WO2021149506A1 - 時間計測装置、時間計測方法及び測距装置 - Google Patents

時間計測装置、時間計測方法及び測距装置 Download PDF

Info

Publication number
WO2021149506A1
WO2021149506A1 PCT/JP2021/000433 JP2021000433W WO2021149506A1 WO 2021149506 A1 WO2021149506 A1 WO 2021149506A1 JP 2021000433 W JP2021000433 W JP 2021000433W WO 2021149506 A1 WO2021149506 A1 WO 2021149506A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time
measured
measuring device
measurement
Prior art date
Application number
PCT/JP2021/000433
Other languages
English (en)
French (fr)
Inventor
敬之 阿部
雅史 齋藤
高大 園田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/792,346 priority Critical patent/US20230107549A1/en
Priority to JP2021573061A priority patent/JPWO2021149506A1/ja
Priority to CN202180008918.9A priority patent/CN115004557A/zh
Priority to DE112021000661.4T priority patent/DE112021000661T5/de
Publication of WO2021149506A1 publication Critical patent/WO2021149506A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/005Time-to-digital converters [TDC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/26Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being duration, interval, position, frequency, or sequence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp

Definitions

  • This disclosure relates to a time measuring device, a time measuring method, and a distance measuring device.
  • a ToF (Time of Flight) sensor (distance measuring device) is known as a method of measuring the distance to an object.
  • the ToF sensor irradiates an object with irradiation light having a predetermined period and detects the phase difference between the irradiation light and the reflected light reflected from the object. Then, the distance to the object can be measured (distance measurement).
  • improvement in distance measurement accuracy is required for such a distance measurement device, there is a limit to improvement in distance measurement accuracy of the distance measurement device.
  • the time error for example, the time difference between control signals
  • the distance measurement device is corrected based on the measurement result. It is conceivable to do.
  • the time measuring device for measuring such a minute time the device disclosed in Patent Document 1 below can be mentioned.
  • a time measuring device having a further improved time resolution, a time measuring method, and a distance measuring device using the time measuring device are proposed.
  • a first counter unit that acquires the difference time between the first measured signal and the second measured signal as the first measurement result by counting based on the reference clock signal, and the first counter unit.
  • a delay signal generation unit that delays the first measured signal to generate a delay signal based on the first measurement result fed back from the first counter unit, the delay signal, and the second target.
  • a time measuring device including a measuring unit that measures a difference time with a measurement signal as a second measurement result, and a calculation unit that performs a calculation using the first and second measurement results.
  • the difference time between the first measured signal and the second measured signal is acquired as the first measurement result and fed back. Based on the first measurement result, the first measured signal is delayed to generate a delay signal, and the difference time between the delayed signal and the second measured signal is measured as the second measurement result.
  • a time measurement method including performing an operation using the first and second measurement results is provided.
  • a ToF type distance measuring device including a time measuring device, and the time measuring device counts based on a reference clock signal to obtain a first signal to be measured and a second signal to be measured. Based on the first counter unit that acquires the difference time from the measured signal as the first measurement result and the first measurement result fed back from the first counter unit, the first measured signal is obtained.
  • a delay signal generation unit that delays and generates a delay signal, a measurement unit that measures the difference time between the delay signal and the second measured signal as a second measurement result, and the first and second measurements.
  • a distance measuring device is provided that includes a calculation unit that performs calculations using the results.
  • FIG. 3 is an explanatory diagram (No. 3) for explaining an example of the delay signal generation unit 208 according to the first embodiment of the present disclosure.
  • FIG. 5 is an explanatory diagram (No. 5) for explaining an example of the delay signal generation unit 208 according to the first embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram (No. 6) for explaining an example of the delay signal generation unit 208 according to the first embodiment of the present disclosure.
  • a plurality of components having substantially the same or similar functional configurations may be distinguished by adding different numbers after the same reference numerals. However, if it is not necessary to distinguish each of a plurality of components having substantially the same or similar functional configurations, only the same reference numerals are given. Further, similar components of different embodiments may be distinguished by adding different alphabets after the same reference numerals. However, if it is not necessary to distinguish each of the similar components, only the same reference numerals are given.
  • the substantially rectangular shape is not limited to the case where the rectangle is geometrically completely rectangular, and the corners of the rectangle are slightly rounded (curve) to the extent permitted in the operation of the time measuring device. It also includes (shaped) shapes and shapes similar to those shapes.
  • connection means to electrically connect a plurality of elements.
  • connection in the following description includes not only the case where a plurality of elements are directly and electrically connected, but also the case where the plurality of elements are indirectly and electrically connected via other elements. ..
  • FIG. 1 is a block diagram showing a configuration example of the distance measuring device 1 according to the embodiment of the present disclosure.
  • the distance measuring device 1 according to the embodiment of the present disclosure is an indirect ToF (Time of Reflect) sensor, and more specifically, the object is irradiated with irradiation light having a predetermined period, and the irradiation light and the object are used. By detecting the phase difference with the reflected light of, the distance to the object can be measured. More specifically, as shown in FIG. 1, the distance measuring device 1 can mainly include an irradiation unit 20, a light receiving unit 30, a control unit 40, and a processing unit 60.
  • each functional block included in the distance measuring device 1 according to the present embodiment will be described.
  • the irradiation unit 20 has a laser light source (not shown).
  • the wavelength of the emitted light can be changed by appropriately selecting the light source.
  • the irradiation unit 20 will be described as irradiating infrared light having a wavelength in the range of 780 nm to 1000 nm, for example, but in the present embodiment, such infrared light will be irradiated. It is not limited. Further, the irradiation unit 20 can irradiate the object 800 with irradiation light whose brightness changes periodically in synchronization with a signal (drive pulse) supplied from the control unit 40 described later.
  • the light receiving unit 30 receives the reflected light reflected from the object 800.
  • the light receiving unit 30 has a condenser lens (not shown) and a plurality of light receiving elements (pixels) (not shown) described later.
  • the condenser lens has a function of collecting the received light in each light receiving element 10. Further, the light receiving element generates an electric charge (for example, an electron) based on the intensity of the received light, and converts the generated electric charge into a signal in synchronization with a signal (drive pulse) supplied from the control unit 40 described later. Then, it is transferred to the processing unit 60.
  • Control unit 40 The control unit 40 supplies a periodic signal (drive pulse) to the irradiation unit 20 and the light receiving unit 30, and controls the irradiation timing of the irradiation light and the drive timing of the light receiving unit 30.
  • a periodic signal drive pulse
  • the processing unit 60 can acquire a signal from the light receiving unit 30, and based on the acquired signal, can acquire a distance to the object 800 by, for example, an indirect ToF (iToF) method.
  • iToF indirect ToF
  • FIG. 2 is an explanatory diagram for explaining the principle of the distance calculation method using the distance measuring device 1 according to the embodiment of the present disclosure. Specifically, the irradiation light and the reflected light in the distance measuring device 1 The time variation of the intensity and the drive signal of the light receiving unit 30 are schematically shown.
  • the distance measuring device 1 irradiates the object 800 with the light modulated so that the intensity of the light fluctuates periodically from the irradiation unit 20.
  • the irradiated light is reflected by the object 800 and detected as reflected light by the light receiving unit 30 of the distance measuring device 1.
  • the detected reflected light (second stage from the top of FIG. 2) has a phase difference ⁇ with respect to the irradiation light (first stage from the top of FIG. 2), and the phase difference ⁇ is
  • the distance from the distance measuring device 1 to the object 800 increases, and the distance from the distance measuring device 1 to the object 800 decreases. That is, since the phase difference ⁇ and the distance from the distance measuring device 1 to the object 800 have a predetermined relationship, in the present embodiment, the distance measuring device 1 is detected by detecting the phase difference ⁇ .
  • the distance from the object to the object 800 can be obtained.
  • the two elements A and B for example, the light receiving element or the memory element
  • a drive signal (specifically, a drive pulse) is given.
  • the drive signal given to the element A is shown in the third row from the top in FIG. 2
  • the drive signal given to the element B is shown in the fourth row from the top in FIG. It is assumed that these elements A and B operate during the period in which the elements A and B are convex on the upper side. Then, as shown by the shape of the drive signal in FIG. 2, since the operating periods of the elements A and B do not overlap, it can be seen that the elements A and B are differential from each other.
  • the elements A and B when the reflected light has a phase difference ⁇ with respect to the irradiation light, the elements A and B, respectively, are the regions 802a and 802b shown in gray in FIG. In each period of, it receives reflected light, generates an electric charge, and accumulates it. In other words, each of the elements A and B acquires a light receiving signal corresponding to the areas of the region 802a and the region 802b in FIG. Then, as is clear from FIG. 2, the difference between the light-receiving signal amount in the element A (corresponding to the area of the region 802a) and the light-receiving signal amount in the element B (corresponding to the area of the region 802b) depends on the phase difference ⁇ . Change.
  • the distance can be calculated by calculating the difference between the received signal amounts of the elements A and B and calculating the phase difference ⁇ based on the calculated difference.
  • the distance may be calculated by calculating the phase difference ⁇ by using the ratio of the received signal amount instead of the difference of the received signal amount.
  • FIG. 3 is an explanatory diagram for explaining the phase error ⁇ , and each stage in FIG. 3 corresponds to each stage in FIG.
  • the control unit 40 supplies a periodic signal (drive pulse) to the irradiation unit 20 and the light receiving unit 30 (specifically, element A and element B).
  • the irradiation timing of the irradiation light and the drive timing of the light receiving unit 30 are controlled.
  • the control unit 40 gives a signal (one step from the top in FIG. 2) to the irradiation unit 20 so that the element A of the light receiving unit 30 operates in synchronization with the irradiation unit 20.
  • a drive signal synchronized with the intensity of the irradiation light shown to the eye and a drive signal having a change with time) is given to the element A of the light receiving unit 30.
  • a drive signal having a timing different from the drive signal given to the element A is given to the element B so that the element B of the light receiving unit 30 is differentiated from the element A.
  • the signal given to the element A of the light receiving unit 30 does not have to be synchronized with the drive signal given to the irradiation unit 20, and is fixed to the drive signal given to the irradiation unit 20.
  • the signal is not particularly limited as long as it is a signal having a known predetermined phase difference.
  • the distance measuring device 1 is required to further improve the distance measuring accuracy.
  • the drive signal given to the element A of the light receiving unit 30 due to the fluctuation of the voltage of the control unit 40 or the power supply (not shown) or the fluctuation of the device temperature is the irradiation unit.
  • the drive signal given to the element A of the light receiving unit 30 has a phase error ⁇ that fluctuates due to voltage fluctuations and temperature fluctuations.
  • the distance is calculated by calculating the phase difference ⁇ between the irradiation light and the reflected light corresponding to the difference or ratio of the received signal amounts of the elements A and B. There is. Therefore, the relationship between the phase difference ⁇ and the distance fluctuates due to the occurrence of the phase error ⁇ due to voltage fluctuations and temperature fluctuations. Therefore, in the distance measuring device 1, the phase difference ⁇ is correctly calculated from the difference in the amount of received signal. It will not be possible to calculate. As a result, in the distance measuring device 1, the phase difference ⁇ cannot be calculated correctly, so that a distance measuring error occurs.
  • the present inventors detect the phase error ⁇ and perform correction using the detected phase error ⁇ to suppress the occurrence of the distance measurement error, that is, to measure.
  • a time measuring device (TDC (Time to Digital Converter)) for measuring the phase error ⁇ with high accuracy, in other words, with high resolution (for example, 10 ps or less) is required.
  • TDC Time to Digital Converter
  • the correction can be performed by the phase error ⁇ measured by such a high resolution TDC, it is possible to suppress the distance measurement error to, for example, several mm or less.
  • FIG. 4 is a circuit block diagram showing a configuration example of a TV conversion circuit 100 including an ADC (Analog to Digital Converter) (analog-digital conversion circuit) 106
  • FIG. 5 is an output signal of the TV conversion circuit 100 of FIG. It is a timing chart which shows the change example of.
  • the TDC is a signal that arrives early (start) and a signal that arrives late (stop), which is a substantially square wave (substantially rectangular wave) or a signal that periodically repeats a substantially square wave (toggle signal).
  • the difference between the rise time or the fall time is the measurement target.
  • TV converter 100 a pulse which converts the difference between the rise time or fall time of the signal arriving late a signal arriving earlier (start) (stop) to the measured pulse V p Includes generator 102.
  • TV converter 100 includes an integrator 104 which converts the pulse width T vp of the measured pulse V p to the voltage V eq, and ADC106 for converting the converted voltage V eq to digital code Y, a delay unit 108 including.
  • the integrator slope S of the integrator 104 takes a constant value, so that a voltage V eq corresponding to the pulse width T bp of the pulse V p to be measured can be obtained. Become. Therefore, the pulse width T bp can be calculated by reading the voltage V eq with the ADC 106 and dividing by the known integral slope S (see equation (1)).
  • V max ⁇ V min means the fluctuation range of the voltage V eq input to the ADC 106.
  • the pulse width T bp that is, the measurement accuracy of the time to be measured can be shown by the following mathematical formula (3).
  • the measurement accuracy of the time to be measured by the TDC is reduced by reducing the fluctuation range V max ⁇ V min of the voltage (V eq) input to the ADC 106. Further, the measurement accuracy of the time to be measured by the TDC is also reduced by increasing the effective number of bits N.
  • the measurement accuracy of the time to be measured by the TDC is such that the pulse width T bp of the pulse V p to be measured output from the pulse generator 102 is reduced and the effective number of bits N is increased. It can also be made smaller by doing so.
  • the time resolution of the TDC can be improved by reducing the pulse width T bp of the pulse to be measured V p output from the pulse generator 102 and increasing the effective number of bits N.
  • the maximum value of the pulse width T bp of the pulse V p to be measured is the maximum value of the difference between the rise time or the fall time of the signal arriving early (start) and the signal arriving late (stop), and the measurement of TDC. It is a range.
  • Patent Document 1 discloses a technique in which the entire measurement range of a TDC is roughly measured (counted) by a counter in a clock cycle, and a part of the measurement range is measured by a TV conversion circuit with a resolution equal to or less than the clock cycle.
  • the technique disclosed in Patent Document 1 will be referred to as a comparative example.
  • FIG. 6 is an example of a timing chart of a comparative example.
  • the signal to be measured (the signal having the time width T) (specifically, for example, the time difference between the start time of the start signal and the stop signal shown in FIG. 6)
  • the signal to be measured is used. It is converted into a digital timing signal based on the reference clock signal (note that the example of FIG. 6 assumes that a commonly used double flip-flop synchronizer is used).
  • the digital timing signal is a signal obtained by tapping the signal to be measured at the rising timing of the reference clock signal in clock cycle increments of the reference clock signal (that is, roughly measuring in the clock cycle). Become).
  • the difference (input pulse signal) between the signal to be measured and the digital clock signal is cut out, the cut out difference is measured by the TV conversion circuit, and the measured difference is subtracted from the digital timing signal to obtain the measured signal. Time width T can be measured.
  • the measurement range of the TDC and the width of the pulse signal input to the TV conversion circuit can be separated, so that the TV conversion circuit does not narrow the measurement range of the TDC.
  • the width of the pulse signal input to is narrowed.
  • the pulse signal width input to the TV conversion circuit can be narrowed, so that the time resolution is improved. Therefore, according to the comparative example, the time resolution of the TDC can be improved without narrowing the measurement range of the TDC.
  • the difference between the signal to be measured and the digital clock signal is the integration of the clock period and the width equal to or less than the clock period, as shown in FIG. Therefore, the width of the input pulse signal that can be measured by the TV conversion circuit must be set to be equal to or longer than the clock period.
  • the width of the input pulse signal that can be measured by the TV conversion circuit must be set to be equal to or longer than the clock period.
  • the TDC according to the comparative example has a limit in improving the time resolution, there is a limit in improving the distance measuring accuracy even if the distance measuring device 1 is corrected by using the TDC. Therefore, the present inventors have made extensive studies to obtain a TDC with further improved time resolution. As a result, the present inventors have created a TDC according to the embodiment according to the present disclosure, which can improve the time resolution of the TDC without narrowing the measurement range of the TDC.
  • details of such an embodiment according to the present disclosure will be sequentially described.
  • FIG. 7 is a flowchart illustrating a time measurement method of the TDC 200 according to the first embodiment of the present disclosure.
  • FIG. 8 is an explanatory diagram for explaining a configuration example of the TDC 200 according to the first embodiment of the present disclosure
  • FIG. 9 is an example of a timing chart of the TDC 200 according to the first embodiment of the present disclosure. Is.
  • the entire measurement range of the TDC is coarsened by a counter with a clock period T CLK (see FIG. 9) as in the comparative example.
  • the measurement mode is executed (step S100)
  • the Fine mode for fine measurement is executed (step S101)
  • the calculation is performed based on the measurement results in these two modes (step S103).
  • the time is measured by roughly dividing it into three steps, and these steps to be carried out include two types of measurement modes.
  • the TDC 200 includes a pulse generator 202, a Coarse measurement unit (first counter unit) 204, a delay evaluation unit 206, and a delay signal. It mainly has a generator unit 208, a fin measurement unit (measurement unit) 210, and a calculation unit 212.
  • a pulse generator 202 for generating pulses.
  • a Coarse measurement unit (first counter unit) 204 for generating pulses.
  • a delay evaluation unit 206 mainly has a delay signal.
  • It mainly has a generator unit 208, a fin measurement unit (measurement unit) 210, and a calculation unit 212.
  • each component of the TDC 200 will be described in sequence.
  • the pulse generator 202 is composed of a logic circuit, and in step S100, it is a signal (toggle signal) that periodically repeats two substantially rectangular waves (substantially rectangular waves) or substantially rectangular waves. Difference in rise time or fall time (first measured signal and second measured signal) of measurement signals VT1 and VT2 (first measured signal, second measured signal) (see FIG. 9) (Difference time from) is converted into the measured pulse VT2-T1 (see FIG. 9) and output to the Coarse measurement unit 204 described later.
  • the width of the pulse V T2-T1 to be measured is the measurement target of the TDC 200. Therefore, the above-mentioned early arrival signal (start) corresponds to the measured signal VT1 , and the late arrival signal (stop) corresponds to the measured signal VT2.
  • the pulse generator 202 in step S101, the rise time of the measurement signal V T2 (see FIG. 9) described above and outputted from the delay signal generating unit 208 to be described later delay signal V T1D (see FIG. 9) Alternatively, the difference in the fall time is converted into a difference VFN (see FIG. 9) which is a substantially rectangular wave, and is output to the fine measurement unit 210 described later.
  • VFN difference which is a substantially rectangular wave
