CN111137276A - 车辆控制装置 - Google Patents
车辆控制装置 Download PDFInfo
- Publication number
- CN111137276A CN111137276A CN201911045466.2A CN201911045466A CN111137276A CN 111137276 A CN111137276 A CN 111137276A CN 201911045466 A CN201911045466 A CN 201911045466A CN 111137276 A CN111137276 A CN 111137276A
- Authority
- CN
- China
- Prior art keywords
- target acceleration
- vehicle
- acceleration
- cpu
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 547
- 238000013459 approach Methods 0.000 claims abstract description 20
- 230000033001 locomotion Effects 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 11
- 230000001052 transient effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 53
- 230000004048 modification Effects 0.000 description 41
- 238000012986 modification Methods 0.000 description 41
- 238000012545 processing Methods 0.000 description 41
- 230000008569 process Effects 0.000 description 34
- 238000012937 correction Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 239000003550 marker Substances 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 101150024075 Mapk1 gene Proteins 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18145—Cornering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/02—Control of vehicle driving stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/143—Speed control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/403—Image sensing, e.g. optical camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/12—Lateral speed
- B60W2520/125—Lateral acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/14—Yaw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/30—Road curve radius
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/10—Longitudinal speed
- B60W2720/106—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/12—Lateral speed
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Regulating Braking Force (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明提供一种车辆控制装置。该车辆控制装置被构成为,能够在包括与行驶道路的形状相关的信息在内的第一信息表示行驶道路为曲线道路的第一状况下,能够根据该第一信息而对第一目标加速度进行计算,并且被构成为,能够在以独立于第一信息的方式而被取得的第二信息表示行驶道路为曲线道路的第二状况下,根据该第二信息而对第二目标加速度进行计算。车辆控制装置在产生第一状况以及第二状况这双方的情况下,以使车辆的实际的加速度接近于所述第一目标加速度以及所述第二目标加速度中的被预先规定的优先度较高的一方的方式对所述车辆进行控制。
Description
技术领域
本发明涉及一种使用车辆行驶于曲线道路(弯曲道路)上的情况下的该车辆的加速度的目标值即目标加速度来对该车辆的实际的加速度进行控制的车辆控制装置。
背景技术
一直以来,已知有一种如下的车辆控制装置,所述车辆控制装置被构成为,在车辆行驶于曲线道路的情况下,使用互不相同的两种方式来决定(计算)该车辆的目标加速度。在例如专利文献1所记载的车辆控制装置(以下,称为“现有装置”)中,使用以下的第一方式以及第二方式来对目标加速度进行计算。
第一方式:根据来自导航系统的导航信息而对目标加速度进行计算的方式;
第二方式:基于由横摆率传感器检测出的“车辆的实际的横摆率”来决定目标加速度的方式。
以下,将通过上述第一方式而计算出的目标加速度称为“第一方式加速度”,将通过上述第二方式而计算出的目标加速度称为“第二方式加速度”。
在现有装置中,选择第一方式加速度以及第二方式加速度中的、更小(较低)的一方的目标加速度,并根据该选择出的目标加速度(选择目标加速度)来对车辆的实际的加速度(实际加速度)进行控制。另外,一般而言,车辆行驶于曲线道路的情况下的目标加速度为负加速度(即,正减速度)。
在先技术文献
专利文献
专利文献1:日本特开2009-51487号公报
发明内容
由于以下理由,与第二方式加速度相比较,第一方式加速度与针对实际的曲线道路的理想的目标加速度之间的误差较大(即,不适当)的可能性较高。
·“导航系统预先存储的曲线道路的位置以及形状”与“实际的曲线道路的位置以及形状”的误差分别较大。
·在GPS信号的接收状态并不良好的情况下,车辆控制装置根据GPS信号而特别指定的车辆的当前位置、与实际的车辆的当前位置之间的误差较大。
然而,在现有装置中,如果第一方式加速度小于第二方式加速度,则会根据第一方式加速度而对车辆进行控制。在该情况下,当第一方式加速度背离了理想的目标加速度时,车辆的实际的加速度将不会相对于实际的曲线道路而成为适当的加速度,并且存在驾驶员感到不适感的可能性。
本发明是为了应对前述的课题而完成的发明。即,本发明的目的之一在于,提供一种能够使用相对于曲线道路而言更适当的可能性较高的目标加速度来使车辆行驶的车辆控制装置。
本发明的一个方式所涉及的车辆控制装置(以下,也称为“本发明装置”)具备:
第一取得部(13、17、18、10、步骤505、步骤515),其取得包括与车辆所行驶的道路即行驶道路的形状相关的信息在内的第一信息;
第二取得部(11、12、16、19、10、步骤605、步骤615),其以独立于所述第一取得部的方式而取得包括与所述行驶道路的形状相关的信息在内的第二信息;
第一计算部(10、步骤415、步骤540),其被构成为,能够在所述第一信息表示所述行驶道路为曲线道路的第一状况下(步骤530:是、步骤545:否),根据所述第一信息而对所述车辆行驶于该曲线道路的情况下的加速度的目标值即第一目标加速度进行计算;
第二计算部(10、步骤420、步骤635),其被构成为,能够在所述第二信息表示所述行驶道路为所述曲线道路的第二状况下(步骤625:是、步骤640:否),根据所述第二信息而对所述车辆行驶于该曲线道路的情况下的加速度的目标值即第二目标加速度进行计算;
控制部(10、20、30、步骤425至步骤435)。
所述控制部被构成为,在仅产生所述第一状况以及所述第二状况中的任意一方的情况下(步骤730:是以及否),以使所述车辆的实际的加速度接近于在该产生的状况下能够被计算出的所述第一目标加速度以及所述第二目标加速度中的一方的方式对所述车辆进行控制(步骤740、步骤755),
在产生所述第一状况以及所述第二状况这双方的情况下(步骤715:是),以使所述车辆的实际的加速度接近于所述第一目标加速度以及所述第二目标加速度中的被预先规定的优先度较高的一方的方式对所述车辆进行控制(步骤725)。
根据本发明装置,在产生所述第一状况以及所述第二状况这双方的情况下(即,在为能够计算出第一目标加速度以及第二目标加速度这双方的状况的情况下),根据被预先规定的优先度较高的一方的目标加速度,而对实际的车辆加速度进行控制。因此,通过将第一目标加速度以及第二目标加速度中的与“针对曲线道路的理想的目标加速度(理想加速度)之间的误差较小(即,更加适当)的可能性较高的一方的目标加速度”的优先度预先规定为高于另一方的目标加速度的优先度,从而能够根据与理想加速度之间的误差较小的目标加速度而对车辆进行控制。因此,能够减小在车辆行驶于曲线道路上时带给驾驶员的不适感。
在本发明的一个方式中,
所述第一取得部被构成为,通过对所述车辆的前方区域进行拍摄而取得图像数据,并使用取得的所述图像数据来取得所述第一信息(13、10、步骤505、步骤515),
所述第二取得部被构成为,对表示所述车辆的运动状态的物理量进行检测,并使用所检测出的所述物理量来取得所述第二信息(11、12、10、步骤605、步骤615)。
一般而言,使用实际检测出的“表示车辆的运动状态的物理量(例如,横摆率)”而取得的第二信息中所包含的与行驶道路的形状相关的信息(例如,表示曲线道路的形状的曲率)和使用图像数据而取得的第一信息中所包含的与行驶道路的形状相关的信息相比,精度较高。因此,在上述方式中,根据第二信息而被计算出的第二目标加速度与根据第一信息而被计算出的第一目标加速度相比,接近于理想加速度的可能性较高。
因此,在上述方式中,第二目标加速度的优先度被设定得高于第一目标加速度的优先度(步骤725)。因此,在上述方式中,能够使用相对于实际的曲线道路而更加适当的可能性较高的目标加速度,从而行驶于车道上。
在本发明的一个方式中,
所述第一取得部被构成为,使用包括与所述道路的形状相关的信息在内的地图数据来取得所述第一信息(17、18、10、步骤515),
所述第二取得部被构成为,对表示所述车辆的运动状态的物理量进行检测,并使用所检测出的所述物理量来取得所述第二信息(11、12、10、步骤605、步骤615)。
一般而言,使用实际检测出的“表示车辆的运动状态的物理量(例如,横摆率)”而取得的第二信息中所包含的与行驶道路的形状相关的信息(例如,表示曲线道路的形状的曲率)和利用地图数据而取得的第一信息中所包含的与行驶道路的形状相关的信息相比,精度较高。因此,在上述方式中,根据第二信息而计算出的第二目标加速度与根据第一信息而计算出的第一目标加速度相比,接近于理想加速度的可能性较高。
因此,在上述方式中,第二目标加速度的优先度被设定得高于第一目标加速度的优先度(步骤725)。因此,在上述方式中,能够使用相对于实际的曲线道路而更加适当的可能性较高的目标加速度,从而行驶于车道上。
在这些情况(即,使用图像数据以及地图数据中的任意一方来取得第一信息,使用表示车辆的运动状态的物理量来取得第二信息的情况)下,所述第一取得部能够被构成为,作为所述第一信息而取得与从所述车辆的当前位置向所述车辆的前方仅离开预定距离的位置处的所述行驶道路的形状相关的信息(步骤515)。
而且,所述第二取得部能够被构成为,作为所述第二信息而取得与所述车辆的当前位置处的所述行驶道路的形状相关的信息(步骤615)。
在该情况下,第一信息包括与从当前位置向前方仅离开预定距离的位置或地点(即,车辆未来行驶的地点,以下,称为“未来地点”)的行驶道路的形状相关的信息。因此,即使车辆实际上没有进入曲线道路,但只要未来地点的行驶道路为曲线道路,则第一信息表示行驶道路为曲线道路。因此,在车辆从直线路实际进入曲线道路之前,仅产生“所述第一状况以及所述第二状况中的所述第一状况”,并开始对第一目标加速度进行计算。因此,根据第一目标加速度而开始控制车辆。另一方面,如前文所述那样,一般而言,由于第一目标加速度为负的加速度(即,减速度),因此车辆从即将实际进入曲线道路之前的地点开始实施减速。由此,能够事先让驾驶员知晓车辆将进入曲线道路的情况。
在上述方式中,
所述第一计算部被构成为,在仅产生所述第一状况以及所述第二状况中的所述第一状况的情况下,对所述第一目标加速度进行计算,在产生所述第一状况以及所述第二状况这双方的情况下,停止所述第一目标加速度的计算(第一改变例中的步骤545)。
而且,所述第二计算部被构成为,在产生所述第一状况以及所述第二状况这双方的情况下,对所述第二目标加速度进行计算(步骤635)。
