WO2021147306A1 - 一种跟车时距更新方法、车辆巡航控制方法及装置 - Google Patents

一种跟车时距更新方法、车辆巡航控制方法及装置 Download PDF

Info

Publication number
WO2021147306A1
WO2021147306A1 PCT/CN2020/109177 CN2020109177W WO2021147306A1 WO 2021147306 A1 WO2021147306 A1 WO 2021147306A1 CN 2020109177 W CN2020109177 W CN 2020109177W WO 2021147306 A1 WO2021147306 A1 WO 2021147306A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
distance
following time
speed
value
Prior art date
Application number
PCT/CN2020/109177
Other languages
English (en)
French (fr)
Inventor
周林
潘国栋
Original Assignee
东风小康汽车有限公司重庆分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东风小康汽车有限公司重庆分公司 filed Critical 东风小康汽车有限公司重庆分公司
Publication of WO2021147306A1 publication Critical patent/WO2021147306A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed

Definitions

  • the present invention relates to the technical field of vehicle automatic control, and in particular to a method for updating the following time distance, a vehicle cruise control method and a device.
  • Adaptive Cruise Control is an intelligent automatic control technology, which combines safe distance keeping control on the basis of traditional cruise control, and monitors the forward driving environment through the environmental information perception module.
  • ACC Adaptive Cruise Control
  • the vehicle or the vehicle in front is far beyond the safe distance to cruise at a preset speed, and the vehicle in front is within the monitoring range and the speed of the vehicle in front is less than the cruising speed, it will automatically follow the vehicle in front by a certain control strategy.
  • the follow-up time is usually a preset fixed value.
  • the embodiments of the present invention provide a method for updating the following time distance, a vehicle cruise control method and a device.
  • the technical solution is as follows:
  • a method for updating the following time distance includes:
  • the following time distance is sent to a second vehicle that is about to pass the shifting position, so that the second vehicle adjusts its traveling speed according to the following time distance.
  • the first value is a weighted sum of the variable speed and the variable speed distance.
  • sending the following time distance to the second vehicle that is about to pass the shift position includes:
  • the following time distance and the shift position are sent to the information processing center, so that the information processing center uses the acquired navigation information of each vehicle to determine the second vehicle that will pass the shift position, and The shift position and the corresponding following time distance are sent to the second vehicle.
  • the method further includes:
  • a reminder message is sent to the second vehicle, so that the second vehicle turns off the automatic transmission function after receiving the reminder message.
  • a vehicle adaptive cruise control method includes:
  • the following time distance obtained by the first vehicle, and when reaching the shift position corresponding to the following time distance, adjust the driving speed according to the preset following distance and the following time distance, the following time distance Is the first value calculated by the first vehicle according to the variable speed and the variable speed distance, and is determined according to the corresponding relationship between the first value and the vehicle following distance, and the variable speed is determined according to the first
  • the vehicle speed before shifting, the vehicle speed after shifting, and the shifting distance are calculated.
  • the first value is a weighted sum of the variable speed and the variable speed distance.
  • receiving the following time distance obtained by the first vehicle includes:
  • the method further includes:
  • the automatic transmission function is turned off.
  • a device for updating the following time distance including:
  • the parameter acquisition module is used to acquire the vehicle speed before shifting, the vehicle speed after shifting, the shifting distance, and the shifting position of the first vehicle;
  • a calculation module configured to calculate a variable speed according to the vehicle speed before the variable speed, the vehicle speed after the variable speed, and the variable speed distance, and to calculate a first value according to the variable speed and the variable speed distance;
  • a car-following time determination module configured to determine the car-following time corresponding to the first value according to the corresponding relationship between the first value and the car-following data
  • the communication module is configured to send the following time distance to a second vehicle that is about to pass the shifting position, so that the second vehicle adjusts its traveling speed according to the following time distance.
  • the first value is a weighted sum of the variable speed and the variable speed distance.
  • the communication module is specifically configured to send the following time distance and the shift position to an information processing center, so that the information processing center uses the acquired navigation information of each vehicle to determine that the vehicle is about to pass through
  • the second vehicle in the shift position sends the shift position and the corresponding following time distance to the second vehicle.
  • the device further includes:
  • the prompt module is used to send a reminder message to the second vehicle when the first value is greater than the preset threshold value, so that the second vehicle closes the automatic transmission function after receiving the reminder message.
  • an adaptive cruise control device for a vehicle including:
  • the communication module is used to receive the following time distance obtained by the first vehicle;
  • the speed control module is used to adjust the driving speed according to the preset following distance and the following distance when the shift position corresponding to the following distance is reached, and the following distance is the first
  • the first value calculated by the vehicle according to the variable speed and the shifting distance is determined according to the corresponding relationship between the first value and the following time distance, and the variable speed is determined according to the vehicle speed before shifting of the first vehicle. , The vehicle speed after shifting and the shifting distance are calculated.
  • the first value is a weighted sum of the variable speed and the variable speed distance.
  • the communication module is specifically configured to send navigation information to the information processing center, so that the information processing center determines the second vehicle that is about to pass the shift position, and receives the following time distance and position from the information processing center information.
  • the communication module is further configured to receive reminder information sent by the first vehicle when the first value is greater than a preset threshold
  • the adaptive cruise control device disclosed in the present invention further includes:
  • the automatic transmission control module is used to turn off the automatic transmission function after receiving the reminder message.
  • the method and device for updating the following time distance disclosed in the present invention is more consistent with the traditional setting of the following time distance.
  • the actual conditions of the road surface are taken into account, and the vehicle speed adjustment is more consistent.
  • the actual operating state reduces the impact of road information changes on the adaptive cruise system, improves the safety and driving experience of users, and when the road conditions are not suitable for the adaptive cruise system, it can promptly remind other vehicle users to turn off the adaptive cruise system. For manual control.
  • the vehicle adaptive cruise control method and device disclosed in the present invention determine the following time distance sent by other vehicles traveling on a certain road section as the following time distance of the own vehicle traveling on the road section, and the following time distance is based on
  • the adjustment of the specific conditions of the road section can be applied to the adaptive cruise of different road sections, and when the road condition is not suitable for the adaptive cruise system, it can receive reminders in time and control to turn off the adaptive cruise.
  • FIG. 1 is a flowchart of a method for updating the following time distance according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the module structure of a device for updating the following time distance provided by an embodiment of the present invention
  • FIG. 3 is a flowchart of a vehicle adaptive cruise control method provided by an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a module structure of an adaptive cruise control device provided by an embodiment of the present invention.
  • Adaptive cruise is a vehicle automatic control technology that allows the vehicle cruise control system to adjust the speed of the vehicle to adapt to the traffic conditions.
