してエコライザーシーブ26及び検出ドグ26cが下方移動を開始する。検出ドグ26cが下方移動によって検出されなくなると、張力センサ32は出力信号をオフ信号とする。つまり、ワイヤロープ10の張力(テンション)の変化を張力センサ32のオンオフ信号により検出している。そして、張力センサ32のオン→オフへの出力信号の切り替えの後に、更にワイヤロープ10のテンションが増大して吊荷1の地切りが生じると、地切りセンサ30の出力信号がオフ→オンへと切り替わる。
張力センサ32によりワイヤロープ10のテンションの変化を検出することで、地切りセンサ30による地切りの検出前に、地切りのタイミングが近いことを把握することができる。例えば、ワイヤロープ10が弛んでいる状態では巻上ドラム20により高速巻上を実行しつつ、張力センサ32での検出の後に巻上ドラム20による巻上速度を減速し、その後地切りセンサ30での地切り検出によって吊荷1が地面Gから離れてしまう前に遅れることなく適切なタイミングで巻上動作を停止するような動作制御が可能となる。吊上げ工程の高速化(時間短縮)と、地切り検出でのオーバーラン防止とを一層高い効果で両立することができる。
つまり、張力センサ32は、吊荷1の地切りの時期が近づいていることを検出するセンサであるとも言える。また、巻上ドラム20による巻上動作の減速タイミングを検出するセンサであるとも言える。もちろん、張力センサ32は、必須の構成ではなく、張力センサ32を配置しなくとも適切な吊荷1の地切り検出を行うことができる。また、張力センサ32が必ずしもエコライザー22に配置されている必要がない点、リミットスイッチに限定されずにフォトインタラプタ等の光学センサ、その他の検出デバイスを適用できる点については、地切りセンサ30と同様である。
緩衝構造36は、吊荷1の地切り以前におけるワイヤロープ10の張力変化を低減するための構造である。実施形態では、緩衝構造36は、弾性部材としてのバネ40を有しており、エコライザー22のベース基板38に対してバネ40(図4では圧縮バネ)によりエコライザーシーブ26を懸架する構造を呈する。
バネ40の一端(図4では下端)がベース基板38に固定又は係止されており、バネ40の他端(図4では上端)が移動基板27に固定又は係止されている。移動基板27は、エコライザーシーブ26及び検出ドグ26b、26cと共にベース基板38に対して上下移動可能である。
エコライザーシーブ26は、バネ40の付勢力によりベース基板38上を上方移動し、また、バネ40の付勢力に抗してベース基板38上を下方移動することができる。通常状態、すなわち、吊荷1がまだ吊り上げられておらず、ワイヤロープ10にテンションが生じていない状態では、バネ40の付勢力によりエコライザーシーブ26はベース基板38の上方に向けて付勢され、移動基板27は、例えばベース基板38の上側ストッパ(不図示)に当接する。このとき、検出ドグ26cが張力センサ32により検出されている。
ワイヤロープ10が巻上ドラム20により巻上げられた結果、ワイヤロープ10に強いテンションが生じると、そのテンションの作用によりバネ40の付勢力に抗してエコライザーシーブ26がベース基板38上を下方移動する。エコライザーシーブ26の下方移動の結果、検出ドグ26cが張力センサ32による検出から外れ、その後更にエコライザーシーブ26が下方移動すると検出ドグ26bが地切りセンサ30により検出される。
このように、ワイヤロープ10のテンションに応じて、エコライザーシーブ26及び移動基板27はベース基板38上を上下移動する。なお、張力センサ32の検出がオフとなってから地切りセンサ30の検出がオンとなるまでの間、ワイヤロープ10のテンションとバネ40による付勢力は釣り合いの状態を維持しつつバネ40が圧縮される。緩衝部材として機能するバネ40が圧縮されることで、ワイヤロープ10への急激なテンション増大が防止され、その結果、張力センサ32の検出がオフとなってから地切りセンサ30の検出がオンとなるまでの間におけるワイヤロープ10に生じるテンションの大きさは緩衝構造36がない場合に比較して略一定に安定維持され、テンションの変化が低減されている。
<制御ユニット>
図5は、クレーン装置Sの制御ユニット8のブロック構成図である。制御ユニット8の設置場所に限定はない。クラブ4上に設置されていてもよいし、サドル2や横行レール18bの近傍に配置されていてもよいし、それらと離間した異なる場所に設置されていてもよい。制御ユニット8は、サドル2、クラブ4、巻上ドラム20、傾斜センサ28、地切りセンサ30、張力センサ32と接続されている。また、制御ユニット8は主としてコンピュータを含んで構成されており、内部にCPU8a及びメモリ8bを有している。
図5は、クレーン装置Sの制御ユニット8のブロック構成図である。制御ユニット8の設置場所に限定はない。クラブ4上に設置されていてもよいし、サドル2や横行レール18bの近傍に配置されていてもよいし、それらと離間した異なる場所に設置されていてもよい。制御ユニット8は、サドル2、クラブ4、巻上ドラム20、傾斜センサ28、地切りセンサ30、張力センサ32と接続されている。また、制御ユニット8は主としてコンピュータを含んで構成されており、内部にCPU8a及びメモリ8bを有している。