第二目标加速度的优先度被设定得高于第一目标加速度的优先度。因此,在产生能够计算出第一目标加速度以及第二目标加速度这双方的状况的情况下,以使车辆的实际的加速度接近于第二目标加速度的方式对车辆进行控制。与此相对,第一目标加速度并未被用于车辆的控制中。由此,在产生能够计算出第一目标加速度以及第二目标加速度这双方的情况下,停止在车辆的控制中无用的第一目标加速度的计算。因此,能够减轻施加于车辆控制装置上的处理负载。
在本发明的一个方式中,
所述控制部被构成为,在将控制状态从使所述车辆的实际的加速度接近于所述第一目标加速度以及所述第二目标加速度中的任意一方的第一状态切换为接近于任意另一方的第二状态的情况下(步骤810:是),在从切换了所述控制状态的切换时间点起到经过预定时间为止的过渡期间内(步骤835:是),以如下方式对过渡期间用的目标加速度进行计算,即,从所述切换时间点起的经过时间越长,则所述切换时间点的稍前的时间点下的所述第一目标加速度以及所述第二目标加速度中的所述任意一方的权重越变小,并且,从所述切换时间点起的经过时间越长,则所述第一目标加速度以及所述第二目标加速度中的所述任意另一方的权重越变大(步骤840),
并且所述控制部以在所述过渡期间内使所述车辆的实际的加速度接近于被计算出的所述过渡期间用的目标加速度的方式对所述车辆进行控制(步骤435)。
在目标加速度于第一目标加速度以及第二目标加速度之间进行了切换的情况下,当以使车辆的实际的加速度立即接近于切换后的目标加速度的方式对车辆进行控制时,车辆的实际的加速度有可能急剧地发生变化。这样的车辆的实际的加速度的急剧的变化有可能使驾驶员产生不安。
根据本方式,在从目标加速度的切换时间点起到经过预定时间为止的过渡期间内,以切换前的目标加速度的权重随着时间的经过而变小、且切换后的目标加速度的权重随着时间的经过而变大的方式而对目标加速度进行计算。由此,由于目标加速度没有急剧地发生变化,因此能够防止上述的车辆的实际的加速度的急剧的变化。
在本发明的一个方式中,
所述第一计算部被构成为,对表示针对所述第一目标加速度的可靠度的第一可靠度进行计算(步骤510),
所述第二计算部被构成为,对表示针对所述第二目标加速度的可靠度的第二可靠度进行计算(步骤610)。
而且,所述控制部被构成为,在产生所述第一状况以及所述第二状况这双方的情况下(步骤715:是),当关于所述第一目标加速度以及所述第二目标加速度中的所述优先度较高的一方即高优先度加速度而被计算出的所述第一可靠度以及所述第二可靠度中的一方为第一阈值可靠度以上时(步骤720:是),以使所述车辆的实际的加速度接近于该高优先度加速度的方式对所述车辆进行控制(步骤725),
在关于所述高优先度加速度而被计算出的所述第一可靠度以及所述第二可靠度中的一方小于所述第一阈值可靠度的情况下(步骤720:否),当关于所述第一目标加速度以及所述第二目标加速度中的所述优先度较低的一方即低优先度加速度而被计算出的所述第一可靠度以及所述第二可靠度中的另一方为第二阈值可靠度以上时(步骤735:是),以使所述车辆的实际的加速度接近于该低优先度加速度的方式对所述车辆进行控制(步骤740)。
根据上述方式,在能够计算出第一目标加速度以及第二目标加速度这双方的状况的情况下,当高优先度加速度的可靠度较低时,高优先度加速度将不被使用于车辆的控制中。在该情况下,如果低优先度加速度的可靠度较高,则以使车辆的实际的加速度接近于低优先度加速度的方式对车辆进行控制。由此,由于使用具有某一固定程度以上的可靠度的目标加速度来对车辆的实际的加速度进行控制,因此能够降低以不适合于曲线道路的加速度来对车辆进行控制的可能性。
另外,在上述说明中,为了帮助理解发明,针对与后述的实施方式相对应的发明的结构,而以括号的方式添加了在其实施方式中所使用的名称和/或符号。但是,发明的各个结构要素并未被限定于通过所述名称和/或符号而被规定的实施方式。本发明的其他的目的、其他的特征以及随附的优点,是根据在参照以下的附图的同时而被记述的关于本发明的实施方式的说明很容易理解出来的。
附图说明
图1为本发明的实施方式所涉及的车辆控制装置(本控制装置)的概要系统结构图。
图2为车辆行驶于曲线道路上时的本控制装置的动作的说明图。
在图3中,(A)为表示曲线道路的实际的曲率的变化的曲线图,(B)为表示未来曲率的变化的曲线图,(C)为表示第一目标加速度的变化的曲线图,(D)为表示第二目标加速度的变化的曲线图,(E)为表示辅助目标加速度的变化的曲线图。
图4为表示图1所示的驾驶辅助ECU(DSECU)的CPU所执行的例程的流程图。
图5为表示在图4所示的例程的用于取得第一目标加速度的处理中CPU所执行的例程的流程图。
图6为表示在图4所示的例程的用于取得第二目标加速度的处理中CPU所执行的例程的流程图。
图7为表示在图4所示的例程的用于选择SPM(速度管理)最终目标加速度的处理中CPU所执行的例程的流程图。
图8为表示在图4所示的例程的渐变处理中CPU所执行的例程的流程图。
具体实施方式
以下,使用附图来对本发明的实施方式所涉及的车辆控制装置(以下,称为“本控制装置”)进行说明。本控制装置被搭载于车辆VA(参照图2)上。
如图1所示,本控制装置具备驾驶辅助ECU(以下,称为“DSECU”)10、发动机ECU20以及制动器ECU30。这些ECU以能够经由未图示的CAN(Controller Area Network:控制器局域网)而进行数据交换(可通信)的方式被相互连接。
ECU为电子控制单元的简称,且为作为主要构成部件而具有包括CPU、ROM、RAM以及接口等在内的微型计算机的电子控制电路。CPU通过执行在存储器(ROM)中被存储的指令(例程),从而实现各种功能。DSECU10、发动机ECU20以及制动器ECU30中的两个以上的ECU也可以被统合为一个ECU。
而且,本控制装置具备:多个车轮速度传感器11、横摆率传感器12、摄像机装置13、毫米波雷达装置14、巡航控制操作按钮15、加速度传感器16、导航系统17、GPS接收机18以及转向角传感器19。这些装置与DSECU10相连接。另外,导航系统17、GPS接收机18以及转向角传感器19使用了后述的第二改变例所涉及的装置。因此,关于这些装置,将在后文进行详细说明。
车轮速度传感器11被设置在车辆VA的每个车轮上。各个车轮速度传感器11在每当所对应的车轮旋转预定角度时产生一个脉冲信号(车轮脉冲信号)。DSECU10对从各个车轮速度传感器11发送来的车轮脉冲信号的单位时间中的脉冲数进行计测,并根据其计测的脉冲数而取得各个车轮的转速(车轮速度)。DSECU10根据各个车轮的车轮速度而取得表示车辆VA的速度的车速Vs。作为一个示例,DSECU10取得四个车轮的车轮速度的平均值来作为车速Vs。
横摆率传感器12对作用在车辆VA上的横摆率Yr进行检测,并输出表示所检测出的横摆率Yr的信号。
摄像机装置13被配置在车厢内的前窗玻璃的上部上。摄像机装置13取得车辆VA的前方区域的图像(摄像机图像)的图像数据,并从该图像中取得物体信息(到物体为止的距离以及物体的方位等)以及“与对车辆所行驶的车道进行划分的白线(车道线)有关的信息”等。
毫米波雷达装置14均具备未图示的“毫米波发送接收部以及处理部”。毫米波雷达装置14被配置于车辆VA的前端部且车辆宽度方向的中央部处。毫米波发送接收部从“向车辆VA的直行前进方向延伸的中心轴”起向左方向以及右方向分别发送以预定的角度的扩展而传播的毫米波。该毫米波被物体(例如,其他的车辆、行人以及两轮车等)反射。毫米波发送接收部对该反射波进行接收。
毫米波雷达装置14的处理部根据所接收到的反射波,而取得到物体为止的距离(如果物体为其他车辆,则为车间距离Dfx(n))、物体的相对于车辆VA的相对速度Vfx(n)、以及物体的相对于车辆VA的方位等的物体信息。物体的相对于车辆VA的方位为,穿过物体所存在的位置和毫米波雷达装置14的发送接收部的位置的直线与前述的中心轴所构成的角度。
更加详细而言,该处理部根据在从发送毫米波起到接收到与该毫米波相对应的反射波为止的时间、反射波的衰减等级、以及所发送的毫米波与所接收到的反射波之间的相位差等,从而取得物体信息。
另外,DSECU10通过根据摄像机装置13所取得的物体信息来修正毫米波雷达装置14所取得的物体信息,从而取得在后述的巡航控制中所使用的最终的物体信息。
巡航控制操作按钮15为,在驾驶员期望开始巡航控制的情况下进行操作的按钮。在驾驶员对巡航控制操作按钮15进行了操作的情况下,巡航控制操作按钮15向DSECU10发送表示该主旨的开始信号。
而且,巡航控制操作按钮15是为了对在后述的追随车间距离控制(AdaptiveCruise Control:ACC、自适应巡航控制装置)中所使用的目标车间时间Ttgt、以及固定速度行驶用的目标车速进行变更、设定而被操作的。
加速度传感器16对车辆VA的纵向(前后方向)的加速度、以及车辆VA的横向(车辆宽度方向)的加速度(以下,称为“横向加速度LG”)进行检测,并将表示这些加速度的检测信号向DSECU10进行发送。
发动机ECU20与加速器踏板操作量传感器22以及发动机传感器24连接,并接收这些传感器的检测信号。
加速器踏板操作量传感器22对车辆VA的加速器踏板(未图示)的操作量(即,加速器踏板操作量AP)进行检测。在驾驶员未对加速器踏板进行操作的情况下的加速器踏板操作量AP为“0”。
发动机传感器24为,对未图示的“作为车辆VA的驱动源的汽油燃料喷射式火花点火内燃机”的运转状态量进行检测的传感器。发动机传感器24为节气门开度传感器、内燃机转速传感器以及吸入空气量传感器等。
而且,发动机ECU20与“节气门致动器以及燃料喷射阀致动器”等的发动机致动器26连接。发动机ECU20通过对发动机致动器26进行驱动,从而对内燃机所产生的转矩进行变更,以此对车辆VA的驱动力进行调节。
发动机ECU20以加速器踏板操作量AP越大则目标节气门开度TAtgt越大的方式来决定目标节气门开度TAtgt。发动机ECU20以节气门的开度与目标节气门开度TAtgt一致的方式对节气门致动器进行驱动。
制动器ECU30与车轮速度传感器11以及制动器踏板操作量传感器32相连接,并接收这些传感器的检测信号。
制动器踏板操作量传感器32对车辆VA的制动器踏板(未图示)的操作量(即,制动器踏板操作量BP)进行检测。在制动器踏板未被操作的情况下的制动器踏板操作量BP为“0”。
制动器ECU30与DSECU10同样地,根据来自车轮速度传感器11的车轮脉冲信号而取得各个车轮的转速以及车速Vs。另外,制动器ECU30也可以从DSECU10取得DSECU10所取得的各个车轮的转速以及车速Vs。在该情况下,制动器ECU30也可以不与车轮速度传感器11相连接。
而且,制动器ECU30与制动器致动器34相连接。制动器致动器34为,油压控制致动器。制动器致动器34被配置在通过制动器踏板的踏力而对工作油进行加压的主缸、和包括被设置于各个车轮上的众所周知的轮缸在内的摩擦制动装置之间(均省略图示)的油压回路中。制动器致动器34对向轮缸供给的油压进行调节,从而对车辆VA的制动力进行调节。
制动器ECU30根据制动器踏板操作量BP来决定“具有负值的目标加速度GBPtgt(即,具有正值的减速度)”。制动器ECU30以车辆VA的实际的加速度与目标加速度一致的方式对制动器致动器34进行驱动。
(车辆控制的详细情况)
1:巡航控制(ACC)
DSECU10将车间距离维持控制以及固定速度行驶控制中的任一个作为巡航控制来执行。
1.1:车间距离维持控制的ACC目标加速度
DSECU10根据众所周知的方法来决定应该追随的先行车辆(以下,称为“追随先行车辆(a)”)(例如,参照日本特开2015-072604号公报。)。追随先行车辆(a)为,行驶于车辆VA的正前方的其他车辆。DSECU10通过将车速Vs与目标车间时间Ttgt相乘,从而计算出目标车间距离Dtgt。虽然目标车间时间Ttgt通过巡航控制操作按钮15的操作而被另外设定,但也可以为固定值。
DSECU10通过从追随先行车辆(a)与车辆VA的车间距离Dfx(a)上减去目标车间距离Dtgt,从而对车间偏差ΔD1(=Dfx(a)-Dtgt)进行计算。DSECU10通过将该车间偏差ΔD1应用于下述(1)式中,从而对ACC目标加速度GACCtgt进行计算。在(1)式中,Vfx(a)为追随先行车辆(a)的相对速度,Ka1、K1以及K2为预定的正增益(系数)。
GACCtgt=Ka1·(K1·ΔD1+K2·Vfx(a))…(1)
1.2:固定速度行驶控制的ACC目标加速度
在不存在追随先行车辆(a)的情况下,DSECU10以车辆VA的车速Vs与“固定速度行驶用的目标车速”一致的方式对车辆VA的加速度进行控制。固定速度行驶用的目标车速例如,通过巡航控制操作按钮15的操作而被设定。DSECU10在车速Vs低于目标车速的期间内,以预定时间使ACC目标加速度GACCtgt仅增大固定量ΔG。DSECU10在车速Vs高于目标车速的期间内,以预定时间使ACC目标加速度GACCtgt仅减少固定量ΔG。
1.3:ACC的执行
DSECU10将以此方式被计算出的ACC目标加速度GACCtgt作为驾驶辅助目标加速度GStgt而向发动机ECU20以及制动器ECU30发送。