  • the main principle is: the travel speed of the vehicle in front is detected by the radar installed in front of the vehicle, and the travel speed of the self-vehicle is adjusted according to the preset safety distance and the following distance.
  • the following time distance also known as the headway time, refers to the time interval between two consecutive car head ends passing through a certain end surface in a queue of vehicles driving in the same lane, and the relationship between the following time distance, the following distance and the vehicle speed Expressed by the following formula:
  • the vehicle speed is adjusted by the following distance and the preset following time distance.
  • it is difficult to reflect the influence of road conditions on the following effect by only using the preset fixed following time distance.
  • the actual demand does not match, causing the actual following distance to be less than the safe following distance, and there is a risk of rear-end collision.
  • the embodiments of the present invention disclose a method for updating the following time distance, a method and a device for vehicle cruise control, and the specific technical solutions are as follows.
  • a method for updating the following time distance which includes:
  • the vehicle speed before shifting in step S1 usually refers to the vehicle speed at the start of shifting
  • the vehicle speed after shifting usually refers to the vehicle speed at the end of shifting
  • the shifting distance usually refers to the distance between the starting shifting position and the ending shifting position.
  • the shift position usually includes: the vehicle position information when the shift is started and the vehicle position information when the shift is ended, two position information.
  • the speed change in the method includes: acceleration or deceleration
  • the corresponding variable speed includes: acceleration or deceleration.
  • variable speed refers to deceleration
  • variable speed refers to deceleration
  • the first vehicle refers to the own vehicle
  • the second vehicle refers to the own vehicle or other vehicles passing through the shift position again.
  • the method disclosed in the embodiment of the present invention includes two situations:
  • the following time interval determined by the first vehicle is sent to other vehicles, and the other vehicles adjust the driving speed according to the following time interval.
  • the first case is to adjust the speed of different vehicles on the same road segment, so the following distance in this case takes the road surface into consideration.
  • the vehicle can update the follow-up time of different road sections to prevent different road conditions from affecting the follow-up performance.
  • the first value is the weighted sum of the variable speed and the variable speed distance
  • calculating the first value according to the variable speed and the variable speed distance specifically includes the following formula:
  • s is the first value
  • a is the variable speed
  • x is the variable speed distance
  • K 1 and K 2 are the weight values of the variable speed a and the variable speed distance x respectively.
  • the value can be based on experience or based on sample data. Machine learning determination, the specific determination method is not limited in the embodiment of the present invention, and the values of K 1 and K 2 may be (0, 1).
  • the corresponding relationship between the first value and the following time distance can be: a value range of the first value corresponds to one following time distance, for example, when s ⁇ [s 1 ,s 2 ], the corresponding following time distance ⁇ is ⁇ 1 , or when s ⁇ [s 1 , s 2 ], the corresponding following time distance is s 1 and the corresponding following time distance ⁇ is ⁇ 1 , and so on.
  • mapping table of the first value and the following time distance. After the first value is calculated, the first value is matched with this mapping table, and the successfully matched following time distance is sent to the shift position that is about to pass. The second vehicle.
  • the following time intervals corresponding to the shifting position and shifting position are sent to the information processing center.
  • the information processing center uses the acquired navigation information of each vehicle to determine whether a vehicle enters the preset distance range, and the vehicle that enters the preset distance range is determined For the second vehicle that is about to pass the shifting position, the shifting position and the following time distance are sent to the second vehicle.
  • the main function of the introduction of the information processing center here is to receive the shifting positions and time intervals of different vehicles, determine the second vehicle, and send the corresponding time intervals to the corresponding second vehicle.
  • the above method also includes:
  • the preset threshold in step S6 is the warning value in the first value. Exceeding this warning value means that the adaptive cruise transmission function will not be able to brake the vehicle to maintain a safe distance. Therefore, a reminder message needs to be sent to remind the user to turn off. Automatic transmission function.
  • this embodiment discloses a vehicle following time distance updating device based on Embodiment 1 for implementing the method of updating the vehicle following time distance, including:
  • the parameter acquisition module is used to acquire the vehicle speed before shifting, the vehicle speed after shifting, the shifting distance and the shifting position of the first vehicle;
  • a calculation module configured to calculate a variable speed according to the vehicle speed before the variable speed, the vehicle speed after the variable speed, and the variable speed distance, and to calculate a first value according to the variable speed and the variable speed distance;
  • a car-following time determination module configured to determine the car-following time corresponding to the first value according to the corresponding relationship between the first value and the car-following data
  • the communication module is configured to send the following time distance to a second vehicle that is about to pass the shifting position, so that the second vehicle adjusts its traveling speed according to the following time distance.
  • the parameter acquisition modules in the above device include: a speed measurement module, a positioning module, and a distance measurement module.
  • the acquired vehicle speed before shifting usually refers to the vehicle speed at the start of shifting
  • the vehicle speed after shifting usually refers to the vehicle speed at the end of shifting, and the shifting distance. It usually refers to the distance between the start and end shift positions.
  • the shift position usually includes: vehicle position information when starting the shift and vehicle position information when ending the shift, two position information.
  • variable speed calculated by the calculation module includes: acceleration or deceleration.
  • the first value is the weighted sum of variable speed and variable speed distance.
  • the specific calculation formula is as follows:
  • s is the first value
  • a is the variable speed
  • x is the variable speed distance
  • K 1 and K 2 are the weight values of the variable speed a and the variable speed distance x respectively.
  • the value can be based on experience or based on sample data. Machine learning determination, the specific determination method is not limited in the embodiment of the present invention, and the values of K 1 and K 2 may be (0, 1).
  • the corresponding relationship between the first value and the following time distance can be: a value range of the first value corresponds to one following time distance, for example, when s ⁇ [s 1 ,s 2 ], the corresponding following time distance ⁇ is ⁇ 1 , or when s ⁇ [s 1 , s 2 ], the corresponding following time distance is s 1 and the corresponding following time distance ⁇ is ⁇ 1 , and so on.
  • the car-following time determination module stores a mapping table of the relationship between the first value and the car-following time. After the calculation module calculates the first value, the first value is matched to the corresponding car-following time according to the relationship mapping table.
  • the communication module can be directly connected to the communication module on the second vehicle, or it can be connected to the information processing center.
  • the information processing center uses the acquired navigation information of each vehicle to determine the second vehicle that is about to pass the shift position, and change the shift position and follow the car. The time interval is sent to the second vehicle.
  • the device for updating the following time distance disclosed in this embodiment can be set on the first vehicle.
  • the first vehicle is its own vehicle, and the second vehicle may be another vehicle that is about to pass the shift position, or it may be the own vehicle that passes through the shift position again. .