  • the Core measurement unit 204 is composed of a counter circuit (logic circuit) and can count the number of clocks of the reference clock signal CLK (see FIG. 9). Specifically, Coarse measurement unit 204 in the step S100, the to be measured pulse V T2-T1 of the reference clock signal CLK the clock period T CLK hammered in (see FIG. 9) increments, the digital timing signal V CS (FIG. 9 see) generates, counts the digital timing signal V CS clock period T CLK (rough measurement) is. Then, the Coarse measurement unit 204 outputs the count result (first measurement result) obtained in this way to the delay evaluation unit 206 and the calculation unit 212, which will be described later.
  • the delay evaluation unit 206 determines the delay amount (RG value) using the count result of the Coarse measurement unit 204, and feeds it back to the delay signal generation unit 208 described later.
  • the delay amount (RG value) is set to increase in proportion to the width of the pulse to be measured VT2-T1 (see FIG. 9) (in other words, the delay amount (RG value) is set. It follows the width of the pulse V T2-T1 to be measured).
  • Delay signal generator 208 Delay signal generator 208, a delay amount that has been fed back from the delay evaluating section 206 based on the (RG value), delays the the measured signal V T1 (see FIG. 9) described above, the delay signal V T1D (see FIG. 9) To generate. More specifically, the delay signal generation unit 208 delays the measured signal VT1 by the numerical value obtained by multiplying the delay amount (RG value) and the reference clock period T CLK (see FIG. 9). Let me. Then, the delay signal generation unit 208 outputs the generated delay signal VT1D to the pulse generator 202 described above. The delay signal generation unit 208 can also generate a calibration signal for calibrating the TDC 200. The details of the calibration will be described later.
  • the delay signal generation unit 208 may be composed of, for example, a plurality of flip-flop circuits (not shown) arranged in a row and evenly on a semiconductor substrate (not shown).
  • the delay signal generation unit 208 may be composed of, for example, a plurality of latch circuits (not shown) arranged in a row and evenly on a semiconductor substrate (not shown).
  • the plurality of flip-flop circuits or latch circuits are electrically connected to wiring branched in a tournament shape from, for example, a reference clock signal source 420 (for example, composed of a PLL (Phase Locked Loop) or the like) (see FIG. 11). It may be connected, and the reference clock signal CLK is evenly transmitted to each of the flip-flop circuit and the latch circuit by the wiring.
  • a reference clock signal source 420 for example, composed of a PLL (Phase Locked Loop) or the like
  • the fine measurement unit 210 can be configured by, for example, a TV conversion circuit 100 including an ADC 106 as shown in FIG. 4, and in step S101, a fine mode for fine measurement is performed. Specifically, the fine measurement unit 210 measures the difference VFN output from the pulse generator 202 with high resolution, and outputs the measurement result (second measurement result) to the calculation unit 212 described later. Since the measurement method has already been described with reference to FIGS. 4 and 5, the description thereof will be omitted here. In the present embodiment, the fin measurement unit 210 does not measure the difference (input pulse signal) between the measured signal and the digital clock signal as in the comparative example, but the delay signal VT1D and the measured signal V described above. The difference VFN from T2 will be measured.
  • the delay signal VT1D is a numerical value obtained by multiplying the delay amount (RG value) proportional to the width of the measured pulse VT2-T1 by the reference clock period T CLK. by the amount, it is generated by delaying the the measured signal V T1.
  • the difference V FN to be measured in the fine measurement unit 210 is thus since the generated V T1D is a difference between the measured signal V T2, have a width of less than the reference clock period T CLK It becomes. Therefore, since the measurement range of the fin measurement unit 210, which is the TV conversion circuit 100, can be narrowed to a width equal to or less than the reference clock period T CLK , the time resolution of the fine measurement unit 210 can be improved. As a result, in the present embodiment, the time resolution of the TDC 200 can be improved.
  • the calculation unit 212 is composed of a logic circuit, a memory, and the like, and uses the above-mentioned count result of the Coarse measurement unit 204 (first measurement result) and the measurement result of the fine measurement unit 210 (second measurement result).
  • the components included in the TDC 200 are not limited to the components shown in FIG. 8, and may include other components.
  • the pulse generator 202 the two differences in rise time or fall time of the measurement signal V T1, V T2, the measurement shown in the third row from the top in FIG. 9 pulse V T2- It is converted to T1 and output to the Pulse measurement unit 204.
  • Coarse measurement unit 204 the object to be measured pulse V T2-T1 hammered clock period T CLK ticks of the reference clock signal CLK, and generates a digital timing signal V CS shown in the fourth row from the top in FIG. 9 , digital count timing signal V CS clock period T CLK (rough measurement) (step S100).
  • the delay evaluation unit 206 determines the delay amount (RG value) using the count result of the Coarse measurement unit 204 and feeds it back to the delay signal generation unit 208. For example, the delay evaluation unit 206 determines the delay amount (RG value) based on the count result with reference to the following mathematical formula (5).
  • the CNT indicates the count result in the Coarse measurement unit 204, that is, the count number obtained by counting the digital timing signal VCS in the clock period (T CLK).
  • the constant N p can be any integer, and is set to 0 in the example shown in FIG. 9, for example.
  • the delay amount (RG value) is set to increase in proportion to the width of the pulse to be measured VT2-T1.
  • the delay signal generation unit 208 delays the measured signal VT1 based on the delay amount (RG value) fed back from the delay evaluation unit 206, and the delay signal VT1D shown in the fifth stage from the top of FIG. To generate. More specifically, the delay signal generation unit 208 delays the measured signal VT1 by the numerical value obtained by multiplying the delay amount (RG value) and the reference clock period T CLK, and generates the delay.
  • the signal VT1D is output to the pulse generator 202 described above. Further, the pulse generator 202, the difference representing the difference of the rise time or fall time of the measurement signal V T2 described above and the delayed signal V T1D output from the delay signal generator 208, the sixth row from the top in FIG. 9 into a V FN, and outputs the fine measurement unit 210 (in the example of FIG. 9, using the difference of the rise time).
  • the fine measurement unit 210 measures the difference VFN output from the pulse generator 202 with high resolution, and outputs the measurement result to the calculation unit 212 (step S101). That is, in the present embodiment, the fin measurement unit 210 does not measure the difference (input pulse signal) between the measured signal and the digital clock signal as in the comparative example, but the delay signal VT1D and the above-mentioned measured measured. It becomes possible to measure the difference between V FN of the signal V T2. As described above, the delay signal VT1D is the amount obtained by multiplying the delay amount (RG value) proportional to the width of the pulse VT2-T1 to be measured and the reference clock period T CLK. , Generated by delaying the signal VT1 to be measured.
  • the difference V FN to be measured in the fine measurement unit 210 is thus since the generated V T1D is a difference between the measured signal V T2, have a width of less than the reference clock period T CLK It becomes. Therefore, since the measurement range of the fin measurement unit 210, which is the TV conversion circuit 100, can be narrowed to a width equal to or less than the reference clock period T CLK , the time resolution of the fine measurement unit 210 can be improved. As a result, in the present embodiment, the time resolution of the TDC 200 can be improved.
  • Calculation unit 212 a count result of Coarse measurement unit 204, by using the measurement result of the fine measurement part 210, rising time or the falling of the two to be measured signal V T1, V T2 and calculates the difference between the time (step S103).
  • the difference between the rise times of the two measured signals VT1 and VT2 is calculated.
  • the calculation unit 212 calculates the calculation result VCS + FN shown in the seventh row from the top of FIG. 9 based on the following mathematical formula (6).
  • T MEAS is the difference in the rise time or fall time of two of the measured signal V T1, V T2 to be measured
  • T CS is the fourth stage from the top in FIG. 9 the time width of the digital timing signal V CS indicating
  • T FN is the time width of the difference V FN shown in the sixth row from the top in FIG. That is, the calculation result VCS + FN in FIG. 9, which is the measurement target TMEAS , is the fine measurement unit for the multiplication result of the delay amount (RG) and the reference clock period T CLK according to the mathematical formulas (6) and (5). It can be obtained by integrating the time width of the difference VFN , which is the measurement result of 210.
  • the delay amount (RG) is determined based on the count result of the Coarse measurement unit 204, as described above.
  • FIG. 10 is an explanatory diagram for explaining a terminal to be measured of the TDC 200 according to the present embodiment.
  • the distance measuring device 1 includes, for example, a pixel drive pulse generator 300 that supplies signals (drive pulses) for driving to a plurality of light receiving elements (pixels) of the light receiving unit 30 described above. Further, the distance measuring device 1 includes a laser drive pulse generator 310 that supplies a signal (drive pulse) for driving to the laser light source of the irradiation unit 20 described above, and a pixel unit 320 (light receiving unit 30) composed of a plurality of light receiving elements. And have.
  • the measurement signal V T1 to be measured of TDC200 for example, can be obtained by measuring the voltage of the output terminal 302 of the pixel drive pulse generator 300.
  • the phase error ⁇ as described above (the delay time) respectively can be detected.
  • the phase difference (delay time) of the signal between the terminals 312 and 322 can be detected by calculating the difference between the detected phase errors ⁇ (delay time).
  • the distance measurement accuracy of the distance measuring device 1 can be improved by performing correction using the phase error ⁇ and the phase difference (delay time) detected by these high-resolution TDC 200s.
  • the TDC 200 according to the present embodiment has a delay signal generation unit 208. Therefore, the detailed configuration of the delay signal generation unit 208 will be described with reference to FIGS. 11 to 16. 11 to 16 are explanatory views for explaining an example of the delay signal generation unit 208 according to the present embodiment.
  • the delay signal generation unit 208 may include selectors 400a and 400b for selecting signals to be output, and a generator 410 for generating the delay signal VT1D.
  • the selector 400a selects a delay signal generated from the generator 410, which will be described later, and outputs the delay signal to the terminal a.
  • the selector 400b selects the signal of interest to be measured from a plurality of the measurement signal V T2 which can be a measurement target described above in TDC200, and outputs to the terminal b.
  • the terminals a and b are electrically connected to the pulse generator 202 described above, and the signal selected by the selectors 400a and 400b is output to the pulse generator 202.
  • the generator 410 is, for example, from a plurality of flip-flop circuits (not shown) arranged in a row and evenly on a semiconductor substrate (not shown). It may be configured. Alternatively, the generator 410 may be similarly composed of, for example, a plurality of latch circuits (not shown) arranged in a row and evenly on a semiconductor substrate (not shown). The detailed configuration of the generator 410 will be described later.
  • the generator 410 is electrically connected to the reference clock signal source 420.
  • the reference clock signal source 420 is branched in a tournament manner so that the reference clock signal CLK is uniformly supplied to the plurality of flip-flop circuits or latch circuits included in the generator 410 without variation in delay time.
  • the reference clock signal CLK is supplied by the wiring.
  • the generator 410 may be composed of a plurality of D-type flip-flop circuits connected in series as shown in FIG.
  • the D-type flip-flop circuit acquires a signal input to the input terminal D, and outputs the acquired signal to the output terminal Q according to the rising edge of the reference clock signal CLK input to the clock input terminal.
  • the first-stage flip-flop circuit is input the measured signal V T1, the flip-flop circuit of each stage, delayed signal generated in the previous stage (in FIG. 12, corresponding to T R1 ⁇ T RN ) Is input in sequence.
  • the reference clock signal CLK is input to each flip-flop circuit.
  • each flip-flop circuit the input to be measured signal V T1 or preceding flip-flop circuit is inputted from the delay signals (T R1 ⁇ T RN), based on the rise of the reference clock signal CLK input to each Te, one clock period T CLK (corresponding to [Delta] T R in Fig. 12) amount corresponding delays, to generate a new delay signal (T R1 ⁇ T RN).
  • the signal ( TR0 ) and the generated delay signal ( TR1 to TR (N-1) ) are input to the selector 400a. Then, the selector 400a described above is 1 from the signal (TR0 ) and the generated delay signal ( TR1 to TR (N-1) ) based on the delay amount (RG value) determined by the delay evaluation unit 206.
  • the measurement range of the TDC 200 is limited by the number of stages of the flip-flop circuit included in the generator 410.
  • the flip-flop circuit of the generator 410 outputs the acquired signal according to the falling edge of the reference clock signal CLK to the output terminal Q, and outputs the inverted signal of the acquired signal to the inverted output terminal Q (inverted output terminal Q). It may be configured to output to Q).
  • the generator 410 may reduce the number of flip-flop circuits by combining a plurality of flip-flop circuits with logic circuits (AND, EOR) to form a counter circuit. By reducing the number of flip-flop circuits in this way, the area of the chip on which the TDC200 circuit is formed can be reduced, and an increase in manufacturing cost can be suppressed.
  • a decoder / selector 430 is used instead of the selectors 400a and 400b.
  • the generator 410 may modify the configuration shown in FIG. 12 so that the reference clock signal CLK is inverted and input to a part of the flip-flop circuits. By doing so, it is possible to generate a delay signal in fine steps by utilizing both the rising edge and the falling edge of the reference clock signal CLK, so that the time resolution of the fin measurement unit 210 is further improved. Alternatively, the signal input range to the fin measurement unit 210 can be narrowed. Similarly, the generator 410 may modify the configuration shown in FIG. 13 so that, for example, as shown in FIG. 15, the reference clock signal CLK is inverted and input to some flip-flop circuits.
  • the generator 410 may replace the plurality of flip-flop circuits in the configuration shown in FIG. 12 with a plurality of D-type latch circuits that hold the state.
  • the D-type latch circuit When the reference clock signal CLK input to the clock input terminal is at HIGH level, the D-type latch circuit outputs the signal input to the input terminal D to the output terminal Q, and the reference clock signal CLK is at LOW level. In some cases, it retains the previously input signal.
  • the flip-flop circuit with the latch circuit in this way, the area of the chip on which the circuit of the TDC 200 is formed can be reduced, and an increase in manufacturing cost can be suppressed. Furthermore, power consumption can be suppressed. In this configuration, if the HIGH section of the positive clock input to the latch circuit and the LOW section of the negative clock overlap, the signal slips through, so it is preferable to take measures.
  • FIG. 17 is a flowchart illustrating a time measurement method of the TDC 200 according to the present embodiment.
  • the time measuring method according to the present embodiment includes a plurality of steps from step S201 to step S211. The details of each step included in the time measurement method according to the present embodiment will be described below.
  • the TDC 200 is started, and the voltage of the signal (drive pulse) supplied from the control unit 40 to each functional unit such as the TDC 200 described above stabilizes at a predetermined value only a predetermined number of times.
  • the signal supply is repeated (step S201).
  • the calibration operation of the TDC 200 is performed (step S202). The details of the calibration operation according to this embodiment will be described later.
  • the Cosrse mode measurement includes steps S203 to S206 as shown in FIG. First, the number of measurements N is set to 1 (step S203). Then, TDC200 is the object to be measured pulse V T2-T1 hammered clock period T CLK ticks of the reference clock signal CLK, and generates a digital timing signal V CS, counts the digital timing signal V CS reference clock period T CLK (Rough measurement) (step S204).
  • the TDC 200 determines whether the number of measurements N is larger than a predetermined value set in advance (step S205). In the present embodiment, it is preferable to repeat the measurement until it becomes larger than a predetermined value, and for example, to improve the accuracy by adopting the average value of the values obtained by the measurement. Therefore, it is preferable that the predetermined value is set to a large value, but if it is set to a large value, the measurement time becomes long. Therefore, it is preferable to appropriately adjust the value according to the required distance measurement accuracy and the like.
  • the TDC200 proceeds to the process of step S207 when the number of measurements N is larger than the predetermined value (step S205: Yes), and when the number of measurements N is not larger than the predetermined value (step S205: No), the TDC200 proceeds to the process. , Proceed to the process of step S206. Then, the TDC 200 increases the number of measurements N by 1 and returns to step S204 (step S206).
  • the fine mode measurement includes steps S207 to S210 as shown in FIG.
  • the number of measurements N is set to 1 (step S207).
  • the TDC 200 is a numerical value obtained by multiplying the delay amount (RG value) proportional to the width of the measured pulse VT2-T1 based on the count result of the Cosrs mode measurement by the reference clock period T CLK. only by delaying the measurement signal V T1, it generates a delay signal V T1D.
  • TDC200 is the difference between the rise time or fall time of the delayed signal V T1D and the measured signal V T2, and converts the difference V FN. Furthermore, TDC200 measures the difference V FN at high resolution (step S208).
  • the TDC 200 determines whether the number of measurements N is larger than a predetermined value set in advance (step S209). In the present embodiment, it is preferable to repeat the measurement until it becomes larger than a predetermined value, and for example, to improve the accuracy by adopting the average value of the values obtained by the measurement.
  • the TDC200 proceeds to the process of step S211 when the number of measurements N is larger than the predetermined value (step S209: Yes), and when the number of measurements N is not larger than the predetermined value (step S209: No). , Proceed to the process of step S210. Then, the TDC 200 increases the number of measurements N by 1 and returns to step S208 (step S210).
  • TDC200 includes a count result of Coarse mode measurement, using the measurement results of the fine measurement, two rising time or falling time of the difference between the measured signal V T1, V T2 (measurement target T MEAS) Calculate (step S211).
  • TDC200 is the multiplication of the delay amount based on the count result of Cosrse mode measurement and (RG) and the reference clock period T CLK, integrates the time width of the difference V FN is the measurement result of the fine measurement mode ,
  • the time measurement method according to the present embodiment is terminated.
  • the predetermined values to be compared with the number of measurements N in each of the above-mentioned steps may be the same or different from each other in each step.
  • the calibration operation (step S202) is performed after the stable operation (step S201), but the present embodiment is not limited to this, and the stable operation (step S201) is performed. ) After that, it may be done at any timing.
  • the fin measurement unit 210 is obtained by multiplying the delay amount (RG value) proportional to the width of the measured pulse VT2-T1 by the reference clock period T CLK. by the amount of numbers, to measure the difference between V FN between the measured signal V T2 described above with the generated delayed signal V T1D by delaying the the measured signal V T1.
  • the difference V FN since a difference between the way the generated V T1D and the measured signal V T2, and thus having a width of less than the reference clock period T CLK.
  • the measurement range of the fin measurement unit 210 including the TV conversion circuit 100 can be narrowed to a width equal to or less than the reference clock period T CLK, so that the time resolution of the fine measurement unit 210 can be improved. can. As a result, in the present embodiment, the time resolution of the TDC 200 can be improved.
  • Second embodiment the TDC 200 according to the first embodiment is modified as described below to eliminate the need for the ADC 106 having a high resolution, and the counter 508 between the Coarse measurement unit 204 and the fin measurement unit 210.
  • the circuit configuration of the TDC 200 can be made compact and an increase in manufacturing cost can be suppressed.
  • such an embodiment will be described as a second embodiment of the present disclosure.
  • FIG. 18 is an explanatory diagram for explaining a configuration example of the TDC 200 according to the present embodiment.
  • the TDC 200 according to the second embodiment of the present disclosure includes a pulse generator 202, a Coarse measurement unit 204, a delay evaluation unit 206, a delay signal generation unit 208, and the same as in the first embodiment. It mainly has a fine measurement unit 210 and a calculation unit 212.
  • the Coarse measuring unit 204 includes a selector 502, a synchronization circuit 504, an AND circuit 506, and a counter 508.
  • the fine measurement unit 210 includes a TV conversion unit (TAC) 500, a selector 502 shared with the Coarse measurement unit 204, a synchronization circuit 504, an AND circuit 506, and a counter 508.
  • TAC TV conversion unit
  • TAC500 TAC500 is (see Fig. 19) two TV converter 600a, wherein a 600b, a comparator 602, to expand the difference V FN, implementing Fine measurement mode.
  • the TAC500 is input and the delayed signal V T1D and the measured signal V T2 from the pulse generator 202, the difference V FN (difference time) between the measured signal V T2 described above and the delayed signal V T1D described above Is expanded to generate an enlarged difference FN (see FIG. 20).