发动机ECU20以车辆VA的实际的前后方向的加速度(以下,有时仅标记为“实际加速度dg”)与从DSECU10被发送来的驾驶辅助目标加速度GStgt一致的方式,对目标节气门开度TAtgt进行增减。而且,制动器ECU30在目标节气门开度TAtgt成为“0(最小值)”的情况下在车辆VA的实际加速度dg大于驾驶辅助目标加速度GStgt时,以实际加速度dg与驾驶辅助目标加速度GStgt一致的方式使用制动器致动器34来对制动力进行控制,并使车辆VA减速。但是,制动器ECU30将与制动器踏板操作量BP相对应的目标加速度、和驾驶辅助目标加速度GStgt中的最小的一方选择作为最终的目标加速度,并根据该选择出的目标加速度而对制动器致动器34进行控制。即,制动器ECU30执行制动器优先(Brake override)。
另外,如前文所述那样,发动机ECU20根据加速器踏板操作量AP来决定了目标节气门开度TAtgt。在基于该加速器踏板操作量AP而被决定的目标节气门开度TAtgt大于通过巡航控制(驾驶辅助目标加速度GStgt)而被决定的目标节气门开度TAtgt的情况下,发动机ECU20根据基于加速器踏板操作量AP而被决定的目标节气门开度TAtgt而对实际的节气门开度TA进行控制。即,发动机ECU20执行“加速器优先(Acceleration override)”。
2:速度管理控制
在巡航控制的执行中,在车辆VA行驶于曲线道路(弯曲道路)的情况下,DSECU10以车辆VA能够稳定地行驶于曲线道路上的方式对车辆VA的加速度进行调节并对车速Vs进行控制。该控制为速度管理控制。
如果更具体地叙述,则DSECU10使用互不相同的两个方式(第一方式以及第二方式),而对用于对车速Vs进行控制的目标加速度(第一目标加速度以及第二目标加速度)进行计算。
在第一方式中,取得包括与作为车辆VA所行驶的道路的行驶道路的形状相关的信息在内的第一信息,并在该第一信息表示“车辆VA所行驶的行驶道路为曲线道路”的第一状况下,将车辆VA行驶于该曲线道路上的情况下的加速度的目标值作为第一目标加速度而进行计算。
在第二方式中,以独立于第一信息的方式而取得包括与作为车辆VA所行驶的道路的行驶道路的形状相关的信息在内的第二信息,并在该第二信息表示“车辆VA所行驶的行驶道路为曲线道路”的情况的第二状况下,将车辆VA行驶于该曲线道路上的情况下的加速度的目标值作为第二目标加速度而进行计算。
如后文所述那样,使用了第二目标加速度的一方的车速Vs相对于实际的曲线道路而成为更适当的车速的可能性较高。换而言之,与第一目标加速度相比较,第二目标加速度为更准确地反映出曲线道路的形状的可能性较高。另一方面,如后文所述那样,在车辆进入曲线道路时,第一目标加速度在与第二目标加速度相比较早的时间点下被开始计算,并且更早地变小。也就是说,虽然第一目标加速度以及第二目标加速度均为负值,但第一目标加速度的大小变得大于“0”的时间点早于第二目标加速度的大小变得大于“0”的时间点。目标加速度的大小变得大于“0”的时间点可以换一种表达方式为,目标加速度的计算开始的时间点。另一方面,也能够产生如下情况,即,由于某种理由而并未获得成为对第一目标加速度进行计算的基础的数据(例如,曲线道路的曲率),而仅计算出第二目标加速度的情况。
因此,DSECU10在仅计算出第一目标加速度以及第二目标加速度中的任意一方的情况下,以使车辆VA的实际加速度dg接近于该被计算出的一方的目标加速度的方式对车辆VA进行控制。换而言之,DSECU10在仅产生第一信息表示“行驶道路为曲线道路”的第一状况、和第二信息表示“行驶道路为曲线道路”的第二状况中的任意一方的情况下,根据在该产生的状况下被计算出的“第一目标加速度以及第二目标加速度中的任意一方”来对实际加速度dg进行控制。
而且,DSECU10在第一目标加速度以及第二目标加速度这双方被计算出来的情况下,以使车辆VA的实际加速度dg接近于第一目标加速度以及第二目标加速度中的被预先规定的优先度较高的一方的目标加速度(在本例中,为与第一目标加速度相比是适当的值的可能性较高的第二目标加速度)的方式对车辆VA进行控制。换而言之,DSECU10在产生上述第一状况和上述第二状况这双方的情况下,根据优先度较高的第二目标加速度来对实际加速度dg进行控制。以下,针对计算第一目标加速度的第一方式、以及计算第二目标加速度的第二方式来进行叙述。
2.1:第一方式
DSECU10作为第一方式而采用白线识别方式。更加详细而言,DSECU10根据由摄像机装置13所取得的摄像机图像(图像数据),而对规定车辆VA当前行驶的车道(自车道、道路)的两条划分线进行特别指定(识别)。该两条划分线为左白线LL以及右白线RL(参照图2)。而且,DSECU10根据左白线LL以及右白线RL,而取得与车辆VA的当前位置相比仅以预定距离D处于前方的位置(以下,称为“未来位置”)的道路的形状相关的信息,以作为“未来信息”。如果更加具体地叙述,则DSECU10作为未来曲率FC而取得穿过左白线LL和右白线RL的车道宽度方向上的中央的假想线的未来位置处的曲率C。与道路的形状相关的信息包括道路的未来位置处的曲率C。该未来位置处的曲率C被称为“未来曲率FC”。未来信息为“能够对当前时间点下的与车辆VA的位置(当前位置)相比靠前方的道路的形状进行特别指定的信息”,并且为上述的“第一信息”。
DSECU10在未来信息满足“车辆VA进入曲线道路时成立的条件”时,判断为,第一目标加速度AD1tgt的计算开始条件(以下,称为“第一开始条件”)成立。换而言之,DSECU10在第一信息表示“行驶道路为曲线道路”时,判断为产生了第一状况。
然后,DSECU10根据作为第一信息的未来信息(尤其是,未来曲率),而对“用于能够使车辆VA稳定地行驶于正在进入或者已经进入的曲线道路的第一目标加速度AD1tgt”进行计算。
2.2:第二方式
DSECU10作为第二方式而采用了实际计测值方式(横摆率方式)。更加详细而言,DSECU10取得“包括表示在当前时间点下由传感器所计测的车辆VA的运动状态的物理量(例如,与车辆VA的转弯运动相关的横摆率Yr等的物理量)在内的当前信息”。当前信息为,“能够对当前时间点下的车辆VA的位置(当前位置)的道路的形状进行特别指定的信息”,并且为上述的“第二信息”。
DSECU10在当前信息满足“车辆VA进入曲线道路时成立的条件”时,判断为,第二目标加速度AD2tgt的计算开始条件(以下,称为“第二开始条件”)成立。换而言之,DSECU10在第二信息表示“行驶道路为曲线道路”时,判断为产生了第二状况。
然后,DSECU10根据作为第二信息的当前信息(尤其是,当前位置处的道路的曲率即当前曲率),而对“用于能够使车辆VA稳定地行驶于已进入的曲线道路的第二目标加速度AD2tgt”进行计算。另外,第二方式本身是众所周知的,例如,被记载于日本特开2009-51487号公报中。
由于在车辆VA即将进入曲线道路之前的时间点下,横摆率Yr的大小不会变大,因此第二开始条件未成立,第二状况未产生。与此相对,由于在车辆VA实际即将进入曲线道路之前的时间点下,未来信息(第一信息)表示“行驶道路为曲线道路”,因此第一开始条件成立并产生第一状况(也就是说,仅产生第一状况以及第二状况中的任意一方(仅第一状况))。在第一开始条件成立的情况下,DSECU10对第一目标加速度AD1tgt进行计算,并根据该第一目标加速度AD1tgt而对车辆VA进行控制。
在车辆VA进入曲线道路的时间点以后且正在行驶于曲线道路的时间点下,处于第一开始条件以及第二开始条件这双方成立的状态(也就是说,产生了第一状况以及第二状况这双方)。在该情况下,DSECU10根据被预先规定的优先度较高的目标加速度、即第一目标加速度AD1tgt以及第二目标加速度AD2tgt中的第二目标加速度AD2tgt,而对车辆VA进行控制。
对第二目标加速度AD2tgt的优先度被设定为高于第一目标加速度AD1tgt的理由进行说明。在第二方式中被特别指定的曲线道路的形状,与在第一方式中被特别指定的曲线道路的形状相比具有距实际的曲线道路的形状的误差较小的倾向。基于这样的曲线道路的形状而取得的第二目标加速度AD2tgt和用于稳定地行驶于曲线道路的理想的加速度(以下,称为“理想加速度”)之间的误差,与第一目标加速度AD1tgt相比较而较小。换而言之,第二目标加速度AD2tgt与第一目标加速度AD1tgt相比,适合于曲线道路的可能性较高。因此,第二目标加速度AD2tgt的优先度与第一目标加速度AD1tgt相比被设定得较高。
另一方面,第二开始条件成立的时间点(第二状况产生的时间点)在车辆VA实际进入了曲线道路的时间点以后。因此,当仅通过第二目标加速度AD2tgt来对车辆VA进行控制时,将无法在车辆VA进入曲线道路之前使车辆VA的速度降低。
因此,DSECU10在第一开始条件成立并计算出第一目标加速度AD1tgt的时间点(第一状况产生的时间点)以后,根据该第一目标加速度AD1tgt而对车辆VA进行控制。由此(也就是说,根据车辆VA的减速),驾驶员能够事先知晓车辆VA将进入曲线道路的情况。
(具体例)
在图2所示的示例中,车辆行驶于包括曲线道路Cv的道路。在该情况下,车辆VA按照第一直线道路ST1、第一回旋曲线区间KR1、正常圆区间SC、第二回旋曲线区间KR2以及第二直线道路ST2的顺序进行行驶。第一回旋曲线区间KR1、正常圆区间SC以及第二回旋曲线区间KR2构成曲线道路Cv。
如图3的(A)所示,对于一般的曲线道路的曲率C而言,在车辆VA的行进方向上,在第一回旋曲线区间KR1内逐渐变大,在正常圆区间SC内成为固定值,并在第二回旋曲线区间KR2内从固定值逐渐变小。
DSECU10通过第一方式并根据左白线LL以及右白线RL而对未来曲率FC(未来位置的曲率)进行计算。因此,在车辆VA行驶于第一直线道路ST1的某个位置的时间点t1下,前述的第一开始条件成立。也就是说,在时间点t1下,产生第一状况。因此,DSECU10在时间点t1下,将第一目标加速度AD1tgt选择作为后述的SPM最终目标加速度ADFtgt,并开始进行基于该第一目标加速度AD1tgt的速度管理控制。另外,由于在时间点t1下并未产生横摆率Yr,因此第二开始条件未成立。也就是说,在时间点t1下,还未产生第二状况。
如后文所详细描述的那样,第一目标加速度AD1tgt成为车速Vs越高则越大的减速度(绝对值大的负加速度),并成为未来曲率FC越大则越大的减速度。在第一目标加速度AD1tgt成为负值的情况下,从进入曲线道路Cv之前的第一直线道路ST1的某个位置起,车辆VA开始实施减速(参照图2的时间点t1以及图3的(C)以及(E))。有时将这样的减速称为“转弯进入前减速”。
在车辆VA进入了第一回旋曲线区间KR1的情况下,驾驶员开始进行转向盘的转向。由此,由于车辆VA开始转弯,因此在车辆VA上产生横摆率Yr。因此,在车辆VA行驶于第一回旋曲线区间KR1的某个位置的时间点t2下,前述的第二开始条件成立(参照“图2以及图3的(D)”的时间点t2)。也就是说,在时间点t2下,产生第二状况。
在该情况下,由于第一开始条件以及第二开始条件这双方成立(即,由于产生了第一状况以及第二状况这双方),因此DSECU10对第一目标加速度AD1tgt以及第二目标加速度AD2tgt这双方进行计算。但是,如前文所述那样,由于第二目标加速度AD2tgt的优先度被预先设定为高于第一目标加速度AD1tgt的优先度,因此,DSECU10将第二目标加速度AD2tgt选择作为SPM最终目标加速度ADFtgt。
其结果为,在时间点t2下,SPM最终目标加速度ADFtgt从第一目标加速度AD1tgt切换为第二目标加速度AD2tgt。以此方式,当SPM最终目标加速度ADFtgt从第一目标加速度AD1tgt切换为第二目标加速度AD2tgt时,SPM最终目标加速度ADFtgt有可能急剧地变化。SPM最终目标加速度ADFtgt的急剧变化有可能会给驾驶员带来不适感。
因此,DSECU10在从“SPM最终目标加速度ADFtgt从第一目标加速度AD1tgt切换为第二目标加速度AD2tgt的时间点t2”起至“经过了预定时间T的时间点t3”为止的过渡期间(参照图2以及图3的(D)以及(E))内,执行渐变处理。虽然将在后文进行详细叙述,但渐变处理为,用于使SPM最终目标加速度ADFtgt从第一目标加速度AD1tgt逐渐接近于第二目标加速度AD2tgt的处理。因此,如图3的(E)所示,在从时间点t2起至时间点t3为止的期间内,SPM最终目标加速度ADFtgt从第一目标加速度AD1tgt起向第二目标加速度AD2tgt逐渐变化,在时间点t3下,SPM最终目标加速度ADFtgt与第二目标加速度AD2tgt一致。由此,由于能够防止SPM最终目标加速度ADFtgt急剧地变化,因此能够防止给驾驶员带来不适感的情况。
在车辆VA进入正常圆区间SC的时间点t4(参照图2)下,DSECU10根据横摆率Yr而判断为车辆VA进入了正常圆区间SC。在该情况下,DSECU10以车辆VA按照固定的车速Vs行驶于正常圆区间SC的方式对第二目标加速度AD2tgt进行计算(参照图3的(D))。该情况下的第二目标加速度AD2tgt实质上为“0”。由于即使在该时间点下,也产生了第一状况以及第二状况这双方,因此被计算出了第一目标加速度AD1tgt以及第二目标加速度AD2tgt这双方。在该情况下,DSECU10根据前述的优先度而将第二目标加速度AD2tgt选择作为SPM最终目标加速度ADFtgt(参照图3的(E))。