  • the device for updating the following time distance disclosed in the embodiment of the present invention further includes:
  • the prompt module is used to send a reminder message to the second vehicle when the first value is greater than the preset threshold value, so that the second vehicle closes the automatic transmission function after receiving the reminder message.
  • a vehicle adaptive cruise control method includes:
  • the following distance is the first vehicle calculated according to the variable speed and shifting distance.
  • a value is determined based on the corresponding relationship between the first value and the following time distance, and the variable speed is calculated based on the first vehicle's pre-shift vehicle speed, post-shift vehicle speed, and shift distance.
  • the first vehicle refers to other vehicles that have passed the shifting position, or the self-vehicle that has passed the shifting position.
  • the vehicle speed before shifting usually refers to the vehicle speed when the shift is started
  • the vehicle speed after shifting usually refers to the speed at the end of the shift
  • the shift distance usually refers to the distance between the start and end shift positions.
  • the shift position usually includes: vehicle position information when the shift is started And the vehicle position information at the end of shifting, two position information.
  • the variable speed in the method includes acceleration or deceleration, and the corresponding variable speed includes acceleration or deceleration.
  • step S1 the navigation information of the vehicle is sent to the information processing center, so that the information processing center determines whether the vehicle is about to pass the shift position and whether the vehicle is the second vehicle according to the navigation information of the vehicle.
  • receiving the following time distance obtained by the first vehicle may be receiving the following time distance sent by the first vehicle, or it may be the first vehicle sending the following time distance to the information processing center, and then the information processing center Follow-up time issued.
  • step S3 the driving speed is adjusted according to the preset following distance and the following time distance, which can be adjusted according to the following formula:
  • c is the following distance
  • is the following time
  • v is the speed of the vehicle.
  • the vehicle speed v is adjusted according to the following time distance ⁇ .
  • the first value is the weighted sum of the variable speed and the variable speed distance
  • the specific calculation method may be:
  • s is the first value
  • a is the variable speed
  • x is the variable speed distance
  • K 1 and K 2 are the weight values of the variable speed a and the variable speed distance x respectively.
  • the value can be based on experience or based on sample data. Machine learning determination, the specific determination method is not limited in the embodiment of the present invention, and the values of K 1 and K 2 may be (0, 1).
  • the corresponding relationship between the first value and the following time distance can be: a value range of the first value corresponds to one following time distance, for example, when s ⁇ [s 1 ,s 2 ], the corresponding following time distance ⁇ is ⁇ 1 , or when s ⁇ [s 1 , s 2 ], the corresponding following time distance is s 1 and the corresponding following time distance ⁇ is ⁇ 1 , and so on.
  • the adaptive cruise control method provided in this embodiment further includes:
  • the preset threshold value is the warning value in the first value. Exceeding the warning value means that the adaptive cruise transmission function will not be able to brake the vehicle to maintain a safe distance. Therefore, the user needs to turn off the automatic transmission function at this time. .
  • this embodiment discloses an adaptive cruise control device for implementing a vehicle adaptive cruise control method based on Embodiment 3, including:
  • the communication module is used to send vehicle navigation information and receive the following time distance obtained by the first vehicle;
  • the speed control module is used to adjust the driving speed according to the preset following distance and the following distance when the shift position corresponding to the following distance is reached.
  • the following distance is calculated by the first vehicle according to the variable speed and shift distance
  • the obtained first value is determined according to the corresponding relationship between the first value and the following time distance, and the variable speed is calculated according to the first vehicle's pre-shift vehicle speed, post-shift vehicle speed and shift distance.
  • the communication module sends the vehicle navigation information to the information processing center.
  • the following time distance received by the communication module may be sent directly by the first vehicle or sent by the information processing center.
  • the speed control module uses the following formula to control the speed of the vehicle according to the following formula:
  • c is the following distance
  • is the following time
  • v is the speed of the vehicle.
  • the vehicle speed v is adjusted according to the following time distance ⁇ .
  • the first vehicle refers to other vehicles that have passed the shifting position, or the self-vehicle that has passed the shifting position.
  • the vehicle speed before shifting usually refers to the vehicle speed when the shift is started
  • the vehicle speed after shifting usually refers to the vehicle speed at the end of the shift
  • the shift distance usually refers to the distance between the start and end shift positions.
  • the shift position usually includes: vehicle position information when the shift is started And the vehicle position information at the end of shifting, two position information.
  • the variable speed in the method includes acceleration or deceleration, and the corresponding variable speed includes acceleration or deceleration.
  • the first value is the weighted sum of the variable speed and the variable speed distance
  • the specific calculation method may be:
  • s is the first value
  • a is the variable speed
  • x is the variable speed distance
  • K 1 and K 2 are the weight values of the variable speed a and the variable speed distance x respectively.
  • the value can be based on experience or based on sample data. Machine learning determination, the specific determination method is not limited in the embodiment of the present invention, and the values of K 1 and K 2 may be (0, 1).
  • the corresponding relationship between the first value and the following time distance can be: a value range of the first value corresponds to one following time distance, for example, when s ⁇ [s 1 ,s 2 ], the corresponding following time distance ⁇ is ⁇ 1 , or when s ⁇ [s 1 , s 2 ], the corresponding following time distance is s 1 and the corresponding following time distance ⁇ is ⁇ 1 , and so on.
  • the communication module is further configured to receive reminder information sent by the first vehicle when the first value is greater than a preset threshold value.
  • the automatic transmission control module is used to turn off the automatic transmission function after receiving the reminder message.
  • the above-mentioned preset threshold is the warning value in the first value. Exceeding the warning value indicates that the variable speed function of adaptive cruise will not be able to brake the vehicle to maintain a safe distance. Therefore, the user needs to turn off the automatic transmission function at this time.
  • the method and device for updating the following time distance disclosed in the present invention is more consistent with the traditional setting of the following time distance.
  • the actual conditions of the road surface are taken into account, and the vehicle speed adjustment is more consistent.
  • the actual operating state reduces the impact of road information changes on the adaptive cruise system, improves the safety and driving experience of users, and when the road conditions are not suitable for the adaptive cruise system, it can promptly remind other vehicle users to turn off the adaptive cruise system. For manual control.
  • the vehicle adaptive cruise control method and device disclosed in the present invention determine the following time distance sent by other vehicles traveling on a certain road section as the following time distance of the own vehicle traveling on the road section, and the following time distance is based on
  • the adjustment of the specific conditions of the road section can be applied to the adaptive cruise of different road sections, and when the road condition is not suitable for the adaptive cruise system, it can receive reminders in time and control to turn off the adaptive cruise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种跟车时距更新方法、车辆巡航控制方法及装置。该跟车时距更新方法包括:获取第一车辆的变速前车速、变速后车速、变速距离和变速位置;根据变速前车速、变速后车速和变速距离计算变速度;根据变速度和变速距离计算第一数值;根据第一数值与跟车时距的对应关系,确定与第一数值对应的跟车时距;将跟车时距发送至即将经过变速位置的第二车辆,以便第二车辆根据跟车时距调整行驶速度。该方法考虑到了路面的实际情况确定跟车时距,车辆速度调整更加符合实际运行状态,减小路面信息变化对自适应巡航系统的影响,提高用户驾驶体验,且当路面情况不适于自适应巡航系统时,可以及时提醒其它车辆用户关闭自适应巡航改为手动控制。