  • the details of the TAC 500 will be described later.
  • the selector 502 receives a signal from the pulse generator 202 (measured pulse VT2-T1 ) or a signal from the TAC 500 (enlarged difference FN) (FIG. 20) depending on whether the Coarse mode measurement or the fine measurement mode is performed. (See) is selected and output to the synchronization circuit 504 described later.
  • the synchronization circuit 504 strikes out the signal (measured pulse VT2-T1 , enlarged difference FN) from the selector 502 in clock period T CLK increments of the reference clock signal CLK, generates a digital timing signal VCS, and generates an AND described later. Output to circuit 506.
  • the AND circuit 506 receives the reference clock signal CLK and the signal output from the synchronization circuit 504, and outputs the signal to the counter 508 when the two inputs are HIGH.
  • the counter 508 counts the signal output from the AND circuit in the clock period T CLK , and outputs the count result to the delay evaluation unit 206 and the calculation unit 212.
  • the counter 508 counts the signal from the pulse generator 202 (measured pulse VT2-T1 ) in the Coarse mode measurement, and counts the signal (expanded difference FN) from the TAC 500 in the fine mode measurement. do. That is, in the present embodiment, the counter 508 is shared between the Coarse measurement unit 204 and the fin measurement unit 210.
  • FIG. 19 is an explanatory diagram for explaining a configuration example of the TAC 500 according to the present embodiment.
  • the TAC500 has two TV conversion circuits 600a, 600b and a comparator 602.
  • each component of the TAC 500 will be described in sequence.
  • Each of the TV conversion circuits 600a and 600b includes an integrator composed of Gm amplifiers 604a and 604b and capacitors 606a and 606b, has different integration slopes (S 1 , S 2 ) (see FIG. 20), and is different from each other. Output the voltage at the timing.
  • the TV converter 600a a delay signal V T1D from the pulse generator 202, and outputs a voltage V IM in response to changes in the input signal.
  • the TV converter 600b, the measurement signal V T2 is input from the pulse generator 202, and outputs a voltage V IP in response to changes in the input signal.
  • the Gm amplifiers 604a and 604b may be charge pumps (not shown) composed of a current source and a switch.
  • Comparator 602 The comparator 602 described above TV converter 600a, compares the voltage V IM and the voltage V IP output from 600b, when the voltage V IM is smaller than the voltage V IP, the output signal (expanded difference) FN By doing so (see FIG. 20), the difference VFN can be expanded.
  • the comparator 602 may malfunction due to noise or the like input from the power supply (not shown) after being initialized, and even if the malfunction is about several nanoseconds, the signal (enlarged difference) Since the FN is offset or varied, it causes a distance measurement error. Therefore, in order to prevent such a malfunction of the comparator 602, the activation (rising) of the comparator 602 after being initialized is delayed by a predetermined time from the rising time of the input delay signal VT1D. As described above, it is preferable to control the comparator 602 by using the reference clock signal CLK or the like.
  • the comparator 602 can secure a sufficient time to be started after the initialization, so that the comparator 602 shifts to a stable state and is started from such a stable state. Therefore, it is less susceptible to noise and the like. As a result, in the present embodiment, since the malfunction of the comparator 602 can be prevented, offset and variation are less likely to occur in the signal (enlarged difference) FN, and it is possible to avoid the occurrence of distance measurement error.
  • FIG. 20 is an example of the timing chart of the TAC 500 according to the present embodiment.
  • TAC500 of TV converter 600a, each of 600b, and the delay signal V T1D and the measured signal V T2 shown in the first and second stages from the top in FIG. 20 are input.
  • TV converter 600a in accordance with the change of the delayed signal V T1D input has a slope of the integration slope S 1, the voltage difference (height) and outputs a voltage V IM with [Delta] V (the top in FIG. 20 From the third stage).
  • TV converter 600b is in accordance with the change of the measured signal V T2 input, has a slope of the integration slope S 2, the voltage difference (height) and outputs a voltage V Ip with [Delta] V (in FIG. 20 4th row from the top).
  • the comparator 602 compares the voltage V IM and the voltage V IP output from 600b, and outputs a signal (expansion difference) FN (5 stage from the top in FIG. 20) . Then, the time width T FN INC of the output FN is counted in the clock period T CLK by the synchronization circuit 504 and the counter 508 of the Coarse measurement unit 204 described above.
  • the measurement target TFN can be expressed as the following mathematical formula (7).
  • the time width T FNINC of the expansion difference FN can be expressed as the following mathematical formula (8) based on the mathematical formula (1) and the mathematical formula (7).
  • measurement target T FN is because it can be shown by the following equation (10), can be by the time width T FNINC large difference FN, it is calculated.
  • the measurement target T FN is integral slope S 1, S 2 and will be measured with a resolution that is determined from the clock period T CLK, in particular, the reference clock period T It will be measured with a high resolution of CLK or less. Then, using Equation (10), since the resolution is determined by the ratio of the integration slope S 1, S 2, it can be seen that the resolution is robust to voltage or temperature variations.
  • the two TV conversion circuits 600a and 600b and the comparator 602 are used instead of the TV conversion circuits 100 and ADC 106 of the fin measurement unit 210 of the TDC 200 according to the first embodiment described above.
  • the Coarse measurement unit 204 By using the Coarse measurement unit 204, it is possible to eliminate the need for the ADC 106 having a high resolution. Further, in the present embodiment, the fine measurement unit 210 shares a counter circuit with the Coarse measurement unit 204. As a result, in the present embodiment, the circuit configuration of the TDC 200 can be made compact and an increase in manufacturing cost can be suppressed.
  • the measurement resolution of the measuring target T FN from being determined by the ratio of the integration slope S 1, S 2, it is seen that the resolution is robust to voltage or temperature variations.
  • the measurement in the fine measurement mode is not the measurement target T FN than measuring it, perform measurement expanded time width T FNINC large difference FN.
  • a generator 410 capable of generating a delay signal in fine steps by using both the rising edge and the falling edge of the reference clock signal (CLK). You may use it.
  • the configuration of the synchronization circuit 504, the AND circuit 506, and the counter 508 shown in FIG. 18 is divided into a block using the rising edge of the reference clock signal CLK and a block using the falling edge of the reference clock signal CLK. It will be divided into configurations.
  • a counter (not shown) that counts based on the rise of the reference clock signal CLK and a counter (not shown) that counts based on the fall of the reference clock signal CLK.
  • the step is matched with the Duty of the reference clock signal CLK. Further, the duty of the reference clock signal CLK can be measured by measuring the rising edge and the falling edge of the calibration pulse signal (details will be described later) generated by the delay signal generation unit 208. be.
  • FIG. 21 is an example of a timing chart of the TAC 500 according to a modified example of the present embodiment.
  • TV conversion circuit 600a each 600b, have different integral slopes (S 1, S 2) (see FIG. 20) to each other, as shown in FIG. 21, the above-described Unlike the second embodiment, they may be activated at the same time.
  • S 1, S 2 integral slopes
  • the number of switches in the circuit constituting the TDC 200 can be reduced, so that the measurement speed can be increased.
  • the time width T FNINC of the expansion difference FN can be expressed as the following mathematical formula (11).
  • measurement target T FN is because it can be shown by the following equation (12), can be by the time width T FNINC large difference FN, it is calculated.
  • the measurement target T FN although resolution as compared to the embodiment is degraded, an integration slope S 1, S 2 and the clock period T CLK Since the measurement is performed with the resolution determined from the above, the measurement is performed with a high resolution equal to or less than the reference clock period T CLK. Then, in this modification, the measurement resolution of the measuring target T FN from being determined by the ratio of the integration slope S 1, S 2, it is seen that the resolution is robust to voltage or temperature variations.
  • the integral slope S 1 is preferably made sufficiently larger than the integral slope S 2 , and the resolution can be further improved by doing so.
  • FIG. 22 is a flowchart for explaining the calibration method according to the present embodiment
  • FIGS. 23 and 24 are explanatory views for explaining the calibration method according to the present embodiment.
  • the calibration method according to the present embodiment includes a plurality of steps from step S301 to step S318. The details of each step included in the calibration method according to the present embodiment will be described below.
  • a generator 410 capable of generating a delay signal in fine steps by using both the rising edge and the falling edge of the reference clock signal CLK as shown in FIG. 14 is used. It should be noted that the present embodiment is not limited to using such a generator 410.
  • T R (N) signal of FIG. 23 generated by the generator 410 is input to the fine measurement section 210 as the measurement signal V T2, T R (N- 1) signal 23 generated by the generator 410 by being input to the fine measurement section 210 as the measurement signal V T1, it is possible to measure a pulse signal having a 0.5 cycle duration of the clock period T CLK.
  • T R (N) signal of FIG. 23 is inputted to the fine measurement section 210 as the measurement signal V T2, fine measurement unit 210 as T R (N-2) signals the measured signal V T1 in FIG.
  • the pulse signal to be measured for calibration is generated by using the output from the flip-flop circuit of the generator 410 on the rear stage side or the final stage that is not used in the measurement. Therefore, according to the present embodiment, by electrically connecting the flip-flop circuit to the selector 400b, the load of each flip-flop circuit included in the generator 410 is made uniform, so that a plurality of delay signals are generated. The accuracy of the step (difference between delay signals) can be further improved.
  • the TDC 200 performs measurement on a signal having a pulse width of 0.5 cycle of the clock cycle T CLK.
  • the TDC 200 sets the number of calibrations N to 1 (step S301).
  • the TDC 200 generates a pulse width for 0.5 cycle of the clock cycle T CLK of the reference clock signal CLK, and measures (counts) the time width of the generated pulse width (calibration 1) (step S302). Based on the result measured here (count output value CNT 1 ), the coordinates ( ⁇ T 1 , ⁇ T out 1 ) plotted on the graph shown in FIG. 24 are calculated.
  • the TDC 200 determines whether the number of calibrations N is larger than a predetermined value set in advance (step S303).
  • a predetermined value set in advance
  • step S303: Yes the TDC 200 proceeds to the process of step S305, and when the number of calibrations N is not larger than the predetermined value (step S303: No). To, the process proceeds to step S304. Then, the TDC 200 increases the number of calibrations N by 1 and returns to step S302 (step S304).
  • the TDC 200 performs measurement on a signal having a pulse width of 1.5 cycles of the clock cycle T CLK.
  • steps S305 to S308 in FIG. 22 are the same as steps S301 to S304 described above, except that the time width is measured (counted) with respect to the pulse width for 1.5 cycles of the clock cycle T CLK. Therefore, the description thereof is omitted here.
  • the TDC 200 performs measurement on a signal having a pulse width for one cycle of the clock cycle T CLK. Since steps S309 to S312 in FIG. 22 are the same as steps S301 to S304 described above, except that the time width is measured (counted) with respect to the pulse width for one cycle of the clock cycle T CLK. , The description is omitted here.
  • the coordinates ( ⁇ T 3 , ⁇ T out 3 ) plotted on the graph shown in FIG. 24 are calculated based on the result measured here (count output value CNT 3).
  • the TDC 200 performs measurement on a signal having a pulse width for two cycles of the clock cycle T CLK. Since steps S313 to S316 in FIG. 22 are the same as steps S301 to S304 described above, except that the time width is measured (counted) with respect to the pulse width for two cycles of the clock cycle T CLK. , The description is omitted here.
  • the coordinates ( ⁇ T 4 , ⁇ T out 4) plotted on the graph shown in FIG. 24 are calculated based on the result measured here (count output value CNT 4).
  • the TDC 200 calculates the average value of the count output value CNT n obtained as a result of the measurement a plurality of times (step S317). Furthermore, TDC200 includes a gradient TG (time gain) shown in FIG. 24, it calculates the offset time T offset as an error (step S318). The slope TG (time gain) and the offset time offset calculated in this way can be used when correcting (calibrating) the measurement result of the TDC 200. Specifically, ⁇ T outn in FIG. 24 can be obtained from the average value of each count output value CNT n by the following mathematical formula (13).
  • the offset time offset can be obtained from the average value of each count output value CNT n by the following mathematical formula (15).
  • the calibration method according to this embodiment is completed.
  • the measurement of the time width of the pulse signal does not have to be in the order described above (the mathematical formulas (13) to (15) described so far follow the order of measurement described above. It is a thing).
  • the time width of the four known pulse signals is not limited to be measured, and for example, the time width of the three known pulse signals may be measured. It is not particularly limited as long as it measures the time width of at least two known pulse signals.
  • the time widths of a plurality of known pulse signals are measured, and the TDC200 is calibrated based on the measured results to obtain the TDC200.
  • the measurement accuracy can be improved.
  • the TDC 200 has been described as being used for the distance measuring device 1, but the TDC 200 is not limited to such use.
  • a column signal processing unit (not shown) common to each of a plurality of pixels arranged in the column direction is provided.
  • the column signal processing unit has an integral type ADC that performs signal processing such as A / D (Analog-Digital) conversion on the pixel signal output from the pixel and outputs the output signal (for example, the above-mentioned patent document). 2).
  • FIG. 25 is an explanatory diagram for explaining a configuration example of the ADC 700 according to the present embodiment.
  • the ADC 700 includes a comparator 702, a ripple counter 704 as a counter, a TDC 706, and a transfer bus 708.
  • the comparator 702 compares the voltage of the lamp waveform (RAMP) whose voltage value changes linearly with time with the input voltage VSL, and outputs a signal VCO having a level corresponding to the comparison result to the ripple counter 704 and the TDC 706. do.
  • the ripple counter 704 counts the time width of the signal based on the reference clock signal CLK.
  • the TDC 706 can be the TDC 200 in the present embodiment, and measures the time width of the signal with a resolution finer than the clock period T CLK of the reference clock signal CLK. Further, the ripple counter 704 and the TDC 706 output the respective measurement results to the transfer bus 708.
  • the TDC 200 can be used in the column signal processing unit (not shown) of the CMOS image sensor (not shown).
  • the TDC 200 is not limited to such use, and may be provided in another device as long as it is a device that is required to perform time measurement with high resolution.
  • the fin measurement unit 210 is a numerical value obtained by multiplying the delay amount (RG value) proportional to the width of the pulse VT2-T1 to be measured by the reference clock period T CLK. amount corresponding measures the difference V FN between the measured signal V T2 described above with the generated delayed signal V T1D by delaying the the measured signal V T1 of. The difference V FN, since a difference between the way the generated V T1D and the measured signal V T2, and thus having a width of less than the reference clock period T CLK.
  • the measurement range of the fin measurement unit 210 including the TV conversion circuit 100 can be narrowed to a width equal to or less than the reference clock period T CLK, so that the time resolution of the fine measurement unit 210 can be improved. can. As a result, in the present embodiment, the time resolution of the TDC 200 can be improved.
  • each step in the time measurement method according to the above-described embodiment does not necessarily have to be processed in the order described.
  • each step may be processed in an appropriately reordered manner.
  • each step may be partially processed in parallel or individually instead of being processed in chronological order.
  • the processing of each step does not necessarily have to be processed according to the described method, and may be processed by another method, for example, by another functional block.
  • At least a part of the time measurement methods can be configured by software as an information processing program for operating a computer, and when configured by software, at least one of these methods.
  • the program that realizes the unit may be stored in a recording medium, and may be read and executed by the distance measuring device 1 or the like or another device connected to the distance measuring device 1.
  • a program that realizes at least a part of the time measurement method may be distributed via a communication line (including wireless communication) such as the Internet.
  • the program may be encrypted, modulated, compressed, and distributed via a wired line or wireless line such as the Internet, or stored in a recording medium.
  • the present technology can also have the following configurations.
  • a first counter unit that acquires the difference time between the first measured signal and the second measured signal as the first measurement result by counting based on the reference clock signal.
  • a delay signal generation unit that delays the first measured signal to generate a delay signal based on the first measurement result fed back from the first counter unit.
  • a measuring unit that measures the difference time between the delay signal and the second measured signal as a second measurement result,
  • a calculation unit that performs calculations using the first and second measurement results, and
  • a time measuring device The first counter unit has a rising time or falling time of the first signal to be measured, which is a substantially square wave, and a rising time or falling time of the second measured signal, which is a substantially square wave.
  • the time measuring device which acquires the difference time as the first measurement result.
  • the measuring unit measures the difference time between the rising time or falling time of the delayed signal, which is a substantially rectangular wave, and the rising time or falling time of the second signal to be measured as the second measurement result.
  • the time measuring device (2) above.
  • the time measuring device (4)
  • the time measuring device according to any one of (1) to (3) above, wherein the delay signal generation unit generates the delay signal based on a delay amount proportional to the value of the first measurement result.
  • the delay signal generator It consists of a plurality of flip-flop circuits arranged in a row and evenly on a semiconductor substrate.
  • the time measuring device according to any one of (1) to (4) above.
  • the delay signal generator It consists of a plurality of latch circuits arranged in a row and evenly on a semiconductor substrate.
  • the time measuring device according to any one of (1) to (4) above.
  • (7) The time measuring device according to (5) above, wherein each of the plurality of flip-flop circuits is electrically connected to a wiring branched in a tournament shape from a reference clock signal source.
  • (8) The time measuring device according to (7) above, wherein the delay signal generation unit generates the delay signal by using the rising edge or the falling edge of the reference clock signal which is a substantially rectangular wave.
  • the delay signal generation unit generates the delay signal by using the rising edge and the falling edge of the reference clock signal which is a substantially rectangular wave.
  • the time measuring device (10) The time measuring device according to (7) above, wherein the delay signal generation unit generates a calibration signal using the reference clock signal.
  • the measuring unit includes a time-voltage conversion circuit and an analog-digital conversion circuit.
  • the measuring unit includes a first time-voltage conversion circuit and a second time-voltage conversion circuit having different slopes, a comparator, and a second counter unit. The time measuring device according to any one.
  • the comparator is based on the delay signal and the output signal from the first and second time-voltage conversion circuits to which the second measured signal is input, and the delay signal and the second measured signal.
  • the second counter unit measures the expanded difference time by counting it based on the reference clock signal.
  • (16) The time measuring device according to any one of (12) to (14) above, wherein the first time-voltage conversion circuit and the second time-voltage conversion circuit are started at the same time.
  • the first measured signal is delayed to generate a delayed signal.
  • the difference time between the delay signal and the second measured signal is measured as the second measurement result, and the difference time is measured.
  • An operation is performed using the first and second measurement results. Including that Time measurement method.
  • It is a ToF type distance measuring device including a time measuring device.
  • the time measuring device is A first counter unit that acquires the difference time between the first measured signal and the second measured signal as the first measurement result by counting based on the reference clock signal.
  • a delay signal generation unit that delays the first measured signal to generate a delay signal based on the first measurement result fed back from the first counter unit.
  • a measuring unit that measures the difference time between the delay signal and the second measured signal as a second measurement result A calculation unit that performs calculations using the first and second measurement results, and including, Distance measuring device.
  • the distance measuring device according to (18) above which is an indirect ToF type distance measuring device that measures a distance based on a phase difference.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Abstract

基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得する第1のカウンタ部(204)と、前記第1のカウンタ部からフィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成する遅延信号生成部(208)と、前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測する計測部(210)と、前記第1及び第2の計測結果を用いて演算を行う演算部(212)とを備える、時間計測装置を提供する。

Description

時間計測装置、時間計測方法及び測距装置
 本開示は、時間計測装置、時間計測方法及び測距装置に関する。
 対象物までの距離を測定する方法として、ToF(Time of Flight)センサ(測距装置)が知られている。ToFセンサは、例えば、間接型TOF方式センサであった場合、対象物に所定の周期を持つ照射光を照射し、照射光と当該対象物から反射された反射光との位相差を検出することで、対象物までの距離を測定(測距)することができる。このような測距装置に対して測距精度の向上が求められているが、測距装置の測距精度の向上には限界があった。
 そこで、測距精度を向上させるために、時間計測装置により測距装置内で生じる時間誤差(例えば、制御信号間で生じる時間差等)を計測し、計測した結果に基づいて、測距装置の補正を行うことが考えられる。例えば、このような微小な時間を計測する時間計測装置としては、下記特許文献1の開示の装置を挙げることができる。
特開平05-150056号公報 特開2011-254246号公報
 しかしながら、上記特許文献1に開示の時間計測装置においては、計測時間の分解能に限界があることから、当該時間計測装置を用い測距装置に対して補正を行った場合であっても、測距装置の測距精度の向上には限界があった。
 そこで、本開示では、より向上した時間分解能を持つ時間計測装置、時間計測方法、及び、これを利用した測距装置を提案する。
 本開示によれば、基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得する第1のカウンタ部と、前記第1のカウンタ部からフィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成する遅延信号生成部と、前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測する計測部と、前記第1及び第2の計測結果を用いて演算を行う演算部とを備える、時間計測装置が提供される。
 また、本開示によれば、基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得し、フィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成し、前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測し、前記第1及び第2の計測結果を用いて演算を行うことを含む、時間計測方法が提供される。
 さらに、本開示によれば、時間計測装置を含むToF方式の測距装置であって、前記時間計測装置は、基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得する第1のカウンタ部と、前記第1のカウンタ部からフィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成する遅延信号生成部と、前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測する計測部と、前記第1及び第2の計測結果を用いて演算を行う演算部とを含む、測距装置が提供される。
本開示の実施形態に係る測距装置1の構成例を示すブロック図である。 本開示の実施形態に係る測距装置1を用いた距離の算出方法の原理を説明するための説明図である。 位相誤差θを説明するための説明図である。 ADCを含むTV変換回路の構成例を示す回路ブロック図である。 図4のTV変換回路の出力信号の変化例を示すタイミングチャート(その1)である。 比較例のタイミングチャートの一例である。 本開示の第1の実施形態に係るTDC200の時間計測方法を説明するフローチャートである。 本開示の第1の実施形態に係るTDC200の構成例を説明するための説明図である。 本開示の第1の実施形態に係るTDC200のタイミングチャートの一例である。 本開示の第1の実施形態に係るTDC200の計測対象の端子を説明するための説明図である。 本開示の第1の実施形態に係る遅延信号生成部208の一例を説明するため説明図(その1)である。 本開示の第1の実施形態に係る遅延信号生成部208の一例を説明するため説明図(その2)である。 本開示の第1の実施形態に係る遅延信号生成部208の一例を説明するため説明図(その3)である。 本開示の第1の実施形態に係る遅延信号生成部208の一例を説明するため説明図(その4)である。 本開示の第1の実施形態に係る遅延信号生成部208の一例を説明するため説明図(その5)である。 本開示の第1の実施形態に係る遅延信号生成部208の一例を説明するため説明図(その6)である。 本開示の第1の実施形態に係るTDC200の時間計測方法を説明するフローチャート(その2)である。 本開示の第2の実施形態に係るTDC200の構成例を説明するための説明図である。 本開示の第2の実施形態に係るTAC500の構成例を説明するための説明図である。 本開示の第2の実施形態に係るTAC500のタイミングチャートの一例である。 本開示の第2の実施形態の変形例に係るTAC500のタイミングチャートの一例である。 本開示の第3の実施形態に係るキャリブレーション方法を説明するフローチャートである。 本開示の第3の実施形態に係るキャリブレーション方法を説明するための説明図(その1)である。 本開示の第3の実施形態に係るキャリブレーション方法を説明するための説明図(その2)である。 本開示の第4の実施形態に係るADC700の構成例を説明するための説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書および図面において、実質的に同一または類似の機能構成を有する複数の構成要素を、同一の符号の後に異なる数字を付して区別する場合がある。ただし、実質的に同一または類似の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。また、異なる実施形態の類似する構成要素については、同一の符号の後に異なるアルファベットを付して区別する場合がある。ただし、類似する構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。
 以下の説明においては、略矩形とは、幾何学的に完全に矩形である場合に限定されるものではなく、時間計測装置の動作において許容される程度に矩形の角が多少丸くなった(曲線状になった)形状やその形状に類似する形状をも含む。
 また、以下の説明においては、回路構成の説明の際に、特段の断りがない限りは、「接続」とは、複数の要素の間を電気的に接続することを意味する。さらに、以下の説明における「接続」には、複数の要素を直接的に、且つ電気的に接続する場合だけでなく、他の要素を介して間接的に、且つ電気的に接続する場合も含む。
 なお、説明は以下の順序で行うものとする。
 1. 測距装置1の概要
 2. 測距装置1を用いた距離の算出方法の原理
 3. 本発明者らが本開示に係る実施形態を創作するに至る背景
 4. 第1の実施形態
   4.1 概要
   4.2 遅延信号生成部208
   4.3 時間計測方法
 5. 第2の実施形態
   5.1 TDC200の構成例
   5.2 TAC500の構成例
   5.3 TAC500の動作例
   5.4 変形例
 6. 第3の実施形態
 7. 第4の実施形態
 8. まとめ
 9. 補足
 <<1. 測距装置1の概要>>
 まずは、図1を参照して、本開示の実施形態に係る測距装置1の概略的な構成を説明する。図1は、本開示の実施形態に係る測距装置1の構成例を示すブロック図である。本開示の実施形態に係る測距装置1は、間接型ToF(Time of Flight)センサであって、詳細には、対象物に所定の周期を持つ照射光を照射し、照射光と対象物からの反射光との位相差を検出することで、対象物までの距離を測定することができる。より具体的には、測距装置1は、図1に示すように、照射部20と、受光部30と、制御部40と、処理部60とを主に有することができる。以下に、本実施形態に係る測距装置1に含まれる各機能ブロックについて説明する。
 (照射部20)
 照射部20は、レーザ光源(図示省略)を有している。照射される光の波長は、当該光源を適宜選択することにより変更することができる。なお、本実施形態においては、照射部20は、例えば、波長780nm~1000nm範囲の赤外光を照射するものとして説明するが、本実施形態においては、このような赤外光を照射することに限定されるものではない。また、照射部20は、後述する制御部40から供給される信号(駆動パルス)と同期して、周期的に明るさが変動する照射光を、対象物800へ照射することができる。
 (受光部30)
 受光部30は、対象物800から反射した反射光を受光する。受光部30は、集光レンズ(図示省略)と後述する複数の受光素子(画素)(図示省略)とを有している。集光レンズは、受光した光を各受光素子10に集める機能を有する。また、受光素子は、受光した光の強度に基づいて電荷(例えば、電子)を生成し、後述する制御部40から供給される信号(駆動パルス)と同期して、生成した電荷を信号に変換し、処理部60へ転送する。
 (制御部40)
 制御部40は、周期的な信号(駆動パルス)を照射部20及び受光部30に供給し、照射光の照射タイミングや、受光部30の駆動タイミングを制御する。
 (処理部60)
 処理部60は、受光部30からの信号を取得し、取得した信号に基づいて、例えば間接型ToF(iToF)方式により対象物800までの距離を取得することができる。なお、距離の算出方法については、後述する。
 <<2. 測距装置1を用いた距離の算出方法の原理>>
 次に、本開示の実施形態に係る測距装置1を用いた距離の算出方法(間接型)の原理について、図2を参照して説明する。図2は、本開示の実施形態に係る測距装置1を用いた距離の算出方法の原理を説明するための説明図であり、詳細には、測距装置1における、照射光と反射光とを強度の時間変動、及び、受光部30の駆動信号を模式的に示している。
 図2に示すように、測距装置1は、光の強度が周期的に変動するように変調された光を照射部20から対象物800に向かって照射する。照射された光は、対象物800で反射されて、反射光として測距装置1の受光部30で検出される。図2に示すように、検出された反射光(図2の上から2段目)は、照射光(図2の上から1段目)に対して位相差φをもっており、当該位相差φは、測距装置1から対象物800までの距離が遠ければ大きくなり、測距装置1から対象物800までの距離が近ければ小さくなる。すなわち、位相差φと測距装置1から対象物800までの距離とが所定の関係性を持っていることから、本実施形態においては、当該位相差φを検出することにより、測距装置1から対象物800までの距離を得ることができる。
 そこで、本実施形態に係る受光部30においては、例えば、画素単位ごとに設けられた2つの素子A、B(例えば、受光素子又はメモリ素子)に対して、互いに差動させるような(異なる期間に駆動する)駆動信号(詳細には、駆動パルス)を与えることとなる。例えば、図2中の上から3段目には、素子Aに与えられる駆動信号が示されており、図2中の上から4段目には、素子Bに与えられる駆動信号が示されており、上側に凸を持つ期間においてこれらの素子A、Bが動作するものとする。そして、図2の駆動信号の形状が示すように、これらの素子A、Bのそれぞれが動作する期間は重なっていないことから、これらの素子A、Bは互いに差動することがわかる。
 さらに、図2に示されるように、反射光が、照射光に対して位相差φを持っている場合には、素子A、Bのそれぞれは、図2中のグレーで示される領域802a、802bの各期間において反射光を受光し、電荷を生成し、蓄積する。言い換えると、素子A、Bのそれぞれは、図2の領域802a及び領域802bの面積に相当する受光信号を取得する。そして、図2から明らかなように、素子Aにおける受光信号量(領域802aの面積に相当)と、素子Bにおける受光信号量(領域802bの面積に相当)との差分は、位相差φに応じて変化する。従って、本実施形態においては、素子A、Bの受光信号量の差分を算出し、算出した差分に基づいて位相差φを算出することにより、距離を算出することができる。なお、本実施形態においては、受光信号量の差分ではなく、受光信号量の比を用いて位相差φを算出することにより、距離を算出してもよい。
 <<3. 本発明者らが本開示に係る実施形態を創作するに至る背景>>
 次に、本開示に係る実施形態の詳細を説明する前に、本発明者らが本開示に係る実施形態を創作するに至る背景について、図2及び図3を参照して説明する。図3は、位相誤差θを説明するための説明図であり、図3中の各段は、図2中の各段に対応している。
 測距装置1においては、先に説明したように、制御部40が、周期的な信号(駆動パルス)を照射部20及び受光部30(詳細には、素子A及び素子B)に供給し、照射光の照射タイミングや、受光部30の駆動タイミングを制御している。例えば、図2に示すように、制御部40は、受光部30の素子Aが照射部20と同期するように動作するように、照射部20に与えられる信号(図2中の上から1段目に示される照射光の強度と経時変化を持つ駆動信号)と同期する駆動信号が受光部30の素子Aに与えられる。さらに、制御部40は、受光部30の素子Bは素子Aと差動するように、素子Aに与えられる駆動信号と異なるタイミングを持つ駆動信号が素子Bに与えられる。なお、本実施形態においては、受光部30の素子Aに与えられる信号は、照射部20に与えられる駆動信号と同期していなくてもよく、照射部20に与えられる駆動信号に対して、固定された、既知の所定の位相差を持った信号であれば、特に限定されるものではない。
 先に説明したように、測距装置1に対しては、さらなる測距精度の向上が求められている。しかしながら、本発明者らの検討によると、下記に説明するような誤差が存在することにより、測距精度の向上には限界があった。詳細には、制御部40や電源(図示省略)等の電圧の変動や、装置温度の変動により、例えば、図3に示すように、受光部30の素子Aに与えられる駆動信号が、照射部20に与えられる駆動信号に対して意図しない位相差θ(位相誤差θ)を持つ場合がある。言い換えると、受光部30の素子Aに与えられる駆動信号は、電圧変動や温度変動により変動する位相誤差θを有する。先に説明したように、上記測距装置1においては、素子A、Bの受光信号量の差分又は比に対応する照射光と反射光との位相差φを算出することにより距離を算出している。そのため、電圧変動や温度変動により上記位相誤差θが生じることによって位相差φと距離との関係性が変動することから、当該測距装置1において、受光信号量の差分等から正しく位相差φを算出することができないこととなる。その結果、当該測距装置1においては、正しく位相差φを算出することができないことから、測距誤差が生じることとなる。すなわち、電圧変動や温度変動によって受光部30の素子Aに与えられる駆動信号が位相誤差θを持つことにより測距誤差が生じることから、測距装置1の測距精度の向上には限界があった。
 そして、このような状況を鑑みて、本発明者らは、上記位相誤差θを検出し、検出した位相誤差θを用いて補正を行うことにより、測距誤差の発生を抑制すること、すなわち測距精度を向上させることを独自に着想した。そして、そのためには、上記位相誤差θを精度よく、言い換えると高分解能(例えば10ps以下)で計測する時間計測装置(TDC(Time to Digital Converter))が求められる。より具体的には、このような高分解能のTDCで計測した位相誤差θによって補正を行うことができれば、例えば数mm以下に測距誤差を抑えることが可能となる。
 そこで、本発明者らは高分解能のTDCについて鋭意検討を行った。ここで、図4及び図5を参照して、TDCの構成要素の1つであるTV変換回路(Time to Voltage Converter)(時間-電圧変換回路)100について検討する。図4は、ADC(Analog to Digital Converter)(アナログ-デジタル変換回路)106を含むTV変換回路100の構成例を示す回路ブロック図であり、図5は、図4のTV変換回路100の出力信号の変化例を示すタイミングチャートである。
 当該TDCは、略矩形状の波(略矩形波)、又は、略矩形波を周期的に繰り返す信号(トグル信号))である、早く到着する信号(start)と遅く到着する信号(stop)の立ち上がり時間又は立ち下がり時間の差を計測対象とする。図4及び図5に示すように、TV変換回路100は、早く到着する信号(start)と遅く到着する信号(stop)の立ち上がり時間又は立ち下がり時間の差を被計測パルスVに変換するパルスジェネレータ102を含む。さらに、TV変換回路100は、被計測パルスVのパルス幅Tvpを電圧Veqに変換する積分器104と、変換された電圧VeqをデジタルコードYに変換するADC106と、遅延器108とを含む。そして、積分器104が理想的に構成されていれば、積分器104の積分スロープSは一定値をとるため、被計測パルスVのパルス幅Tvpに応じた電圧Veqが得られることとなる。従って、電圧VeqをADC106で読み出し、既知の積分スロープSで除算することにより、パルス幅Tvpを算出することができる(数式(1)参照)。
Figure JPOXMLDOC01-appb-M000001
 さらに、ADC106による電圧Veqの読み出し精度は、以下の数式(2)からわかるように、ADC106の有効ビット数Nで決まることとなる。なお、以下の数式(2)において、Vmax-Vminは、ADC106に入力される電圧Veqの変動幅を意味する。
Figure JPOXMLDOC01-appb-M000002
 従って、数式(1)及び数式(2)に基づき、パルス幅Tvp、すなわち、計測対象となる時間の計測精度は、以下の数式(3)で示すことができる。
Figure JPOXMLDOC01-appb-M000003
 従って、TDCの計測対象となる時間の計測精度は、ADC106に入力される電圧(Veq)の変動幅Vmax-Vminを小さくすることにより小さくなる。また、TDCの計測対象となる時間の計測精度は有効ビット数Nを大きくすることによっても小さくなる。
 また、数式(3)は、以下の数式(4)に変換することができる。
Figure JPOXMLDOC01-appb-M000004
 すなわち、数式(4)からわかるように、TDCの計測対象となる時間の計測精度は、パルスジェネレータ102から出力される被計測パルスVのパルス幅Tvpを小さくし、有効ビット数Nを大きくすることによっても小さくすることができる。言い換えると、TDCの時間分解能は、パルスジェネレータ102から出力される被計測パルスVのパルス幅Tvpを小さくし、有効ビット数Nを大きくすることによって、向上させることができる。なお、被計測パルスVのパルス幅Tvpの最大値は、早く到着する信号(start)と遅く到着する信号(stop)の立ち上がり時間又は立ち下がり時間の差の最大値であり、TDCの計測範囲のことである。