另外,在图3的(D)中时间点t2至时间点t4的期间内的虚线表示车速Vs到达“后述的曲线道路用目标车速Vctgt”的情况下的第二目标加速度AD2tgt。另一方面,该期间内的实线表示车速Vs未到达曲线道路用目标车速Vctgt的情况下的第二目标加速度AD2tgt。如从这些内容中所理解的那样,即使例如车速Vs未到达曲线道路用目标车速Vctgt,在车辆VA进入了正常圆区间SC时,车辆VA也以按照固定的车速Vs进行行驶的方式被控制。
在车辆VA进入了第二回旋曲线区间KR2的时间点t5(参照图2)下,DSECU10根据横摆率Yr而判断为车辆VA进入了第二回旋曲线区间KR2。在该情况下,DSECU10以车速Vs成为通常时目标车速Vntgt的方式对第二目标加速度AD2tgt进行计算(参照图3的(D))。虽然将在后文进行详细地叙述,但通常时目标车速Vntgt为基于巡航控制的目标车速。由于即使在该时间点下,也产生第一状况以及第二状况这双方,因此计算出第一目标加速度AD1tgt以及第二目标加速度AD2tgt这双方。在该情况下,DSECU10根据前述的优先度而将第二目标加速度AD2tgt选择作为SPM最终目标加速度ADFtgt(参照图3的(E))。由于该第二目标加速度AD2tgt为正值,因此在第二回旋曲线区间KR2中,车速Vs以第二目标加速度AD2tgt进行加速。有时将这样的加速称为“回旋曲线(clothoid)加速”。
在车辆VA进入了第二直线道路ST2的时间点t6(参照图2)下,DSECU10根据横摆率Yr而判断为车辆VA进入了第二直线道路ST2。也就是说,在时间点t6下,还未产生第二状况。由此,DSECU10停止第二目标加速度AD2tgt的计算。因此,速度管理控制结束。另外,由于在时间点t6的稍前的时间点下,未来曲率FC成为“0”,因此,未产生第一状况。因此,在时间点t6的稍前的时间点下,DSECU10停止第一目标加速度AD1tgt的计算。
(实际的动作)
1.速度管理控制例程
DSECU10的CPU(以下,在标记为“CPU”的情况下,只要没有特别进行说明,则是指DSECU10的CPU。)每当经过预定时间时,便执行图4中由流程图所表示的例程(速度管理控制例程)。
因此,当成为预定的定时时,CPU从图4的步骤400开始进行处理,进入步骤405,从与DSECU10连接的各种装置以及各种传感器读取信息,并进入步骤410。
在步骤410中,CPU对用于开始实施速度管理控制的控制条件是否成立进行判断。更加详细而言,CPU在以下的条件(B1)至(B3)全部成立的情况下,判断为控制条件成立。另外,CPU从发动机ECU20接收表示是否实施了加速器优先的信号,并且从未图示的方向指示灯控制用ECU接收表示车辆VA所具备的未图示的方向指示灯是否闪烁的信号。
(B1)巡航控制被执行。
(B2)加速器优先未被实施。
(B3)方向指示灯未闪烁。
在上述条件(B1)至(B3)中的至少一个未成立的情况下,CPU在步骤410中判断为“否”,进入步骤495,并暂时结束本例程。例如,由于在条件(B2)未成立的情况下,可以认为是,驾驶员期望通过自己的加速器踏板操作而对车辆VA进行加速,因此未实施速度管理控制。由于在条件(B3)未成立的情况下,可以认为是,车辆VA将实施左拐或者右拐,因此未实施速度管理控制。
另一方面,在上述条件(B1)至(B3)全部成立的情况下,CPU在步骤410中判断为“是”,并依次实施以下所述的步骤415至步骤435的处理,进入步骤495,并暂时结束本例程。
步骤415:CPU执行此后参照图5而进行说明的“第一目标加速度计算处理”,并对第一目标加速度AD1tgt进行计算。
步骤420:CPU执行此后参照图6而进行说明的“第二目标加速度计算处理”,并对第二目标加速度AD2tgt进行计算。
步骤425:CPU执行将第一目标加速度AD1tgt以及第二目标加速度AD2tgt中的任意一方选择作为SPM最终目标加速度ADFtgt的处理。
如果更具体地叙述,则在仅计算出第一目标加速度AD1tgt以及第二目标加速度AD2tgt中的任意一方的情况下,CPU将该计算出的一方的目标加速度选择作为SPM最终目标加速度ADFtgt。另外,如前文所述那样,通常情况下,在车辆VA正在接近曲线道路时,第一目标加速度AD1tgt一方与第二目标加速度AD2tgt相比先开始被计算。因此,在该情况下,第一目标加速度AD1tgt被选择作为SPM最终目标加速度ADFtgt。
与此相对,在第一目标加速度AD1tgt以及第二目标加速度AD2tgt全都被计算出来的情况下,CPU将“与第一目标加速度AD1tgt相比优先度被设定得较高的第二目标加速度AD2tgt”选择作为SPM最终目标加速度ADFtgt。另外,如后文所述那样,在第一目标加速度AD1tgt以及第二目标加速度AD2tgt中的任意一个均未被计算出来的情况下、以及其他的情况下等,也存在SPM最终目标加速度ADFtgt被设定为无效值(Null)的情况。关于该步骤425中的处理,将在后面参照图7来进行详细说明。
步骤430:如果当前时间点为“需要渐变处理的期间(即,过渡期间)”,则CPU执行渐变处理,并将通过渐变处理而被取得的目标加速度设定为SPM最终目标加速度ADFtgt。关于该步骤430中的处理,将后面参照图8来进行详细说明。
步骤435:CPU将通过步骤415至步骤430的处理而被决定的SPM最终目标加速度ADFtgt、和上述的ACC目标加速度GACCtgt中的较小的一方的目标加速度作为驾驶辅助目标加速度GStgt而向发动机ECU20以及制动器ECU30发送。但是,在SPM最终目标加速度ADFtgt为无效值(Null)的情况下,CPU将ACC目标加速度GACCtgt作为驾驶辅助目标加速度GStgt而向发动机ECU20以及制动器ECU30发送。
发动机ECU20以使车辆VA的实际的前后方向的加速度(实际加速度dg)与“从DSECU10被发送来的驾驶辅助目标加速度GStgt”一致的方式对目标节气门开度TAtg进行增减。而且,制动器ECU30在目标节气门开度TAtgt成为“0”的情况下在实际加速度dg大于驾驶辅助目标加速度GStgt时,以使实际加速度dg与驾驶辅助目标加速度GStgt一致的方式使用制动器致动器34而对制动力进行控制,并使车辆VA减速。但是,制动器ECU30将与制动器踏板操作量BP对应的目标加速度GBPtgt和驾驶辅助目标加速度GStgt中的较小的一方选择作为最终的目标加速度,并根据该选择的目标加速度而对制动器致动器34进行控制。即,实现了制动器优先。
<第一目标加速度计算处理(图5的例程)>
CPU在进入图4所示的步骤415中时,从步骤500开始进行图5中由流程图所表示的子例程的处理,并依次实施下述的步骤505至步骤520的处理,并进入步骤525。
步骤505:CPU根据摄像机图像而对规定车辆VA当前正在行驶的车道(自车道)的“左侧的左白线LL以及右侧的右白线RL”进行识别。用于对白线进行识别的处理是众所周知的,例如,被记载于日本特开2013-105179号公报中。
步骤510:CPU根据“在步骤505中识别出的白线的数量”而求出表示第一目标加速度AD1tgt的可靠度的第一可靠度RD1。如果更具体地叙述,则CPU根据以下的(1)至(3)而求出第一可靠度RD1。
(1)在识别出的白线的数量为“0”的情况(即,未能够识别出左白线LL以及右白线RL中的任意一个的情况)下,CPU将第一可靠度RD1设定为“0”。
(2)在识别出的白线的数量为“1”的情况(即,仅能够识别出左白线LL以及右白线RL中的一方的情况)下,CPU将第一可靠度RD1设定为“50”。
(3)在识别出的白线的数量为“2”的情况(即,左白线LL以及右白线RL全都被识别出的情况)下,CPU将第一可靠度RD1设定为“100”。
如根据以上内容而理解的那样,第一可靠度RD1的值越大,则为了取得未来曲率FC1以及当前曲率CC1而使用的白线越被更加准确地识别出来。白线越是被更加准确地识别出来,则使用基于该被识别出来的白线所求出的曲率而计算出的第一目标加速度AD1tgt的与“相对于曲线道路Cv的理想的加速度”的误差越变小。
步骤515:CPU根据在步骤505中识别出的白线而对未来曲率FC1进行计算。
步骤520:CPU根据在步骤505中识别出的白线而对当前曲率CC1进行计算。
另外,根据白线而对该白线上的任意的位置的曲率半径R进行计算的方式是众所周知的,例如,被记载于日本特开2011-169728号公报中。CPU将计算出的曲率半径R的倒数作为曲率C而进行计算。
接下来,在步骤525中,CPU对第一开始标记X1start的值是否为“0”进行判断。第一开始标记X1start的值在第一开始条件成立时被设定为“1”,当第一结束条件成立时被设定为“0”。在从第一开始条件成立的时间点起至第一结束条件成立的时间点为止的期间(即,产生第一状况的期间)内,对第一目标加速度AD1tgt进行计算。另外,在车辆VA的未图示的点火钥匙开关从关闭位置被变更为开启位置时,在通过CPU而被执行的初始例程中,第一开始标记X1start被设定为“0”。
在第一开始标记X1start的值为“0”的情况(即,第一开始条件还未成立的情况)下,CPU在步骤525中判断为“是”,并进入步骤530。
在步骤530中,CPU对第一开始条件是否成立进行判断。更详细而言,CPU在以下的条件(CA)以及(CB)这双方成立的情况下,判断为第一开始条件成立了。
(CA)在步骤515中取得的未来曲率FC1为第一阈值曲率C1th以上。
(CB)在步骤520中取得的当前曲率CC1为第二阈值曲率C2th以下。第二阈值曲率C2th被设定为与第一阈值曲率C1th相比较小的值。
在上述条件(CA)以及(CB)中的至少一方不成立的情况下,第一开始条件不成立。在该情况下,CPU在步骤530中判断为“否”,进入步骤595,并暂时结束本例程。其结果为,第一开始标记X1start被维持为“0”。
另一方面,在上述条件(CA)以及(CB)这双方成立的情况下,第一开始条件成立,产生第一状况。在该情况下,CPU在步骤530中判断为“是”,并进入步骤535。在步骤535中,CPU将第一开始标记X1start的值设定为“1”,并进入步骤540。
在步骤540中,CPU对未来位置属于曲线道路Cv的“第一回旋曲线区间KR1、正常圆区间SC以及第二回旋曲线区间KR2”中的哪一个进行判断。然后,CPU根据与该判断结果相应的方法而对第一目标加速度AD1tgt进行计算,进入步骤595,并暂时结束本例程。
如果更具体叙述,则CPU对从本次取得的未来曲率FC1(以下,称为“本次曲率FC1”)中减去上次取得的未来曲率FC2(以下,称为“上次曲率FC2”)而得到的减法运算值ΔC进行计算。上次取得的未来曲率FC2为,在预定时间前执行本例程时在步骤515中取得的未来曲率FC1。而且,CPU使用该减法运算值ΔC,而如以下的(A1)、(B1)以及(C1)所叙述的那样,对未来位置属于第一回旋曲线区间KR1、正常圆区间SC以及第二回旋曲线区间KR2中的哪一个进行判断。
(A1)在减法运算值ΔC大于“被设定为正的预定值的阈值Th1”的情况下,CPU判断为未来位置属于第一回旋曲线区间KR1。
(B1)在减法运算值ΔC为“被设定为负的预定值的阈值Th2”以上、且减法运算值ΔC为阈值Th1以下的情况下,CPU判断为未来位置属于正常圆区间SC。
(C1)在减法运算值ΔC小于阈值Th2的情况下,CPU判断为未来位置属于第二回旋曲线区间KR2。
而且,CPU根据该判断结果,从而如下文所述那样对第一目标加速度AD1tgt进行计算。
(A1)未来位置属于第一回旋曲线区间KR1的情况
在该情况下,CPU根据下述(2)式而对第一目标加速度AD1tgt进行计算。
第一目标加速度AD1tgt=基础加速度BAD×增益Ga…(2)
CPU通过将车速Vs应用于基础加速度映射图Map(BAD)而求出上述(2)式的基础加速度BAD。根据基础加速度映射图Map(BAD),如图5的框BL1内所示那样,基础加速度BAD为“0”以下的值,并且车速Vs越高,则基础加速度BAD越小(即,减速度的大小变大)。
CPU将上述(2)式的增益Ga计算如下。
首先,CPU将“与未来曲率FC1相对应的曲率半径R(=1/FC1)”应用于曲线道路用目标车速映射图MapVctgt(R)中,从而求出曲线道路用目标车速Vctgt(参照图5的框BL2)。根据曲线道路用目标车速映射图MapVctgt(R),曲率半径R越小(即,曲率C越大),则曲线道路用目标车速Vctgt越小。
接下来,CPU对从车速Vs中减去“所取得的曲线道路用目标车速Vctgt”而得到的减法运算车速DVs(DVs=Vs-Vctgt)进行计算。
接下来,CPU将减法运算车速DVs应用于增益映射图MapGa(DVs)中,从而求出增益Ga(参照图5的框BL3)。根据增益映射图MapGa(DVs),增益Ga成为“0”以上且“1”以下的值,并且减法运算车速DVs越大,则增益Ga越大。另外,在减法运算车速DVs为“0”以下的情况(即,车速Vs在曲线道路用目标车速Vctgt以下的情况)下,无需对车辆VA进行减速。由此,在减法运算车速DVs为“0”以下的情况下,通过增益映射图MapGa(DVs)而将增益Ga设定为“0”。
而且,如果所计算出的第一目标加速度AD1tgt小于被设定为负值的第一阈值加速度AD1th,则CPU将第一目标加速度AD1tgt设定为第一阈值加速度AD1th(参照图2的(C))。如前文所述那样,在图2以及图3所示的转弯进入前减速中,根据第一目标加速度AD1tgt而对实际加速度dg进行控制。该转弯进入前减速是为了使驾驶员了解今后将进入曲线道路Cv的情况而被实施的。因此,为了避免因实施突然的减速而使驾驶员感到不安,从而将不以大于第一阈值加速度AD1th的大小的减速度来实施转弯进入前减速。