Description

一种跟车时距更新方法、车辆巡航控制方法及装置 技术领域
本发明涉及车辆自动控制技术领域,特别涉及一种跟车时距更新方法、车辆巡航控制方法及装置。
背景技术
自适应巡航控制(ACC)是一种智能化的自动控制技术,其是在传统的定速巡航控制的基础上结合安全车距保持控制,通过环境信息感知模块进行前方行驶环境监测,当前方没有车辆或前方车辆远在安全车距之外时以预设定车速定速巡航,而当前方车辆在监测范围以内且前方车辆车速小于本巡航车速时,以一定的控制策略自动跟随前车行驶。其中,在跟随前车行驶时其主要是在车辆安全距离一定的情况下,根据跟车时距调整车速,从而实现车辆行驶速度的控制。现有技术中,跟车时距通常为预设的固定值,具体操作时,驾驶员可自行输入,这就使得跟车时距的设定不会考虑路面情况(例如路面坡度、摩擦因子)对跟车效果的影响,进而导致车辆控制不准确,导致追尾的风险。
发明内容
为了解决现有技术的问题,本发明实施例提供了跟车时距更新方法、车辆巡航控制方法及装置。所述技术方案如下:
第一方面,提供了一种跟车时距更新方法,所述方法包括:
获取第一车辆的变速前车速、变速后车速、变速距离和变速位置;
根据所述变速前车速、所述变速后车速和所述变速距离计算变速度;
根据所述变速度和所述变速距离计算第一数值;
根据所述第一数值与跟车时距的对应关系,确定与所述第一数值对应的所述跟车时距;
将所述跟车时距发送至即将经过所述变速位置的第二车辆,以便所述第二车辆根据所述跟车时距调整行驶速度。
进一步地,所述第一数值为所述变速度与所述变速距离加权后的和值。
进一步地,将所述跟车时距发送至即将经过所述变速位置的第二车辆包括:
将所述跟车时距和所述变速位置发送至信息处理中心,以便所述信息处理中心利用获取到的各车辆的导航信息,确定即将经过所述变速位置的所述第二车辆,将所述变速位置和对应的所述跟车时距发送至所述第二车辆。
进一步地,所述方法还包括:
当所述第一数值大于预设阈值时,则向所述第二车辆发送提醒信息,以便所述第二车辆在接收到所述提醒信息后关闭自动变速功能。
第二方面,提供了一种车辆自适应巡航控制方法,所述方法包括:
接收第一车辆获取的跟车时距,当到达与所述跟车时距对应的变速位置时,根据预设的跟车距离和所述跟车时距调整行驶速度,所述跟车时距为所述第一车辆根据变速度和变速距离计算得出的第一数值,并根据所述第一数值与所述跟车时距的对应关系确定得出,所述变速度根据所述第一车辆的变速前车速、变速后车速和所述变速距离计算得出。
进一步地,所述第一数值为所述变速度与所述变速距离加权后的和值。
进一步地,接收第一车辆获取的跟车时距包括:
将导航信息发送至信息处理中心,以使所述信息处理中心判断所述导航信息是否包含所述变速位置;
接收所述信息处理中心发送的所述变速位置和对应的所述跟车时距,所述跟车时距和所述变速位置由所述第一车辆发送至所述信息处理中心。
进一步地,所述方法还包括:
接收在当所述第一数值大于预设阈值时,所述第一车辆发送的提醒信息;
在接收到所述提醒信息后,关闭自动变速功能。
第三方面,在第一方面的基础上公开一种跟车时距更新装置,包括:
参数获取模块,用于获取第一车辆的变速前车速、变速后车速、变速距离和变速位置;
计算模块,用于根据所述变速前车速、所述变速后车速和所述变速距离计算变速度,以及,用于根据所述变速度和所述变速距离计算第一数值;
跟车时距确定模块,用于根据所述第一数值与跟车数据的对应关系,确定与所述第一数值对应的所述跟车时距;
通信模块,用于将所述跟车时距发送至即将经过所述变速位置的第二车辆,以便所述第二车辆根据所述跟车时距调整行驶速度。
进一步地,所述第一数值为所述变速度与所述变速距离加权后的和值。
进一步地,所述通信模块,具体用于将所述跟车时距和所述变速位置发送至信息处理中心,以便所述信息处理中心利用获取到的各车辆的导航信息,确定即将经过所述变速位置的所述第二车辆,将所述变速位置和对应的所述跟车时距发送至所述第二车辆。
进一步地,所述装置还包括:
提示模块,用于当第一数值大于预设阈值时,则向第二车辆发送提醒信息,以便第二车辆在接收到所述提醒信息后关闭自动变速功能。
第四方面,在第二方面的基础上公开一种车辆自适应巡航控制装置,包括:
通信模块,用于接收第一车辆获取的跟车时距;
速度控制模块,用于当到达与所述跟车时距对应的变速位置时,根据预设的跟车距离和所述跟车时距调整行驶速度,所述跟车时距为所述第一车辆根据变速度和变速距离计算得出的第一数值,并根据所述第一数值与所述跟车时距的对应关系确定得出,所述变速度根据所述第一车辆的变速前车速、变速后车速和所述变速距离计算得出。
进一步地,所述第一数值为所述变速度与所述变速距离加权后的和值。
进一步地,所述通信模块,具体用于将导航信息发送至信息处理中心,以便信息处理中心确定即将经过所述变速位置的所述第二车辆,接收信息处理中心发出的跟车时距和位置信息。
进一步地,所述通信模块,还用于接收在当第一数值大于预设阈值时,第一车辆发送的提醒信息;
本发明公开的自适应巡航控制装置还包括:
自动变速控制模块,用于在接收到提醒信息后,关闭自动变速功能。
本发明实施例提供的技术方案带来的有益效果是:
1、本发明公开的一种跟车时距更新方法及装置相较于传统的跟车时距的认为设定,在确定跟车时距时,考虑到了路面的实际情况,车辆速度调整更加符合实际运行状态,减小路面信息变化对自适应巡航系统的影响,提高用户驾驶的安全性和驾驶体验,并且当路面情况不适于自适应巡航系统时,可以及时提醒其它车辆用户关闭自适应巡航改为手动控制。