メモリ8b内には吊荷1とフックユニット12との芯ずれを低減するための芯出しプログラム(吊上げプログラム)Pが格納されている。この芯出しプログラムPが実行されることにより、CPU8aが、自身に接続されたサドル2、クラブ4、巻上ドラム20、傾斜センサ28、地切りセンサ30、張力センサ32と協働してクレーン装置Sによる芯出し方法(吊上げ方法)を実現する。なお、吊荷1とフックユニット12との芯ずれは、実質的に吊荷1と巻上ユニット6との芯ずれと等価である。
CPU8aは、サドル2、クラブ4、巻上ドラム20に対して動作制御指令を出力可能である。すなわち、CPU8aからの動作制御指令に基づいて、サドル2は走行レール16上を往復動するようになっており、クラブ4は横行レール18b上を往復動するようになっており、巻上ドラム20はワイヤロープ10を巻上又は巻下するようになっている。つまり、CPU8aは、実質的に信号出力手段81aとして機能する。信号出力手段81aは、後述する信号入力手段81bで受信した各センサからの出力信号に基づいて、サドル2、クラブ4、巻上ドラム20に対して動作制御指令を出力する機能を実現する。
CPU8aは、傾斜センサ28、地切りセンサ30、張力センサ32からの検出結果としての出力信号を受信(入力)可能である。つまり、CPU8aは、実質的に信号入力手段81bとして機能する。信号入力手段81bは、傾斜センサ28からの出力信号を受信することにより、傾斜センサ28にエコライザー22の傾斜角θ(θx、θy)を検出させる機能を実現する。信号入力手段81bは、地切りセンサ30からの出力信号を受信することにより、地切りセンサ30に吊荷1の地切りを検出させる機能を実現する。信号入力手段81bは、張力センサ32からの出力信号を受信することにより、張力センサ32に吊荷1の地切り以前におけるワイヤロープ10のテンションの変化を検出させる機能を実現する。
<吊荷の吊上げ方法>
このクレーン装置Sを用いた吊荷1の芯出し方法(吊上げ方法)について、図6、図7を用いて説明する。図6は、クレーン装置Sを用いた芯出し方法を説明するためのフローチャートである。図7は、Y方向(横行方向)及び上下方向を含む鉛直面内における吊荷1の芯出し方法を説明するための説明図である。X方向(走行方向)及び上下方向を含む鉛直面内においても同様の吊荷1の芯出し方法を実行するが、その図示は省略する。
このクレーン装置Sを用いた吊荷1の芯出し方法(吊上げ方法)について、図6、図7を用いて説明する。図6は、クレーン装置Sを用いた芯出し方法を説明するためのフローチャートである。図7は、Y方向(横行方向)及び上下方向を含む鉛直面内における吊荷1の芯出し方法を説明するための説明図である。X方向(走行方向)及び上下方向を含む鉛直面内においても同様の吊荷1の芯出し方法を実行するが、その図示は省略する。
この芯出し方法は、芯出しプログラムPが実行されることにより実現する。芯出し方法は、吊荷1の重心位置とフックユニット12の重心位置とに芯ずれ、すなわち左右方向ずれ(水平面内でのずれ)が生じている状況において、吊荷1の地切りの際(又は地切り以前の段階)に吊荷1の重心位置とフックユニット12の重心位置との芯出しをすべく実行される。
なお、以下の説明において、「吊荷1の重心位置とフックユニット12の重心位置と」の芯出し・芯ずれ・左右方向ずれ(水平面内でのずれ)等を単に「吊荷1とフックユニット12と」の芯出し・芯ずれ・左右方向ずれ(水平面内でのずれ)等のように「重心位置」の文言を省略していうことがあるものとする。
まず、吊荷1の吊上げの前段階として巻上ドラム20を巻下げ動作させ、ワイヤロープ10を充分に弛ませておく。その状態で、吊荷1の玉掛ワイヤ14にフックユニット12のフック部12aを掛ける玉掛け操作を行う(S.1)。フックユニット12が玉掛ワイヤ14に係止されているが、吊荷1は地面Gに接地し、ワイヤロープ10は弛み、吊荷1とフックユニット12とは芯ずれを生じた状態である。
ここで、吊荷1の芯出し方法を実行する。具体的には、制御ユニット8に接続された操作部8c(図5参照)を操作することにより、芯出しプログラムPの実行が開始される(S.2)。芯出しプログラムPの実行が開始されると、傾斜センサ28によるエコライザー22の傾斜角θの検出、地切りセンサ30による吊荷1の地切りの検出、張力センサ32によるワイヤロープ10のテンション変化の検出が開始される(S.3)。それと共に、巻上ドラム20による巻上げ動作が開始される(S.4:巻上工程)。
芯出しプログラムPの実行開始時においては、傾斜センサ28の検出結果は、X方向、Y方向共に傾斜角θ=0°である。また、地切りセンサ30の出力信号はオフ状態(検出ドグ26bを検出しておらず吊荷1の地切りを検出していない状態)、張力センサ32の出力信号はオン状態(検出ドグ26cを検出しておりワイヤロープ10のテンション変化を検出していない状態)である。なお、ここでは理解容易のために、ワイヤロープ10の自重、エコライザーシーブ26や他のシーブの重量や摩擦負荷等の影響は無視するものとする。
巻上げが進むと、徐々にワイヤロープ10の弛みが減少してワイヤロープ10にテンションが生じ始める。そしてワイヤロープ10のテンションが一定以上になると、つまり、バネ40による不勢力に抗してエコライザーシーブ26が下方移動を開始すると、検出ドグ26cが張力センサ32で検出されなくなり、張力センサ32の出力信号はオフとなる(S.5:張力変化検出工程)。すなわち、張力センサ32によってワイヤロープ10のテンション変化が検出される。張力センサ32のオフ信号出力を受信すると、制御ユニット8は巻上ドラム20に減速を指示する制御指令を送信し、巻上ドラム20の巻上動作が低速となる(S.6:減速工程)。