(B1)未来位置属于正常圆区间SC的情况
在该情况下,CPU以车辆VA以固定速度实施匀速圆周运动的方式对第一目标加速度AD1tgt进行计算。也就是说,CPU将第一目标加速度AD1tgt设定为“0”。
(C1)未来位置属于第二回旋曲线区间KR2的情况
在该情况下,CPU在车间距离维持控制被执行时,将通常时目标车速Vntgt设定为追随先行车辆(a)的车速。追随先行车辆(a)的车速是通过在追随先行车辆(a)的相对速度Vfx(a)上加上车速Vs从而被求出的。另一方面,在固定速度行驶控制被执行时,CPU将通常时目标车速Vntgt设定为“固定速度行驶用的目标车速”。
接下来,CPU以使车速Vs接近于通常时目标车速Vntgt的方式对第一目标加速度AD1tgt进行计算。更详细而言,CPU实施下文叙述的处理。
·CPU对从通常时目标车速Vntgt中减去车速Vs而得到的减法运算车速DVs进行计算(DVs=Vntgt-Vs)。
·CPU将减法运算车速DVs和“与未来曲率FC1相对应的曲率半径R(=1/FC1)”应用于未图示的目标加速度映射图MapAD1tgt(DVs、R)中,并取得第一目标加速度AD1tgt。根据目标加速度映射图MapAD1tgt(DVs、R),减法运算车速DVs越大,则第一目标加速度AD1tgt越大,曲率半径R(=1/FC1)越大,则第一目标加速度AD1tgt越大。但是,在减法运算车速DVs为负值的情况(即,Vntgt<Vs)下,根据目标加速度映射图MapAD1tgt(DVs),第一目标加速度AD1tgt被设定为“0”。
在步骤535中在第一开始标记X1start的值被设定为“1”之后,在CPU执行本例程而进入步骤525的情况下,CPU在该步骤525中判断为“否”并进入步骤545。
在步骤545中,CPU对第一结束条件是否成立进行判断。第一结束条件为,以在车辆VA当前行驶的曲线道路Cv结束时成立的方式被规定的条件。更详细而言,在以下的条件(CC)以及(CD)这双方成立的情况下,CPU判断为第一结束条件成立。
(CC)在步骤515中计算出的未来曲率FC1为第三阈值曲率C3th以下。
(CD)在步骤520中计算出的当前曲率CC1为第四阈值曲率C4th以上。第四阈值曲率C4th为大于第三阈值曲率C3th的值。
另外,第三阈值曲率C3th也可以被设定为与第二阈值曲率C2th相同的值。第四阈值曲率C4th也可以被设定为与第一阈值曲率C1th相同的值。
在上述条件(CC)以及(CD)中的至少一方不成立的情况下,第一结束条件不成立。在该情况下,CPU在步骤545中判断为“否”,进入步骤540,并对第一目标加速度AD1tgt进行计算(更新)。此后,CPU进入步骤595,并暂时结束本例程。
另一方面,在上述条件(CC)以及(CD)这双方成立的情况下,能够判断为未产生第一状况。因此,在该情况下,CPU在步骤545中判断为“是”,并进入步骤550。在步骤550中,CPU将第一开始标记X1start的值设定为“0”,进入步骤595,并暂时结束本例程。其结果为,由于步骤540的处理未被执行,因此第一目标加速度AD1tgt的计算停止。
<第二目标加速度计算处理(图6的例程)>
CPU在进入图4所示的步骤420中时,从步骤600开始进行图6中由流程图所表示的子例程的处理,并进入步骤605。在步骤605中,CPU从横摆率传感器12取得实际的横摆率Yr,并进入步骤610。实际上,从横摆率传感器12取得的横摆率Yr通过后述的零点补正值而被补正。
在步骤610中,CPU根据“从取入零点补正值的时间点起的经过时间”而对表示第二目标加速度AD2tgt的可靠度的第二可靠度RD2进行计算。从取入零点补正值的时间点起的经过时间为,从最后取得(存储)零点补正值的时间点起的时间。CPU以该经过时间越长则越小的方式对第二可靠度RD2进行计算。CPU在取入零点补正值的时间点下,将“从取入零点补正值的时间点起的经过时间”设定为“0”。在从取入零点补正值的时间点起的经过时间为“0”时,CPU将第二可靠度RD设定为最大值(例如“100”)。
另外,横摆率传感器12的零点补正处理是众所周知的,例如,被记载于日本特开2018-127146号公报等中。例如,CPU在横摆率未产生于车辆VA上的状态(即,车速Vs为“0”时)下,将由横摆率传感器12所检测出的横摆率Yr作为零点补正值而取得并且进行存储。此后,CPU通过零点补正值而对由横摆率传感器12检测出的横摆率Yr进行补正,并将该补正的值作为实际的横摆率Yr来使用。
在步骤615中,CPU通过将实际的横摆率Yr(通过零点补正值而被补正的横摆率)以及车速Vs应用于下述(3)式中,从而对曲率半径R进行计算,并将该曲率半径R的倒数(=1/R)作为当前曲率CC2而计算出来。该当前曲率CC2表示车辆VA的当前位置的行驶道路的曲率。
R=Vs/Yr…(3)
另外,根据横摆率Yr以及车速Vs而取得曲率半径R的处理为众所周知的,例如,被记载于国际公开第2010/073300号中。
接下来,CPU进入步骤620,并对第二开始标记X2start的值是否为“0”进行判断。第二开始标记X2start的值在第二开始条件成立时被设定为“1”,在第二结束条件成立时被设定为“0”。在从第二开始条件成立的时间点起至第二结束条件成立的时间点为止的期间(即,产生第二状况的期间)内,对第二目标加速度AD2tgt进行计算。第二开始标记X2start在通过CPU而被执行的前述的初始例程中被设定为“0”。
在第二开始标记X2start的值为“0”的情况(即,在第二开始条件还未成立的情况)下,CPU在步骤620中判断为“是”,并进入步骤625。
在步骤625中,CPU对第二开始条件是否成立进行判断。更详细而言,CPU在以下的条件(DA)、(DB)以及(DC)全部成立的情况下,判断为第二开始条件成立。
(DA)在步骤615中取得的当前曲率CC2为第五阈值曲率C5th以上。
(DB)横向加速度(lateral acceleration)的大小|LG|为第一阈值横向加速度(=LG1th)以上。
(DC)与横向加速度的时间相关的微分值即横向加速度的时间导数LJ的大小|LJ|为第一阈值横向加速度的时间导数LJ1th以上。
另外,CPU将横摆率Yr以及车速Vs应用于以下的下述(4)式中,从而取得横向加速度LG的大小。但是,CPU也可以使用“加速度传感器16所检测出的横向加速度”的大小来作为该横向加速度的大小。
横向加速度LG的大小=|Yr×Vs|…(4)
在上述条件(DA)、(DB)以及(DC)中的至少一个不成立的情况下,第二开始条件不成立。在该情况下,CPU在步骤625中判断为“否”,进入步骤695,并暂时结束本例程。其结果为,第二开始标记X2start被维持为“0”。
另一方面,在上述条件(DA)、(DB)以及(DC)全部成立的情况下,第二开始条件成立,产生第二状况。在该情况下,CPU在步骤625中判断为“是”,并进入步骤630。在步骤630中,CPU将第二开始标记X2start的值设定为“1”,并进入步骤635。
在步骤635中,CPU对第二目标加速度AD2tgt进行计算,进入步骤695,并暂时结束本例程。
在此,对步骤635中的处理进行说明。
在CPU中代替未来曲率FC1而使用当前曲率CC2来对车辆VA的当前位置属于第一回旋曲线区间KR1、正常圆区间SC以及第二回旋曲线区间KR2中的哪一个进行判断。
如果更具体地叙述,则CPU对从本次取得的当前曲率CC2中减去上次取得的当前曲率CC2(即,在预定时间前,在步骤615中所取得的当前曲率)而得到的减法运算值ΔC进行计算。然后,如以下的(A1’)、(B1’)以及(C1’)所述那样,CPU使用该减法运算值ΔC而对当前位置属于“第一回旋曲线区间KR1、正常圆区间SC以及第二回旋曲线区间KR2”中的哪一个进行判断。
(A1’)在减法运算值ΔC大于“被设定为正的预定值的阈值Th1”的情况下,CPU判断为当前位置属于第一回旋曲线区间KR1。
(B1’)在减法运算值ΔC为“被设定为负的预定值的阈值Th2”以上、且减法运算值ΔC为阈值Th1以下的情况下,CPU判断为当前位置属于正常圆区间SC。
(C1’)在减法运算值ΔC小于阈值Th2的情况下,CPU判断为当前位置属于第二回旋曲线区间KR2。
而且,CPU根据当前位置属于第一回旋曲线区间KR1、正常圆区间SC以及第二回旋曲线区间KR2中的哪一个,而下文所述的方式对第二目标加速度AD2tgt进行计算。
(A1’)当前位置属于第一回旋曲线区间KR1的情况
在该情况下,CPU根据下述(5)式,取得第二目标加速度AD2tgt。
AD2tgt=|横向加速度的时间导数LJ|×增益Ga…(5)
CPU通过与上述的步骤625相同的方法而取得横向加速度的时间导数LJ。而且,CPU通过与图5所示的步骤540的(A)相同的方法而取得增益Ga。但是,在CPU中,代替“与未来曲率FC1相对应的曲率半径R(=1/FC1)”,而通过将“与当前曲率CC2相对应的曲率半径R(=1/CC2)”应用于曲线道路用目标车速映射图MapVctgt(R),从而求出曲线道路用目标车速Vctgt(参照图6的框BL2’)。
接下来,CPU对从车速Vs中减去“所取得的曲线道路用目标车速Vctgt”而得到的减法运算车速DVs(DVs=Vs-Vctgt)进行计算。接下来,CPU将减法运算车速DVs应用于增益映射图MapGa(DVs)中,从而求出增益Ga(参照图6的框BL3)。
而且,如果被计算出的第二目标加速度AD2tgt小于被设定为负值的第二阈值加速度AD2th,则CPU将第二目标加速度AD2tgt设定为第二阈值加速度AD2th(参照图3的(D))。另外,该第二阈值加速度AD2th被设定为,与第一阈值加速度AD1th相比较小的负值。这是因为,第一回旋曲线区间KR1中的减速与转弯进入前减速不同,优选为,以使车辆VA能够稳定地行驶于曲线道路Cv上的方式而使车速Vs提前与曲线道路用目标车速Vctgt一致。
另外,CPU也可以与图5的步骤540同样地使用上述(2)式来对第二目标加速度AD2tgt进行计算。但是,即使在该情况下,CPU也可以代替“与未来曲率FC1相对应的曲率半径R(=1/FC1)”,而使用“与当前曲率CC2相对应的曲率半径R(=1/CC2)”。
(B1’)当前位置属于正常圆区间SC的情况
在该情况下,CPU与上述(B1)同样地将第二目标加速度AD2tgt设定为“0”。
(C1’)当前位置属于第二回旋曲线区间KR2的情况
在该情况下,CPU与上述(C1)同样地(即,以车速Vs接近于通常时目标车速Vntgt的方式)对第二目标加速度AD2tgt进行计算。但是,即使在该情况下,在CPU中也代替“与未来曲率FC1相对应的曲率半径R(=1/FC1)”而使用“与当前曲率CC2相对应的曲率半径R(=1/CC2)”。
在步骤630中,在第二开始标记X2start的值被设定为“1”后,在CPU执行本例程而进入步骤620时,CPU在该步骤620中判断为“否”,并进入步骤640。
在步骤640中,CPU对第二结束条件是否成立进行判断。第二结束条件为,以车辆VA当前正在行驶的曲线道路Cv实际结束时成立的方式而被规定的条件。更详细而言,CPU在以下的条件(DD)、(DE)以及(DF)全部成立的情况下,判断为第二结束条件成立。
(DD)在步骤615中计算出的当前曲率CC2为第六阈值曲率C6th以下。
(DE)横向加速度的大小|LG|为第二阈值横向加速度(=LG2th)以下。
(DF)横向加速度的时间导数LJ的大小|LJ|为第二阈值横向加速度的时间导数LJ2th以下。
第六阈值曲率C6th也可以被设定为与第五阈值曲率C5th相同的值。第二阈值横向加速度(=LG2th)也可以被设定为与第一阈值横向加速度(=LG1th)相同的值。第二阈值横向加速度的时间导数LJ2th也可以被设定为与第一阈值横向加速度的时间导数LJ1th相同的值。
在上述条件(DD)、(DE)以及(DF)中的至少一个不成立的情况下,第二结束条件不成立。在该情况下,CPU在步骤640中判断为“否”,进入步骤635,并对第二目标加速度AD2tgt进行计算(更新)。此后,CPU进入步骤695,并暂时结束本例程。
另一方面,在上述条件(DD)、(DE)以及(DF)全部成立的情况下,能够判断为未产生第二状况。因此,在该情况下,CPU在步骤640中判断为“是”,并进入步骤645。在步骤645中,CPU将第二开始标记X2start的值设定为“0”,进入步骤695,并暂时结束本例程。其结果为,由于步骤635的处理未被执行,因此第二目标加速度AD2tgt的计算停止。
<SPM最终目标加速度的选择处理(图7的例程)>
当CPU进入图4所示的步骤425时,CPU从步骤700开始进行图7中由流程图所示的子例程的处理,并进入步骤705。
在步骤705中,CPU对第一开始标记X1start的值是否为“0”、且第二开始标记X2start的值是否为“0”进行判断。即,CPU对是否第一目标加速度AD1tgt以及第二目标加速度AD2tgt中的任意一个均未被计算出来进行判断。在第一开始标记X1start的值为“0”、且第二开始标记X2start的值为“0”的情况下,CPU在步骤705中判断为“是”,进入步骤710,并将SPM最终目标加速度ADFtgt设定为预定的无效值(Null)。此后,CPU进入步骤795,并暂时结束本例程。在该情况下,如前文所述那样,CPU在进入图4所示的步骤435时,将ACC目标加速度GACCtgt作为驾驶辅助目标加速度GStgt而向发动机ECU20以及制动器ECU30发送。因此,实质上并未执行速度管理控制。