2、本发明公开的一种车辆自适应巡航控制方法及装置将在某路段行驶的其它车辆发送的跟车时距确定为自车在该路段行驶的跟车时距,其跟车时距根据路段的具体情况调整,能够适用于不同路段的自适应巡航,并且在路面情况不适于自适应巡航系统时,能够及时收到提醒信息,控制关闭自适应巡航。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种跟车时距更新方法流程图;
图2是本发明实施例提供的一种跟车时距更新装置模块结构示意图;
图3是本发明实施例提供的一种车辆自适应巡航控制方法流程图;
图4是本发明实施例提供的一种自适应巡航控制装置模块结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
自适应巡航是一种允许车辆巡航控制系统通过调整车辆行驶速度以适应交通状况的车辆自动控制技术。主要原理是:通过安装在车辆前方的雷达检测前方车辆的行进速度,根据预设的安全距离和跟车时距调整自车的行进速度。其中跟车时距又称车头时距,是指在同一车道上行驶的车辆队列中,两连续车头端部通过某一端面的时间间距,跟车时距与跟车距离和车辆行驶速度的关系用下面公式表示:
跟车距离=跟车时距×车速
根据上述公式,现有技术中通过跟车距离和预设的跟车时距调整车速,然而仅仅通过预设的固定跟车时距难以体现路面情况对跟车效果的影响,计算出的车速与实际需求不符,导致实际跟车距离小于安全跟车距离的情况,出现追尾的风险。
因此为了解决上述技术问题,本发明实施例公开一种跟车时距更新方法、车辆巡航控制方法及装置,具体的技术方案如下实施例。
实施例1
如图1所示,提供一种跟车时距更新方法,包括:
S1、获取第一车辆的变速前车速、变速后车速、变速距离和变速位置;
S2、根据变速前车速、变速后车速和变速距离计算变速度;
S3、根据变速度和变速距离计算第一数值;
S4、根据第一数值与跟车时距的对应关系,确定与第一数值对应的跟车时距;
S5、将跟车时距发送至即将经过变速位置的第二车辆,以便第二车辆根据跟车时距调整行驶速度。
上述方法中,需要说明的是,步骤S1中变速前车速通常指启动变速时的车速,变速后车速通常指结束变速时的车速,变速距离通常指启动变速位置与结束变速位置之间的路程,变速位置通常包括:启动变速时的车辆位置信息和结束变速时的车辆位置信息,两个位置信息。 方法中所述变速包括:加速或者减速,相应的变速度包括:加速度或者减速度,当自适应巡航车辆识别到前车情况,且前车车速低于自车车速时会进行减速,因此在此种情况下,变速是指减速,变速度是指减速度。
方法中所述第一车辆指自车,所述第二车辆指再次经过变速位置的自车或者其他车辆。基于第二车辆可以是自车也可以是其他车辆,因此本发明实施例公开的方法包括两种情况:
情况一,当第二车辆为其他车辆时
当有其他车辆即将经过变速位置时,将第一车辆确定的跟车时距发送至其他车辆,其他车辆根据跟车时距调整行驶速度。第一种情况下是在同一路段不同车辆的速度调整,因此此种情况的跟车时距考虑到了路面的情况。
情况二,当第二车辆为自车时
当自车再次即将经过变速位置时,将其上次经过此变速位置确定的跟车时距为当前的跟车时距,根据当前的跟车时距调整行驶速度。在第二种情况下,车辆可以更新不同路段的跟车时距,避免不同的路面情况影响跟车性能。
上述方法中,第一数值为变速度和变速距离加权后的和值,根据变速度和变速距离计算第一数值具体包括如下公式:
s=K 1a+K 2x
其中,s为第一数值,a为变速度,x为变速距离,K 1和K 2分别为变速度a和变速距离x的权重值,其取值可以根据经验取值,或者基于样本数据进行机器学习确定,具体的确定方法本发明实施例不做限制,K 1和K 2的可以为(0,1)。
第一数值和跟车时距的对应关系可以为:一个第一数值的数值范围对应一个跟车时距,例如,当s∈[s 1,s 2]时,对应的跟车时距τ为τ 1,或者当s∈[s 1,s 2]时,对应的跟车时距是s 1对应的跟车时距τ为τ 1,依次类推。
具体地,存在第一数值和跟车时距的映射表,当计算出第一数值后,将第一数值与这张映射表匹配,将匹配成功的跟车时距发送至即将经过变速位置的第二车辆。
在将跟车时距发送至即将经过变速位置的第二车辆时,可以直接发送至第二车辆,也可以通过信息处理中心发送至第二车辆,具体地,
将变速位置和变速位置相应的跟车时距发送至信息处理中心,信息处理中心利用获取的各车辆的导航信息,确定是否有车辆进入预设的距离范围,将进入预设距离范围的车辆确定为即将经过变速位置的第二车辆,将变速位置和跟车时距发送至第二车辆。此处引入信息处理中心的主要作用是:接收不同车辆的变速位置和跟车时距,以及确定第二车辆,将相应的 跟车时距发送至相应的第二车辆上。
进一步地,上述方法还包括:
S6、当第一数值大于预设阈值时,则向第二车辆发送提醒信息以便第二车辆在接收到提醒信息后关闭自动变速功能。
需要说明的是,步骤S6中预设阈值为第一数值中的警戒值,超过该警戒值表示自适应巡航的变速功能将不能刹住车辆保持安全距离,因此此时需要发送提醒信息提示用户关闭自动变速功能。
实施例2
如图2所示,本实施例基于实施例1公开一种实现跟车时距更新方法的跟车时距更新装置,包括:
参数获取模块,用于获取第一车辆的变速前车速、变速后车速、变速距离和变速位置;
计算模块,用于根据所述变速前车速、所述变速后车速和所述变速距离计算变速度,以及,用于根据所述变速度和所述变速距离计算第一数值;
跟车时距确定模块,用于根据所述第一数值与跟车数据的对应关系,确定与所述第一数值对应的所述跟车时距;
通信模块,用于将所述跟车时距发送至即将经过所述变速位置的第二车辆,以便所述第二车辆根据所述跟车时距调整行驶速度。
需要说明的是,上述装置中参数获取模块包括:测速模块、定位模块、测距模块,其获取的变速前车速通常指启动变速时的车速,变速后车速通常指结束变速时的车速,变速距离通常指启动变速位置与结束变速位置之间的路程,变速位置通常包括:启动变速时的车辆位置信息和结束变速时的车辆位置信息,两个位置信息。