 しかしながら、TDCの時間分解能を向上させるためにはADC106の有効ビット数Nを大きくすることが考えられるが、動作電圧の低電圧化が求められる微細化プロセスでTDCを製造しようとする場合、ADC106の有効ビット数Nを大きくすることには限界がある。また、TDCの時間分解能を向上させるためには早く到着する信号(start)と遅く到着する信号(stop)の立ち上がり時間又は立ち下がり時間の差の最大値を小さくすることが考えられるが、これはTDCの計測範囲を狭くすることを意味することから、好ましい解決法であるとはいえない。すなわち、TDCの計測範囲を狭くすることなく、TDCの時間分解能を向上させることは、これらがトレードオフの関係にあることから、難しいことであるといえる。
 そこで、TDCの計測範囲を狭くすることなく、時間分解能の向上させる1つの手段として、例えば、上記特許文献1に開示の技術を挙げることができる。上記特許文献1では、TDCの計測範囲全体をカウンタによりクロック周期で粗く計測(カウント)し、TV変換回路で上記計測範囲の一部をクロック周期以下の分解能で計測する技術が開示されている。なお、以下の説明においては、上記特許文献1に開示の技術を比較例と呼ぶ。
 以下に、図6を参照して比較例を説明する。図6は、比較例のタイミングチャートの一例である。比較例においては、被測定信号(時間幅Tの信号)(詳細には、例えば、図6に示すstart信号とstop信号の立ち上がり時間の時間差)を計測しようとする場合、まずは、被測定信号を基準クロック信号に基づき、デジタルタイミング信号に変換する(なお、図6の例は、一般的に用いられるdouble flip flop synchronizerを使用している場合を想定している)。デジタルタイミング信号は、図6に示すように、被測定信号を、基準クロック信号の立ち上がりのタイミングで基準クロック信号のクロック周期刻みで叩き出した信号である(すなわち、クロック周期で粗く計測したこととなる)。さらに、被測定信号と当該デジタルクロック信号との差分(入力パルス信号)を切り出し、切り出した差分をTV変換回路で計測し、デジタルタイミング信号に対して計測した差分を差し引きすることにより、被測定信号の時間幅Tを計測することができる。
 比較例においては、このようにすることで、TDCの計測範囲と、TV変換回路に入力されるパルス信号の幅とを切り離すことができることから、TDCの計測範囲を狭くすることなく、TV変換回路に入力されるパルス信号の幅を狭くすることができる。そして、比較例においては、TV変換回路に入力されるパルス信号幅が狭くすることができることから、時間分解能が向上する。従って、比較例によれば、TDCの計測範囲を狭くすることなく、TDCの時間分解能を向上させることができる。
 しかしながら、本発明者らの検討によると、比較例においては、被測定信号と当該デジタルクロック信号との差分は、図6に示すように、クロック周期とクロック周期以下の幅との積算になる場合があることから、TV変換回路で計測可能な入力パルス信号の幅は、クロック周期以上となるように設定しなくてはならない。その結果、比較例においては、TV変換回路に入力されるパルス信号の幅の最大値を大きくする必要があることから、TDCの時間分解能の向上には限界がある。
 すなわち、比較例に係るTDCでは時間分解能を向上させることに限界があることから、当該TDCを用いて測距装置1の補正を行ったとしても、測距精度の向上には限界があった。そこで、本発明者らは、より時間分解能が向上したTDCを得ようと鋭意検討を重ねた。その結果、本発明者らは、TDCの計測範囲を狭くすることなく、TDCの時間分解能を向上させることができる本開示に係る実施形態に係るTDCを創作するに至った。以下、このような本開示に係る実施形態の詳細を順次説明する。
 <<4. 第1の実施形態>>
 <4.1 概要>
 まずは、本開示の第1の実施形態の概要を図7から図9を参照して説明する。図7は、本開示の第1の実施形態に係るTDC200の時間計測方法を説明するフローチャートである。また、図8は、本開示の第1の実施形態に係るTDC200の構成例を説明するための説明図であり、図9は、本開示の第1の実施形態に係るTDC200のタイミングチャートの一例である。
 本発明者らが創作した本開示の第1の実施形態においては、図7で示すように、比較例と同様に、TDCの計測範囲全体をカウンタによりクロック周期TCLK(図9 参照)で粗く計測するCoarseモードを実施し(ステップS100)、次に細かく計測するFineモードを実施し(ステップS101)、さらにこれら2つのモードでの計測結果に基づき演算を実施する(ステップS103)を実施する。言い換えると、本実施形態においては、大きく区分して3段階のステップによって時間計測を実施し、実施されるこれらステップには2種類の計測モードが含まれている。
 詳細には、図8に示すように、本開示の第1の実施形態に係るTDC200は、パルスジェネレータ202と、Coarse計測部(第1のカウンタ部)204と、遅延評価部206と、遅延信号生成部208と、fine計測部(計測部)210と、演算部212とを主に有する。以下に、TDC200の各構成要素について順次説明する。
 (パルスジェネレータ202)
 パルスジェネレータ202は、ロジック回路から構成され、上記ステップS100においては、2つの、略矩形状の波(略矩形波)、又は、略矩形波を周期的に繰り返す信号(トグル信号)である、被計測信号VT1、VT2(第1の被測定信号、第2の被測定信号)(図9 参照)の立ち上がり時間又は立ち下がり時間の差(第1の被測定信号と第2の被測定信号との差分時間)を被計測パルスVT2-T1(図9 参照)に変換し、後述するCoarse計測部204に出力する。なお、被計測パルスVT2-T1の幅がTDC200の計測対象である。従って、上述した早く到着する信号(start)は被計測信号VT1に対応し、遅く到着する信号(stop)は被計測信号VT2に対応する。
 また、パルスジェネレータ202は、上記ステップS101においては、後述する遅延信号生成部208から出力された遅延信号VT1D(図9 参照)と上述した被計測信号VT2(図9 参照)との立ち上がり時間又は立ち下がり時間の差を、略矩形波である差分VFN(図9 参照)に変換し、後述するfine計測部210に出力する。なお、詳細は後述するが、本実施形態においては、細かく計測するFineモードにおいては、比較例のように被計測信号とデジタルクロック信号との差分(入力パルス信号)を計測するのではなく、遅延信号VT1Dと上述した被計測信号VT2との差分VFNを計測することとなる。
 (Coarse計測部204)
 Coarse計測部204は、カウンタ回路(ロジック回路)から構成され、基準クロック信号CLK(図9 参照)のクロック数をカウントすることができる。詳細には、Coarse計測部204は、上記ステップS100において、上記被計測パルスVT2-T1を基準クロック信号CLKのクロック周期TCLK(図9 参照)刻みで叩き出し、デジタルタイミング信号VCS(図9 参照)を生成し、当該デジタルタイミング信号VCSをクロック周期TCLKでカウント(粗く計測)する。そして、Coarse計測部204は、このように得られたカウント結果(第1の計測結果)を後述する遅延評価部206及び演算部212に出力する。
 (遅延評価部206)
 遅延評価部206は、Coarse計測部204のカウント結果を用いて、遅延量(RG値)を決定し、後述する遅延信号生成部208にフィードバックする。本実施形態においては、被計測パルスVT2-T1(図9 参照)の幅に比例して遅延量(RG値)が大きくなるように設定されている(言い換えると、遅延量(RG値)は被計測パルスVT2-T1の幅に追従している)。
 (遅延信号生成部208)
 遅延信号生成部208は、遅延評価部206からフィードバックされた遅延量(RG値)に基づき、上述した被計測信号VT1(図9 参照)を遅延させて、遅延信号VT1D(図9 参照)を生成する。より詳細には、遅延信号生成部208は、遅延量(RG値)と基準クロック周期TCLK(図9 参照)とを乗算することによって得られた数値の分だけ、被計測信号VT1を遅延させる。そして、遅延信号生成部208は、生成した遅延信号VT1Dを上述したパルスジェネレータ202に出力する。また、遅延信号生成部208は、TDC200をキャリブレーションするためのキャリブレーション用信号を生成することもできる。なお、当該キャリブレーションの詳細については、後述する。
 そして、遅延信号生成部208は、例えば、半導体基板(図示省略)上に一列に、且つ、均等に並ぶ複数のフリップフロップ回路(図示省略)から構成されてもよい。もしくは、遅延信号生成部208は、例えば、半導体基板(図示省略)上に一列に、且つ、均等に並ぶ複数のラッチ回路(図示省略)から構成されてもよい。さらに、複数のフリップフロップ回路又はラッチ回路は、例えば、基準クロック信号源420(例えば、PLL(Phase Locked Loop)等から構成される)(図11 参照)からトーナメント状に分岐した配線と電気的に接続されてもよく、当該配線により、フリップフロップ回路又はラッチ回路のそれぞれに、基準クロック信号CLKが均等に伝送されることとなる。なお、遅延信号生成部208の回路構成の詳細については、後述する。
 (fine計測部210)
 fine計測部210は、例えば、図4に示されるようなADC106を含むTV変換回路100で構成されることができ、上記ステップS101において、細かく計測するfineモードを実施する。詳細には、fine計測部210は、パルスジェネレータ202から出力された差分VFNを高分解能で計測し、計測結果(第2の計測結果)を後述する演算部212に出力する。なお、計測方法については、図4及び図5を用いて既に説明したため、ここでは説明を省略する。本実施形態においては、fine計測部210は、比較例のように被計測信号とデジタルクロック信号との差分(入力パルス信号)を計測するのではなく、遅延信号VT1Dと上述した被計測信号VT2との差分VFNを計測することとなる。
 そして、先に説明したように、遅延信号VT1Dは、被計測パルスVT2-T1の幅に比例する遅延量(RG値)と基準クロック周期TCLKとを乗算することによって得られた数値の分だけ、被計測信号VT1を遅延させることによって生成される。そして、fine計測部210での計測対象となる差分VFNは、このように生成されたVT1Dと被計測信号VT2との差分であることから、基準クロック周期TCLK以下の幅を持つこととなる。従って、TV変換回路100であるfine計測部210の計測範囲を基準クロック周期TCLK以下の幅に狭くすることができることから、fine計測部210の時間分解能を向上させることができる。その結果、本実施形態においては、TDC200の時間分解能を向上させることができる。
 (演算部212)
 演算部212は、ロジック回路やメモリ等から構成され、上述したCoarse計測部204のカウント結果(第1の計測結果)と、fine計測部210の計測結果(第2の計測結果)とを用いて、2つの被計測信号VT1、VT2(第1の被測定信号、第2の被測定信号)(図9 参照)の立ち上がり時間又は立ち下がり時間の差(第1の被測定信号と第2の被測定信号との差分時間)を演算する。
 なお、本実施形態においては、TDC200に含まれる構成要素は、図8に示される構成要素に限定されるものではなく、他の構成要素を含んでもよい。
 以下に、本実施形態に係るTDC200で実施される時間計測方法の詳細を図8及び図10を参照して説明する。
 まず、本実施形態においては、パルスジェネレータ202は、2つの被計測信号VT1、VT2の立ち上がり時間又は立ち下がり時間の差を、図9の上から3段目に示す被計測パルスVT2-T1に変換し、Coarse計測部204に出力する。次に、Coarse計測部204は、上記被計測パルスVT2-T1を基準クロック信号CLKのクロック周期TCLK刻みで叩き出し、図9の上から4段目に示すデジタルタイミング信号VCSを生成し、デジタルタイミング信号VCSをクロック周期TCLKでカウント(粗く計測)する(ステップS100)。
 さらに、本実施形態においては、遅延評価部206は、Coarse計測部204のカウント結果を用いて、遅延量(RG値)を決定し、遅延信号生成部208にフィードバックする。例えば、遅延評価部206は、以下数式(5)を参照して、カウント結果に基づき遅延量(RG値)を決定する。
Figure JPOXMLDOC01-appb-M000005
 なお、数式(5)においては、CNTは、Coarse計測部204でのカウント結果、すなわち、デジタルタイミング信号VCSをクロック周期(TCLK)でカウントしたカウント数を示す。また、定数Nは、任意の整数を用いることができ、例えば、図9に示す例では、0に設定されている。数式(5)からわかるように、本実施形態においては、被計測パルスVT2-T1の幅に比例して遅延量(RG値)が大きくなるように設定されている。
 そして、遅延信号生成部208は、遅延評価部206からフィードバックされた遅延量(RG値)に基づき、被計測信号VT1を遅延させて、図9の上から5段目に示す遅延信号VT1Dを生成する。より詳細には、遅延信号生成部208は、遅延量(RG値)と基準クロック周期TCLKとを乗算することによって得られた数値の分だけ、被計測信号VT1を遅延させ、生成した遅延信号VT1Dを上述したパルスジェネレータ202に出力する。さらに、パルスジェネレータ202は、遅延信号生成部208から出力された遅延信号VT1Dと上述した被計測信号VT2の立ち上がり時間又は立ち下がり時間の差を、図9の上から6段目に示す差分VFNに変換し、fine計測部210に出力する(なお、図9の例では、立ち上がり時間の差を用いている)。
 次に、fine計測部210は、パルスジェネレータ202から出力された差分VFNを高分解能で計測し、計測結果を演算部212に出力する(ステップS101)。すなわち、本実施形態においては、fine計測部210は、比較例のように被計測信号とデジタルクロック信号との差分(入力パルス信号)を計測するのではなく、遅延信号VT1Dと上述した被計測信号VT2との差分VFNを計測することとなる。先に説明したように、遅延信号VT1Dは、被計測パルスVT2-T1の幅に比例する遅延量(RG値)と基準クロック周期TCLKとを乗算することによって得られた数値の分だけ、被計測信号VT1を遅延させることによって生成される。そして、fine計測部210での計測対象となる差分VFNは、このように生成されたVT1Dと被計測信号VT2との差分であることから、基準クロック周期TCLK以下の幅を持つこととなる。従って、TV変換回路100であるfine計測部210の計測範囲を基準クロック周期TCLK以下の幅に狭くすることができることから、fine計測部210の時間分解能を向上させることができる。その結果、本実施形態においては、TDC200の時間分解能を向上させることができる。
 演算部212は、Coarse計測部204のカウント結果と、fine計測部210の計測結果とを用いて、2つの被計測信号VT1、VT2の立ち上がり時間又は立ち下がり時間の差を演算する(ステップS103)。なお、図9の例では、2つの被計測信号VT1、VT2の立ち上がり時間の差を演算する。より具体的には、演算部212は、以下の数式(6)に基づき、図9の上から7段目に示す演算結果VCS+FNを演算する。
Figure JPOXMLDOC01-appb-M000006
 数式(6)においては、TMEASは、計測対象である2つの被計測信号VT1、VT2の立ち上がり時間又は立ち下がり時間の差であり、TCSは、図9の上から4段目に示すデジタルタイミング信号VCSの時間幅であり、TFNは、図9の上から6段目に示す差分VFNの時間幅である。すなわち、計測対象TMEASである図9の演算結果VCS+FNは、数式(6)及び数式(5)により、遅延量(RG)と基準クロック周期TCLKとの乗算結果に対して、fine計測部210の計測結果である差分VFNの時間幅を積算することによって得ることができる。なお、遅延量(RG)は、先に説明したように、Coarse計測部204のカウント結果に基づいて決定される。
 ここで、図10を参照して、測距装置1における、本実施形態に係るTDC200の計測対象を具体的に説明する。図10は、本実施形態に係るTDC200の計測対象の端子を説明するための説明図である。
 図10に示すように、測距装置1は、例えば、上述した受光部30の複数の受光素子(画素)に駆動のための信号(駆動パルス)を供給する画素駆動パルスジェネレータ300を有する。さらに、測距装置1は、上述した照射部20のレーザ光源に駆動のための信号(駆動パルス)を供給するレーザ駆動パルスジェネレータ310と、複数の受光素子からなる画素部320(受光部30)とを有する。本実施形態においては、TDC200の計測対象となる被計測信号VT1例えば、上記画素駆動パルスジェネレータ300の出力端子302の電圧を計測することにより得ることができる。また、本実施形態においては、TDC200の計測対象となる複数の被計測信号VT2例えば、上記レーザ駆動パルスジェネレータ310の出力端子312や、上記画素部320の入力端子322等の電圧を計測することにより得ることができる。
 例えば、本実施形態においては、TDC200により、各被計測信号VT2と被計測信号VT1の立ち上がり時間又は立ち下がり時間の差をそれぞれ計測することにより、上述した位相誤差θ(遅延時間)をそれぞれ検出することができる。さらに、本実施形態においては、検出した位相誤差θ(遅延時間)どうしの差を演算することにより、各端子312、322間の信号の位相差(遅延時間)を検出することができる。そして、本実施形態においては、これら高分解能のTDC200で検出した位相誤差θ、位相差(遅延時間)を用いて補正を行うことにより、測距装置1の測距精度を向上させることができる。以下に、本実施形態に係るTDC200の詳細構成及び時間計測方法の詳細について、順次説明する。
 <4.2 遅延信号生成部208>
 先に説明したように、本実施形態に係るTDC200は、遅延信号生成部208を有している。そこで、図11から図16を参照して、当該遅延信号生成部208の詳細構成について説明する。図11から図16は、本実施形態に係る遅延信号生成部208の一例を説明するため説明図である。
 まずは、図11を参照して、本実施形態に係る遅延信号生成部208の一例の概要を説明する。遅延信号生成部208は、例えば、図11に示すように、出力する信号を選択するセレクタ400a、400bと、遅延信号VT1Dを生成するジェネレータ410とを有することができる。詳細は、セレクタ400aは、後述するジェネレータ410から生成された遅延信号を選択し、端子aに出力する。また、セレクタ400bは、上述した計測対象となり得る複数の被計測信号VT2からTDC200で計測する対象となる信号を選択し、端子bに出力する。端子a、bは、上述したパルスジェネレータ202に電気的に接続しており、セレクタ400a、400bが選択した信号がパルスジェネレータ202に出力されることとなる。
 そして、先に説明したように、ジェネレータ410は、出力負荷を均一にするために、例えば、半導体基板(図示省略)上に一列に、且つ、均等に並ぶ複数のフリップフロップ回路(図示省略)から構成されてもよい。もしくは、ジェネレータ410は、同様に、例えば、半導体基板(図示省略)上に一列に、且つ、均等に並ぶ複数のラッチ回路(図示省略)から構成されてもよい。なお、ジェネレータ410の詳細構成については、後述する。
 さらに、ジェネレータ410は、基準クロック信号源420に電気的に接続されている。詳細には、ジェネレータ410に含まれる複数のフリップフロップ回路又はラッチ回路に対して、遅延時間のばらつきなく、均一に基準クロック信号CLKが供給されるように、基準クロック信号源420からトーナメント状に分岐した配線によって当該基準クロック信号CLKが供給される。
 例えば、ジェネレータ410は、図12に示されるような直列に接続された複数のD型フリップフロップ回路から構成されてもよい。D型フリップフロップ回路は、入力端子Dに入力される信号を取得し、クロック入力端子に入力された基準クロック信号CLKの立ち上がりエッジに応じて取得した信号を出力端子Qに出力する。詳細には、初段のフリップフロップ回路には、被計測信号VT1が入力され、各段のフリップフロップ回路には、前段で生成された遅延信号(図12中の、TR1~TRNに対応する)が順次入力される。さらに、各フリップフロップ回路には、当該基準クロック信号CLKが入力される。また、各フリップフロップ回路は、入力された被計測信号VT1又は前段のフリップフロップ回路から入力された遅延信号(TR1~TRN)を、それぞれに入力された基準クロック信号CLKの立ち上がりに基づいて、1クロック周期TCLK(図12中のΔTに対応)分だけ遅延させて、新たに遅延信号(TR1~TRN)を生成する。信号(TR0)及び生成された遅延信号(TR1~TR(N-1))は、セレクタ400aに入力される。そして、上述したセレクタ400aは、遅延評価部206が決定した遅延量(RG値)に基づいて、信号(TR0)及び生成された遅延信号(TR1~TR(N-1))から1つの遅延信号を選択し、パルスジェネレータ202に出力する。従って、本実施形態においては、TDC200の計測範囲は、ジェネレータ410に含まれるフリップフロップ回路の段数で制限されることとなる。なお、本実施形態においては、ジェネレータ410のフリップフロップ回路は、基準クロック信号CLKの立ち下がりエッジに応じて取得した信号を出力端子Qに出力し、取得した信号の反転信号を反転出力端子Q(Qに下線)に出力するように構成されてもよい。
 また、ジェネレータ410は、図13に示されるように、複数のフリップフロップ回路に論理回路(AND、EOR)を組み合わせて、カウンタ回路にすることにより、フリップフロップ回路の数を減らしてもよい。このようにフリップフロップ回路の数を減らすことにより、TDC200の回路が形成されるチップの面積を減らし、製造コストの増加を抑えることができる。なお、図13に示す遅延信号生成部208においては、セレクタ400a、400bの代わりに、デコーダ/セレクタ430が用いられている。
 また、ジェネレータ410は、例えば、図14に示すように、基準クロック信号CLKを反転させて一部のフリップフロップ回路に入力するように、図12に示す構成を変形してもよい。このようにすることで、基準クロック信号CLKの立ち上がりエッジ及び立ち下がりエッジの両エッジを利用して、細かい刻みで遅延信号を生成することができることから、fine計測部210の時間分解能をさらに向上させたり、fine計測部210への信号の入力範囲を狭めたりすることができる。同様に、ジェネレータ410は、例えば、図15に示すように、基準クロック信号CLKを反転させて一部のフリップフロップ回路に入力するように、図13に示す構成を変形してもよい。
 また、ジェネレータ410は、例えば、図16に示すように、図12に示す構成における複数のフリップフロップ回路を複数の、状態保持を行うD型ラッチ回路に置き換えてもよい。D型ラッチ回路は、クロック入力端子に入力された基準クロック信号CLKがHIGHレベルである場合には、入力端子Dに入力された信号を出力端子Qに出力し、基準クロック信号CLKがLOWレベルである場合には、以前に入力された信号を維持する。このようにフリップフロップ回路からラッチ回路に置き換えることにより、TDC200の回路が形成されるチップの面積を減らし、製造コストの増加を抑えることができる。さらには、消費電力を抑えることができる。なお、当該構成では、ラッチ回路に入力されるポジクロックのHIGH区間と、ネガクロックのLOW区間とが重なると、信号がすり抜けるため、対策を施すことが好ましい。
 <4.3 時間計測方法>
 次に、図17を参照して、本実施形態に係るTDC200の時間計測方法の詳細を説明する。図17は、本実施形態に係るTDC200の時間計測方法を説明するフローチャートである。詳細には、図17に示すように、本実施形態に係る時間計測方法は、ステップS201からステップS211までに複数のステップが含まれている。以下に、本実施形態に係る時間計測方法に含まれる各ステップの詳細を説明する。
 まずは、本実施形態においては、TDC200を起動させ、さらに上述した制御部40からTDC200等の各機能部に供給される信号(駆動パルス)の電圧が所定の値に安定するまで、所定の回数だけ信号供給を繰り返す(ステップS201)。次に、TDC200のキャリブレーション動作を実施する(ステップS202)。なお、本実施形態に係るキャリブレーション動作の詳細については後述する。
 次に、図7に示したCosrseモード計測を実施する。Cosrseモード計測は、図17に示すようにステップS203からステップS206までを含む。まず、計測回数Nを1に設定する(ステップS203)。そして、TDC200は、上記被計測パルスVT2-T1を基準クロック信号CLKのクロック周期TCLK刻みで叩き出し、デジタルタイミング信号VCSを生成し、デジタルタイミング信号VCSを基準クロック周期TCLKでカウント(粗く計測)する(ステップS204)。
 さらに、TDC200は、計測回数Nがあらかじめ設定された所定の値よりも大きいか判定する(ステップS205)。本実施形態においては、所定の値よりも大きくなるまで計測を繰り返し、例えば、計測で得られた値の平均値を採用することにより精度を向上させることが好ましい。従って、当該所定の値は、大きく設定されていることが好ましいが、大きく設定してしまうと計測時間が長くなることから、求められる測距精度等に応じて適宜調整されることが好ましい。TDC200は、計測回数Nが所定の値よりも大きい場合(ステップS205:Yes)には、ステップS207の処理へ進み、計測回数Nが所定の値よりも大きくない場合(ステップS205:No)には、ステップS206の処理へ進む。そして、TDC200は、計測回数Nを1だけ増やし、ステップS204へ戻る(ステップS206)。
 次に、図7に示したfineモード計測を実施する。fineモード計測は、図17に示すようにステップS207からステップS210までを含む。まず、計測回数Nを1に設定する(ステップS207)。まず、TDC200は、Cosrseモード計測のカウント結果に基づく被計測パルスVT2-T1の幅に比例する遅延量(RG値)と、基準クロック周期TCLKとを乗算することによって得られた数値の分だけ、被計測信号VT1を遅延させることによって、遅延信号VT1Dを生成する。次に、TDC200は、遅延信号VT1Dと被計測信号VT2との立ち上がり時間又は立ち下がり時間の差を、差分VFNに変換する。さらに、TDC200は、差分VFNを高分解能で計測する(ステップS208)。
 さらに、TDC200は、計測回数Nがあらかじめ設定された所定の値よりも大きいか判定する(ステップS209)。本実施形態においては、所定の値よりも大きくなるまで計測を繰り返し、例えば、計測で得られた値の平均値を採用することにより精度を向上させることが好ましい。TDC200は、計測回数Nが所定の値よりも大きい場合(ステップS209:Yes)には、ステップS211の処理へ進み、計測回数Nが所定の値よりも大きくない場合(ステップS209:No)には、ステップS210の処理へ進む。そして、TDC200は、計測回数Nを1だけ増やし、ステップS208へ戻る(ステップS210)。
 次に、TDC200は、Coarseモード計測のカウント結果と、fine計測の計測結果とを用いて、2つの被計測信号VT1、VT2の立ち上がり時間又は立ち下がり時間の差(計測対象TMEAS)を演算する(ステップS211)。詳細には、TDC200は、Cosrseモード計測のカウント結果に基づく遅延量(RG)と基準クロック周期TCLKとの乗算に対して、fine計測モードの計測結果である差分VFNの時間幅を積算し、本実施形態に係る時間計測方法を終了する。なお、本実施形態においては、上述した各ステップにて計測回数Nと比較される所定の値は、同一であってもよく、各ステップで互いに異なっていてもよい。また、図17においては、キャリブレーション動作(ステップS202)は、安定動作(ステップS201)の次に行っているが、本実施形態においては、これに限定されるものではなく、安定動作(ステップS201)後であれば、どのタイミングで行ってもよい。
 以上のように、本実施形態においては、fine計測部210は、被計測パルスVT2-T1の幅に比例する遅延量(RG値)と基準クロック周期TCLKとを乗算することによって得られた数値の分だけ、被計測信号VT1を遅延させることによって生成された遅延信号VT1Dと上述した被計測信号VT2との差分VFNを計測する。当該差分VFNは、このように生成されたVT1Dと被計測信号VT2との差分であることから、基準クロック周期TCLK以下の幅を持つこととなる。従って、本実施形態においては、TV変換回路100を含むfine計測部210の計測範囲を基準クロック周期TCLK以下の幅に狭くすることができることから、fine計測部210の時間分解能を向上させることができる。その結果、本実施形態においては、TDC200の時間分解能を向上させることができる。
 <<5. 第2の実施形態>>
 次に、第1の実施形態に係るTDC200を以下に説明するように変形することにより、高分解能であるADC106を不要にし、且つ、Coarse計測部204とfine計測部210との間で、カウンタ508(図18 参照)を共用することにより、TDC200の回路構成をコンパクトにし、製造コストの増加を抑えることができる。以下に、このような実施形態を本開示の第2の実施形態として説明する。
 <5.1 TDC200の構成例>
 まずは、図18を参照して、本実施形態に係るTDC200の構成例を説明する。図18は、本実施形態に係るTDC200の構成例を説明するための説明図である。詳細には、本開示の第2の実施形態に係るTDC200は、第1の実施形態と同様に、パルスジェネレータ202と、Coarse計測部204と、遅延評価部206と、遅延信号生成部208と、fine計測部210と、演算部212とを主に有する。さらに、Coarse計測部204は、セレクタ502と、同期回路504と、AND回路506と、カウンタ508とを含む。また、fine計測部210は、TV変換ユニット(TAC)500と、Coarse計測部204と共有するセレクタ502と、同期回路504と、AND回路506と、カウンタ508とを含む。以下に、TDC200の各構成要素について順次説明するが、ここでは第1の実施形態と共通する個所についてはその説明を省略する。
 (TAC500)
 TAC500は、2つのTV変換回路600a、600bと、比較器602とを含み(図19 参照)、差分VFNを拡大して、Fine計測モードを実施する。詳細には、TAC500には、パルスジェネレータ202から遅延信号VT1Dと被計測信号VT2とが入力され、上述した遅延信号VT1Dと上述した被計測信号VT2との差分VFN(差分時間)を拡大し、拡大差分FN(図20 参照)を生成する。なお、TAC500の詳細については後述する。
 (セレクタ502)
 セレクタ502は、Coarseモード計測又はfine計測モードのいずれかを実施するかに応じて、パルスジェネレータ202からの信号(被計測パルスVT2-T1)又はTAC500からの信号(拡大差分FN)(図20 参照)のいずれかを選択して、後述する同期回路504に出力する。
 (同期回路504)
 同期回路504は、セレクタ502からの信号(被計測パルスVT2-T1、拡大差分FN)を基準クロック信号CLKのクロック周期TCLK刻みで叩き出し、デジタルタイミング信号VCSを生成し、後述するAND回路506へ出力する。
 (AND回路506)
 AND回路506は、基準クロック信号CLKと、同期回路504から出力された信号とが入力され、2つの入力がHIGHのときに信号をカウンタ508に出力する。
 (カウンタ508)
 カウンタ508は、AND回路から出力された信号をクロック周期TCLKでカウントし、カウント結果を遅延評価部206及び演算部212に出力する。なお、本実施形態においては、カウンタ508は、Coarseモード計測ではパルスジェネレータ202からの信号(被計測パルスVT2-T1)をカウントし、fineモード計測ではTAC500からの信号(拡大差分FN)をカウントする。すなわち、本実施形態においては、Coarse計測部204とfine計測部210との間で、カウンタ508は共用される。
 <5.2 TAC500の構成例>
 次に、図19を参照して、本実施形態に係るTAC500の構成例を説明する。図19は、本実施形態に係るTAC500の構成例を説明するための説明図である。詳細には、図19に示されるように、TAC500は、2つのTV変換回路600a、600bと、比較器602とを有する。以下に、TAC500の各構成要素について順次説明する。
 (TV変換回路600a、600b)
 TV変換回路600a、600bのそれぞれは、Gmアンプ604a、604bとキャパシタ606a、606bとからなる積分器を含み、互いに異なる積分スロープ(S、S)(図20 参照)を有し、互いに異なるタイミングで電圧を出力する。詳細には、TV変換回路600aには、パルスジェネレータ202から遅延信号VT1Dが入力され、入力信号の変化に応じた電圧VIMを出力する。また、TV変換回路600bには、パルスジェネレータ202から被計測信号VT2が入力され、入力信号の変化に応じた電圧VIPを出力する。なお、Gmアンプ604a、604bは、電流源とスイッチとから構成されるチャージポンプ(図示省略)であってもよい。
 (比較器602)
 比較器602は、上述したTV変換回路600a、600bから出力された電圧VIMと電圧VIPとを比較し、電圧VIMが電圧VIPよりも小さいときに、信号(拡大差分)FNを出力することにより(図20 参照)、差分VFNを拡大することができる。なお、本実施形態においては、比較器602の入力幅(ダイナミックレンジ)を所定の範囲内に収まるように設計することが好ましい。
 なお、比較器602は、初期化された後に電源(図示省略)からのノイズ等が入力されることにより誤動作を生じる場合があり、数ナノ秒程度の誤動作であっても、信号(拡大差分)FNにオフセットやばらつきが起きることから、測距誤差が生じる原因となる。そこで、このような比較器602の誤動作を防ぐために、初期化された後の比較器602の起動(立ち上がり)を、入力される遅延信号VT1Dの立ち上がり時点から所定の時間だけ遅延した時点となるように、基準クロック信号CLK等を利用して比較器602を制御することが好ましい。このようにすることにより、比較器602は、初期化の後に起動されるまでに十分な時間を確保することができることから、安定した状態に移行し、このような安定した状態から起動されることになることから、ノイズ等の影響を受けにくくなる。その結果、本実施形態においては、比較器602の誤動作を防ぐことができることから、信号(拡大差分)FNにオフセットやばらつきが起き難くなるため、測距誤差が生じることを避けることができる。
 <5.3 TAC500の動作例>
 次に、図20を参照して、本実施形態に係るTAC500の動作を説明する。図20は、本実施形態に係るTAC500のタイミングチャートの一例である。なお、図20においては、計測対象である2つの被計測信号VT1、VT2の立ち上がり時間又は立ち下がり時間の差をTFNとする。
 まずは、TAC500のTV変換回路600a、600bのそれぞれに、図20の上から1段目及び2段目に示される遅延信号VT1Dと被計測信号VT2とが入力される。そして、TV変換回路600aは、入力された遅延信号VT1Dの変化に応じて、積分スロープSの傾きを持ち、電圧差(高さ)ΔVを持つ電圧VIMを出力する(図20の上から3段目)。また、TV変換回路600bは、入力された被計測信号VT2の変化に応じて、積分スロープSの傾きを持ち、電圧差(高さ)ΔVを持つ電圧VIpを出力する(図20の上から4段目)。
 さらに、比較器602は、上述したTV変換回路600a、600bから出力された電圧VIMと電圧VIPとを比較し、信号(拡大差分)FN(図20の上から5段目)を出力する。そして、出力されたFNの時間幅TFNINCは、上述したCoarse計測部204の同期回路504及びカウンタ508により、クロック周期TCLKでカウントされる。
 数式(1)に基づき、計測対象TFNは、以下の数式(7)のように示すことができる。
Figure JPOXMLDOC01-appb-M000007
 そして、拡大差分FNの時間幅TFNINCは、数式(1)及び数式(7)に基づき、以下の数式(8)のように示すことができる。
Figure JPOXMLDOC01-appb-M000008
 さらに、拡大差分FNの時間幅TFNINCは、クロック周期TCLKでカウントされることから、以下の数式(9)によって示すことができる。
Figure JPOXMLDOC01-appb-M000009
 そして、数式(8)及び数式(9)により、計測対象TFNは、以下の数式(10)によって示すことができることから、拡大差分FNの時間幅TFNINCによって、算出することができる。
Figure JPOXMLDOC01-appb-M000010
 また、数式(10)からわかるように、計測対象TFNは、積分スロープS、Sとクロック周期TCLKとから決定される分解能で計測されることとなり、詳細には、基準クロック周期TCLK以下の高い分解能で計測されることとなる。そして、数式(10)により、分解能が積分スロープS、Sの比で決定されることから、分解能が電圧変動や温度変動に対してロバストであることがわかる。
 以上のように、本実施形態においては、上述した第1の実施形態に係るTDC200のfine計測部210のTV変換回路100及びADC106の代わりに、2つのTV変換回路600a、600b及び比較器602と、Coarse計測部204とを用いることにより、高分解能であるADC106を不要にすることができる。さらに、本実施形態においては、fine計測部210は、Coarse計測部204と間でカウンタ回路を共用する。その結果、本実施形態においては、TDC200の回路構成をコンパクトにし、製造コストの増加を抑えることができる。
 さらに、本実施形態においては、計測対象TFNの計測分解能は積分スロープS、Sの比で決定されることから、当該分解能が電圧変動や温度変動に対してロバストであることがわかる。また、本実施形態においては、fine計測モードでの計測は、計測対象TFNをそのまま計測するのではなく、拡大差分FNの時間幅TFNINCに拡大して計測を行う。
 なお、本実施形態においても、図14に示されるような、基準クロック信号(CLK)の立ち上がりエッジ及び立ち下がりエッジの両エッジを利用して細かい刻みで遅延信号を生成することができるジェネレータ410を用いてもよい。この場合、例えば、図18に示される同期回路504、AND回路506及びカウンタ508の構成を、基準クロック信号CLKの立ち上がりエッジを用いるブロックと基準クロック信号CLKの立ち下がりエッジを用いるブロックとの2つの構成に分けることとなる。また、計測精度を劣化させることがないよう、基準クロック信号CLKの立ち上がりを基準としてカウントするカウンタ(図示省略)の刻みと、基準クロック信号CLKの立ち下がりを基準としてカウントするカウンタ(図示省略)の刻みとは、基準クロック信号CLKのDutyに一致させることが好ましい。さらに、基準クロック信号CLKのDutyは、遅延信号生成部208で生成したキャリブレーション用のパルス信号(詳細は、後述する)の立ち上がりエッジ及び立ち下がりエッジを計測することにより、計測することが可能である。
 <5.4 変形例>
 さらに、本実施形態は、図21に示すように変形してもよい。図21は、本実施形態の変形例に係るTAC500のタイミングチャートの一例である。
 詳細には、本変形例においては、TV変換回路600a、600bのそれぞれは、互いに異なる積分スロープ(S、S)(図20 参照)を有し、図21に示すように、上述した第2の実施形態と異なり、同時に起動されてもよい。このようにすることで、本変形例によれば、TDC200を構成する回路のスイッチの数を減らすことができることから、計測の高速化を実現することができる。
 詳細には、数式(7)に基づき、拡大差分FNの時間幅TFNINCは、以下の数式(11)のように示すことができる。
Figure JPOXMLDOC01-appb-M000011
 そして、数式(9)により、計測対象TFNは、以下の数式(12)によって示すことができることから、拡大差分FNの時間幅TFNINCによって、算出することができる。
Figure JPOXMLDOC01-appb-M000012
 また、本変形例においては、数式(12)からわかるように、計測対象TFNは、本実施形態に比べると分解能が劣化しているものの、積分スロープS、Sとクロック周期TCLKとから決定される分解能で計測されることから、基準クロック周期TCLK以下の高い分解能で計測されることとなる。そして、本変形例においては、計測対象TFNの計測分解能は積分スロープS、Sの比で決定されることから、当該分解能が電圧変動や温度変動に対してロバストであることがわかる。なお、本変形例においては、積分スロープSは積分スロープSに比べて十分に大きくすることが好ましく、このようにすることで分解能をより向上させることができる。
 <<6. 第3の実施形態>>
 上述した第1及び第2の実施形態においては、TDC200の計測精度を向上させるために、TDC200のキャリブレーションを行うことが好ましい。そこで、図22から図24を参照して、本開示の第3の実施形態として、TDC200のキャリブレーションについて説明する。図22は、本実施形態に係るキャリブレーション方法を説明するフローチャートであり、図23及び図24は、本実施形態に係るキャリブレーション方法を説明するための説明図である。
 詳細には、本実施形態においては、複数の既知のパルス信号(キャリブレーション用のパルス信号)の時間幅を計測し、計測した結果に基づいて、TDC200のキャリブレーションを実施する。図22に示すように、本実施形態に係るキャリブレーション方法は、ステップS301からステップS318までに複数のステップが含まれている。以下に、本実施形態に係るキャリブレーション方法に含まれる各ステップの詳細を説明する。
 なお、ここでは、図14に示されるような、基準クロック信号CLKの立ち上がりエッジ及び立ち下がりエッジの両エッジを利用して細かい刻みで遅延信号を生成することができるジェネレータ410を用いるものとする。なお、本実施形態においては、このようなジェネレータ410を用いることに限定されるものではない。
 まずは、例えば、以下に説明するキャリブレーション方法においては、基準クロック信号CLKを用いて生成した少なくとも2つの既知のパルス信号の時間幅を計測する。例えば、ジェネレータ410で生成された図23のTR(N)信号が被計測信号VT2としてfine計測部210に入力され、ジェネレータ410で生成された図23のTR(N-1)信号が被計測信号VT1としてfine計測部210に入力されることにより、クロック周期TCLKの0.5周期分の時間幅を持ったパルス信号を計測することができる。さらに、例えば、図23のTR(N)信号が被計測信号VT2としてfine計測部210に入力され、図23のTR(N-2)信号が被計測信号VT1としてfine計測部210に入力されることにより、クロック周期TCLKの1周期分の時間幅を持ったパルス信号を計測することができる。そこで、本実施形態に係るキャリブレーションは、例えば、クロック周期TCLKの0.5周期分から2周期分の時間幅を持った4つのパルス信号の計測を行うものとする。本実施形態においては、キャリブレーションの計測対象となるパルス信号を、ジェネレータ410の、計測で使用しない後段側もしくは最終段のフリップフロップ回路からの出力を用いて生成する。従って、本実施形態によれば、当該フリップフロップ回路をセレクタ400bに電気的に接続することで、ジェネレータ410に含まれる各フリップフロップ回路の負荷が均一化されることから、生成する複数の遅延信号の刻み(遅延信号間の差分)の精度をより向上させることができる。
 そして、TDC200は、クロック周期TCLKの0.5周期分のパルス幅を持つ信号に関する計測を実施する。最初に、TDC200は、キャリブレーション回数Nを1に設定する(ステップS301)。そして、TDC200は、基準クロック信号CLKのクロック周期TCLKの0.5周期分のパルス幅を生成し、生成したパルス幅の時間幅を計測(カウント)する(キャリブレーション1)(ステップS302)。ここで計測された結果(カウント出力値CNT)に基づいて、図24に示されるグラフ上にプロットされた座標(ΔT、ΔTout1)が算出されることとなる。
 さらに、TDC200は、キャリブレーション回数Nがあらかじめ設定された所定の値よりも大きいか判定する(ステップS303)。本実施形態においては、所定の値よりも大きくなるまでキャリブレーションを繰り返し、例えば、キャリブレーションで得られた値の平均値を採用することにより、キャリブレーションの精度を向上させることが好ましい。従って、当該所定の値は、大きく設定されていることが好ましいが、大きく設定してしまうとキャリブレーション時間が長くなることから、求められる測距精度等に応じて適宜調整されることが好ましい。TDC200は、キャリブレーション回数Nが所定の値よりも大きい場合(ステップS303:Yes)には、ステップS305の処理へ進み、キャリブレーション回数Nが所定の値よりも大きくない場合(ステップS303:No)には、ステップS304の処理へ進む。そして、TDC200は、キャリブレーション回数Nを1だけ増やし、ステップS302へ戻る(ステップS304)。
 次に、TDC200は、クロック周期TCLKの1.5周期分のパルス幅を持つ信号に関する計測を実施する。なお、図22のステップS305からステップS308は、クロック周期TCLKの1.5周期分のパルス幅に対して時間幅を計測(カウント)すること以外は、上述したステップS301からステップS304と同じであるため、ここでは説明を省略する。なお、ここで計測された結果(カウント出力値CNT)に基づいて、図24に示されるグラフ上にプロットされた座標(ΔT、ΔTout2)が算出されることとなる。
 そして、TDC200は、クロック周期TCLKの1周期分パルス幅を持つ信号に関する計測を実施する。なお、図22のステップS309からステップS312は、クロック周期TCLKの1周期分のパルス幅に対して時間幅を計測(カウント)すること以外は、上述したステップS301からステップS304と同じであるため、ここでは説明を省略する。なお、ここで計測された結果(カウント出力値CNT)に基づいて、図24に示されるグラフ上にプロットされた座標(ΔT、ΔTout3)が算出されることとなる。
 さらに、TDC200は、クロック周期TCLKの2周期分パルス幅を持つ信号に関する計測を実施する。なお、図22のステップS313からステップS316は、クロック周期TCLKの2周期分のパルス幅に対して時間幅を計測(カウント)すること以外は、上述したステップS301からステップS304と同じであるため、ここでは説明を省略する。なお、ここで計測された結果(カウント出力値CNT)に基づいて、図24に示されるグラフ上にプロットされた座標(ΔT、ΔTout4)が算出されることとなる。
 次に、TDC200は、複数回計測した結果得られたカウント出力値CNTの平均値を算出する算出する(ステップS317)。さらに、TDC200は、図24に示される傾きTG(時間利得)と、オフセット時間Toffsetを誤差として算出する(ステップS318)。このように算出された傾きTG(時間利得)とオフセット時間Toffsetとは、TDC200の計測結果を補正する(キャリブレーション)際に用いることができる。詳細には、図24のΔToutnは、以下の数式(13)により、各カウント出力値CNTの平均値から求めることができる。
Figure JPOXMLDOC01-appb-M000013
 そして、傾きTG(時間利得)は、以下の数式(14)により、各カウント出力値CNTの平均値から求めることができる。
Figure JPOXMLDOC01-appb-M000014
 さらに、オフセット時間Toffsetは、以下の数式(15)により、各カウント出力値CNTの平均値から求めることができる。
Figure JPOXMLDOC01-appb-M000015
 そして、本実施形態に係るキャリブレーション方法を終了する。なお、本実施形態においては、パルス信号の時間幅の計測は、上述した説明の順番である必要はない(これまで説明した数式(13)~(15)は、上述した計測の順番に従ったものである)。また、本実施形態においては、4つの既知のパルス信号の時間幅を計測することに限定されるものではなく、例えば、3つの既知のパルス信号の時間幅を計測するものであってもよく、少なくとも2つの既知のパルス信号の時間幅を計測するものであれば特に限定されるものではない。
 このように、本実施形態においては、複数の既知のパルス信号(キャリブレーション用のパルス信号)の時間幅を計測し、計測した結果に基づいて、TDC200のキャリブレーションを実施することにより、TDC200の計測精度を向上させることができる。
 <<7. 第4の実施形態>>
 上述した説明においては、TDC200は測距装置1に利用されるものとして説明したが、当該TDC200は、このような利用に限定されるものではない。例えば、CMOSイメージセンサ(図示省略)においては、列方向に並ぶ複数の画素ごとに共通するカラム信号処理部(図示省略)が設けられている。当該カラム信号処理部は、画素から出力される画素信号に対して、A/D(Analog-Degital)変換等の信号処理を行い、出力信号を出力する積分型ADCを有する(例えば、上記特許文献2)。
 詳細には、上記積分型ADCは、例えば、図25のように構成することができる。図25は、本実施形態に係るADC700の構成例を説明するための説明図である。図25に示すように、ADC700は、比較器702と、カウンタとしてのリップルカウンタ704と、TDC706と、転送バス708とを有する。比較器702は、時間とともに電圧値が線形に変化するランプ波形(RAMP)の電圧と入力電圧VSLとを比較し、その比較結果に応じたレベルを持つ信号VCOをリップルカウンタ704とTDC706とに出力する。さらに、リップルカウンタ704は、基準クロック信号CLKに基づき、信号の時間幅をカウントする。さらに、TDC706は、本実施形態におけるTDC200であることができ、基準クロック信号CLKのクロック周期TCLKよりも細かい分解能で、信号の時間幅を計測する。さらに、リップルカウンタ704及びTDC706は、それぞれの計測結果を転送バス708へ出力する。
 このように、本実施形態に係るTDC200は、CMOSイメージセンサ(図示省略)のカラム信号処理部(図示省略)で利用することができる。なお、当該TDC200は、このような利用に限定されるものではなく、高分解能で時間計測を行うことが求められる装置であれば、他の装置に設けられてもよい。
 <<8. まとめ>>
 以上のように、本開示の各実施形態においては、TDC200の時間分解能を向上させることができる。詳細には、本実施形態においては、fine計測部210は、被計測パルスVT2-T1の幅に比例する遅延量(RG値)と基準クロック周期TCLKとを乗算することによって得られた数値の分だけ、被計測信号VT1を遅延させることによって生成された遅延信号VT1Dと上述した被計測信号VT2との差分VFNを計測する。当該差分VFNは、このように生成されたVT1Dと被計測信号VT2との差分であることから、基準クロック周期TCLK以下の幅を持つこととなる。従って、本実施形態においては、TV変換回路100を含むfine計測部210の計測範囲を基準クロック周期TCLK以下の幅に狭くすることができることから、fine計測部210の時間分解能を向上させることができる。その結果、本実施形態においては、TDC200の時間分解能を向上させることができる。
 <<9. 補足>>
 上述した実施形態に係る時間計測方法における各ステップは、必ずしも記載された順序に沿って処理されなくてもよい。例えば、各ステップは、適宜順序が変更されて処理されてもよい。また、各ステップは、時系列的に処理される代わりに、一部並列的に又は個別的に処理されてもよい。さらに、各ステップの処理についても、必ずしも記載された方法に沿って処理されなくてもよく、例えば、他の機能ブロックによって他の方法で処理されていてもよい。
 さらに、上記の実施形態に係る時間計測方法の少なくとも一部は、コンピュータを機能させる情報処理プログラムとして、ソフトウェアで構成することが可能であり、ソフトウェアで構成する場合には、これらの方法の少なくとも一部を実現するプログラムを記録媒体に収納し、測距装置1等、もしくは、測距装置1と接続された他の装置に読み込ませて実行させてもよい。また、当該時間計測方法の少なくとも一部を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、本技術は以下のような構成も取ることができる。
(1)
 基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得する第1のカウンタ部と、
 前記第1のカウンタ部からフィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成する遅延信号生成部と、
 前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測する計測部と、
 前記第1及び第2の計測結果を用いて演算を行う演算部と、
 を備える、時間計測装置。
(2)
 前記第1のカウンタ部は、略矩形波である前記第1の被測定信号の立ち上がり時間又は立ち下がり時間と、略矩形波である前記第2の被測定信号の立ち上がり時間又は立ち下がり時間との差分時間を前記第1の計測結果として取得する、上記(1)に記載の時間計測装置。
(3)
 前記計測部は、略矩形波である前記遅延信号の立ち上がり時間又は立ち下がり時間と、前記第2の被測定信号の立ち上がり時間又は立ち下がり時間との差分時間を前記第2の計測結果として計測する、上記(2)に記載の時間計測装置。
(4)
 前記遅延信号生成部は、前記第1の計測結果の値に比例する遅延量に基づき前記遅延信号を生成する、上記(1)~(3)のいずれか1つに記載の時間計測装置。
(5)
 前記遅延信号生成部は、
 半導体基板上に一列に、且つ、均等に並ぶ複数のフリップフロップ回路からなる、
 上記(1)~(4)のいずれか1つに記載の時間計測装置。
(6)
 前記遅延信号生成部は、
 半導体基板上に一列に、且つ、均等に並ぶ複数のラッチ回路からなる、
 上記(1)~(4)のいずれか1つに記載の時間計測装置。
(7)
 前記複数のフリップフロップ回路のそれぞれは、基準クロック信号源からトーナメント状に分岐した配線と電気的に接続される、上記(5)に記載の時間計測装置。
(8)
 前記遅延信号生成部は、略矩形波である前記基準クロック信号の立ち上がりエッジ、又は、立ち下がりエッジを利用して、前記遅延信号を生成する、上記(7)に記載の時間計測装置。
(9)
 前記遅延信号生成部は、略矩形波である前記基準クロック信号の立ち上がりエッジ、及び、立ち下がりエッジを利用して、前記遅延信号を生成する、上記(7)に記載の時間計測装置。
(10)
 前記遅延信号生成部は、前記基準クロック信号を利用してキャリブレーション用の信号を生成する、上記(7)に記載の時間計測装置。
(11)
 前記計測部は、時間-電圧変換回路とアナログ-デジタル変換回路とを含む、上記(1)~(10)のいずれか1つに記載の時間計測装置。
(12)
 前記計測部は、互いにスロープの異なる第1の時間-電圧変換回路及び第2の時間-電圧変換回路と、比較器と、第2のカウンタ部とを含む、上記(1)~(10)のいずれか1つに記載の時間計測装置。
(13)
 前記比較器は、前記遅延信号及び前記第2の被測定信号が入力された前記第1及び第2の時間-電圧変換回路からの出力信号に基づき、前記遅延信号と前記第2の被測定信号との差分時間を拡大し、
 前記第2のカウンタ部は、拡大した前記差分時間を、前記基準クロック信号に基づいてカウントすることにより、計測する、
 上記(12)に記載の時間計測装置。
(14)
 前記計測部は、前記第2のカウンタ部として機能する前記第1のカウンタ部を含む、上記(12)又は(13)に記載の時間計測装置。
(15)
 前記第1の時間-電圧変換回路と前記第2の時間-電圧変換回路とは異なるタイミングで起動する、上記(12)~(14)のいずれか1つに記載の時間計測装置。
(16)
 前記第1の時間-電圧変換回路と前記第2の時間-電圧変換回路とは同時に起動する、上記(12)~(14)のいずれか1つに記載の時間計測装置。
(17)
 基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得し、
 フィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成し、
 前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測し、
 前記第1及び第2の計測結果を用いて演算を行う、
 ことを含む、
 時間計測方法。
(18)
 時間計測装置を含むToF方式の測距装置であって、
 前記時間計測装置は、
 基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得する第1のカウンタ部と、
 前記第1のカウンタ部からフィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成する遅延信号生成部と、
 前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測する計測部と、
 前記第1及び第2の計測結果を用いて演算を行う演算部と、
 を含む、
 測距装置。
(19)
 位相差に基づき測距する間接型ToF方式の測距装置である、上記(18)に記載の測距装置。
  1  測距装置
  20  照射部
  30  受光部
  40  制御部
  60  処理部
  100、600a、600b  TV変換回路
  102、202  パルスジェネレータ
  104  積分器
  106、700  ADC
  108  遅延器
  200、706  TDC
  204  Coarse計測部
  206  遅延評価部
  208  遅延信号生成部
  210  fine計測部
  212  演算部
  300  画素駆動パルスジェネレータ
  302、312、322  端子
  310  レーザ駆動パルスジェネレータ
  320  画素部
  400a、400b、502  セレクタ
  410  ジェネレータ
  420  基準クロック信号源
  430  デコーダ/セレクタ
  500  TAC
  504  同期回路
  506  AND回路
  508  カウンタ
  602、702  比較器
  604a、604b  Gmアンプ
  606a、606b  キャパシタ
  704  リップルカウンタ
  708  転送バス
  800  対象物
  802a、802b  領域

Claims (19)

  1.  基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得する第1のカウンタ部と、
     前記第1のカウンタ部からフィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成する遅延信号生成部と、
     前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測する計測部と、
     前記第1及び第2の計測結果を用いて演算を行う演算部と、
     を備える、時間計測装置。
  2.  前記第1のカウンタ部は、略矩形波である前記第1の被測定信号の立ち上がり時間又は立ち下がり時間と、略矩形波である前記第2の被測定信号の立ち上がり時間又は立ち下がり時間との差分時間を前記第1の計測結果として取得する、請求項1に記載の時間計測装置。
  3.  前記計測部は、略矩形波である前記遅延信号の立ち上がり時間又は立ち下がり時間と、前記第2の被測定信号の立ち上がり時間又は立ち下がり時間との差分時間を前記第2の計測結果として計測する、請求項2に記載の時間計測装置。
  4.  前記遅延信号生成部は、前記第1の計測結果の値に比例する遅延量に基づき前記遅延信号を生成する、請求項1に記載の時間計測装置。
  5.  前記遅延信号生成部は、
     半導体基板上に一列に、且つ、均等に並ぶ複数のフリップフロップ回路からなる、
     請求項1に記載の時間計測装置。
  6.  前記遅延信号生成部は、
     半導体基板上に一列に、且つ、均等に並ぶ複数のラッチ回路からなる、
     請求項1に記載の時間計測装置。
  7.  前記複数のフリップフロップ回路のそれぞれは、基準クロック信号源からトーナメント状に分岐した配線と電気的に接続される、請求項5に記載の時間計測装置。
  8.  前記遅延信号生成部は、略矩形波である前記基準クロック信号の立ち上がりエッジ、又は、立ち下がりエッジを利用して、前記遅延信号を生成する、請求項7に記載の時間計測装置。
  9.  前記遅延信号生成部は、略矩形波である前記基準クロック信号の立ち上がりエッジ、及び、立ち下がりエッジを利用して、前記遅延信号を生成する、請求項7に記載の時間計測装置。
  10.  前記遅延信号生成部は、前記基準クロック信号を利用してキャリブレーション用の信号を生成する、請求項7に記載の時間計測装置。
  11.  前記計測部は、時間-電圧変換回路とアナログ-デジタル変換回路とを含む、請求項1に記載の時間計測装置。
  12.  前記計測部は、互いにスロープの異なる第1の時間-電圧変換回路及び第2の時間-電圧変換回路と、比較器と、第2のカウンタ部とを含む、請求項1に記載の時間計測装置。
  13.  前記比較器は、前記遅延信号及び前記第2の被測定信号が入力された前記第1及び第2の時間-電圧変換回路からの出力信号に基づき、前記遅延信号と前記第2の被測定信号との差分時間を拡大し、
     前記第2のカウンタ部は、拡大した前記差分時間を、前記基準クロック信号に基づいてカウントすることにより、計測する、
     請求項12に記載の時間計測装置。
  14.  前記計測部は、前記第2のカウンタ部として機能する前記第1のカウンタ部を含む、請求項12に記載の時間計測装置。
  15.  前記第1の時間-電圧変換回路と前記第2の時間-電圧変換回路とは異なるタイミングで起動する、請求項12に記載の時間計測装置。
  16.  前記第1の時間-電圧変換回路と前記第2の時間-電圧変換回路とは同時に起動する、請求項12に記載の時間計測装置。
  17.  基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得し、
     フィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成し、
     前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測し、
     前記第1及び第2の計測結果を用いて演算を行う、
     ことを含む、
     時間計測方法。
  18.  時間計測装置を含むToF方式の測距装置であって、
     前記時間計測装置は、
     基準クロック信号に基づいてカウントすることにより、第1の被測定信号と第2の被測定信号との差分時間を第1の計測結果として取得する第1のカウンタ部と、
     前記第1のカウンタ部からフィードバックされた前記第1の計測結果に基づき、前記第1の被測定信号を遅延させて遅延信号を生成する遅延信号生成部と、
     前記遅延信号と前記第2の被測定信号との差分時間を第2の計測結果として計測する計測部と、
     前記第1及び第2の計測結果を用いて演算を行う演算部と、
     を含む、
     測距装置。
  19.  位相差に基づき測距する間接型ToF方式の測距装置である、請求項18に記載の測距装置。
PCT/JP2021/000433 2020-01-20 2021-01-08 時間計測装置、時間計測方法及び測距装置 WO2021149506A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/792,346 US20230107549A1 (en) 2020-01-20 2021-01-08 Time measuring device, time measuring method, and distance measuring device
JP2021573061A JPWO2021149506A1 (ja) 2020-01-20 2021-01-08
CN202180008918.9A CN115004557A (zh) 2020-01-20 2021-01-08 时间测量装置、时间测量方法和距离测量装置
DE112021000661.4T DE112021000661T5 (de) 2020-01-20 2021-01-08 Zeitmessvorrichtung, zeitmessverfahren und abstandsmessvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-007119 2020-01-20
JP2020007119 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021149506A1 true WO2021149506A1 (ja) 2021-07-29

Family

ID=76992939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000433 WO2021149506A1 (ja) 2020-01-20 2021-01-08 時間計測装置、時間計測方法及び測距装置

Country Status (5)

Country Link
US (1) US20230107549A1 (ja)
JP (1) JPWO2021149506A1 (ja)
CN (1) CN115004557A (ja)
DE (1) DE112021000661T5 (ja)
WO (1) WO2021149506A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337620A (zh) * 2022-03-15 2022-04-12 成都迅翼卫通科技有限公司 一种测量多路脉冲信号相对延时的方法、装置和设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118300579B (zh) * 2024-06-06 2024-08-06 深圳市鼎阳科技股份有限公司 一种触发式信号源、信号发生器和多信号源同步方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194776A (ja) * 1990-11-28 1992-07-14 Hitachi Ltd 時間差測定回路
JP2001083250A (ja) * 1999-09-13 2001-03-30 Takata Corp 距離測定装置
US20080112526A1 (en) * 2006-11-14 2008-05-15 Integrated Device Technology, Inc. Phase difference detector having concurrent fine and coarse capabilities
JP2019060670A (ja) * 2017-09-26 2019-04-18 株式会社リコー 時間測定装置、測距装置、移動体装置、時間測定方法及び測距方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150056B2 (ja) 2006-02-23 2013-02-20 パナソニック株式会社 入退出管理システム
JP5540901B2 (ja) 2010-06-01 2014-07-02 ソニー株式会社 積分型a/d変換器、積分型a/d変換方法、固体撮像素子、およびカメラシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194776A (ja) * 1990-11-28 1992-07-14 Hitachi Ltd 時間差測定回路
JP2001083250A (ja) * 1999-09-13 2001-03-30 Takata Corp 距離測定装置
US20080112526A1 (en) * 2006-11-14 2008-05-15 Integrated Device Technology, Inc. Phase difference detector having concurrent fine and coarse capabilities
JP2019060670A (ja) * 2017-09-26 2019-04-18 株式会社リコー 時間測定装置、測距装置、移動体装置、時間測定方法及び測距方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337620A (zh) * 2022-03-15 2022-04-12 成都迅翼卫通科技有限公司 一种测量多路脉冲信号相对延时的方法、装置和设备

Also Published As

Publication number Publication date
DE112021000661T5 (de) 2022-11-24
US20230107549A1 (en) 2023-04-06
CN115004557A (zh) 2022-09-02
JPWO2021149506A1 (ja) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2021149506A1 (ja) 時間計測装置、時間計測方法及び測距装置
US9866208B2 (en) Precision measurements and calibrations for timing generators
KR100982103B1 (ko) 시간-디지털 변환기, 시간-디지털 변환 방법 및 컴퓨터 판독가능한 저장 매체
US20190178995A1 (en) Ranging device and method thereof
US7190174B2 (en) Method for calibrating timing clock
CN113169741B (zh) 模数转换器
US11125882B1 (en) Laser pulse sampling and detecting circuit, system, and method
US20110316603A1 (en) Duty compensation circuit
KR20190075399A (ko) 디지털 측정 회로 및 이를 이용한 메모리 시스템
JP2018163030A (ja) 時間デジタル変換器
US20230223943A1 (en) Devices and method for frequency determination
US10972116B2 (en) Time to digital converter and A/D conversion circuit
WO2022244657A1 (ja) Tdc装置、測距装置および補正方法
Junnarkar et al. FPGA-based self-calibrating time-to-digital converter for time-of-flight experiments
US20210344347A1 (en) Dll circuit, time difference amplifier circuit, and distance-measuring imaging device
KR102485895B1 (ko) 시간-디지털 변환기 및 시간-디지털 변환기의 교정 방법
JPWO2007105487A1 (ja) パルス幅制御信号発生回路、電力変換制御回路および電力変換制御用lsi
JP4892402B2 (ja) 半導体集積回路装置
WO2022244656A1 (ja) Tdc装置、測距装置および測距方法
WO2022191014A1 (ja) 光源駆動回路および測距装置
JP2024072082A (ja) Tdc装置、測距装置および補正方法
JP5509624B2 (ja) 信号発生装置
CN115333331A (zh) 一种面向模块化功放单元的相位调节闭环控制方法
Lee A low power two-step cyclic time-to-digital converter without startup time error in 180 nm CMOS
KR101168339B1 (ko) Ad 변환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573061

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21744231

Country of ref document: EP

Kind code of ref document: A1