与此相对,在第一开始标记X1start的值以及第二开始标记X2start的值中的至少一方为“1”的情况下,CPU在步骤705中判断为“否”,进入步骤715,并对第一开始标记X1start的值是否为“1”、且第二开始标记X2start的值是否为“1”进行判断。即,CPU对第一状况以及第二状况是否全都产生了进行判断。
在第一开始标记X1start的值为“1”、且第二开始标记X2start的值为“1”的情况下,CPU优先选择第二目标加速度AD2tgt。也就是说,第二目标加速度AD2tgt一方的优选度高于第一目标加速度AD1tgt的优先度。因此,在该情况下,CPU在步骤715中判断为“是”,进入步骤720,并对第二可靠度RD2是否在第二阈值可靠度RD2th以上进行判断。
在第二可靠度RD2为第二阈值可靠度RD2th以上的情况下,CPU在步骤720中判断为“是”,进入步骤725,并将SPM最终目标加速度ADFtgt设定为第二目标加速度AD2tgt,进入步骤795,并暂时结束本例程。
在CPU执行步骤715的处理的时间点下,在第一开始标记X1start以及第二开始标记X2start中的一方为“0”的情况下,CPU在步骤715中判断为“否”,并进入步骤730。在步骤730中,CPU对第一开始标记X1start的值是否为“1”、且第二开始标记X2start的值是否为“0”进行判断。即,CPU对是否仅产生了第一状况以及第二状况中的第一状况进行判断。
在第一开始标记X1start的值为“1”、且第二开始标记X2start的值为“0”的情况下,CPU在步骤730中判断为“是”,进入步骤735,并对第一可靠度RD1是否在第一阈值可靠度RD1th以上进行判断。
在第一可靠度RD1为第一阈值可靠度RD1th以上的情况下,CPU在步骤735中判断为“是”,进入步骤740,并将SPM最终目标加速度ADFtgt设定为第一目标加速度AD1tgt,进入步骤795,并暂时结束本例程。
与此相对,在第一可靠度RD1小于第一阈值可靠度RD1th的情况下,CPU在步骤735中判断为“否”,进入步骤745,并将SPM最终目标加速度ADFtgt设定为预定的无效值(Null)。此后,CPU进入步骤795,并暂时结束本例程。
在CPU执行步骤730的处理的时间点下,在步骤730中的判断条件不成立的情况(即,在第一开始标记X1start的值为“0”、且第二开始标记X2start的值为“1”的情况)下,CPU在该步骤730中判断为“否”,并进入步骤750。在该情况下,由于第一开始标记X1start的值为“0”、且第二开始标记X2start的值为“1”,因此仅计算出第一目标加速度AD1tgt以及第二目标加速度AD2tgt中的第二目标加速度AD2tgt。这样的状态在例如由于某种理由而未获得摄像机图像的情况下产生。
因此,CPU在步骤750中,对第二可靠度RD2是否为第二阈值可靠度RD2th以上进行判断。在第二可靠度RD2为第二阈值可靠度RD2th以上的情况下,CPU在步骤750中判断为“是”,进入步骤755,并将SPM最终目标加速度ADFtgt设定为第二目标加速度AD2tgt,进入步骤795,并暂时结束本例程。
与此相对,在第二可靠度RD2小于第二阈值可靠度RD2th的情况下,CPU在步骤750中判断为“否”,进入步骤755,并将SPM最终目标加速度ADFtgt设定为预定的无效值(Null)。此后,CPU进入步骤795,并暂时结束本例程。
另外,在CPU执行步骤720的处理的时间点下,在第二可靠度RD2小于第二阈值可靠度RD2th的情况下,CPU在该步骤720中判断为“否”,并进入步骤735以后的处理。
<渐变处理(图8的例程)>
当CPU进入图4所示的步骤430中时,CPU从步骤800开始进行图8中由流程图表示的子例程的处理,并进入步骤805。
在步骤805中,CPU对渐变标记Xjohen的值是否为“0”进行判断。渐变标记Xjohen的值在后述的步骤820中被设定为“1”,在后述的步骤845中被设定为“0”。而且,渐变标记Xjohen的值在由CPU执行的前述的初始例程中被设定为“0”。
在渐变标记Xjohen的值为“0”的情况下,CPU在步骤805中判断为“是”,并进入步骤810。在步骤810中,CPU对下述的条件(EA)以及(EB)这双方是否成立进行判断。即,CPU对SPM最终目标加速度ADFtgt是否在“第一目标加速度AD1tgt以及第二目标加速度AD2tgt”之间实施了切换进行判断。
(EA)执行上次本例程的时间点的SPM最终目标加速度ADFtgt为“第一目标加速度AD1tgt以及第二目标加速度AD2tgt”中的一方。
(EB)执行本次本例程的时间点的SPM最终目标加速度ADFtgt为“第一目标加速度AD1tgt以及第二目标加速度AD2tgt”中的另一方。
在上述的条件(EA)以及(EB)这双方没有同时成立的情况下,CPU在步骤810中判断为“否”,并进入步骤815,将在当前时间点下通过图7的例程的处理而被设定的SPM最终目标加速度ADFtgt存储作为“切换前SPM最终目标加速度ADFold”。此后,CPU直接进入步骤895,并暂时结束本例程。
在上述的条件(EA)以及(EB)这双方同时成立的情况下,CPU在步骤810中判断为“是”,并依次实施以下所述的步骤820至步骤835的处理。
步骤820:CPU将渐变标记Xjohen的值设定为“1”。
步骤825:CPU将计时器T的值设定为“0”(即,CPU对计时器T进行初始化)。
步骤830:CPU在计时器T的值上加“1”。因此,计时器T的值成为,表示从SPM最终目标加速度ADFtgt在“第一目标加速度AD1tgt以及第二目标加速度AD2tgt”之间实施了切换的时间点(切换时间点)起的经过时间的值。
步骤835:CPU对计时器T的值是否小于阈值Tth进行判断。
在计时器T的值小于阈值Tth的情况下,CPU在步骤835中判断为“是”,并进入步骤840。从切换时间点起至计时器T的值达到阈值Tth为止的期间,也被称为“渐变期间”或者“过渡期间”。在步骤840中,CPU根据下述的(6)式而对渐变处理后的SPM最终目标加速度ADFtgt进行计算。(6)式的右边的ADFold,由于为在步骤815中被存储(取得)的SPM最终目标加速度ADFtgt,因此为切换时间点稍前的SPM最终目标加速度ADFtgt。(6)式的右边的ADFtgt为,在当前时间点下通过图7的例程的处理而被设定的SPM最终目标加速度ADFtgt。
渐变处理后ADFtgt=(1-k)×ADFold+k×ADFtgt…(6)
(6)式的“k”为渐变系数(加权系数)。CPU通过将计时器T的值应用于在步骤840内所示出的渐变系数映射图Mapk(T)中,从而对渐变系数k进行计算。根据渐变系数映射图Mapk(T),计时器T的值越小,则渐变系数k越接近于“0”,并且,计时器T的值越大,则渐变系数k越接近于“1”。
因此,随着计时器T的值变大,切换时间点稍前的SPM最终目标加速度ADFtgt的权重逐渐变小,并且切换时间点后的SPM最终目标加速度ADFtgt的权重逐渐变大。
由此,例如,在切换时间点下,在SPM最终目标加速度ADFtgt从第一目标加速度AD1tgt被变更为第二目标加速度AD2tgt的情况下,SPM最终目标加速度ADFtgt在切换时间点以后,从第一目标加速度AD1tgt逐渐(平滑地)向第二目标加速度AD2tgt变化。由此,由于在切换时间点稍后,SPM最终目标加速度ADFtgt的值没有急剧变化,因此能够减少驾驶员感到不安的可能性。
在步骤820中在渐变标记Xjohen的值被设定为“1”的情况下,在CPU进入了本例程的步骤805时,CPU在该步骤805中判断为“否”,并进入步骤830以后的处理。
在步骤830中,在计时器T的值被累加,且计时器T的值成为阈值Tth以上时,如果CPU进入本例程的步骤835,则CPU在该步骤835中判断为“否”,并进入步骤845。在步骤845中,CPU将渐变标记Xjohen的值设定为“0”,进入步骤895,并暂时结束本例程。
以上,如所说明的那样,第二目标加速度AD2tgt与理想加速度之间的误差小于第一目标加速度AD1tgt与理想加速度之间的误差。本控制装置在产生第一状况以及第二状况这双方的情况下(即,在能够计算出第一目标加速度AD1tgt以及第二目标加速度AD2tgt这双方的状况的情况下),以使车辆VA的实际的加速度接近于第二目标加速度AD2tgt的方式对车辆VA进行控制。由此,由于车辆以不适合于曲线道路的目标加速度行驶在曲线道路上的可能性降低,因此能够减少驾驶员感到不安的可能性。
本发明并没有被限定于上述实施方式,在本发明的范围内能够采用如下所述的各种各样的改变例。
<第一改变例>
在上述实施方式中,在第一开始条件的成立后第二开始条件成立了的切换时间点以后(即,在第一状况的产生过程中产生了第二状况的情况下),继续对第一目标加速度AD1tg以及第二目标加速度AD2tgt这双方进行计算。与此相对,第一改变例在第一状况的产生过程中产生了第二状况的情况下,停止第一目标加速度AD1tgt的计算,并继续进行第二目标加速度AD2tgt的计算。也就是说,在成为了能够计算出第一目标加速度AD1tgt以及第二目标加速度AD2tgt这双方的状况的情况下(产生了第一状况以及第二状况这双方的情况下),继续进行优先度更高的一方的目标加速度(在此,为第二目标加速度AD2tgt)的计算,另一方面,停止优先度较低的一方的目标加速度(在此,为第一目标加速度AD1tgt)的计算。
在该情况下,CPU在图5的步骤545中,在第二开始标记X2start为“0”的情况下,进入步骤540,并在第二开始标记X2start为“1”的情况下,进入步骤550。由此,由于并未无用地实施步骤540的处理,因此,能够减少CPU的计算负载。
<第二改变例>
在本改变例中,CPU根据下述(7)式而实施如下情况的过渡期间内的渐变处理,所述情况为,在第一状况的产生过程中产生了第二状况,并由于产生了第一状况以及第二状况这双方,从而将SPM最终目标加速度ADFtgt从第一目标加速度AD1tgt切换为第二目标加速度AD2tgt的情况。
渐变处理后ADFtgt=(1-k)×AD1tgt+k×AD2tgt…(7)
在该情况下,由于产生了第一状况以及第二状况这双方,因此每当在过渡期间内执行图4所示的例程时,就会继续对第一目标加速度AD1tgt以及第二目标加速度AD2tgt进行计算。使用以此方式被计算出的第一目标加速度AD1tgt以及第二目标加速度AD2tgt来实施渐变处理。
另外,在本改变例中,如第一改变例那样,在第一状况的产生过程中产生了第二状况的情况下,也可以停止第一目标加速度AD1tgt的计算。在该情况下,以能够执行使用了上述(7)式的渐变处理的方式,在过渡期间中,继续对第一目标加速度AD1tgt以及第二目标加速度AD2tgt这双方进行计算。而且,在经过过渡期间之后,停止第一目标加速度AD1tgt(优先度较低的一方的目标加速度)的计算,并且实施第二目标加速度AD2tgt(优先度较高的目标加速度)的计算。在该情况下,CPU在图5的步骤545中,将第一开始标记X1start以及第二开始标记X2start这双方的值设定为“1”,并且,在渐变标记Xjohen的值从“1”被变更为“0”时的计算结束条件成立的情况下,进入步骤550。CPU在该计算结束条件不成立的情况下,进入步骤540。
<第三改变例>
第三改变例所涉及的车辆控制装置(以下,称为“第三改变装置”)作为第一方式(对第一目标加速度AD1tgt进行计算的方式)而采用导航方式。如前文所述那样,第三改变装置具备导航系统17以及GPS接收机18(参照图1)。
导航系统17预先存储了包括曲线道路Cv的“地表上的位置以及曲率等”在内的地图数据(导航信息)。
GPS接收机18每当经过预定时间时,就从多个GPS卫星上接收GPS信号。GPS接收机18根据所接收到的多个GPS信号而对车辆VA的当前位置(地表上的位置)进行特别指定,并将能够特别指定该当前位置的位置信号发送给DSECU10。另外,位置信号包括发送了GPS接收机18所能够接收的GPS信号的GPS卫星的数量。
第三改变装置的DSECU10所具有的CPU执行与上述实施装置的CPU所执行的例程实质相同的例程。但是,第三改变装置的DSECU10所具有的CPU在执行图4的步骤415的处理时,执行从图5所示的例程中省略步骤505、且以如下方式对步骤510至步骤520的处理进行变更后的例程(以下,称为“第三改变例例程”)。
即,CPU在进入图4所示的步骤415中时,从步骤500开始进行第三改变例例程的处理,进入步骤510,并根据从GPS接收机18接收到的位置信号中所包含的GPS卫星的数量,而取得第一可靠度RD1。GPS卫星的数量越多,则第一可靠度RD1越高。
接下来,CPU进入步骤515,参照导航系统17的地图数据(导航信息),作为未来曲率FC1而取得从车辆VA的当前位置起向前方仅离开预定距离的未来位置处的行驶道路的曲率。
接下来,CPU进入步骤520,参照地图数据(导航信息),取得车辆VA的当前位置处的行驶道路的曲率,以作为当前曲率CC1。