更に巻上げが進むと、ワイヤロープ10のテンションが更に増大し、エコライザー22が更に下方移動する。吊荷1が地切りとなる(すなわち、地面Gから離れる)前に、地切りセンサ30によって検出ドグ26bが検出され、地切りセンサ30の出力信号がオンとなる(S.7:地切り検出工程)。すなわち、地切りセンサ30により吊荷1の地切りが検出される。地切りセンサ30のオン信号出力を受信すると、制御ユニット8は巻上ドラム20に巻上停止を指示する制御指令を送信し、巻上ドラム20の巻上動作が停止する(S.8)。
ここで、傾斜センサ28により検出されたX方向軸周りの傾斜角θx及びY方向軸周りの傾斜角θyが傾斜センサ28から制御ユニット8へと出力される。制御ユニット8内のメモリ8b内には、傾斜角θx、θyの各々に対応する適正範囲としての許容値θxo、θyoの値が格納されている。許容値θxo、θyoは、下限値~上限値までの範囲幅を持つ値であり、後述する理想角θrを中心としてプラスナマイナスの許容幅を持つ値であってもよい。
制御ユニット8は、受信した傾斜角θxの値と許容値θxoとを照合する(S.9:傾斜角検出工程)。傾斜角θxが許容値θxoの範囲内であれば、X方向軸周りのエコライザー22の傾斜が正常範囲であると判断し、クラブ4の動作を行うことなくY方向の芯出しを終了する(S.10)。受信した傾斜角θxの値と許容値θxoとを照合した結果、傾斜角θxが許容値θxoの範囲外である場合には(S.9)、制御ユニット8は、Y方向の芯出し(X方向軸周りの芯出し)を行うべくクラブ4に対してY方向に所定距離Lyだけ移動するための動作制御指令を送信する(S.11:調整工程)。このY方向の芯出しのためのクラブ4の動作制御については、図7を用いて後述するが、例えば、傾斜角θxが許容値θxoよりも大きい(すなわち、図7に示すように、フックユニット12が吊荷1に対して図7中右方向に芯ずれを生じている)場合には、クラブ4を図7中の左方向に所定距離Lyだけ移動させる。逆に、傾斜角θxが許容値θxoよりも小さい(すなわち、フックユニット12が吊荷1に対して図7中左方向に芯ずれを生じている)場合には、所定距離Lyだけクラブ4を図7中の右方向に移動させる。
制御ユニット8は、傾斜角θxの値と許容値θxoとの照合(S.9)と共に、受信した傾斜角θyの値と許容値θyoとを照合する(S.12:傾斜角検出工程)。傾斜角θyが許容値θyoの範囲内であれば、Y方向軸周りのエコライザー22の傾斜が正常範囲であると判断し、サドル2の動作を行うことなくX方向の芯出しを終了する(S.10)。受信した傾斜角θyの値と許容値θyoとを照合した結果(S.12)、傾斜角θyの値が許容値θyoの範囲外である場合には、制御ユニット8は、X方向の芯出し(Y方向軸周りの芯出し)を行うべくサドル2に対してX方向に所定距離Lxだけ移動するための動作制御指令を送信する(S.13:調整工程)。
サドル2及びクラブ4の移動動作終了後に、制御ユニット8は、サドル2及びクラブ4の停止を確認する(S.14)。サドル2やクラブ4の移動動作によってワイヤロープ10の弛みの程度が変化する場合があるので、その後、再び制御ユニット8は、地切りセンサ30のオンオフを確認する(S.15)。地切りセンサ30がオン状態であれば、巻上ドラム20を動作することなく再び傾斜センサ28の出力信号を確認し、傾斜角θxの値と許容値θxoとの照合(S.9)、傾斜角θyの値と許容値θyoとの照合(S.12)を行う。
地切りセンサ30がオフ状態である場合には(S.15)、張力センサ32のオンオフを確認する(S.16)。張力センサ32がオフ状態である場合には、巻上ドラム20を低速で巻上げ動作させる(S.6:補助巻上工程)。張力センサ32がオン状態である場合には、巻上ドラム20を減速前の速度で巻上動作させる(S.4:補助巻上工程)。
<クラブの動作制御>
図7は、Y方向(横行方向)及び上下方向を含む鉛直面を矢視した状態である。ここでは、X方向軸周りの傾斜角θxの検出値に基づき、クラブ4をY方向に移動させてY方向における吊荷1とフックユニット12との芯出しを行う動作制御について説明する。
図7は、Y方向(横行方向)及び上下方向を含む鉛直面を矢視した状態である。ここでは、X方向軸周りの傾斜角θxの検出値に基づき、クラブ4をY方向に移動させてY方向における吊荷1とフックユニット12との芯出しを行う動作制御について説明する。
図7において、実線で示されるクラブ4及びフックユニット12は、吊荷1に対して図7中右方向に芯ずれをした状態である。破線で示されるクラブ4及びフックユニット12(実線で示されるものよりも図中左側に図示されているもの。)は、吊荷1に対して芯ずれのない理想的な状態である。
芯ずれのない状態において、吊荷1及びフックユニット12は巻上ドラム20とエコライザー22との丁度中間地点に位置する。すなわち、ワイヤロープ10は、巻上ドラム20~フックユニット12~エコライザー22間で、倒立した略二等辺三角形を呈する。このときのフックユニット12~エコライザー22間のワイヤロープ10と鉛直方向とが為す角を理想角θrとする。理想角θrに対し、一定の許容幅をプラスマイナスで範囲設定したものが許容値θxoである。例えば、理想角θr=1°であるとして、±0.3°の許容幅を設定した許容値θxoは0.7°~1.3°の角度範囲となる。
吊荷1に対してフックユニット12が芯ずれを生じている状態(図7中実線で示すフックユニット12の状態)では、傾斜センサ28による検出結果としての傾斜角θxが許容値θxoの範囲外となる。ここで、芯ずれを低減すべくクラブ4が移動すべき所定距離Lyは、例えば、以下の数式(1)により近似的に算出してもよい。
Ly=h×(tanθx-tanθr) -(1)
ここで、hは、実質的には、フックユニット12~巻上ユニット6間の高さ方向距離であるが、近似的に吊荷1~巻上ユニット6間の高さ方向距離と考えることができる。hは、例えば、近似的に地面G~クラブ4までの高さ方向距離と考えることもできる。すなわち、クラブ4の地面Gからの設置高さが予めわかっており、その値が例えばメモリ8b内に格納されている場合には、その設置高さの値をhに代入することができる。
ここで、hは、実質的には、フックユニット12~巻上ユニット6間の高さ方向距離であるが、近似的に吊荷1~巻上ユニット6間の高さ方向距離と考えることができる。hは、例えば、近似的に地面G~クラブ4までの高さ方向距離と考えることもできる。すなわち、クラブ4の地面Gからの設置高さが予めわかっており、その値が例えばメモリ8b内に格納されている場合には、その設置高さの値をhに代入することができる。
図7において、上記数式(1)により算出した所定距離Lyだけクラブ4を図7中左方向に移動させれば、傾斜センサ28により検出される傾斜角θxは許容値θxoの範囲内となり、Y方向における吊荷1とフックユニット12との芯出しが完了する。すなわち、傾斜センサ28からの検出値に基づき、制御ユニット8内のCPU8aで所定距離Lyの演算処理が実行され、その算出結果としての所定距離Lyだけ移動するように、制御ユニット8がクラブ4に対して動作制御指令を送信し、その動作制御指令に基づきクラブ4が移動することで、Y方向の芯出しが実現される。
なお、上記は、クラブ4の動作制御によるY方向の芯出しについて説明したが、サドル2の動作制御によるX方向の芯出しについても略同様の工程が行われ、XとY、xとyを入れ替えることで略同様の説明内容となるので、図示及び詳細な説明を省略する。
以上、本発明の好ましい実施形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。
例えば、上記実施形態1で説明したクレーン装置Sは、揺動構造34や傾斜センサ28を有しているが、これらを有さないクレーン装置Sであってもよい。この場合においても、クレーン装置Sは地切りセンサ30によって、吊荷1の地切りを検出することができ、その地切り検出の情報に基づいて制御ユニット8が巻上げユニット6による巻上げ動作を停止することができる。
地切りのタイミングで巻上げ動作を停止することにより、吊荷1と巻上げユニット6とが芯ずれを生じている場合でも、芯ずれの状態のまま不用意に吊荷1を地面Gから吊上げてしまうことを防止することができる。地切りのタイミングで巻上げ動作を停止すれば、その時点でクレーン装置Sを操作する作業者が芯ずれの有無を確認することができる。芯ずれがある場合には、地切りにより吊荷1が地面Gから浮上してしまう前に、作業者がサドル2やクラブ4を動作させて芯ずれを低減又は解消することができるので、吊荷1の不用意な揺れによって事故や危険な状態が生じることを回避することができる。
また、クレーン装置Sが、緩衝構造36や張力センサ32を有していることが地切りの検出においてより好ましいが、これらの構成も必須ではない。
[変形例1]
上記実施形態では、地切りセンサ30及び張力センサ32が各々検出ドグ26b、26cを検出しない状態でオフ信号、検出した状態でオン信号を出力する場合について説明したが、もちろん、検出ドグの検出とオンオフの状態とが逆であってもよい。すなわち、地切りセンサ30及び張力センサ32が各々検出ドグ26b、26cを検出しない状態でオン信号、検出した状態でオフ信号を出力するように構成されていてもよい。また、各センサ30、32が検出ドグ26b、26cを各々検出する状態と検出しない状態とが上記実施形態と逆の状態であってもよい。要するに、検出状態の変化によって張力センサ32がワイヤロープ10のテンション変化を検出することができ、地切りセンサ30が吊荷1の地切りを検出することができればよい。
上記実施形態では、地切りセンサ30及び張力センサ32が各々検出ドグ26b、26cを検出しない状態でオフ信号、検出した状態でオン信号を出力する場合について説明したが、もちろん、検出ドグの検出とオンオフの状態とが逆であってもよい。すなわち、地切りセンサ30及び張力センサ32が各々検出ドグ26b、26cを検出しない状態でオン信号、検出した状態でオフ信号を出力するように構成されていてもよい。また、各センサ30、32が検出ドグ26b、26cを各々検出する状態と検出しない状態とが上記実施形態と逆の状態であってもよい。要するに、検出状態の変化によって張力センサ32がワイヤロープ10のテンション変化を検出することができ、地切りセンサ30が吊荷1の地切りを検出することができればよい。
[変形例2]
上記実施形態では、エコライザー22がX方向に沿って延びる軸34aとY方向に沿って延びる軸34bとを有する揺動構造34によってX方向軸周りにもY方向軸周りにも揺動可能であるが、それに限定されない。揺動構造34がX方向に沿って延びる軸34aのみを有してエコライザー22がX方向軸周りにのみ揺動可能であってもよいし、揺動構造34がY方向に沿って延びる軸34bのみを有してエコライザー22がY方向軸周りにのみ揺動可能であってもよい。
上記実施形態では、エコライザー22がX方向に沿って延びる軸34aとY方向に沿って延びる軸34bとを有する揺動構造34によってX方向軸周りにもY方向軸周りにも揺動可能であるが、それに限定されない。揺動構造34がX方向に沿って延びる軸34aのみを有してエコライザー22がX方向軸周りにのみ揺動可能であってもよいし、揺動構造34がY方向に沿って延びる軸34bのみを有してエコライザー22がY方向軸周りにのみ揺動可能であってもよい。
[変形例3]
上記実施形態では、地面G~巻上ユニット6間の高さ方向距離hが一定の値をとり、吊荷1が地面G上にある場合について説明した。例えば、クレーン装置Sが、巻上ユニット6と吊荷1との高さ方向距離hbを検出する高さセンサ(不図示)を有していれば、吊荷1が地面G上でなく高さh0(=h-hb)上の台B上にある場合にも本発明を適用することが可能である。この変形例3について図7に二点鎖線で示した図を用いて説明する。
上記実施形態では、地面G~巻上ユニット6間の高さ方向距離hが一定の値をとり、吊荷1が地面G上にある場合について説明した。例えば、クレーン装置Sが、巻上ユニット6と吊荷1との高さ方向距離hbを検出する高さセンサ(不図示)を有していれば、吊荷1が地面G上でなく高さh0(=h-hb)上の台B上にある場合にも本発明を適用することが可能である。この変形例3について図7に二点鎖線で示した図を用いて説明する。
高さセンサは、例えば巻上ユニット6によるワイヤロープ10の巻上量を検出する巻上量検出手段、ワイヤロープ10のテンションを検出するテンション検出手段(地切りセンサ30を代用することも可能である。)を有して構成され、制御ユニット8が、それらの検出結果に基づき吊荷1が置かれた台Bの一定高さh0を算出するものであってもよい。もちろん、高さセンサとして、吊荷1と地面Gとの間の距離(高さh0)を直接計測する計測手段を適用することも可能であるし、巻上ユニット6と吊荷1との間の高さ方向距離hbを直接計測する計測手段を適用することも可能である。
地切りセンサ30等のテンション検出手段により吊荷1の地切りが検出された時点でのワイヤロープ10の巻上量に基づき、吊荷1~巻上ユニット6間の高さ方向距離hbが制御ユニット8により算出される。上記数式(1)において、高さ方向距離hの代わりに高さ方向距離hbを代入することにより、台B上に吊荷1が置かれた場合であっても、適正な芯出し動作が可能となる。
なお、本発明は、以下の趣旨を含む。
[趣旨1]
水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有するクレーン装置であって、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられており、
前記制御装置は、
前記地切りセンサにより検出された前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を制御する、クレーン装置。
水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有するクレーン装置であって、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられており、
前記制御装置は、
前記地切りセンサにより検出された前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を制御する、クレーン装置。
[趣旨2]
前記エコライザーには、
前記走行方向に沿った回転軸を中心とする揺動及び/又は前記横行方向に沿った回転軸を中心とする揺動が可能な揺動構造と、
前記揺動により生じた前記エコライザーの傾斜角を検出可能な傾斜センサと、が更に設けられており、
前記制御装置は、
前記吊荷の地切りの情報と、前記傾斜センサにより検出された前記エコライザーの傾斜角の情報と、前記巻上装置と前記吊荷との高さ方向距離の情報と、に基づいて、前記巻上装置と前記吊荷との芯ずれを低減する方向に前記走行装置及び/又は前記横行装置の動作を制御するものであってもよい。
前記エコライザーには、
前記走行方向に沿った回転軸を中心とする揺動及び/又は前記横行方向に沿った回転軸を中心とする揺動が可能な揺動構造と、
前記揺動により生じた前記エコライザーの傾斜角を検出可能な傾斜センサと、が更に設けられており、
前記制御装置は、
前記吊荷の地切りの情報と、前記傾斜センサにより検出された前記エコライザーの傾斜角の情報と、前記巻上装置と前記吊荷との高さ方向距離の情報と、に基づいて、前記巻上装置と前記吊荷との芯ずれを低減する方向に前記走行装置及び/又は前記横行装置の動作を制御するものであってもよい。
[趣旨3]
前記巻上装置は、
前記吊荷の地切り以前における前記ワイヤロープの張力変化を検出する張力センサを更に有してもよい。
前記巻上装置は、
前記吊荷の地切り以前における前記ワイヤロープの張力変化を検出する張力センサを更に有してもよい。
[趣旨4]
前記巻上装置は、
前記吊荷の地切り以前における前記ワイヤロープの張力変化を低減するための緩衝構造を更に有してもよい。
前記巻上装置は、
前記吊荷の地切り以前における前記ワイヤロープの張力変化を低減するための緩衝構造を更に有してもよい。
[趣旨5]
前記緩衝構造が、弾性部材により前記エコライザーシーブを上下方向に移動可能に保持し、前記ワイヤロープの張力に応じて前記エコライザーシーブが上下移動する構造を有してもよい。
前記緩衝構造が、弾性部材により前記エコライザーシーブを上下方向に移動可能に保持し、前記ワイヤロープの張力に応じて前記エコライザーシーブが上下移動する構造を有してもよい。
[趣旨6]
前記地切りセンサが、前記エコライザーシーブの位置に応じてオンオフを検出するリミットスイッチであってもよい。
前記地切りセンサが、前記エコライザーシーブの位置に応じてオンオフを検出するリミットスイッチであってもよい。
[趣旨7]
前記巻上装置と前記吊荷との高さ方向距離を検出する高さセンサを更に有してもよい。
前記巻上装置と前記吊荷との高さ方向距離を検出する高さセンサを更に有してもよい。
[趣旨8]
水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有し、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられたクレーン装置により前記吊荷を吊り上げる吊上げ方法であって、
前記地切りセンサにより前記吊荷の地切りを検出する工程と、
前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を前記制御装置により制御する工程と、を有する吊上げ方法。
水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有し、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられたクレーン装置により前記吊荷を吊り上げる吊上げ方法であって、
前記地切りセンサにより前記吊荷の地切りを検出する工程と、
前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を前記制御装置により制御する工程と、を有する吊上げ方法。
[趣旨9]
水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御するコンピュータと、を有し、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられたクレーン装置により前記吊荷を吊り上げるための吊上げプログラムであって、
コンピュータに、
前記地切りセンサに前記吊荷の地切りを検出させる機能と、
前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を制御する機能と、を実現させる吊上げプログラム。
水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御するコンピュータと、を有し、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられたクレーン装置により前記吊荷を吊り上げるための吊上げプログラムであって、
コンピュータに、
前記地切りセンサに前記吊荷の地切りを検出させる機能と、
前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を制御する機能と、を実現させる吊上げプログラム。
B:台 G:地面
h、hb:高さ方向距離 h0:高さ
Lx、Ly:所定距離
P:芯出しプログラム(吊上げプログラム) S:クレーン装置
X:走行方向 Y:横行方向
θ:傾斜角 θx:X方向軸周り傾斜角
θy:Y方向軸周り傾斜角 θxo、θyo:許容値
θr:理想角 1:吊荷
2:サドル(走行装置) 4:クラブ(横行装置)
6:巻上ユニット(巻上装置) 8:制御ユニット(制御装置)
8a:CPU 8b:メモリ
8c:操作部 10:ワイヤロープ
10a:先端 10b:後端
12:フックユニット 12a:フック部
12b:シーブ 14:玉掛ワイヤ
16:走行レール 18a:ガーダ
18b:横行レール 20:巻上ドラム
22:エコライザー 26:エコライザーシーブ
26a:軸 26b、26c:検出ドグ
27:移動基板 28:傾斜センサ
30:地切りセンサ 32:張力センサ
34:揺動構造 34a、34b:軸
36:緩衝構造 38:ベース基板
40:バネ 81a:信号出力手段
81b:信号入力手段
h、hb:高さ方向距離 h0:高さ
Lx、Ly:所定距離
P:芯出しプログラム(吊上げプログラム) S:クレーン装置
X:走行方向 Y:横行方向
θ:傾斜角 θx:X方向軸周り傾斜角
θy:Y方向軸周り傾斜角 θxo、θyo:許容値
θr:理想角 1:吊荷
2:サドル(走行装置) 4:クラブ(横行装置)
6:巻上ユニット(巻上装置) 8:制御ユニット(制御装置)
8a:CPU 8b:メモリ
8c:操作部 10:ワイヤロープ
10a:先端 10b:後端
12:フックユニット 12a:フック部
12b:シーブ 14:玉掛ワイヤ
16:走行レール 18a:ガーダ
18b:横行レール 20:巻上ドラム
22:エコライザー 26:エコライザーシーブ
26a:軸 26b、26c:検出ドグ
27:移動基板 28:傾斜センサ
30:地切りセンサ 32:張力センサ
34:揺動構造 34a、34b:軸
36:緩衝構造 38:ベース基板
40:バネ 81a:信号出力手段
81b:信号入力手段
Claims (9)
- 水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有するクレーン装置であって、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられており、
前記制御装置は、
前記地切りセンサにより検出された前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を制御する、クレーン装置。 - 前記エコライザーには、
前記走行方向に沿った回転軸を中心とする揺動及び/又は前記横行方向に沿った回転軸を中心とする揺動が可能な揺動構造と、
前記揺動により生じた前記エコライザーの傾斜角を検出可能な傾斜センサと、が更に設けられており、
前記制御装置は、
前記吊荷の地切りの情報と、前記傾斜センサにより検出された前記エコライザーの傾斜角の情報と、前記巻上装置と前記吊荷との高さ方向距離の情報と、に基づいて、前記巻上装置と前記吊荷との芯ずれを低減する方向に前記走行装置及び/又は前記横行装置の動作を制御する、請求項1に記載のクレーン装置。 - 前記巻上装置は、
前記吊荷の地切り以前における前記ワイヤロープの張力変化を検出する張力センサを更に有する、請求項1又は請求項2に記載のクレーン装置。 - 前記巻上装置は、
前記吊荷の地切り以前における前記ワイヤロープの張力変化を低減するための緩衝構造を更に有する、請求項1から請求項3のうちいずれか1項に記載のクレーン装置。 - 前記緩衝構造が、弾性部材により前記エコライザーシーブを上下方向に移動可能に保持し、前記ワイヤロープの張力に応じて前記エコライザーシーブが上下移動する構造を有する、請求項4に記載のクレーン装置。
- 前記地切りセンサが、前記エコライザーシーブの位置に応じてオンオフを検出するリミットスイッチである、請求項5に記載のクレーン装置。
- 前記巻上装置と前記吊荷との高さ方向距離を検出する高さセンサを更に有する、請求項1から請求項6のうちいずれか1項に記載のクレーン装置。
- 水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御する制御装置と、を有し、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられたクレーン装置により前記吊荷を吊り上げる吊上げ方法であって、
前記地切りセンサにより前記吊荷の地切りを検出する工程と、
前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を前記制御装置により制御する工程と、を有する吊上げ方法。 - 水平面内において走行方向に沿って直線的に移動可能な走行装置と、
水平面内において前記走行方向と直交する横行方向に沿って直線的に移動可能な横行装置と、
前記走行装置及び前記横行装置により搬送されて水平面内で自在に移動可能な巻上装置と、
前記走行装置、前記横行装置及び前記巻上装置の動作を制御するコンピュータと、を有し、
前記巻上装置は、
吊荷を吊り上げるワイヤロープの巻上げ及び巻下げが可能な巻上ドラムと、
前記ワイヤロープが巻回されて前記吊荷の吊上げを中継するエコライザーと、
前記吊荷の地切りを検出する地切りセンサと、を有し、
前記エコライザーには、
前記ワイヤロープが巻回されて回転可能なエコライザーシーブが設けられたクレーン装置により前記吊荷を吊り上げるための吊上げプログラムであって、
コンピュータに、
前記地切りセンサに前記吊荷の地切りを検出させる機能と、
前記吊荷の地切りの情報に基づいて、前記巻上装置の動作を制御する機能と、を実現させる吊上げプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021572712A JP7542557B2 (ja) | 2020-01-23 | 2021-01-18 | クレーン装置、吊上げ方法及び吊上げプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-009482 | 2020-01-23 | ||
JP2020009482 | 2020-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021149626A1 true WO2021149626A1 (ja) | 2021-07-29 |
Family
ID=76992362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/001426 WO2021149626A1 (ja) | 2020-01-23 | 2021-01-18 | クレーン装置、吊上げ方法及び吊上げプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7542557B2 (ja) |
WO (1) | WO2021149626A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58220085A (ja) * | 1982-06-16 | 1983-12-21 | 株式会社日立製作所 | クレ−ンの荷重検出装置 |
JPH0356396A (ja) * | 1989-07-21 | 1991-03-11 | Hitachi Kiden Kogyo Ltd | 振れ抑止運転装置付天井クレーン |
JPH07125981A (ja) * | 1993-11-08 | 1995-05-16 | Hitachi Kiden Kogyo Ltd | 吊上電磁石付インバータ制御式スクラップクレーンの自動運転方法 |
JP2013120176A (ja) * | 2011-12-09 | 2013-06-17 | Tadano Ltd | 吊荷周辺の物体の高さ情報通知システム |
JP2016069181A (ja) * | 2014-10-02 | 2016-05-09 | 大同特殊鋼株式会社 | クレーンのエコライザシーブの緩衝装置 |
JP2018034904A (ja) * | 2016-08-29 | 2018-03-08 | 菱栄工機株式会社 | 天井クレーンにおける吊り上げ位置調整装置 |
-
2021
- 2021-01-18 WO PCT/JP2021/001426 patent/WO2021149626A1/ja active Application Filing
- 2021-01-18 JP JP2021572712A patent/JP7542557B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58220085A (ja) * | 1982-06-16 | 1983-12-21 | 株式会社日立製作所 | クレ−ンの荷重検出装置 |
JPH0356396A (ja) * | 1989-07-21 | 1991-03-11 | Hitachi Kiden Kogyo Ltd | 振れ抑止運転装置付天井クレーン |
JPH07125981A (ja) * | 1993-11-08 | 1995-05-16 | Hitachi Kiden Kogyo Ltd | 吊上電磁石付インバータ制御式スクラップクレーンの自動運転方法 |
JP2013120176A (ja) * | 2011-12-09 | 2013-06-17 | Tadano Ltd | 吊荷周辺の物体の高さ情報通知システム |
JP2016069181A (ja) * | 2014-10-02 | 2016-05-09 | 大同特殊鋼株式会社 | クレーンのエコライザシーブの緩衝装置 |
JP2018034904A (ja) * | 2016-08-29 | 2018-03-08 | 菱栄工機株式会社 | 天井クレーンにおける吊り上げ位置調整装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021149626A1 (ja) | 2021-07-29 |
JP7542557B2 (ja) | 2024-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101659379B (zh) | 一种吊钩偏摆控制方法、系统及装置 | |
US5765703A (en) | Overhead travelling carriage | |
CN111132922B (zh) | 起重机 | |
FI109990B (fi) | Järjestely nosturin koneistojen sijoittamiseksi | |
WO2021149626A1 (ja) | クレーン装置、吊上げ方法及び吊上げプログラム | |
KR101114030B1 (ko) | 지브크레인 | |
CN115215211A (zh) | 一种悬挂式集装箱运输系统装卸装置 | |
CN113165855A (zh) | 起重机和用于监测这种起重机的操作的方法 | |
JP2008156094A (ja) | クレーン | |
JP2004509037A (ja) | クレーン巻上装置の補助ロープ配置装置 | |
JP7542412B2 (ja) | クレーン装置、揺動制御方法及び揺動制御プログラム | |
US20200102763A1 (en) | Three-dimensional construction method and three-dimensional construction system | |
KR20190041015A (ko) | 크레인 장비, 특히 컨테이너 크레인을 위한 동작 방법 | |
CN115884937B (zh) | 悬臂旋转式起重机及在起重机运行中减少负载钟摆的方法 | |
JP5643043B2 (ja) | 岸壁クレーン | |
CN102858671A (zh) | 电梯的紧急停止装置 | |
EP3080031B1 (en) | Arrangement for damping oscillation of loading member in crane | |
JP2004161469A (ja) | クレーン | |
CN202379643U (zh) | 一种大吨位起重机及其起升机构 | |
JPH11209022A (ja) | 非常止め装置を有するエレベータ | |
JP6996695B2 (ja) | トロリおよびトロリによる荷役方法 | |
JPH04266397A (ja) | ジブ付きクレーン | |
JP4477205B2 (ja) | 吊荷の振れ止め装置 | |
JP2009242078A (ja) | 吊り荷の振れ止め装置 | |
CN216863412U (zh) | 800t高精度高安全智能防摇门式起重机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21744237 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021572712 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21744237 Country of ref document: EP Kind code of ref document: A1 |