计算模块计算出的变速度包括:加速度或者减速度。第一数值为变速度和变速距离加权后的和值,具体的计算公式如下:
s=K 1a+K 2x
其中,s为第一数值,a为变速度,x为变速距离,K 1和K 2分别为变速度a和变速距离x的权重值,其取值可以根据经验取值,或者基于样本数据进行机器学习确定,具体的确定方法本发明实施例不做限制,K 1和K 2的可以为(0,1)。
第一数值和跟车时距的对应关系可以为:一个第一数值的数值范围对应一个跟车时距,例如,当s∈[s 1,s 2]时,对应的跟车时距τ为τ 1,或者当s∈[s 1,s 2]时,对应的跟车时距是s 1对应的跟车时距τ为τ 1,依次类推。
跟车时距确定模块中存储有第一数值与跟车时距的关系映射表,当计算模块计算出第一数值后,将第一数值根据关系映射表匹配到相应的跟车时距。
通信模块可以直接与第二车辆上的通信模块连接,也可以与信息处理中心连接,息处理中心利用获取的各车辆的导航信息,确定即将经过变速位置的第二车辆,将变速位置和跟车时距发送至第二车辆。
本实施例公开的跟车时距更新装置可以设置在第一车辆上,第一车辆为自车,第二车辆可以是即将经过变速位置的其它车辆,也可以是再一次经过变速位置的自车。
进一步地,本发明实施例公开的跟车时距更新装置还包括:
提示模块,用于当第一数值大于预设阈值时,则向第二车辆发送提醒信息,以便第二车辆在接收到所述提醒信息后关闭自动变速功能。
实施例3
如图3所示,一种车辆自适应巡航控制方法,包括:
S1、将导航信息发送至信息处理中心;
S2、接收第一车辆获取的跟车时距;
S3、当到达与跟车时距对应的变速位置时,根据预设的跟车距离和跟车时距调整行驶速度,跟车时距为第一车辆根据变速度和变速距离计算得出的第一数值,并根据第一数值与跟车时距的对应关系确定得出,变速度根据第一车辆的变速前车速、变速后车速和变速距离计算得出。
需要说明的是,上述方法中,第一车辆是指曾经经过变速位置的其它车辆,或者曾经经过变速位置的自车。变速前车速通常指启动变速时的车速,变速后车速通常指结束变速时的车速,变速距离通常指启动变速位置与结束变速位置之间的路程,变速位置通常包括:启动变速时的车辆位置信息和结束变速时的车辆位置信息,两个位置信息。方法中所述变速包括:加速或者减速,相应的变速度包括:加速度或者减速度。
步骤S1中将车辆的导航信息发送至信息处理中心,以便信息处理中心根据车辆的导航信息确定车辆是否即将经过变速位置,该车辆是否为第二车辆。
步骤S2中接收第一车辆获取的跟车时距可以是接收由第一车辆发送的跟车时距,也可以是由第一车辆将跟车时距发送至信息处理中心,再由信息处理中心发出的跟车时距。
步骤S3中根据预设的跟车距离和跟车时距调整行驶速度,具体可以根据以下公式调整:
c=τv
其中,c为跟车距离,τ为跟车时距,v为车辆行驶速度。
在满足一定的跟车距离c的情况下,根据跟车时距τ调整车辆行驶速度v。
具体地,第一数值为变速度与变速距离加权后的和值,具体的计算方法可以是:
s=K 1a+K 2x
其中,s为第一数值,a为变速度,x为变速距离,K 1和K 2分别为变速度a和变速距离x的权重值,其取值可以根据经验取值,或者基于样本数据进行机器学习确定,具体的确定方法本发明实施例不做限制,K 1和K 2的可以为(0,1)。
第一数值和跟车时距的对应关系可以为:一个第一数值的数值范围对应一个跟车时距,例如,当s∈[s 1,s 2]时,对应的跟车时距τ为τ 1,或者当s∈[s 1,s 2]时,对应的跟车时距是s 1对应的跟车时距τ为τ 1,依次类推。
进一步地,本实施例提供的自适应巡航控制方法,还包括:
S4、接收在当第一数值大于预设阈值时,第一车辆发送的提醒信息;
S5、在接收到提醒信息后,关闭自动变速功能。
需要说明的是,上述方法中,预设阈值为第一数值中的警戒值,超过该警戒值表示自适应巡航的变速功能将不能刹住车辆保持安全距离,因此此时需要用户关闭自动变速功能。
实施例4
如图4所示,本实施例基于实施例3公开一种实现车辆自适应巡航控制方法的自适应巡航控制装置,包括:
通信模块,用于发送车辆导航信息,以及接收第一车辆获取的跟车时距;
速度控制模块,用于当到达与跟车时距对应的变速位置时,根据预设的跟车距离和跟车时距调整行驶速度,跟车时距为第一车辆根据变速度和变速距离计算得出的第一数值,并根据第一数值与跟车时距的对应关系确定得出,变速度根据第一车辆的变速前车速、变速后车速和变速距离计算得出。
上述装置中,需要说明的是,通信模块将车辆导航信息发送至信息处理中心。通信模块接收到的跟车时距可以是第一车辆直接发出的,也可以是由信息处理中心发出的。
速度控制模块具体根据以下公式利用跟车时距控制车辆行驶速度:
c=τv
其中,c为跟车距离,τ为跟车时距,v为车辆行驶速度。
在满足一定的跟车距离c的情况下,根据跟车时距τ调整车辆行驶速度v。
第一车辆是指曾经经过变速位置的其它车辆,或者曾经经过变速位置的自车。变速前车速通常指启动变速时的车速,变速后车速通常指结束变速时的车速,变速距离通常指启动变速位置与结束变速位置之间的路程,变速位置通常包括:启动变速时的车辆位置信息和结束 变速时的车辆位置信息,两个位置信息。方法中所述变速包括:加速或者减速,相应的变速度包括:加速度或者减速度。
具体地,第一数值为变速度与变速距离加权后的和值,具体的计算方法可以是:
s=K 1a+K 2x
其中,s为第一数值,a为变速度,x为变速距离,K 1和K 2分别为变速度a和变速距离x的权重值,其取值可以根据经验取值,或者基于样本数据进行机器学习确定,具体的确定方法本发明实施例不做限制,K 1和K 2的可以为(0,1)。
第一数值和跟车时距的对应关系可以为:一个第一数值的数值范围对应一个跟车时距,例如,当s∈[s 1,s 2]时,对应的跟车时距τ为τ 1,或者当s∈[s 1,s 2]时,对应的跟车时距是s 1对应的跟车时距τ为τ 1,依次类推。
进一步地,通信模块还用于,接收在当第一数值大于预设阈值时,第一车辆发送的提醒信息。
本发明实施例公开的自适应巡航控制装置还包括:
自动变速控制模块,用于在接收到提醒信息后,关闭自动变速功能。
上述预设阈值为第一数值中的警戒值,超过该警戒值表示自适应巡航的变速功能将不能刹住车辆保持安全距离,因此此时需要用户关闭自动变速功能。
本发明实施例提供的技术方案带来的有益效果是:
1、本发明公开的一种跟车时距更新方法及装置相较于传统的跟车时距的认为设定,在确定跟车时距时,考虑到了路面的实际情况,车辆速度调整更加符合实际运行状态,减小路面信息变化对自适应巡航系统的影响,提高用户驾驶的安全性和驾驶体验,并且当路面情况不适于自适应巡航系统时,可以及时提醒其它车辆用户关闭自适应巡航改为手动控制。
2、本发明公开的一种车辆自适应巡航控制方法及装置将在某路段行驶的其它车辆发送的跟车时距确定为自车在该路段行驶的跟车时距,其跟车时距根据路段的具体情况调整,能够适用于不同路段的自适应巡航,并且在路面情况不适于自适应巡航系统时,能够及时收到提醒信息,控制关闭自适应巡航。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种跟车时距更新方法,其特征在于,包括:
    获取第一车辆的变速前车速、变速后车速、变速距离和变速位置;
    根据所述变速前车速、所述变速后车速和所述变速距离计算变速度;
    根据所述变速度和所述变速距离计算第一数值;
    根据所述第一数值与跟车时距的对应关系,确定与所述第一数值对应的所述跟车时距;
    将所述跟车时距发送至即将经过所述变速位置的第二车辆,以便所述第二车辆根据所述跟车时距调整行驶速度。
  2. 如权利要求1所述的一种跟车时距更新方法,其特征在于,所述第一数值为所述变速度与所述变速距离加权后的和值。
  3. 如权利要求1所述的一种跟车时距更新方法,其特征在于,将所述跟车时距发送至即将经过所述变速位置的第二车辆包括:
    将所述跟车时距和所述变速位置发送至信息处理中心,以便所述信息处理中心利用获取到的各车辆的导航信息,确定即将经过所述变速位置的所述第二车辆,将所述变速位置和对应的所述跟车时距发送至所述第二车辆。
  4. 如权利要求1~3中任意一项所述的一种跟车时距更新方法,其特征在于,所述方法还包括:
    当所述第一数值大于预设阈值时,则向所述第二车辆发送提醒信息,以便所述第二车辆在接收到所述提醒信息后关闭自动变速功能。
  5. 一种车辆自适应巡航控制方法,其特征在于,包括:
    接收第一车辆获取的跟车时距,当到达与所述跟车时距对应的变速位置时,根据预设的跟车距离和所述跟车时距调整行驶速度,所述跟车时距为所述第一车辆根据变速度和变速距离计算得出的第一数值,并根据所述第一数值与所述跟车时距的对应关系确定得出,所述变速度根据所述第一车辆的变速前车速、变速后车速和所述变速距离计算得出。
  6. 如权利要求5所述的一种车辆自适应巡航控制方法,其特征在于,所述第一数值为所述变速度与所述变速距离加权后的和值。
  7. 如权利要求5所述的一种车辆自适应巡航控制方法,其特征在于,接收第一车辆获取的跟车时距包括:
    将导航信息发送至信息处理中心,以使所述信息处理中心判断所述导航信息是否包含所 述变速位置;
    接收所述信息处理中心发送的所述变速位置和对应的所述跟车时距,所述跟车时距和所述变速位置由所述第一车辆发送至所述信息处理中心。
  8. 如权利要求5~7中任意一项所述的一种车辆自适应巡航控制方法,其特征在于,所述方法还包括:
    接收在当所述第一数值大于预设阈值时,所述第一车辆发送的提醒信息;
    在接收到所述提醒信息后,关闭自动变速功能。
  9. 一种跟车时距更新装置,其特征在于,包括:
    参数获取模块,用于获取第一车辆的变速前车速、变速后车速、变速距离和变速位置;
    计算模块,用于根据所述变速前车速、所述变速后车速和所述变速距离计算变速度,以及,用于根据所述变速度和所述变速距离计算第一数值;
    跟车时距确定模块,用于根据所述第一数值与跟车数据的对应关系,确定与所述第一数值对应的所述跟车时距;
    通信模块,用于将所述跟车时距发送至即将经过所述变速位置的第二车辆,以便所述第二车辆根据所述跟车时距调整行驶速度。
  10. 一种车辆自适应巡航控制装置,其特征在于,包括:
    通信模块,用于接收第一车辆获取的跟车时距;
    速度控制模块,用于当到达与所述跟车时距对应的变速位置时,根据预设的跟车距离和所述跟车时距调整行驶速度,所述跟车时距为所述第一车辆根据变速度和变速距离计算得出的第一数值,并根据所述第一数值与所述跟车时距的对应关系确定得出,所述变速度根据所述第一车辆的变速前车速、变速后车速和所述变速距离计算得出。
PCT/CN2020/109177 2020-01-22 2020-08-14 一种跟车时距更新方法、车辆巡航控制方法及装置 WO2021147306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010074833.8 2020-01-22
CN202010074833.8A CN111267851B (zh) 2020-01-22 2020-01-22 一种跟车时距更新方法、车辆巡航控制方法及装置

Publications (1)

Publication Number Publication Date
WO2021147306A1 true WO2021147306A1 (zh) 2021-07-29

Family

ID=70993666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109177 WO2021147306A1 (zh) 2020-01-22 2020-08-14 一种跟车时距更新方法、车辆巡航控制方法及装置

Country Status (2)

Country Link
CN (1) CN111267851B (zh)
WO (1) WO2021147306A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111267850B (zh) * 2020-01-22 2021-08-06 东风小康汽车有限公司重庆分公司 一种车辆自适应巡航控制方法及装置
CN111267851B (zh) * 2020-01-22 2021-07-06 东风小康汽车有限公司重庆分公司 一种跟车时距更新方法、车辆巡航控制方法及装置
CN111845744B (zh) * 2020-06-24 2022-10-18 深圳中集智能科技有限公司 车辆跟随控制方法、装置、电子设备和存储介质
CN114394093A (zh) * 2020-09-25 2022-04-26 阿波罗智能技术(北京)有限公司 车辆控制方法、装置、电子设备及存储介质
CN112758093B (zh) * 2021-01-25 2022-05-03 北京罗克维尔斯科技有限公司 Acc车速控制方法、装置、acc控制器、存储介质及车辆
CN113879304B (zh) * 2021-10-21 2023-06-20 中寰卫星导航通信有限公司 一种车辆控制方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130261889A1 (en) * 2012-03-30 2013-10-03 Honda Motor Co., Ltd Adaptive cruise control apparatus
JP2015054649A (ja) * 2013-09-13 2015-03-23 三菱電機株式会社 制御装置
CN107650914A (zh) * 2017-09-29 2018-02-02 上海汽车集团股份有限公司 先进驾驶辅助系统的车辆接口测试方法
CN109866770A (zh) * 2019-02-28 2019-06-11 重庆长安汽车股份有限公司 一种车辆自适应巡航控制方法、装置、系统及汽车
CN110435629A (zh) * 2019-07-26 2019-11-12 中国第一汽车股份有限公司 行车速度的调整方法、装置、系统及车辆
CN110615003A (zh) * 2019-10-30 2019-12-27 吉林大学 基于策略梯度在线学习算法的巡航控制系统及设计方法
CN111267851A (zh) * 2020-01-22 2020-06-12 东风小康汽车有限公司重庆分公司 一种跟车时距更新方法、车辆巡航控制方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025486A (ja) * 1998-07-13 2000-01-25 Denso Corp 車間距離制御装置及び記録媒体
US20110276216A1 (en) * 2010-05-07 2011-11-10 Texas Instruments Incorporated Automotive cruise controls, circuits, systems and processes
SE540390C2 (en) * 2015-01-28 2018-09-11 Scania Cv Ab Method and control unit for adjusting a time gap
FR3060126B1 (fr) * 2016-12-08 2020-06-26 Continental Automotive France Procede pour obtenir une information redondante de la vitesse d'un vehicule
CN109229098B (zh) * 2018-09-05 2020-09-11 广州小鹏汽车科技有限公司 一种用于控制车辆自适应巡航车距的方法及车用跟随行驶控制装置
CN109849911B (zh) * 2019-02-19 2020-10-09 百度在线网络技术(北京)有限公司 跟车方法、装置和计算机可读存储介质
CN110466520A (zh) * 2019-08-01 2019-11-19 武汉理工大学 一种基于路面附着系数识别的自适应巡航方法
CN110576856A (zh) * 2019-09-16 2019-12-17 宁波吉利汽车研究开发有限公司 一种自适应巡航状态下的速度确定方法、装置及汽车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130261889A1 (en) * 2012-03-30 2013-10-03 Honda Motor Co., Ltd Adaptive cruise control apparatus
JP2015054649A (ja) * 2013-09-13 2015-03-23 三菱電機株式会社 制御装置
CN107650914A (zh) * 2017-09-29 2018-02-02 上海汽车集团股份有限公司 先进驾驶辅助系统的车辆接口测试方法
CN109866770A (zh) * 2019-02-28 2019-06-11 重庆长安汽车股份有限公司 一种车辆自适应巡航控制方法、装置、系统及汽车
CN110435629A (zh) * 2019-07-26 2019-11-12 中国第一汽车股份有限公司 行车速度的调整方法、装置、系统及车辆
CN110615003A (zh) * 2019-10-30 2019-12-27 吉林大学 基于策略梯度在线学习算法的巡航控制系统及设计方法
CN111267851A (zh) * 2020-01-22 2020-06-12 东风小康汽车有限公司重庆分公司 一种跟车时距更新方法、车辆巡航控制方法及装置

Also Published As

Publication number Publication date
CN111267851B (zh) 2021-07-06
CN111267851A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2021147306A1 (zh) 一种跟车时距更新方法、车辆巡航控制方法及装置
WO2021147307A1 (zh) 一种车辆自适应巡航控制方法及装置
US8214124B2 (en) Cruise control system and method
CN107128307B (zh) 一种车辆巡航控制方法、装置及汽车
CN106891900B (zh) 车辆控制装置
US11661065B2 (en) Vehicle travel control method and vehicle travel control apparatus
CN111601745B (zh) 车辆的自动驾驶方法及自动控制装置
EP3707045B1 (en) Warning and adjusting the longitudinal speed of a motor vehicle based on the recognized road traffic lights
EP1931546A2 (en) Adaptive cruise control using vehicle-to-vehicle wireless communication
CN103213533A (zh) 汽车转向灯自动控制系统以及控制方法
CN109094560B (zh) 一种自适应巡航方法及装置
JP3797341B2 (ja) 車両用走行制御装置
JP2007102564A (ja) 走行制御装置
JP2017117096A (ja) 車両の運転操作監視装置
US20190283772A1 (en) Driving support system and vehicle control method
CN112224202A (zh) 一种紧急工况下的多车协同避撞系统及方法
JP3832380B2 (ja) 車両の自動速度制御装置
CN115848372A (zh) 车辆自适应巡航控制装置及控制方法
JP2006290149A (ja) 車両用走行制御装置
JP2006036159A (ja) 車両の走行制御装置
CN111137276A (zh) 车辆控制装置
CN115009277A (zh) 一种汽车自适应巡航系统下坡控制方法及系统
JP2006044590A (ja) 車両の減速制御装置
JP5194822B2 (ja) 車両走行制御装置
JP2004161175A (ja) 走行速度制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914877

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20914877

Country of ref document: EP

Kind code of ref document: A1