以此方式,第三改变装置使用包括与道路的形状相关的信息在内的地图数据(导航信息)而取得第一信息,并根据该第一信息而对第一目标加速度进行计算。地图数据所示的曲率有时与实际的曲率之间的背离较大,而且,也存在车辆VA的当前位置与实际的当前位置背离的情况。因此,即使在第三改变装置中,第二目标加速度AD2tgt的优先度也被设定得高于第一目标加速度AD1tgt的优先度。
<第四改变例>
第四改变例所涉及的车辆控制装置(以下,称为“第四改变装置”)作为第一方式(对第一目标加速度AD1tgt进行计算的方式),而采用标识识别方式。
第四改变装置的DSECU10所具有的CPU执行与上述实施装置的CPU所执行的例程实质相同的例程。但是,第四改变装置的DSECU10所具有的CPU在执行图4的步骤415的处理时,执行省略图5所示的例程的步骤510以及步骤520、且以下文所述的方式对步骤505、步骤515、步骤530以及步骤545的处理进行变更后的例程(以下,称为“第四改变例例程”)。
即,CPU在进入图4所示的步骤415时,从步骤500开始进行第四改变例例程的处理,进入步骤505,并从摄像机图像中提取与弯道警戒标识相对应的图像(以下,称为“警戒标识图像”)。
接下来,CPU省略步骤510而进入步骤515,并对在弯道警戒标识的下方处所记载的“表示曲线道路Cv的正常圆区间SC的曲率半径R的数字”进行识别,并取得根据所识别出的数字所表示的曲率半径R而取得的曲率C,以作为未来曲率FC1。
接下来,CPU省略步骤520而进入步骤525,在于步骤525中被判断为“是”的情况下,进入步骤530。在步骤530中,CPU在从车辆VA起至弯道警戒标识为止的距离为预定距离以下的情况下,判断为第一开始条件成立。
另一方面,在于步骤525中被判断为“否”的情况下,CPU进入步骤545。在步骤545中,CPU在第二开始条件成立时,判断为第一结束条件成立。
另外,在第四改变例例程中,CPU因省略步骤510而未取得第一可靠度RD1。因此,CPU在执行图4的步骤425的处理时,执行省略了图7所示的例程的步骤735后的例程。即,CPU在于步骤730中判断为“是”的情况下,直接进入步骤740。
<第五改变例>
第五改变例所涉及的车辆控制装置(以下,称为“第五改变装置”)作为第一方式(对第一目标加速度AD1tgt进行计算的方式),而采用先行车辆行驶历史方式。
第五改变装置的DSECU10所具有的CPU执行与上述实施装置的CPU所执行的例程实质上相同的例程。但是,第五改变装置的DSECU10所具有的CPU在执行图4的步骤415的处理时,执行省略图5所示的例程的步骤510、且以下文所述的方式对步骤505至步骤520的处理进行变更后的例程(以下,称为“第五改变例例程”)。
即,CPU在进入图4所示的步骤415时,从步骤500开始进行第五改变例例程的处理,进入步骤505,并对追随先行车辆(a)的相对于车辆VA的位置进行检测。另外,在不存在追随先行车辆(a)的情况下,由于无法对第一目标加速度AD1tgt进行计算,因此结束本改变例例程。
接下来,CPU省略步骤510而进入步骤515,根据追随先行车辆(a)的相对于车辆VA的位置的历史,而对未来曲率FC1进行计算。在追随先行车辆(a)进入了曲线道路Cv的情况下,由于追随先行车辆(a)沿着曲线道路Cv而行驶,因此根据将追随先行车辆(a)的位置的历史连接在一起的线段的曲率,从而对未来曲率FC1进行计算。
接下来,CPU在步骤520中,根据追随先行车辆(a)的相对于车辆VA的位置的历史来对当前曲率CC1进行计算。
另外,在第五改变例例程中,CPU由于省略了步骤510,从而未取得第一可靠度RD1。因此,CPU在执行图4的步骤425的处理时,执行省略了图7所示的例程的步骤735的例程。即,CPU在于步骤730中判断为“是”的情况下,直接进入步骤740。
<第六改变例>
第六改变例所涉及的车辆控制装置(以下,称为“第六改变装置”),作为第二方式(对第二目标加速度AD2tgt进行计算的方式),而采用转向角方式。如前文所述那样,第六改变装置具备转向角传感器19(参照图1)。转向角传感器19对车辆VA的未图示的转向盘的转向角进行检测,并将表示所检测出的转向角的转向角信号发送给DSECU10。
第六改变装置的DSECU10所具有的CPU执行与上述实施装置的CPU所执行的例程实质上相同的例程。但是,第六改变装置的DSECU10所具有的CPU在执行图4的步骤420的处理时,执行以下文所述的方式对图6所示的例程的步骤605至步骤615的处理进行变更后的例程(以下,称为“第六改变例例程”)。
即,CPU在进入图4所示的步骤420时,从步骤600开始进行第六改变例例程的处理,进入步骤605,并根据来自转向角传感器19的转向角信号所表示的转向角和车速Vs,从而对横摆率Yr进行计算。
接下来,CPU进入步骤610,并根据在步骤605中计算出的横摆率Yr,而对当前曲率CC2进行计算,并进入步骤615。
DSECU10在车辆VA停止时,也相对于从转向角传感器19发送的转向角信号而执行零点补正处理。因此,在步骤615中,CPU以与上述实施装置的CPU所执行的图6所示的步骤615相同的方式而取得第二可靠度RD2。
<第七改变例>
第七改变例所涉及的车辆控制装置(以下,称为“第七改变装置”),作为第二方式(对第二目标加速度AD2tgt进行计算的方式),而采用加速度方式。
第七改变装置的DSECU10所具有的CPU执行与上述实施装置的CPU所执行的例程实质上相同的例程。但是,第七改变装置的DSECU10所具有的CPU在执行图4的步骤420的处理时,执行以下文所述方式对图6所示的例程的步骤605至步骤615的处理进行变更后的例程(以下,称为“第七改变例例程”)。
即,CPU进入图4所示的步骤420时,从步骤600开始进行第七改变例例程的处理,进入步骤605,并根据“从加速度传感器16发送的加速度信号速所表示的横向加速度”以及车速Vs而对横摆率Yr进行计算。
接下来,CPU进入步骤610,根据在步骤605中计算出的横摆率Yr而对当前曲率CC2进行计算,并进入步骤615。
DSECU10在车辆VA停止时,也相对于从加速度传感器16发送的加速度信号而执行零点补正处理。关于加速度传感器16的零点补正处理的详细情况,由于被记载于日本特开2009-264794号公报中,因此省略说明。因此,在步骤615中,CPU以与上述实施装置的CPU所执行的图6所示的步骤615相同的方式而取得第二可靠度RD2。
横摆率方式的横摆率Yr、转向角方式的转向角以及加速度方式的横向加速度全都为,包括在当前时间点下通过各种传感器而检测出的与车辆的转弯运动相关的物理量在内的当前信息。第二方式只要是使用这样的信息的方式即可,并未被限定于上述方式。
另外,在作为摄像机装置13而采用了能够对到障碍物为止的准确的距离进行测量的立体摄像机等的情况下,前述的车辆控制装置也可以不具备毫米波雷达装置14。
毫米波雷达装置14只要为“通过放射无线介质并接收被反射的无线介质,从而对障碍物进行检测的传感器”即可。
而且,虽然在图6所示的步骤625以及步骤635中,CPU根据横摆率Yr和车速Vs而取得横向加速度LG,但也可以取得由加速度传感器16计测的横向加速度。
CPU也可以在图4所示的例程中不执行步骤430的处理(渐变处理)。
上述的车辆控制装置也可以不执行固定速度行驶控制以及车间距离维持控制中的至少一个。
在图6所示的例程的步骤635中,在被判断为当前位置属于第二回旋曲线区间KR2的情况下,CPU也可以以如下方式对第二目标加速度AD2tgt进行计算,即,以使车辆VA成为进入第一回旋曲线区间的时间点(即将实施速度管理之前的时间点)的车速Vs的方式逐渐地对车辆VA进行加速。
在图5所示的例程的步骤540中,CPU也可以不将未来位置属于正常圆区间SC的情况下的第一目标加速度AD1tgt计算为“0”。例如,该情况下的第一目标加速度AD1tgt只要为根据正常圆区间SC的曲率而变化的正的固定值即可。
在图6所示的例程的步骤635中,CPU也可以不将当前位置属于正常圆区间SC的情况下的第二目标加速度AD2tgt计算为“0”。例如,该情况下的第二目标加速度AD2tgt只要为根据正常圆区间SC的曲率而变化的正的固定值即可。
符号说明
10…驾驶辅助ECU(DSECU);11…车轮速度传感器;12…横摆率传感器;13…摄像机装置;14…毫米波雷达装置;15…巡航控制操作按钮;16…加速度传感器;17…导航系统;18…GPS接收机;19…转向角传感器;20…发动机ECU;22…加速器踏板操作量传感器;24…发动机传感器;26…发动机致动器;30…制动器ECU;32…制动器踏板操作量传感器;34…制动器致动器。
Claims (7)
1.一种车辆控制装置,具备:
第一取得部,其取得包括与车辆所行驶的道路即行驶道路的形状相关的信息在内的第一信息;
第二取得部,其以独立于所述第一取得部的方式而取得包括与所述行驶道路的形状相关的信息在内的第二信息;
第一计算部,其被构成为,能够在所述第一信息表示所述行驶道路为曲线道路的第一状况下,根据所述第一信息而对所述车辆行驶于该曲线道路的情况下的加速度的目标值即第一目标加速度进行计算;
第二计算部,其被构成为,能够在所述第二信息表示所述行驶道路为所述曲线道路的第二状况下,根据所述第二信息而对所述车辆行驶于该曲线道路的情况下的加速度的目标值即第二目标加速度进行计算;
控制部,其在仅产生了所述第一状况以及所述第二状况中的任意一方的情况下,以使所述车辆的实际的加速度接近于在该产生的状况下能够被计算出的所述第一目标加速度以及所述第二目标加速度中的一方的方式对所述车辆进行控制,
并在产生了所述第一状况以及所述第二状况这双方的情况下,以使所述车辆的实际的加速度接近于所述第一目标加速度以及所述第二目标加速度中的被预先规定的优先度较高的一方的方式对所述车辆进行控制。
2.如权利要求1所述的车辆控制装置,其中,
所述第一取得部被构成为,通过对所述车辆的前方区域进行拍摄而取得图像数据,并使用所取得的所述图像数据来取得所述第一信息,
所述第二取得部被构成为,对表示所述车辆的运动状态的物理量进行检测,并使用所检测出的所述物理量来取得所述第二信息,
所述控制部将所述第二目标加速度的优先度设定得高于所述第一目标加速度的优先度。
3.如权利要求1所述的车辆控制装置,其中,
所述第一取得部被构成为,使用包括与所述道路的形状相关的信息在内的地图数据来取得所述第一信息,
所述第二取得部被构成为,对表示所述车辆的运动状态的物理量进行检测,并使用所检测出的所述物理量来取得所述第二信息,
所述控制部将所述第二目标加速度的优先度设定得高于所述第一目标加速度的优先度。
4.如权利要求2或权利要求3所述的车辆控制装置,其中,
所述第一取得部被构成为,作为所述第一信息而取得与从所述车辆的当前位置向所述车辆的前方仅离开预定距离的位置处的所述行驶道路的形状相关的信息,
所述第二取得部被构成为,作为所述第二信息而取得与所述车辆的当前位置处的所述行驶道路的形状相关的信息。
5.如权利要求4所述的车辆控制装置,其中,
所述第一计算部被构成为,在仅产生所述第一状况以及所述第二状况中的所述第一状况的情况下,对所述第一目标加速度进行计算,在产生所述第一状况以及所述第二状况这双方的情况下,停止所述第一目标加速度的计算,
所述第二计算部被构成为,在产生所述第一状况以及所述第二状况这双方的情况下,对所述第二目标加速度进行计算。
6.如权利要求1所述的车辆控制装置,其中,
所述控制部被构成为,在将控制状态从使所述车辆的实际的加速度接近于所述第一目标加速度以及所述第二目标加速度中的任意一方的第一状态切换为接近于任意另一方的第二状态的情况下,在从切换了所述控制状态的切换时间点起到经过预定时间为止的过渡期间内,以如下方式对过渡期间用的目标加速度进行计算,即,从所述切换时间点起的经过时间越长,则所述切换时间点的稍前的时间点下的所述第一目标加速度以及所述第二目标加速度中的所述任意一方的权重越变小,并且,从所述切换时间点起的经过时间越长,则所述第一目标加速度以及所述第二目标加速度中的所述任意另一方的权重越变大,
并且所述控制部以在所述过渡期间内使所述车辆的实际的加速度接近于被计算出的所述过渡期间用的目标加速度的方式对所述车辆进行控制。
7.如权利要求1所述的车辆控制装置,其中,
所述第一计算部被构成为,对表示针对所述第一目标加速度的可靠度的第一可靠度进行计算,
所述第二计算部被构成为,对表示针对所述第二目标加速度的可靠度的第二可靠度进行计算,
所述控制部被构成为,在产生所述第一状况以及所述第二状况这双方的情况下,当关于所述第一目标加速度以及所述第二目标加速度中的所述优先度较高的一方即高优先度加速度而被计算出的所述第一可靠度以及所述第二可靠度中的一方为第一阈值可靠度以上时,以使所述车辆的实际的加速度接近于该高优先度加速度的方式对所述车辆进行控制,
在关于所述高优先度加速度而被计算出的所述第一可靠度以及所述第二可靠度中的一方小于所述第一阈值可靠度的情况下,当关于所述第一目标加速度以及所述第二目标加速度中的所述优先度较低的一方即低优先度加速度而被计算出的所述第一可靠度以及所述第二可靠度中的另一方为第二阈值可靠度以上时,以使所述车辆的实际的加速度接近于该低优先度加速度的方式对所述车辆进行控制。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018206537A JP7052677B2 (ja) | 2018-11-01 | 2018-11-01 | 車両制御装置 |
JP2018-206537 | 2018-11-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111137276A true CN111137276A (zh) | 2020-05-12 |
CN111137276B CN111137276B (zh) | 2023-03-28 |
Family
ID=70460174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911045466.2A Active CN111137276B (zh) | 2018-11-01 | 2019-10-30 | 车辆控制装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200139968A1 (zh) |
JP (1) | JP7052677B2 (zh) |
CN (1) | CN111137276B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114435056A (zh) * | 2020-10-30 | 2022-05-06 | 丰田自动车株式会社 | 减振控制装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3141912A1 (fr) * | 2022-11-14 | 2024-05-17 | Psa Automobiles Sa | Gestion de la vitesse d’un véhicule automobile dans un virage |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003256999A (ja) * | 2002-02-27 | 2003-09-12 | Nissan Motor Co Ltd | 車両用走行制御装置 |
US20080059036A1 (en) * | 2006-07-04 | 2008-03-06 | Xanavi Informatics Corporation | Vehicle Speed Control System |
US20090187322A1 (en) * | 2008-01-23 | 2009-07-23 | Yoshiyuki Yasui | Motion Control Device for Vehicle |
US20090265072A1 (en) * | 2008-04-22 | 2009-10-22 | Aisin Aw Co., Ltd. | Driving support device, driving support method, and driving support program |
US20110087415A1 (en) * | 2008-09-25 | 2011-04-14 | Hitachi Automotive Systems, Ltd. | Vehicular Deceleration Aiding Device |
US20120143398A1 (en) * | 2009-08-18 | 2012-06-07 | Toyota Jidosha Kabushiki Kaisha | Vehicle control system |
US20120277965A1 (en) * | 2011-01-07 | 2012-11-01 | Hitachi Automotive Systems, Ltd. | Vehicle Motion Control System |
WO2013011633A1 (ja) * | 2011-07-21 | 2013-01-24 | 日産自動車株式会社 | 車両用走行制御装置 |
WO2013011615A1 (ja) * | 2011-07-21 | 2013-01-24 | 日産自動車株式会社 | 車両用走行制御装置 |
US20130080019A1 (en) * | 2011-09-24 | 2013-03-28 | Denso Corporation | Vehicle behavior control device |
US20150094927A1 (en) * | 2013-09-30 | 2015-04-02 | Hitachi, Ltd. | Method and Apparatus for Performing Driving Assistance |
JP2015063201A (ja) * | 2013-09-25 | 2015-04-09 | 日産自動車株式会社 | 車両用走行制御装置 |
US20160362106A1 (en) * | 2015-06-09 | 2016-12-15 | Toyota Jidosha Kabushiki Kaisha | Drive assist device for vehicle |
JP2017171199A (ja) * | 2016-03-25 | 2017-09-28 | 三菱電機株式会社 | 車速制御システム |
DE102017122969A1 (de) * | 2016-10-06 | 2018-04-12 | Ford Global Technologies, Llc | Fahrzeug mit umfeldkontextanalyse |
JP2018065466A (ja) * | 2016-10-19 | 2018-04-26 | 日立オートモティブシステムズ株式会社 | 車両運動制御装置、車両運動制御方法、車両運動制御プログラム |
-
2018
- 2018-11-01 JP JP2018206537A patent/JP7052677B2/ja active Active
-
2019
- 2019-07-25 US US16/522,010 patent/US20200139968A1/en not_active Abandoned
- 2019-10-30 CN CN201911045466.2A patent/CN111137276B/zh active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003256999A (ja) * | 2002-02-27 | 2003-09-12 | Nissan Motor Co Ltd | 車両用走行制御装置 |
US20080059036A1 (en) * | 2006-07-04 | 2008-03-06 | Xanavi Informatics Corporation | Vehicle Speed Control System |
US20090187322A1 (en) * | 2008-01-23 | 2009-07-23 | Yoshiyuki Yasui | Motion Control Device for Vehicle |
US20090265072A1 (en) * | 2008-04-22 | 2009-10-22 | Aisin Aw Co., Ltd. | Driving support device, driving support method, and driving support program |
US20110087415A1 (en) * | 2008-09-25 | 2011-04-14 | Hitachi Automotive Systems, Ltd. | Vehicular Deceleration Aiding Device |
US20120143398A1 (en) * | 2009-08-18 | 2012-06-07 | Toyota Jidosha Kabushiki Kaisha | Vehicle control system |
US20120277965A1 (en) * | 2011-01-07 | 2012-11-01 | Hitachi Automotive Systems, Ltd. | Vehicle Motion Control System |
WO2013011615A1 (ja) * | 2011-07-21 | 2013-01-24 | 日産自動車株式会社 | 車両用走行制御装置 |
WO2013011633A1 (ja) * | 2011-07-21 | 2013-01-24 | 日産自動車株式会社 | 車両用走行制御装置 |
US20130080019A1 (en) * | 2011-09-24 | 2013-03-28 | Denso Corporation | Vehicle behavior control device |
JP2015063201A (ja) * | 2013-09-25 | 2015-04-09 | 日産自動車株式会社 | 車両用走行制御装置 |
US20150094927A1 (en) * | 2013-09-30 | 2015-04-02 | Hitachi, Ltd. | Method and Apparatus for Performing Driving Assistance |
US20160362106A1 (en) * | 2015-06-09 | 2016-12-15 | Toyota Jidosha Kabushiki Kaisha | Drive assist device for vehicle |
JP2017171199A (ja) * | 2016-03-25 | 2017-09-28 | 三菱電機株式会社 | 車速制御システム |
DE102017122969A1 (de) * | 2016-10-06 | 2018-04-12 | Ford Global Technologies, Llc | Fahrzeug mit umfeldkontextanalyse |
JP2018065466A (ja) * | 2016-10-19 | 2018-04-26 | 日立オートモティブシステムズ株式会社 | 車両運動制御装置、車両運動制御方法、車両運動制御プログラム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114435056A (zh) * | 2020-10-30 | 2022-05-06 | 丰田自动车株式会社 | 减振控制装置 |
CN114435056B (zh) * | 2020-10-30 | 2023-08-18 | 丰田自动车株式会社 | 减振控制装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7052677B2 (ja) | 2022-04-12 |
JP2020069956A (ja) | 2020-05-07 |
US20200139968A1 (en) | 2020-05-07 |
CN111137276B (zh) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10515278B2 (en) | Driving assistance device | |
US10494022B2 (en) | Driving assistance device | |
EP3147170B1 (en) | Vehicle traveling control device and method | |
US8214124B2 (en) | Cruise control system and method | |
EP3608192A2 (en) | Driving assist device | |
JP6544295B2 (ja) | 車両走行制御装置 | |
CN110682916B (zh) | 车辆行驶辅助装置 | |
JP6787270B2 (ja) | 車両走行制御装置 | |
CN111688687B (zh) | 车辆行驶控制装置 | |
JP7230795B2 (ja) | 車両制御装置 | |
US11370431B2 (en) | Vehicle control device | |
US11173957B2 (en) | Vehicle movement control apparatus | |
JP2019215730A (ja) | 車両の運転支援装置 | |
US11760350B2 (en) | Vehicle control device | |
CN111137276B (zh) | 车辆控制装置 | |
JP2020069953A (ja) | 車両用運転支援装置 | |
JP2020117009A (ja) | 車両走行制御装置 | |
JP2020069954A (ja) | 車両用運転支援装置 | |
JP2022175566A (ja) | 車両運転支援装置 | |
JP2023006185A (ja) | 車両運転支援装置 | |
JP2023094791A (ja) | 減速支援装置、車両、減速支援方法及び、プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |