WO2021145140A1 - 遺伝子検査装置の性能評価用試料及びその調製方法、並びに、遺伝子検査装置の性能評価用デバイス、性能評価方法、性能評価プログラム及び性能評価装置 - Google Patents

遺伝子検査装置の性能評価用試料及びその調製方法、並びに、遺伝子検査装置の性能評価用デバイス、性能評価方法、性能評価プログラム及び性能評価装置 Download PDF

Info

Publication number
WO2021145140A1
WO2021145140A1 PCT/JP2020/047471 JP2020047471W WO2021145140A1 WO 2021145140 A1 WO2021145140 A1 WO 2021145140A1 JP 2020047471 W JP2020047471 W JP 2020047471W WO 2021145140 A1 WO2021145140 A1 WO 2021145140A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
cells
molecules
sample
cell
Prior art date
Application number
PCT/JP2020/047471
Other languages
English (en)
French (fr)
Inventor
優介 大▲崎▼
聡 中澤
侑希 米川
海野 洋敬
橋本 みちえ
益紀 梶川
Original Assignee
株式会社リコー
優介 大▲崎▼
聡 中澤
侑希 米川
海野 洋敬
橋本 みちえ
益紀 梶川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リコー, 優介 大▲崎▼, 聡 中澤, 侑希 米川, 海野 洋敬, 橋本 みちえ, 益紀 梶川 filed Critical 株式会社リコー
Priority to EP20913540.9A priority Critical patent/EP4092132A4/en
Priority to JP2021570701A priority patent/JPWO2021145140A1/ja
Priority to CN202080091427.0A priority patent/CN114929890A/zh
Publication of WO2021145140A1 publication Critical patent/WO2021145140A1/ja
Priority to US17/810,075 priority patent/US20230011171A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Definitions

  • the present invention relates to a sample for performance evaluation of a genetic testing device and a method for preparing the same, and a device for evaluating performance of the genetic testing device, a performance evaluation method, a performance evaluation program, and a performance evaluation device.
  • the present application claims priority based on Japanese Patent Application No. 2020-005315 filed in Japan on January 16, 2020, and Japanese Patent Application No. 2020-137596 filed in Japan on August 17, 2020. , The contents are used here.
  • next-generation sequencer Next Generation Sequencer: NGS
  • NGS next Generation Sequencer
  • the volume of the nucleic acid sample used in the actual NGS sequence detection test is at most about 50 ⁇ L, and the standard sample with an accurate ultra-low concentration is used.
  • major allele Will be extremely large.
  • the ultra-high concentration nucleic acid sample obtained by this method becomes highly viscous, and the magnesium ion concentration in the reaction solution decreases, which inhibits various reactions important in the test using NGS, including the PCR reaction.
  • Patent Document 1 discloses a more accurate quality control method for genetic testing when a plurality of genes such as panel testing are analyzed. Specifically, a plurality of types of gene mutations including a first type of gene mutation and a second type of gene mutation different from the first type are examined for genes in a sample collected from a subject. A quality control sample containing a first standard gene having a first type of gene mutation and a second standard gene having a second type of gene mutation is prepared as a quality evaluation method in a genetic test. It is disclosed that the sequence information of the gene contained in the quality control sample is acquired, and an index for evaluating the quality of the genetic test is output based on the acquired sequence information.
  • the quality control sample described in Patent Document 1 the content ratio of two kinds of genes having different mutations has not been specified, and the preparation method thereof has not been concretely examined. Therefore, the preparation accuracy is high. It is not guaranteed and there is room for improvement.
  • the present invention provides a sample for performance evaluation of a genetic testing device, which can suppress the total amount of nucleic acid in the reaction space and can correctly evaluate the performance of the genetic testing device.
  • the sample for performance evaluation of the genetic testing apparatus contains nucleic acid A and nucleic acid B, the nucleic acid A and the nucleic acid B have different sequences from each other, contain the nucleic acid A having a specific molecular number, and the nucleic acid B is the nucleic acid.
  • the ratio A / B of the number of molecules of the nucleic acid A to the number of molecules of the nucleic acid B, which is larger than the number of molecules of A, is specified.
  • the sample for performance evaluation of the genetic testing apparatus of the present invention it is possible to provide a sample for evaluating the performance of the genetic testing apparatus in which the total amount of nucleic acids in the reaction space is suppressed and the performance of the genetic testing apparatus can be evaluated correctly. can.
  • FIG. 1 It is a block diagram which shows an example of the hardware structure of the performance evaluation apparatus of the genetic inspection apparatus of this invention. It is a figure which shows an example of the functional structure of the performance evaluation apparatus of the genetic test apparatus of this invention. It is a flowchart which shows an example of the performance evaluation program processing of the genetic test apparatus of this invention.
  • (A) to (e) are PM scores calculated based on the number of reads obtained from 3 runs of the sample (IJ group) and 1 run of the hand-diluted sample (manual group) having an ultra-low allele frequency in Example 2. It is a figure which shows.
  • the PM score (reproducibility evaluation of the IJ group) calculated based on the number of reads obtained from 3 runs of the sample (IJ group) and 1 run of the hand-diluted sample (manual group) having an ultra-low allergen frequency in Example 2 was obtained.
  • Is. 6 is a graph showing the relationship between the PM score and the allele frequency calculated based on the number of reads obtained from sample 1 run having an ultra-low allele frequency in Example 5.
  • 6 is a graph showing the relationship between the PM score and the allele frequency calculated based on the number of reads obtained from sample 1 run having an ultra-low allele frequency in Example 5.
  • 6 is a graph showing a regression line (left figure) when the horizontal axis is represented by the number of copies and a regression line (right figure) when the horizontal axis is represented by the logarithm of the number of copies in Example 6.
  • a sample for performance evaluation of a genetic testing apparatus according to an embodiment of the present invention and a method for preparing the same, and a device for evaluating performance of the genetic testing apparatus, a performance evaluation method, a performance evaluation program, and a performance evaluation device (hereinafter, respectively, simply “Sample for performance evaluation of this embodiment”, “Preparation method of this embodiment”, “Device of this embodiment”, “Performance evaluation method of this embodiment”, “Performance evaluation program of this embodiment", “Book”
  • the performance evaluation device of the embodiment will be described with reference to specific embodiments and drawings as necessary. Such embodiments and drawings are merely examples for facilitating the understanding of the present invention, and do not limit the present invention.
  • the performance evaluation sample of the present embodiment contains nucleic acid A and nucleic acid B, and nucleic acid A and nucleic acid B have different sequences from each other.
  • the sample of the present embodiment contains nucleic acid A having a specific molecular number, and contains nucleic acid B in a larger number than the number of molecules of nucleic acid A.
  • the ratio A / B of the number of molecules of nucleic acid A to the number of molecules of nucleic acid B is specified.
  • the content thereof can be set to a very small amount such as one molecule, whereby nucleic acid B becomes nucleic acid. Even if it is present in a large amount with respect to A, the total amount of nucleic acids of nucleic acid A and nucleic acid B can be suppressed. Further, as shown in Examples described later, the accuracy of the molecular number of nucleic acid A allows the genetic testing apparatus to be correctly evaluated as a standard sample whose accuracy is guaranteed. Examples of the genetic testing device include a quantitative PCR device, a nucleic acid sequencer (sequencer) (for example, a next-generation sequencer), and the like.
  • Examples of the quantitative PCR device include a real-time PCR device and the like.
  • a real-time PCR device is a device that quantifies template nucleic acid based on the amplification factor by measuring amplification by PCR over time (real time). Quantification is performed using a fluorescent dye, and there are mainly an intercalation method and a hybridization method.
  • the template nucleic acid is amplified in the presence of an intercalator that specifically inserts (intercalates) into double-stranded DNA and emits fluorescence.
  • the intercalator include SYBR Green I (CAS number: 163795-75-3) or a derivative thereof.
  • the hybridization method the method using a TaqMan (registered trademark) probe is the most common, and a probe in which a fluorescent substance and a quenching substance are bound to an oligonucleotide complementary to the target nucleic acid sequence is used.
  • the next-generation sequencer is a group of base sequence analyzers that have been developed in recent years, and has been dramatically improved by performing a large amount of parallel processing of clonally amplified DNA templates or single DNA molecules in a flow cell. Has analytical ability.
  • the sequencing technique that can be used in this embodiment may be a sequencing technique that acquires a plurality of reads by reading the same area in duplicate (deep sequencing).
  • the sequencing technique that can be used in the present embodiment is not particularly limited, and is limited to ion semiconductor sequencing, pyrosequencing, and sequencing using a reversible dye terminator. Sequencing that can obtain a large number of reads per run based on sequencing principles other than the Sanger method, such as sequencing), sequencing-by-ligation, and sequencing by probe ligation of oligonucleotides. Technology can be mentioned.
  • the performance of the genetic testing device includes the base sequence analysis performance of each reaction space, the fluorescence measurement performance of each reaction space, and the like.
  • the high performance of the genetic testing apparatus may mean, for example, that there is no variation in the accuracy of base sequence analysis and the accuracy of fluorescence measurement in each reaction space.
  • the number of molecules counts (counts) a molecule read as one nucleic acid as one molecule in a genetic testing apparatus.
  • the specific number of molecules means that the number of molecules of nucleic acid A contained in the sample is specified with an accuracy of a certain level or higher. That is, it can be said that the number of molecules of nucleic acid A actually contained in the sample is known. That is, the specific number of molecules in the present specification is more accurate and reliable as a number than the predetermined number of molecules (calculated estimated value) obtained by conventional serial dilution, and in particular, low molecules of 1,000 or less. Even in a few regions, the value is controlled regardless of the Poisson distribution.
  • the controlled value is that the coefficient of variation CV, which represents uncertainty, is generally within the magnitude of either CV ⁇ 1 / ⁇ x or CV ⁇ 20% with respect to the average number of molecules x. preferable.
  • the number of molecules of nucleic acid A may be a specific number smaller than that of nucleic acid B, but specifically, from the viewpoint of suppressing the total amount of nucleic acids of nucleic acid A and nucleic acid B, 1 or more and 200 or less is preferable. More than 100 or less is more preferable, and 1 or more and 50 or less is further preferable.
  • a specific number of molecules of nucleic acid A may be referred to as an absolute number of nucleic acid A.
  • reaction spaces hereinafter, may be referred to as "wells"
  • nucleic acid A there are a plurality of reaction spaces (hereinafter, may be referred to as "wells") containing nucleic acid A, they are included in each well.
  • the same number of copies of nucleic acid A means that the variation in the number of nucleic acids A that occurs when the sample is filled in the reaction space is within the permissible range. Whether or not the variation in the number of nucleic acids A is within the permissible range can be determined based on the uncertainty information shown below.
  • Information on a specific number of molecules of nucleic acid A includes, for example, uncertainty information, carrier information described later, nucleic acid A information, and the like.
  • a value that can be reasonably linked to a measured quantity means a candidate for a true value of the measured quantity. That is, the uncertainty means information on the variation in the measurement result due to the operation, equipment, etc. related to the manufacture of the measurement target. The greater the uncertainty, the greater the expected variability in the measurement results. The uncertainty may be, for example, the standard deviation obtained from the measurement result, or half the confidence level expressed as the range of values in which the true value is included with a given probability or greater.
  • Uncertainty can be calculated based on the measurement uncertainty in the Guide to the Expression of University in Measurement (GUM: ISO / IEC Guide98-3) and Japan Accreditation Board Note 10 test, etc.
  • a type A evaluation method using statistics such as measured values, and uncertainty information obtained from a calibration certificate, manufacturer's specifications, published information, etc. are used. Two methods of the type B evaluation method used can be applied.
  • Uncertainty can be expressed with the same reliability level by converting all the uncertainty obtained from factors such as operation and measurement into standard uncertainty.
  • Standard uncertainty refers to the variability of the mean values obtained from the measurements.
  • the factors causing the uncertainty are extracted and the uncertainty (standard deviation) of each factor is calculated. Subsequently, the uncertainty of each of the calculated factors is combined by the sum-of-square method to calculate the combined standard uncertainty. Since the sum of squares method is used in the calculation of the composite standard uncertainty, the factor that causes the uncertainty and whose uncertainty is sufficiently small can be ignored.
  • the coefficient of variation of nucleic acid A filled in the container may be used.
  • the coefficient of variation means, for example, a relative value of variation in the number of nucleic acid A filled in each container that occurs when the container is filled with nucleic acid A. That is, the coefficient of variation means the filling accuracy of the number of nucleic acids A packed in nucleic acid A.
  • the coefficient of variation is a value obtained by dividing the standard deviation ⁇ by the average value x.
  • the value obtained by dividing the standard deviation ⁇ by the average number of copies (average number of filled copies) x is the coefficient of variation CV, the relational expression of the following equation 1 is obtained.
  • nucleic acid A has a random distribution state of Poisson distribution in the sample. Therefore, in the serial dilution method, that is, in the random distribution state in the Poisson distribution, the standard deviation ⁇ can be regarded as satisfying the relational expression between the average number of copies x and the following equation 2. From this, when the sample containing nucleic acid A is diluted by the serial dilution method, the coefficient of variation CV (CV value) of the average number of copies x is derived from the standard deviation ⁇ and the average number of copies x from the above formula 1 and the following formula 2. It is shown in Table 1 and FIG. 1 when it is obtained by using the following formula 3 obtained. The CV value of the coefficient of variation of the number of molecules having variations based on the Poisson distribution can be obtained from FIG.
  • the CV value of the coefficient of variation and the average specific copy number x of nucleic acid A preferably satisfy the following equation, CV ⁇ 1 / ⁇ x, and satisfy CV ⁇ 1 / 2 ⁇ x. Is more preferable.
  • the uncertainty information when there are a plurality of wells containing nucleic acid A, it is preferable to use the uncertainty information of the well as a whole based on a specific number of molecules of nucleic acid A contained in the wells.
  • nucleic acid A when nucleic acid A is introduced into a cell and the cell is counted and dispensed into wells, the number of nucleic acid A in the cell (eg, the cell cycle of the cell).
  • Etc. means for arranging cells in wells (including the result of the operation of each part such as an inkjet device and a device for controlling the operation timing of the inkjet device.
  • droplets when a cell suspension is dropletized.
  • the number of cells contained in the well, etc.), the frequency with which the cells were placed at appropriate positions in the well for example, the number of cells placed in the well, etc.
  • the destruction of the cells in the cell suspension resulted in nucleic acid A. Contamination due to contamination in the cell suspension (contamination of impurities, hereinafter may be referred to as "contamination") and the like can be mentioned.
  • Examples of the information on nucleic acid A include information on the number of molecules of nucleic acid A. Examples of the information regarding the number of molecules of nucleic acid A include information on the uncertainty of the number of molecules of nucleic acid A contained in the well.
  • nucleic acid A in general, the nucleic acid means a high molecular weight organic compound in which a nitrogen-containing base derived from purine or pyrimidine, a sugar and a phosphoric acid are regularly bonded, and a nucleic acid analog or the like is also included.
  • the nucleic acid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include DNA, RNA, and cDNA.
  • Nucleic acid A may be a nucleic acid fragment or may be integrated into the nucleus of the cell, but it is preferably integrated into the nucleus of the cell.
  • Nucleic acid A may be a natural product obtained from an organism, a processed product thereof, or a product produced by using genetic recombination technology, and is a chemically synthesized artificial product. It may be a synthetic nucleic acid. These may be used alone or in combination of two or more. When two or more kinds of nucleic acids A are used in combination, each nucleic acid A contains a known number of molecules smaller than that of nucleic acid B. By using an artificially synthesized nucleic acid, impurities can be reduced and the molecular weight can be reduced, so that the initial reaction efficiency can be improved.
  • the sequence of nucleic acid A may be a sequence derived from any of eukaryotes, prokaryotes, multicellular organisms, and unicellular organisms.
  • eukaryotes include animals, insects, plants, fungi, algae, protozoa and the like.
  • the animal is preferably a vertebrate such as a fish, an amphibian, a reptile, a bird, or a mammal.
  • the nucleic acid A is the DNA of a vertebrate, when the performance evaluation sample of the present embodiment is measured with various DNA mixed samples such as fish environmental DNA analysis, meat species discrimination, and halal test. It can be used as a standard sample whose accuracy is guaranteed.
  • the nucleic acid A is preferably human genomic DNA or a fragment thereof.
  • the artificially synthesized nucleic acid means a nucleic acid obtained by artificially synthesizing a nucleic acid composed of components (base, deoxyribose, phosphoric acid) similar to naturally occurring DNA or RNA.
  • the artificially synthesized nucleic acid may be, for example, a nucleic acid having a base sequence encoding a protein, or a nucleic acid having an arbitrary base sequence.
  • Nucleic acid or nucleic acid fragment analogs include nucleic acids or nucleic acid fragments bound to non-nucleic acid components, or nucleic acids or nucleic acid fragments labeled with a labeling agent such as a fluorescent dye or isotope (eg, fluorescent dye or radioisotope). Examples thereof include primers and probes labeled with (), and artificial nucleic acids (for example, PNA, BNA, LNA, etc.) in which the chemical structure of a part of the nucleotides constituting the nucleic acid or nucleic acid fragment is changed.
  • a labeling agent such as a fluorescent dye or isotope (eg, fluorescent dye or radioisotope).
  • primers and probes labeled with () include primers and probes labeled with (), and artificial nucleic acids (for example, PNA, BNA, LNA, etc.) in which the chemical structure of a part of the nucleotides constituting the nucleic acid or nucleic acid
  • nucleic acid A is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include double-stranded nucleic acid, single-stranded nucleic acid, and partially double-stranded or single-stranded nucleic acid. It may be a cyclic or linear plasmid. Also, the nucleic acid may have modifications or mutations.
  • Nucleic acid A preferably has a specific base sequence whose base sequence is clear.
  • the specific base sequence is not particularly limited and can be appropriately selected depending on the intended purpose.
  • a base sequence used for genetic disease testing a non-natural base sequence that does not exist in nature, or a base sequence derived from an animal cell.
  • Plant cell-derived base sequence fungal cell-derived base sequence, bacterial-derived base sequence, virus-derived base sequence, and the like. These may be used alone or in combination of two or more.
  • nucleic acid A When a base sequence used for a genetic disease test is used as nucleic acid A, it is not particularly limited as long as it contains a base sequence peculiar to a genetic disease, and can be appropriately selected according to the purpose.
  • Nucleic acid A may be a nucleic acid derived from the cell to be used, or may be a nucleic acid introduced by gene transfer.
  • the type of nucleic acid A may be one type or two or more types. When two or more kinds of nucleic acids A are contained, each nucleic acid A contains a known number of molecules smaller than that of nucleic acid B.
  • a nucleic acid integrated by gene transfer into the nucleus of a cell is used as the nucleic acid A, it means that a specific number of molecules (for example, one molecule (one copy)) of the nucleic acid A is introduced into one cell. It is preferable to confirm.
  • the method for confirming that nucleic acid A having a specific number of molecules has been introduced is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include sequencing, PCR method, Southern blotting and the like.
  • nucleic acid A When nucleic acid A is introduced into the nucleus of a cell, the method of gene transfer is not particularly limited as long as the desired number of copies of a specific nucleic acid sequence can be introduced into the target location, and for example, homologous recombination, CRISPR / Cas9, CRISPR. / Cpf1, TALEN, Zinc finger nucleic acid, Flip-in, Jump-in and the like can be mentioned.
  • nucleic acid A may be introduced into the nucleus of a cell in the form of a plasmid, artificial chromosome, or the like.
  • yeast yeast cell
  • homologous recombination is preferable from the viewpoint of high efficiency and ease of control.
  • Nucleic acid A may be micropartitioned in the sample by a microregion or carrier.
  • the nucleic acid A micropartitioned by the microregion or the carrier may be one molecule or two or more molecules. Further, when two or more molecules of nucleic acid A are microdivided, a plurality of nucleic acid A existing may be composed of the same sequence or may be composed of different sequences.
  • nucleic acid A is micropartitioned in a sample by a carrier, nucleic acid A is present by directly binding to the carrier or indirectly via a linker or the like.
  • the microregion include forms such as cells, liposomes, microcapsules, viruses, droplets, and emulsions.
  • the carrier include forms such as metal particles, magnetic particles, ceramic particles, polymer particles, and protein particles.
  • cell A cell is a structural and functional unit that forms an organism, and a specific sequence in the core can be used as nucleic acid A.
  • Nucleic acid A may be a base sequence that originally exists in the nucleus, or may be introduced from the outside.
  • the cell is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include eukaryotic cells, prokaryotic cells, multicellular biological cells, and unicellular biological cells. One type of cell may be used alone, or two or more types may be used in combination.
  • the eukaryotic cell is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include animal cells, insect cells, plant cells, fungal cells, algae, and protozoa. These may be used alone or in combination of two or more. Of these, animal cells or fungal cells are preferred. Examples of the animal from which the animal cell is derived include those similar to those exemplified in the above-mentioned "nucleic acid A". Of these, mammals are preferred.
  • Animal cells may be adhesive cells or floating cells.
  • Adhesive cells may be primary cells collected directly from tissues or organs, or may be passages of primary cells collected directly from tissues or organs for several generations, or differentiated cells. It may be an undifferentiated cell.
  • the differentiated cells are not particularly limited and can be appropriately selected depending on the intended purpose.
  • hepatocytes stellate cells, cupper cells, vascular endothelial cells, analogo endothelial cells, and corneal endothelial cells, which are parenchymal cells of the liver.
  • Etc. epidermal cells such as fibroblasts, osteoblasts, osteoblasts, root membrane-derived cells, epidermal keratinized cells
  • tracheal epithelial cells gastrointestinal epithelial cells, cervical epithelial cells, corneal epithelial cells, etc.
  • Epithelial cells Epithelial cells; mammary gland cells, pericite; muscle cells such as smooth muscle cells and myocardial cells, renal cells, pancreatic Langerhans islet cells; nerve cells such as peripheral nerve cells and optic nerve cells; cartilage cells, bone cells and the like.
  • the undifferentiated cells are not particularly limited and can be appropriately selected depending on the intended purpose.
  • pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells); mesenchymal stem cells.
  • Pluripotent stem cells such as stem cells; unipotent stem cells such as vascular endothelial precursor cells and the like can be mentioned.
  • the fungal cells are not particularly limited and can be appropriately selected according to the purpose, and examples thereof include molds and yeasts. These may be used alone or in combination of two or more. Of these, yeast is preferable because it can regulate the cell cycle and can use haploids.
  • the cell cycle means the process in which cell division occurs when the number of cells increases, and the cells generated by cell division (daughter cells) become cells that undergo cell division again (mother cells) to produce new daughter cells.
  • the yeast is not particularly limited and can be appropriately selected depending on the intended purpose, but for example, one that is synchronously cultured in the G0 / G1 phase and fixed in the G1 phase is preferable. Further, as the yeast, for example, a Bar1 gene-deficient yeast having increased sensitivity to a pheromone (sex hormone) that controls the cell cycle in the G1 phase is preferable. When the yeast is a Bar1 gene-deficient yeast, the abundance ratio of the yeast whose cell cycle cannot be controlled can be reduced, so that it is possible to prevent an increase in the number of molecules of nucleic acid A in the cells contained in the sample. can.
  • the prokaryotic cell is not particularly limited and can be appropriately selected according to the purpose, and examples thereof include eubacteria such as Escherichia coli and archaea. These may be used alone or in combination of two or more.
  • the cell is preferably a dead cell.
  • dead cells it is possible to prevent cell division from occurring after sorting and changes in the amount of intracellular nucleic acid. It is preferable that the cells are capable of emitting light when they receive light. If the cells are capable of emitting light when they receive light, the number of cells can be controlled with high accuracy and landed in the well.
  • the cells can emit light when they receive light.
  • Receiving means receiving light.
  • the luminescence of cells is detected by an optical sensor.
  • An optical sensor is a cell that collects visible light that can be seen by the human eye and light with a longer wavelength, near infrared rays, short wavelength infrared rays, or light up to the thermal infrared region, with a lens. It means a passive sensor that acquires the shape and the like as image data.
  • the cells capable of emitting light when receiving light are not particularly limited and can be appropriately selected depending on the intended purpose.
  • cells stained with a fluorescent dye, cells expressing a fluorescent protein, and labeled with a fluorescently labeled antibody examples include cells that have been subjected to.
  • the site stained with the fluorescent dye, the site expressing the fluorescent protein, and the site labeled with the fluorescently labeled antibody in the cell are not particularly limited, and examples thereof include the entire cell, cell nucleus, and cell membrane.
  • fluorescent dye examples include fluoresceins, azos, rhodamines, coumarins, pyrenes, cyanines and the like. One of these may be used alone, or two or more thereof may be used in combination. Among them, fluoresceins, azos, rhodamines, or cyanines are preferable, and eosin, evance blue, tripan blue, rhodamine 6G, rhodamine B, rhodamine 123, or Cy3 is more preferable.
  • the fluorescent dye a commercially available product can be used.
  • the commercially available product for example, product name: EosinY (manufactured by Wako Pure Chemical Industries, Ltd.), product name: Evans Blue (manufactured by Wako Pure Chemical Industries, Ltd.), product Name: Tripan Blue (manufactured by Wako Pure Chemical Industries, Ltd.), Product name: Rhodamine 6G (manufactured by Wako Pure Chemical Industries, Ltd.), Product name: Rhodamine B (manufactured by Wako Pure Chemical Industries, Ltd.), Product name: Rhodamine 123 (manufactured by Wako Pure Chemical Industries, Ltd.) Wako Pure Chemical Industries, Ltd.) and the like.
  • fluorescent protein examples include Sirius, EBFP, ECFP, mTurquoise, TagCFP, AmCyan, mTFP1, MidoriishiCyan, CFP, TurboGFP, AcGFP, TagGFP, Azami-Green, TagGFP, Azami-Green, ZsGreen, GFP , YFP, PhiYFP, PhiYFP-m, TurboYFP, ZsYellow, mBanana, KusabiraOrange, mOrange, TurboRFP, DsRed-Express, DsRed2, TagRFP, DsRed-Monomer, AsRed2, mStrawberry, TurboFP602, mRFP1, JRed, KillerRed, mCherry, mPlum, PS -CFP, Dendra2, Kaede, EosFP, KikumeGR and the like can be mentioned. One of these may be used alone, or two or more thereof may be used in combination.
  • the fluorescently labeled antibody can bind to the target cell and is not particularly limited as long as it is fluorescently labeled, and can be appropriately selected depending on the intended purpose.
  • FITC-labeled anti-CD4 antibody, PE-labeled anti-CD8 antibody, etc. Can be mentioned. One of these may be used alone, or two or more thereof may be used in combination.
  • the volume average particle size of the cells is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 7 ⁇ m or less in the free state.
  • the volume average particle size is 30 ⁇ m or less, it can be suitably used for a droplet ejection means such as an inkjet method or a cell sorter.
  • the volume average particle size of cells can be measured by, for example, the following measuring method.
  • yeast When yeast is used as cells, 10 ⁇ L of the prepared yeast dispersion is taken out, placed on a PMMA plastic slide, and volume average grains are used by using an automatic cell counter (trade name: Countess Automated Cell Counter, manufactured by Invitrogen). The diameter can be measured. The number of cells can also be determined by the same measuring method.
  • the density of cells in the cell suspension is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ 10 4 cells / mL or more and 5 ⁇ 10 8 cells / mL or less, and 5 ⁇ 10 4 cells. More preferably, 5 ⁇ 10 7 pieces / mL or more.
  • the cell density can be measured using an automatic cell counter (trade name: Countess Automated Cell Counter, manufactured by Invitrogen) or the like in the same manner as the method for measuring the volume average particle size.
  • Lipids are lipid vesicles formed from a lipid bilayer containing lipid molecules, specifically separated from the outside world by a lipid bilayer formed based on the polarities of the hydrophobic and hydrophilic groups of the lipid molecule. Means a closed lipid-containing vesicle with a space.
  • Liposomes are closed endoplasmic reticulum formed by a lipid bilayer using lipids, and have an aqueous phase (internal aqueous phase) in the space of the closed vesicles.
  • the internal water phase includes water and the like.
  • Liposomes are single lamellas (single-layer lamella, uni-lamella, single-layered bilayer membranes) or multi-layered lamellas (multi-lamella, multiple bilayer membranes with an onion-like structure, each layer being a watery layer. It may be partitioned).
  • the liposome is preferably capable of containing nucleic acid A, and its form is not particularly limited.
  • "Internal capsule” means that the nucleic acid is contained in the internal aqueous phase or the membrane itself with respect to the liposome.
  • a form in which nucleic acid A is enclosed in a closed space formed by a membrane, a form in which nucleic acid A is contained in the membrane itself, and the like can be mentioned, and a combination thereof may be used.
  • the size of the liposome is not particularly limited as long as it can contain nucleic acid A. Further, the shape is preferably spherical or close to it.
  • the components (membrane components) that make up the lipid bilayer of liposomes are selected from lipids.
  • lipid any lipid can be used as long as it is soluble in a mixed solvent of a water-soluble organic solvent and an ester-based organic solvent.
  • Specific examples of lipids include phospholipids, lipids other than phospholipids, cholesterols, and derivatives thereof. These components may be used alone or in combination of two or more.
  • the microcapsule means a fine particle having a wall material and a hollow structure, and nucleic acid A can be encapsulated in the hollow structure.
  • the microcapsules are not particularly limited, and the wall material, size, and the like can be appropriately selected according to the purpose.
  • Examples of the wall material for microcapsules include polyurethane resin, polyurea, polyurea-polyurethane resin, urea-formaldehyde resin, melamine-formaldehyde resin, polyamide, polyester, polysulfone amide, polycarbonate, polysulfinate, epoxyri, and acrylic acid ester. , Methacrylate, vinyl acetate, gelatin and the like. These may be used alone or in combination of two or more.
  • the size of the microcapsules is not particularly limited as long as it can contain nucleic acid A, and can be appropriately selected according to the purpose.
  • the method for producing microcapsules is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an in-situ method, an interfacial polymerization method, and a coacervation method.
  • nucleic acid B examples include the same as those exemplified in the above-mentioned nucleic acid A. Among them, the nucleic acid B is preferably human genomic DNA or a fragment thereof. The sample of the present embodiment may contain such nucleic acid B alone or in combination of two or more. When two or more kinds of nucleic acid B are contained, each nucleic acid B is contained in a larger amount than nucleic acid A.
  • the number of molecules of nucleic acid B may be larger than the number of molecules of nucleic acid A, but from the viewpoint of an excess amount of the number of molecules of nucleic acid A, 200 or more is preferable, 1000 or more is more preferable, and 5000 is more preferable. The above is more preferable, and 10,000 or more is particularly preferable.
  • the upper limit of the nucleic acid B from the viewpoint of the total amount of nucleic acid and nucleic acid A and nucleic acid B is an amount which does not interfere with the various processes in the genetic testing device (including the PCR reactions), for example, be on the order 10 8 or less Can be done.
  • the number of molecules of each nucleic acid B is at least the above lower limit value and the total number of molecules of nucleic acid B is at least the above upper limit value.
  • the ratio A / B of the number of molecules of nucleic acid A to the number of molecules of nucleic acid B may be any specified known value, and is not particularly limited, but the number of molecules of nucleic acid B is more than the number of molecules of nucleic acid A.
  • the ratio is preferably such that, preferably 10% or less, more preferably 1% or less, still more preferably less than 1%.
  • the ratio A / B corresponds to the frequency of occurrence of a specific genetic disease.
  • nucleic acid A is a gene with a known sequence having a mutation
  • nucleic acid B is a gene with a known sequence without a mutation. Yes, the ratio A / B can be specified as 1/99.
  • nucleic acid A is a gene with a known sequence having a mutation
  • nucleic acid B is a gene with a known sequence without a mutation. Yes, the ratio A / B can be specified as 1/199.
  • nucleic acid A when nucleic acid A is an EGFR gene having a mutation and nucleic acid B is an EGFR gene having no mutation, it corresponds to the value of the occurrence frequency of the EGFR gene mutation.
  • the ratio A / B can be specified.
  • the nucleic acid A is preferably composed of a base sequence containing a sequence in which exons 18, 19, 20 and 21 of the EGFR gene are linked in tandem. The 5'end of exon 18, between each exon, and the 3'end of exon 21 are homologous to, for example, sequences such as restriction enzyme sites and primers used for amplification of nucleic acid A, as shown in Examples described later. Sequence may be further added. Specific examples of such nucleic acid A include nucleic acids having the base sequence represented by SEQ ID NO: 1.
  • “genetic diseases” include monogenic diseases, multifactorial genetic diseases, chromosomal abnormalities, etc. Of these, diseases caused by mutations are preferable. Mutations here include nucleic acid substitutions, deletions or insertions of genes, gene fusions, or copy number polymorphisms. “Substitution” means a state in which at least one base in a gene sequence is a different base. “Substitution” includes point mutations and single nucleotide polymorphisms. “Deletion” and “insertion” mean a state in which at least one base of a gene sequence is inserted and / or deleted.
  • Gene fusion means a state in which a sequence on the 5'side of a certain gene and a sequence on the 3'end side of another gene are bound by a chromosomal translocation or the like.
  • Copy number polymorphism means that the number of copies on the genome per cell differs between individuals. Specific examples thereof include VNTR (Variable Nucleotide of tandem repeat, repeated sequence polymorphism), STRP (Short Tandem Repeat Polymorphism, microsatellite polymorphism), gene amplification and the like.
  • the total amount of nucleic acid contained in the sample of the present embodiment may be an amount that does not interfere with various treatments (including PCR reaction) in the genetic testing apparatus, for example, 108. It can be as follows. Further, when the sample of this embodiment is used as a standard sample in Liquid biopsy, it is desirable that the amount of nucleic acid in the sample used for the test is about the same as that of the sample (about 30 to 90 ng of human genome). Therefore, nucleic acid A and nucleic acid.
  • the total number of molecules of B is preferably 30,000 or less, and more preferably 25,000 or less.
  • the lower limit of the total amount of nucleic acid is not particularly limited, but can be, for example, 3 or more, and can be more than 200.
  • the performance evaluation sample of the present embodiment may contain a solvent as other components.
  • the solvent is preferably a water-soluble solvent such as water, ethanol, dimethyl sulfoxide (DMSO), acetone, N, N-dimethylformamide (DMF).
  • the sample of this embodiment can be widely used in the bio-related industry, life science industry, medical industry, etc., and can be suitably used for, for example, performance evaluation and quality control of genetic testing equipment. Further, in a genetic disease test, it can be suitably used for evaluating the accuracy of the test.
  • an integration step of incorporating the nucleic acid A into the nucleic acid in the nucleus of a cell and a droplet containing one cell in which the nucleic acid A is integrated into the nucleic acid in the nucleus are prepared in a container.
  • the preparation method of the present embodiment preferably further includes a cell suspension purification step and a cell number counting step, and the number of molecules of nucleic acid A estimated in the cell suspension generation step, the nucleic acid A filling step, and the cell number counting step. It is more preferable to further include a step of calculating the certainty of the above, an output step and a recording step, and further include other steps as necessary.
  • the nucleic acid A is integrated into the nucleic acid in the nucleus of the cell.
  • the number of molecules of nucleic acid A incorporated into the nucleic acid in the nucleus of the cell is not particularly limited as long as it is a specific number of molecules, but it is preferably one molecule from the viewpoint of introduction efficiency.
  • nucleic acid A examples include the same methods as those exemplified as "method for gene transfer" in the above-mentioned "nucleic acid A”.
  • nucleic acid A filling step In the nucleic acid A filling step, droplets containing one cell in which nucleic acid A is incorporated into the nucleic acid in the nucleus are prepared, and a specific number of cells are filled by controlling the number of the droplets.
  • the droplet means a mass of liquid that is collected by surface tension.
  • the preparation and filling of droplets can be achieved, for example, by sequentially landing the droplets in the container by ejecting the cell suspension containing the cells in which nucleic acid A is incorporated into the nucleic acid in the nucleus as droplets.
  • Discharge means that the cell suspension is made to fly as droplets. Sequential means to make one after another in order. Landing means causing the droplet to reach the well.
  • a 1-hole microtube, an 8-tube tube, a 96-hole, a 384-hole well plate or the like is preferably used, but when there are a plurality of wells, the same number of cells are placed in the wells in these plates. It can be dispensed or it can contain different levels of cells. In addition, there may be wells containing no cells.
  • a means for ejecting the cell suspension as a droplet (hereinafter, may also be referred to as a “discharge head”) can be preferably used.
  • Examples of the method for ejecting the cell suspension as droplets include an on-demand method and a continuous method in the inkjet method.
  • the continuous method empty discharge until a stable discharge state is reached, the amount of droplets is adjusted, and droplets are continuously formed even when moving between wells.
  • the dead volume of the cell suspension used tends to increase.
  • Examples of the on-demand method include a pressure application method in which a liquid is discharged by applying pressure to the liquid, a thermal method in which the liquid is discharged by boiling a film due to heating, and a droplet is formed by pulling a droplet by an electrostatic attraction.
  • Examples thereof include a plurality of known methods such as an electrostatic method.
  • the pressure application method is preferable for the following reasons.
  • the electrostatic method it is necessary to install an electrode facing the ejection part that holds the cell suspension and forms droplets.
  • the plates for receiving the droplets are arranged so as to face each other, and the electrodes are not arranged in order to increase the degree of freedom in plate configuration.
  • the thermal method since local heating is generated, there is a concern about the influence on cells, which are biomaterials, and the scorching (cogation) on the heater part. Since the influence of heat depends on the content and the use of the plate, it is not necessary to exclude it unconditionally, but the pressure application method is preferable from the thermal method in that there is no concern about burning to the heater portion.
  • Examples of the pressure application method include a method of applying pressure to a liquid using a piezo element, a method of applying pressure by a valve such as a solenoid valve, and the like. Examples of configurations of a droplet generation device that can be used for droplet ejection of a cell suspension are shown in FIGS. 3 to 5.
  • FIG. 3 is a schematic view showing an example of a solenoid valve type discharge head.
  • the solenoid valve type discharge head includes an electric motor 13a, a solenoid valve 112, a liquid chamber 11a, a cell suspension 300a, and a nozzle 111a.
  • a dispenser manufactured by TechElan can be preferably used as the solenoid valve type discharge head.
  • FIG. 4 is a schematic view showing an example of a piezo type discharge head.
  • the piezo type discharge head has a piezoelectric element 13b, a liquid chamber 11b, a cell suspension 300b, and a nozzle 111b.
  • a single cell printer manufactured by Cytena or the like can be preferably used as the piezo type discharge head.
  • the piezo method should be used to increase the throughput of plate formation because it is not possible to repeatedly form droplets at high speed with the pressure application method using a solenoid valve. Is preferable. Further, in the piezo type discharge head using the general piezoelectric element 13b, unevenness of cell concentration due to sedimentation and nozzle clogging may occur as problems.
  • FIG. 5 is a schematic view of a modified example of the piezo type discharge head using the piezoelectric element in FIG.
  • the discharge head of FIG. 5 has a piezoelectric element 13c, a liquid chamber 11c, a cell suspension 300c, and a nozzle 111c.
  • Examples of methods other than the on-demand method include a continuous method in which droplets are continuously formed.
  • a continuous method when the droplet is pressurized and extruded from the nozzle, a piezoelectric element or a heater gives a regular fluctuation, whereby minute droplets can be continuously produced.
  • a voltage by controlling the ejection direction of the flying droplets by applying a voltage, it is possible to select whether to land on the well or collect the droplets on the collecting unit.
  • Such a method is used in a cell sorter or a flow cytometer, and for example, an apparatus name: Cell Sorter SH800Z manufactured by Sony Corporation can be used.
  • FIG. 6A is a schematic view showing an example of the voltage applied to the piezoelectric element.
  • FIG. 6B is a schematic view showing another example of the voltage applied to the piezoelectric element.
  • FIG. 6A shows a driving voltage for forming a droplet. Voltage (V A, V B, V C) by intensity, it is possible to form a droplet.
  • FIG. 6B shows the voltage for stirring the cell suspension without ejecting the droplets.
  • the discharge head can discharge droplets by applying a pulsed voltage to the upper and lower electrodes formed on the piezoelectric element.
  • 7 (a) to 7 (c) are schematic views showing the state of the droplet at each timing.
  • a container made of a plate on which a well is formed is fixed on a movable stage, and a combination of driving the stage and forming droplets from a discharge head is used to sequentially apply droplets to the wells. You may land it.
  • the method of moving the plate as the movement of the stage has been shown, but of course, the discharge head may be moved.
  • the plate is not particularly limited, and a well-formed plate generally used in the biotechnology field can be used.
  • the number of wells in the plate is not particularly limited and may be appropriately selected depending on the intended purpose, and may be singular or plural.
  • a plate it is preferable to use a 1-hole microtube, an 8-tube tube, a 96-hole, a 384-hole well plate, or the like, but when there are a plurality of wells, the number of wells in these plates is the same. It is possible to dispense the cells of the same, and it is also possible to put different levels of cells. In addition, there may be wells containing no cells.
  • FIG. 8 is a schematic view showing an example of a dispensing device 400 for sequentially landing droplets in the wells of a plate.
  • the dispensing device 400 for landing the droplet includes the droplet forming device 401, the plate 700, the stage 800, and the control device 900.
  • the plate 700 is arranged on the stage 800 which is configured to be movable.
  • the plate 700 is formed with a plurality of wells 710 (recesses) on which the droplets 310 ejected from the ejection head of the droplet forming apparatus 401 are deposited.
  • the control device 900 moves the stage 800 and controls the relative positional relationship between the discharge head of the droplet forming device 401 and the respective wells 710. As a result, the droplet 310 containing the fluorescence-stained cells 350 can be sequentially ejected from the ejection head of the droplet forming apparatus 401 into each well 710.
  • the control device 900 can be configured to include, for example, a CPU, ROM, RAM, main memory, and the like. In this case, various functions of the control device 900 can be realized by reading the program recorded in the ROM or the like into the main memory and executing the program by the CPU. However, a part or all of the control device 900 may be realized only by hardware. Further, the control device 900 may be physically composed of a plurality of devices and the like.
  • the droplet to be discharged it is preferable to land the droplet in the well so as to obtain a plurality of levels when the cell suspension is landed in the well.
  • Multiple levels mean multiple standards that serve as standards.
  • the plurality of levels include, for example, a predetermined concentration gradient of a plurality of cells having nucleic acid A in the well. Multiple levels can be controlled using the values counted by the sensor.
  • nucleic acid B filling step In the nucleic acid B filling step, the nucleic acid B is filled in the container so that the ratio A / B of the number of molecules of the nucleic acid A to the number of molecules of the nucleic acid B becomes a specific ratio.
  • Nucleic acid B can be packed in a form dispersed or dissolved in a solvent.
  • the filling method is not particularly limited, and for example, filling can be performed manually using a micropipette or the like, or automatically using an autosampler or the like.
  • the number of molecules of nucleic acid B is preferably an excess amount with respect to the number of molecules of nucleic acid A, some measurement error is allowed as long as the ratio A / B is in the numerical range of a specific known ratio. It is not necessary to specify the number of molecules strictly and accurately like the number of molecules of nucleic acid A.
  • the method for measuring the number of molecules of nucleic acid B is not particularly limited, and for example, an inductively coupled method, a real-time PCR method, a digital PCR method, and a high-speed liquid chromatography isotope-diluted mass spectrometry method for analyzing a nucleic acid base.
  • LC-IDMS inductively coupled plasma emission spectrometry
  • ICP-OES inductively coupled plasma emission spectrometry
  • ICP-MS inductively coupled plasma mass spectrometry
  • the absorbance (OD 260 ) at 260 nm of a solution containing nucleic acid B is measured, the concentration of nucleic acid B is quantified, and then the mass of the quantified nucleic acid B is divided by the molecular weight to obtain the number of molecules. Can be calculated.
  • the real-time PCR method is a type of quantitative PCR (Q-PCR), in which nucleic acid B is quantified based on the amplification factor by measuring amplification by PCR over time (real time). Quantification is performed using a fluorescent dye, and there are mainly an intercalation method and a hybridization method.
  • Q-PCR quantitative PCR
  • the amplification reaction of nucleic acid A is carried out in the presence of an intercalator that specifically inserts (intercalates) into double-stranded DNA and emits fluorescence.
  • the intercalator include SYBR Green I (CAS number: 163795-75-3) or a derivative thereof.
  • the hybridization method the method using a TaqMan (registered trademark) probe is the most common, and a probe in which a fluorescent substance and a quenching substance are bound to an oligonucleotide complementary to the target nucleic acid sequence is used.
  • nucleic acid B and a plurality of nucleic acids A having different numbers of molecules are measured by real-time PCR method, and the number of molecules of nucleic acid B is determined using a calibration line prepared by a plurality of nucleic acids A having different numbers of molecules. Can be done.
  • the cell suspension production step is a step of producing a cell suspension containing a plurality of cells having nucleic acid A in the nucleus and a solvent.
  • Solvent means a liquid used to disperse cells.
  • Suspension in a cell suspension means a state in which cells are dispersed and present in a solvent.
  • Generation means creating.
  • the cell suspension contains a plurality of cells having nucleic acid A in the nucleus and a solvent, preferably contains an additive, and further contains other components as necessary.
  • the plurality of cells having nucleic acid A in the nucleus are as described in "Cells" of "Nucleic Acid A” above.
  • the solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Electrolyte aqueous solution, inorganic salt aqueous solution, metal aqueous solution or a mixed liquid thereof and the like. may be used alone or in combination of two or more.
  • water or buffer is preferable, and water, phosphate buffered saline (PBS), or Tris-EDTA buffer (TE) is more preferable.
  • PBS phosphate buffered saline
  • TE Tris-EDTA buffer
  • the additive is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include surfactants, nucleic acids and resins. These may be used alone or in combination of two or more.
  • Surfactant can prevent cell-to-cell aggregation and improve continuous discharge stability.
  • the surfactant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an ionic surfactant and a nonionic surfactant. These may be used alone or in combination of two or more. Among these, a nonionic surfactant is preferable from the viewpoint of not denaturing and inactivating the protein, although it depends on the amount added.
  • ionic surfactant examples include fatty acid sodium, fatty acid potassium, alpha sulfo fatty acid ester sodium, linear alkylbenzene sulfonate sodium, alkyl sulfate ester sodium, alkyl ether sulfate sodium, sodium alpha olefin sulfonate and the like. These may be used alone or in combination of two or more. Of these, sodium fatty acid is preferable, and sodium dodecyl sulfate (SDS) is more preferable.
  • SDS sodium dodecyl sulfate
  • nonionic surfactants include alkyl glycosides, alkyl polyoxyethylene ethers (Brij series, etc.), octylphenol ethoxylates (Triton X series, Egyptal CA series, Nonidet P series, Nikkol OP series, etc.), polysorbates ( (Tween series such as Tween 20), sorbitan fatty acid ester, polyoxyethylene fatty acid ester, alkyl maltoside, sucrose fatty acid ester, glycoside fatty acid ester, glycerin fatty acid ester, propylene glycol fatty acid ester, fatty acid monoglyceride and the like. These may be used alone or in combination of two or more. Of these, polysorbates are preferable.
  • the content of the surfactant is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001% by mass or more and 30% by mass or less with respect to the total amount of the cell suspension.
  • the content is 0.001% by mass or more, the effect of adding the surfactant can be obtained, and when it is 30% by mass or less, cell aggregation can be suppressed, so that the cell suspension The number of copies of nucleic acid in it can be strictly controlled.
  • the nucleic acid is not particularly limited as long as it does not affect the detection of the nucleic acids to be tested (nucleic acid A and nucleic acid B), and can be appropriately selected depending on the purpose. Examples thereof include ColE1 DNA. By adding nucleic acid, it is possible to prevent nucleic acid A from adhering to the wall surface of the well or the like.
  • the resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyethyleneimide.
  • the other components are not particularly limited and may be appropriately selected depending on the intended purpose.
  • a cross-linking agent a pH adjuster, a preservative, an antioxidant, an osmotic pressure adjuster, a wetting agent, a dispersant and the like can be selected.
  • a cross-linking agent a pH adjuster, a preservative, an antioxidant, an osmotic pressure adjuster, a wetting agent, a dispersant and the like can be selected.
  • a cross-linking agent e.g., a pH adjuster, a preservative, an antioxidant, an osmotic pressure adjuster, a wetting agent, a dispersant and the like can be selected.
  • a wetting agent e.g., a dispersant and the like
  • the method for dispersing cells is not particularly limited and can be appropriately selected depending on the intended purpose.
  • a media method such as a bead mill, an ultrasonic method such as an ultrasonic homogenizer, or a method using a pressure difference such as a French press. And so on.
  • the ultrasonic method is preferable because it causes less damage to cells.
  • the media method since the crushing ability is strong, the cell membrane and the cell wall may be destroyed, and the media may be mixed as contamination.
  • the cell screening method is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include wet classification, cell sorter, and filter screening. These may be used alone or in combination of two or more. Of these, screening with a cell sorter or filter is preferable because there is little damage to cells.
  • the number of molecules of nucleic acid A is estimated from the number of cells contained in the cell suspension by measuring the cell cycle of the cells. Measuring the cell cycle means quantifying the number of cells due to cell division. Estimating the number of molecules of nucleic acid A means obtaining the number of copies of nucleic acid A from the number of cells.
  • the counting target may not be the number of cells but the number of nucleic acid A contained.
  • one copy of nucleic acid A introduced into each cell is selected, or nucleic acid A is introduced into cells by genetic recombination, so that the number of nucleic acids A can be considered to be equal to the number of cells.
  • nucleic acid replication occurs within the cells.
  • the cell cycle differs depending on the cell type, but by extracting a predetermined amount of solution from the cell suspension and measuring the cycle of multiple cells, the expected value for the number of nucleic acid A contained in one cell and its certainty can be determined. It is possible to calculate. This is possible, for example, by observing nuclear-stained cells with a flow cytometer.
  • Probability means the probability that a specific event will occur by predicting in advance the degree of possibility that a specific event will occur when there is a possibility that several events will occur. Calculation means to calculate and obtain a numerical value.
  • FIG. 2 is a graph showing an example of the relationship between the frequency of DNA-replicated cells and the fluorescence intensity. As shown in FIG. 2, since two peaks appear on the histogram depending on the presence or absence of DNA replication, it is possible to calculate the proportion of DNA-replicated cells. It is possible to calculate the average number of molecules of nucleic acid A contained in one cell from this calculation result, and it is possible to calculate the estimated number of molecules of nucleic acid A by multiplying the above-mentioned cell number counting result. Is.
  • the number of molecules of nucleic acid A can be increased from the number of cells. It becomes possible to calculate with high accuracy.
  • the certainty For the specific number of molecules to be estimated, it is preferable to calculate the certainty (probability). By calculating the certainty (probability), it is possible to express the certainty as a variance or standard deviation based on these numerical values and output it. When summing up the effects of multiple factors, it is possible to use the square root of the sum of squares of the standard deviations that are commonly used. For example, the correct answer rate of the number of discharged cells, the number of DNA in the cells, the landing rate of the discharged cells landing in the well, and the like can be used as factors. It is also possible to select and calculate the item that has a large influence from these.
  • the cell number counting step is a step of counting the number of cells contained in the droplet by a sensor after the droplet is prepared and before the droplet is landed on the container.
  • a sensor is a human or machine that applies some scientific principle to the mechanical / electromagnetic, thermal, acoustic or chemical properties of natural phenomena and artificial objects, or the spatial and temporal information indicated by them. Means a device that replaces a signal of another medium that is easy to handle.
  • Counting means counting numbers.
  • the cell number counting step is not particularly limited as long as the number of cells contained in the droplets is counted by a sensor after the droplets are ejected and before the droplets land on the wells, and it is appropriately selected according to the purpose. It may include a process of observing cells before discharge and a process of counting cells after landing.
  • the number of cells contained in the droplet is counted directly above the well opening where the droplet is expected to enter the well of the plate reliably. It is preferable to observe the cells in the droplet at the timing of the position.
  • Examples of the method for observing the cells in the droplet include a method for optically detecting the cells, a method for electrically or magnetically detecting the cells, and the like.
  • FIG. 9 is a schematic view showing an example of the droplet forming apparatus 401.
  • 13 and 14 are schematic views showing another example (401A, 401B) of the droplet forming apparatus.
  • the droplet forming device 401 includes a ejection head (droplet ejection means) 10, a driving means 20, a light source 30, a light receiving element 60, and a control means 70.
  • a solution obtained by fluorescently staining cells with a specific dye and then dispersing them in a predetermined solution is used as a cell suspension, and light having a specific wavelength emitted from a light source is emitted to droplets formed from a discharge head.
  • Counting is performed by detecting the fluorescence emitted from the cells by irradiation with a light receiving element.
  • autofluorescence emitted by molecules originally contained in the cells may be used, or a fluorescent protein (for example, GFP (Green Fluorescent Protein)) is encoded in the cells.
  • the gene may be introduced in advance so that the cells fluoresce. Irradiating light means shining light.
  • the discharge head 10 has a liquid chamber 11, a membrane 12, and a driving element 13, and can discharge a cell suspension 300 in which fluorescently stained cells 350 are suspended as droplets.
  • the liquid chamber 11 is a liquid holding portion that holds a cell suspension 300 in which fluorescently stained cells 350 are suspended, and a nozzle 111 that is a through hole is formed on the lower surface side.
  • the liquid chamber 11 can be formed of, for example, metal, silicon, ceramics, or the like.
  • Examples of the fluorescently stained cell 350 include inorganic fine particles and organic polymer particles stained with a fluorescent dye.
  • the membrane 12 is a film-like member fixed to the upper end of the liquid chamber 11.
  • the planar shape of the membrane 12 can be, for example, circular, but may be elliptical, quadrangular, or the like.
  • the drive element 13 is provided on the upper surface side of the membrane 12.
  • the shape of the driving element 13 can be designed according to the shape of the membrane 12. For example, when the planar shape of the membrane 12 is circular, it is preferable to provide the circular driving element 13.
  • the membrane 12 can be vibrated by supplying a drive signal from the drive means 20 to the drive element 13. The vibration of the membrane 12 allows the droplet 310 containing the fluorescently stained cells 350 to be ejected from the nozzle 111.
  • a structure may be provided in which electrodes for applying a voltage are provided on the upper surface and the lower surface of the piezoelectric material.
  • the piezoelectric material for example, lead zirconate titanate (PZT) can be used.
  • PZT lead zirconate titanate
  • various piezoelectric materials such as bismuth iron oxide, metal niobate, barium titanate, or these materials to which a metal or a different oxide is added can be used.
  • the light source 30 irradiates the flying droplet 310 with light L.
  • the term “flying” means a state in which the droplet 310 is ejected from the droplet ejection means 10 until it is deposited on the object to be adhered.
  • the flying droplet 310 has a substantially spherical shape at the position where the light L is irradiated. Further, the beam shape of the light L is substantially circular.
  • the beam diameter of the light L is about 10 to 100 times the diameter of the droplet 310. This is to ensure that the light L from the light source 30 irradiates the droplet 310 even when the position of the droplet 310 varies.
  • the beam diameter of the light L greatly exceeds 100 times the diameter of the droplet 310. This is because the energy density of the light applied to the droplet 310 is lowered, so that the amount of fluorescent Lf emitted by using the light L as the excitation light is lowered, and it becomes difficult for the light receiving element 60 to detect the light.
  • the light L emitted from the light source 30 is preferably pulsed light, and for example, a solid-state laser, a semiconductor laser, a dye laser, or the like is preferably used.
  • the pulse width is preferably 10 ⁇ s or less, more preferably 1 ⁇ s or less.
  • the energy per unit pulse largely depends on the optical system, such as the presence or absence of light collection, but is generally preferably 0.1 ⁇ J or more, and more preferably 1 ⁇ J or more.
  • the light receiving element 60 receives the fluorescent Lf emitted by the fluorescent dyed cells 350 absorbing the light L as excitation light when the flying droplets 310 contain the fluorescent dyed cells 350. Since the fluorescent Lf is emitted from the fluorescent stained cells 350 in all directions, the light receiving element 60 can be arranged at an arbitrary position where the fluorescent Lf can be received. At this time, in order to improve the contrast, it is preferable to arrange the light receiving element 60 at a position where the light L emitted from the light source 30 is not directly incident.
  • the light receiving element 60 is not particularly limited as long as it is an element capable of receiving fluorescent Lf emitted from the fluorescent dyed cells 350, and can be appropriately selected depending on the intended purpose. However, the droplets are irradiated with light having a specific wavelength. An optical sensor that receives fluorescence from cells in the droplet is preferable. Examples of the light receiving element 60 include one-dimensional elements such as a photodiode and a photosensor, but when highly sensitive measurement is required, it is preferable to use a photomultiplier tube or an avalanche photodiode. As the light receiving element 60, for example, a two-dimensional element such as a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor), or a gate CCD may be used.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • a filter for attenuating the wavelength range of the light L may be installed in the front stage (light receiving surface side) of the light receiving element 60. .. As a result, in the light receiving element 60, an image of the fluorescence-stained cells 350 having a very high contrast can be obtained.
  • the filter for example, a notch filter or the like that attenuates a specific wavelength region including the wavelength of light L can be used.
  • the light L emitted from the light source 30 is preferably pulsed light, but the light L emitted from the light source 30 may be used as continuous oscillation light.
  • the control means 70 has a function of controlling the drive means 20 and the light source 30. Further, the control means 70 has a function of obtaining information based on the amount of light received by the light receiving element 60 and counting the number of fluorescent stained cells 350 (including the case where it is zero) contained in the droplet 310. There is.
  • the operation of the droplet forming apparatus 401 including the operation of the control means 70 will be described with reference to FIGS. 10 to 12.
  • FIG. 10 is a diagram illustrating a hardware block of the control means of the droplet forming apparatus of FIG.
  • FIG. 11 is a diagram illustrating a functional block of the control means of the droplet forming apparatus of FIG.
  • FIG. 12 is a flowchart showing an example of the operation of the droplet forming apparatus.
  • the control means 70 includes a CPU 71, a ROM 72, a RAM 73, a communication interface (communication I / F) 74, and a bus line 75.
  • the CPU 71, ROM 72, RAM 73, and I / F 74 are connected to each other via a bus line 75.
  • the CPU 71 controls each function of the control means 70.
  • the ROM 72 which is a storage means, stores a program executed by the CPU 71 to control each function of the control means 70 and various information.
  • the RAM 73 which is a storage means, is used as a work area or the like of the CPU 71. Further, the RAM 73 can temporarily store predetermined information.
  • the I / F 74 is an interface for connecting the droplet forming apparatus 401 to other devices or the like.
  • the droplet forming apparatus 401 may be connected to an external network or the like via the I / F 74.
  • control means 70 has a discharge control means 701, a light source control means 702, and a cell number counting means (cell number detecting means) 703 as functional blocks.
  • step S11 the discharge control means 701 of the control means 70 issues a discharge command to the drive means 20.
  • the drive means 20 that receives the discharge command from the discharge control means 701 supplies a drive signal to the drive element 13 to vibrate the membrane 12. Due to the vibration of the membrane 12, the droplet 310 containing the fluorescently stained cells 350 is ejected from the nozzle 111.
  • step S12 the light source control means 702 of the control means 70 sends to the light source 30 in synchronization with the ejection of the droplet 310 (in synchronization with the drive signal supplied from the drive means 20 to the droplet ejection means 10). Issue a lighting command. As a result, the light source 30 is turned on, and the flying droplet 310 is irradiated with the light L.
  • synchronization does not mean that the droplets emit light at the same time as the droplets 310 are ejected by the droplet ejection means 10 (at the same time that the driving means 20 supplies the driving signal to the droplet ejection means 10).
  • the light source 30 emits light at the timing when the droplet 310 is irradiated with the light L when the 310 flies and reaches a predetermined position. That is, the light source control means 702 emits light with a delay of a predetermined time with respect to the ejection of the droplet 310 by the droplet ejection means 10 (the drive signal supplied from the drive means 20 to the droplet ejection means 10). Control the light source 30.
  • the velocity v of the droplet 310 to be ejected when the drive signal is supplied to the droplet ejection means 10 is measured in advance. Then, the time t for reaching a predetermined position after the droplet 310 is ejected is calculated based on the measured velocity v, and the light source 30 irradiates the light with respect to the timing of supplying the drive signal to the droplet ejection means 10. The timing to do this is delayed by t. As a result, good light emission control becomes possible, and the light from the light source 30 can be reliably irradiated to the droplet 310.
  • the cell number counting means 703 of the control means 70 determines the number of fluorescently stained cells 350 (including the case of zero) contained in the droplet 310 based on the information from the light receiving element 60. Count.
  • the information from the light receiving element 60 is a brightness value (light amount) or an area value of the fluorescence-stained cell 350.
  • the cell number counting means 703 can count the number of fluorescence-stained cells 350 by comparing, for example, the amount of light received by the light receiving element 60 with a preset threshold value.
  • a one-dimensional element or a two-dimensional element may be used as the light receiving element 60.
  • the cell number counting means 703 When a two-dimensional element is used as the light receiving element 60, the cell number counting means 703 performs image processing for calculating the brightness value or area of the fluorescently stained cell 350 based on the two-dimensional image obtained from the light receiving element 60. You may use the technique to do. In this case, the cell number counting means 703 calculates the brightness value or area value of the fluorescently stained cells 350 by image processing, and compares the calculated brightness value or area value with a preset threshold value to fluoresce. The number of stained cells 350 can be counted.
  • the fluorescent stained cell 350 may be a cell or a stained cell.
  • the stained cell means a cell stained with a fluorescent dye or a cell capable of expressing a fluorescent protein.
  • the above-mentioned fluorescent dye can be used.
  • the fluorescent protein the above-mentioned one can be used.
  • the driving signal is supplied from the driving means 20 to the droplet discharging means 10 holding the cell suspension 300 in which the fluorescent stained cells 350 are turbid, and the fluorescent stained cells 350 are transferred.
  • the contained droplet 310 is discharged, and the flying droplet 310 is irradiated with light L from the light source 30.
  • the fluorescent dyed cells 350 contained in the flying droplets 310 emit fluorescent Lf using light L as excitation light, and the light receiving element 60 receives the fluorescent Lf.
  • the cell number counting means 703 counts (counts) the number of fluorescence-stained cells 350 contained in the flying droplet 310.
  • the counting accuracy of the number of fluorescent stained cells 350 is improved as compared with the conventional case. Is possible. Further, since the fluorescence-stained cells 350 contained in the flying droplets 310 are irradiated with light L to emit the fluorescence Lf and the fluorescence Lf is received by the light receiving element 60, an image of the fluorescence-stained cells 350 is obtained with high contrast. This makes it possible to reduce the frequency of erroneous counting of the number of fluorescently stained cells 350.
  • FIG. 13 is a schematic view showing a modified example of the droplet forming apparatus 401 of FIG.
  • the droplet forming apparatus 401A differs from the droplet forming apparatus 401 (see FIG. 9) in that the mirror 40 is arranged in front of the light receiving element 60. It should be noted that the description of the same component as that of the embodiment already described may be omitted.
  • the degree of freedom in the layout of the light receiving element 60 can be improved by arranging the mirror 40 in front of the light receiving element 60.
  • interference between the droplet object and the optical system (particularly the light receiving element 60) of the droplet forming device 401 may occur in the layout of FIG.
  • the layout shown in FIG. 13 it is possible to avoid the occurrence of interference.
  • FIG. 14 is a schematic view showing another modification of the droplet forming apparatus 401 of FIG.
  • the droplet forming apparatus 401B in addition to the light receiving element 60 that receives the fluorescence Lf 1 emitted from the fluorescence dyeing cell 350, the light receiving element 61 that receives the fluorescence Lf 2 emitted from the fluorescence dyeing cell 350 is provided.
  • the provided point is different from the droplet forming apparatus 401 (see FIG. 9). It should be noted that the description of the same component as that of the embodiment already described may be omitted.
  • the fluorescence Lf 1 and Lf 2 indicate a part of the fluorescence emitted from the fluorescence-stained cells 350 in all directions.
  • the light receiving elements 60 and 61 can be arranged at arbitrary positions where the fluorescence emitted from the fluorescent stained cells 350 in different directions can be received. It should be noted that three or more light receiving elements may be arranged at positions where the fluorescence emitted from the fluorescent dyed cells 350 in different directions can be received. Further, each light receiving element may have the same specifications or may have different specifications.
  • the cell number counting means 703 causes the droplets 310 to overlap due to the overlapping of the fluorescently stained cells 350. There is a risk that the number of fluorescently stained cells 350 contained in the cells will be erroneously counted (a counting error will occur).
  • 15 (a) and 15 (b) are diagrams illustrating a case where two fluorescently stained cells are contained in a flying droplet. For example, as shown in FIG. 15 (a), when the fluorescent-stained cells 350a and 350b overlap, or as shown in FIG. 15 (b), when the fluorescent-stained cells 350a and 350b do not overlap. There can be. By providing two or more light receiving elements, it is possible to reduce the influence of overlapping fluorescent stained cells.
  • the cell number counting means 703 calculates the brightness value or area value of the fluorescent particles by image processing, and compares the calculated brightness value or area value with a preset threshold value to perform fluorescence. The number of particles can be counted.
  • the threshold value can be set as (nLu-Lu / 2) ⁇ threshold value ⁇ (nLu + Lu / 2). Then, when a plurality of light receiving elements are installed, it is possible to suppress the occurrence of a count error by adopting the data showing the maximum value among the data obtained from each light receiving element.
  • the area value may be used instead of the brightness value.
  • the number of cells may be determined by an algorithm for estimating the number of cells based on the obtained plurality of shape data.
  • the frequency of erroneous counting of the number of the fluorescence-stained cells 350 is further increased. Can be reduced.
  • FIG. 17 is a schematic view showing another modification of the droplet forming apparatus 401 of FIG.
  • the droplet forming apparatus 401C differs from the droplet forming apparatus 401 (see FIG. 9) in that the droplet ejecting means 10 is replaced with the droplet ejecting means 10C. It should be noted that the description of the same component as that of the embodiment already described may be omitted.
  • the droplet ejection means 10C has a liquid chamber 11C, a membrane 12C, and a driving element 13C.
  • the liquid chamber 11C has an atmospheric opening portion 115 that opens the inside of the liquid chamber 11C to the atmosphere at the upper part, and is configured so that air bubbles mixed in the cell suspension 300 can be discharged from the atmospheric opening portion 115.
  • the membrane 12C is a film-like member fixed to the lower end of the liquid chamber 11C.
  • a nozzle 121 which is a through hole, is formed at substantially the center of the membrane 12C, and the cell suspension 300 held in the liquid chamber 11C is discharged as a droplet 310 from the nozzle 121 by the vibration of the membrane 12C. Since the droplet 310 is formed by the inertia of the vibration of the membrane 12C, even the cell suspension 300 having a high surface tension (high viscosity) can be discharged.
  • the planar shape of the membrane 12C can be, for example, circular, but may be elliptical, quadrangular, or the like.
  • the material of the membrane 12C is not particularly limited, but if it is too soft, the membrane 12C vibrates easily, and it is difficult to immediately suppress the vibration when it is not discharged. Therefore, it is preferable to use a material having a certain degree of hardness. ..
  • a material having a certain degree of hardness for example, a metal material, a ceramic material, a polymer material having a certain degree of hardness, or the like can be used.
  • the material when cells are used as fluorescently stained cells 350, it is preferable that the material has low adhesion to cells and proteins. It is generally said that the cell adhesion depends on the contact angle of the material with water, and when the material has high hydrophilicity or hydrophobicity, the cell adhesion is low.
  • Various metal materials and ceramics metal oxides can be used as the material having high hydrophilicity, and fluororesin or the like can be used as the material having high hydrophobicity.
  • the surface of the material can be coated with the above-mentioned metal or metal oxide material, or with a synthetic phospholipid polymer imitating a cell membrane (for example, Lipidure manufactured by NOF CORPORATION).
  • the nozzle 121 is formed as a substantially circular through hole at the substantially center of the membrane 12C.
  • the diameter of the nozzle 121 is not particularly limited, but it is preferably twice or more the size of the fluorescent-stained cells 350 in order to prevent the fluorescent-stained cells 350 from clogging the nozzle 121.
  • the size of the human cell is generally about 5 ⁇ m to 50 ⁇ m, so that the diameter of the nozzle 121 is 10 ⁇ m or more according to the cell to be used. Is preferable, and 100 ⁇ m or more is more preferable.
  • the diameter of the nozzle 121 is preferably 200 ⁇ m or less. That is, in the droplet ejection means 10C, the diameter of the nozzle 121 is typically in the range of 10 ⁇ m or more and 200 ⁇ m or less.
  • the drive element 13C is formed on the lower surface side of the membrane 12C.
  • the shape of the driving element 13C can be designed according to the shape of the membrane 12C.
  • the planar shape of the membrane 12C is circular, it is preferable to form a driving element 13C having an annular (ring-shaped) planar shape around the nozzle 121.
  • the drive system of the drive element 13C can be the same as that of the drive element 13.
  • the driving means 20 selectively (for example, alternately) a discharge waveform that vibrates the membrane 12C to form the droplet 310 and a stirring waveform that vibrates the membrane 12C within a range that does not form the droplet 310 to the driving element 13C. ) Can be granted.
  • both the discharge waveform and the stirring waveform a square wave and lowering the driving voltage of the stirring waveform than the driving voltage of the discharging waveform, it is possible to prevent the droplet 310 from being formed by applying the stirring waveform. That is, the vibration state (degree of vibration) of the membrane 12C can be controlled by the level of the drive voltage.
  • the driving element 13C is formed on the lower surface side of the membrane 12C, when the membrane 12 vibrates by the driving element 13C, a flow from the lower side to the upper side of the liquid chamber 11C may be generated. It is possible.
  • the movement of the fluorescent-stained cells 350 becomes a movement from the bottom to the top, convection occurs in the liquid chamber 11C, and the cell suspension 300 containing the fluorescent-stained cells 350 is agitated. Due to the flow from the lower side to the upper side of the liquid chamber 11C, the settled and aggregated fluorescent stained cells 350 are uniformly dispersed inside the liquid chamber 11C.
  • the driving means 20 applies the ejection waveform to the driving element 13C and controls the vibration state of the membrane 12C to eject the cell suspension 300 held in the liquid chamber 11C as droplets 310 from the nozzle 121. Can be done. Further, the driving means 20 can agitate the cell suspension 300 held in the liquid chamber 11C by adding the stirring waveform to the driving element 13C and controlling the vibration state of the membrane 12C. At the time of stirring, the droplet 310 is not discharged from the nozzle 121.
  • the fluorescent-stained cells 350 are prevented from settling and aggregating on the membrane 12C, and the fluorescent-stained cells 350 are suspended. It can be evenly dispersed in the turbid liquid 300. This makes it possible to suppress clogging of the nozzle 121 and variation in the number of fluorescently stained cells 350 in the ejected droplet 310. As a result, the cell suspension 300 containing the fluorescently stained cells 350 can be continuously and stably discharged as droplets 310 for a long period of time.
  • the droplet forming apparatus 401C air bubbles may be mixed in the cell suspension 300 in the liquid chamber 11C. Even in this case, since the droplet forming apparatus 401C is provided with the air opening portion 115 above the liquid chamber 11C, the bubbles mixed in the cell suspension 300 can be discharged to the outside air through the air opening portion 115. This makes it possible to continuously and stably form the droplet 310 without discarding a large amount of liquid for discharging bubbles.
  • the membrane 12C may be vibrated at a timing when the droplets are not formed within a range where the droplets are not formed, and the bubbles may be positively moved above the liquid chamber 11C.
  • Method of detecting electrically or magnetically As a method of electrically or magnetically detecting, as shown in FIG. 18, the number of cells is counted directly under the discharge head that discharges the cell suspension as droplets 310'from the liquid chamber 11'to the plate 700'.
  • a coil 200 for this purpose is installed as a sensor.
  • the induced current generated as the cells with the magnetic beads pass through the coil causes the cells in the flying droplets to adhere. It is possible to detect the presence or absence.
  • a cell has a protein peculiar to the cell on its surface, and it is possible to attach the magnetic beads to the cells by modifying the magnetic beads with an antibody capable of adhering to the protein. .. Ready-made products can be used as such magnetic beads, and for example, Dynabeds (registered trademark) manufactured by Veritas Co., Ltd. can be used.
  • Examples of the process of observing the cells before ejection include a method of counting the cells 350'passing through the microchannel 250 shown in FIG. 19, a method of acquiring an image of the vicinity of the nozzle portion of the ejection head shown in FIG. 20, and the like. Can be mentioned.
  • the method shown in FIG. 19 is a method used in a cell sorter device, and for example, a cell sorter SH800Z manufactured by Sony Corporation can be used.
  • the presence or absence of cells and the type of cells are identified by irradiating laser light from a light source 260 into the microchannel 250 and detecting scattered light and fluorescence by a detector 255 using a condenser lens 265. It is possible to form droplets while forming droplets. By using this method, it is possible to estimate the number of cells that have landed in a predetermined well from the number of cells that have passed through the microchannel 250.
  • a single cell printer manufactured by Cytena can be used as the discharge head 10'shown in FIG. 20, a single cell printer manufactured by Cytena can be used.
  • FIG. 20 it is estimated that the cells 350 ”in the vicinity of the nozzle portion were ejected from the result of image acquisition by the image acquisition unit 255'through the lens 265'before the ejection, and the images before and after the ejection.
  • the number of cells that are considered to have been ejected from the difference the number of cells that have landed in a predetermined well can be estimated.
  • the cells that have passed through the microchannel shown in FIG. 19 are counted.
  • droplets are continuously generated, whereas FIG. 20 is more preferable because droplets can be formed on demand.
  • the method of observing cells before and after the droplet is ejected has the following problems, and it is most preferable to observe the cells in the droplet being ejected depending on the type of plate to be generated.
  • the number of cells that have passed through the flow path and the number of cells that are thought to have landed are counted from the image observation before (and after) discharge, so that cells are actually discharged. It has not been confirmed whether it has been done, and an unexpected error may occur. For example, when the nozzle portion is dirty, the droplets are not ejected correctly and adhere to the nozzle plate, and the cells in the droplets do not land accordingly. In addition, problems such as cells remaining in a narrow area of the nozzle portion and cells moving more than expected due to the ejection operation and going out of the observation range may occur.
  • a light receiving element having one or a small number of light receiving parts, for example, a photodiode, an avalanche photodiode, a photomultiplier tube can be used, and other light receiving elements are provided in a two-dimensional array. It is also possible to use a two-dimensional sensor such as a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor), or a gate CCD.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the number of cells in the flying droplets is considered to follow the Poisson distribution, and the probability P that the number of cells will be two or more in the droplets. (> 2) is represented by the following equation 4.
  • FIG. 21 is a graph showing the relationship between the probability P (> 2) and the average number of cells.
  • is the average number of cells in the droplet, which is obtained by multiplying the cell concentration in the cell suspension by the volume of the ejected droplet.
  • the probability P (> 2) is a sufficiently small value in order to ensure accuracy, and the probability P (> 2) is 1% or less. ⁇ 0.15 is preferable.
  • the light source is not particularly limited as long as it can excite the fluorescence of cells, and can be appropriately selected according to the purpose, so that a general lamp such as a mercury lamp or a halogen lamp is irradiated with a specific wavelength. It is possible to use a filtered one, an LED (Light Emitting Dimension), a laser, or the like. However, it is preferable to use a laser because it is necessary to irradiate a narrow region with high light intensity, particularly when forming minute droplets of 1 nL or less.
  • the laser light source various commonly known lasers such as a solid-state laser, a gas laser, and a semiconductor laser can be used.
  • the excitation light source may be one that continuously irradiates a region through which the droplet passes, or at a timing in which a predetermined time delay is added to the droplet ejection operation in synchronization with the droplet ejection. It may be irradiated in a pulsed manner.
  • Step of calculating the certainty of the number of molecules of nucleic acid A estimated in the cell suspension generation step, the nucleic acid A filling step, and the cell number counting step This step is a step of calculating the certainty in each of the nucleic acid A filling step and the cell number counting step.
  • the estimated certainty of the number of molecules of nucleic acid A can be calculated in the same manner as the certainty in the cell suspension production step.
  • the accuracy calculation timing may be collectively calculated in the next step of the cell number counting step, or calculated at the end of each step of the cell suspension generation step, the nucleic acid A filling step, and the cell number counting step. Then, each uncertainty may be combined and calculated in the next step of the cell number counting step. In other words, the certainty in each of the above steps may be appropriately calculated before the synthetic calculation.
  • the output step is a step of outputting the value counted by the cell number counting means based on the detection result measured by the sensor as the number of cells contained in the cell suspension landed in the container.
  • the counted value means the number of cells contained in the container by the cell number counting means from the detection result measured by the sensor.
  • the output means that a device such as a prime mover, a communication device, or a computer receives an input and transmits the counted value as electronic information to a server as an external counting result storage means, or prints the counted value as a printed matter. Means that.
  • the output step when the plate is generated, the number of cells or the number of target nucleic acids in each well in the plate is observed or estimated, and the observed value or estimated value is output to an external storage unit.
  • the output may be performed at the same time as the cell number counting step, or may be performed after the cell number counting step.
  • the recording step is a step of recording the output observed value or estimated value in the output step.
  • the recording step can be preferably carried out in the recording unit. Recording may be performed at the same time as the output process or after the output process. Recording includes not only adding information to a recording medium but also storing information in a recording unit. In this case, the recording unit can be said to be a storage unit.
  • the enzyme inactivation process is a process of inactivating the enzyme.
  • the enzyme include DNase and RNase.
  • the method for inactivating the enzyme is not particularly limited, and can be appropriately selected depending on the intended purpose, and a known method can be preferably used.
  • the device of the present embodiment has a plurality of reaction spaces, and in at least a part of the plurality of reaction spaces, a sample for performance evaluation of the above-mentioned genetic testing apparatus (hereinafter, may be simply referred to as a "sample for performance evaluation"). Yes) is included.
  • the device of this embodiment is particularly suitable for the performance evaluation application of the above-mentioned genetic testing apparatus.
  • the device of the present embodiment can be applied to Liquid Biopsy using a quantitative PCR device or a next-generation sequencer as a genetic testing device.
  • the reaction space may contain reagents used in the treatment by the genetic testing apparatus and its pretreatment, in addition to the sample for performance evaluation.
  • reagents include primers, amplification reagents, and the like.
  • the primer is a synthetic oligonucleotide having a complementary base sequence of 18 to 30 bases specific to the template DNA (nucleic acid A and nucleic acid B in this embodiment) in the polymerase chain reaction (PCR), and is an amplification target region.
  • PCR polymerase chain reaction
  • Two places (a pair) of a forward primer (sense primer) and a reverse primer (antisense primer) are set so as to sandwich the.
  • amplification reagent in the polymerase chain reaction (PCR), for example, DNA polymerase as an enzyme, four types of bases (dGTP, dCTP, dATP, dTTP) as a substrate, Mg 2+ (final concentration of about 1 mM or more and about 2 mM or less of magnesium chloride). ), A buffer that maintains the optimum pH (pH 7.5 to 9.5), and the like.
  • the state of the performance evaluation sample in the reaction space and, if present, the primer and the amplification reagent are not particularly limited and can be appropriately selected according to the purpose. For example, it may be in either a solution or a solid state.
  • a solid state is particularly preferable, and a solid dry state is more preferable. In the solid dry state, the decomposition rate of the reagent by a decomposing enzyme or the like can be reduced, and the storage stability of the reagent can be improved.
  • the drying method is not particularly limited and may be appropriately selected depending on the intended purpose. For example, freeze drying, heat drying, hot air drying, vacuum drying, steam drying, suction drying, infrared drying, barrel drying, spin drying and the like. Can be mentioned.
  • the reaction space preferably contains an appropriate amount of reagent so that it can be immediately used as a reaction solution by dissolving the reagent in a solid dry state in a buffer or water immediately before using the device.
  • the device of the present embodiment may include a performance evaluation sample in the entire plurality of reaction spaces, or may include a performance evaluation sample in a part of the plurality of reaction spaces. In the latter case, the remaining reaction space may be, for example, empty and may contain reagents of different compositions.
  • the form of the reaction space is not particularly limited, and examples thereof include wells, droplets, and compartments on a substrate.
  • the device of this embodiment may be in the form of a well plate.
  • the shape, number, volume, material, color, etc. of the wells are not particularly limited and can be appropriately selected according to the purpose.
  • the shape of the well is not particularly limited as long as it can contain a sample for performance evaluation and, if present, a reagent, and can be appropriately selected according to the purpose.
  • a sample for performance evaluation and, if present, a reagent, and can be appropriately selected according to the purpose.
  • the number of wells is plural, preferably 5 or more, and more preferably 50 or more.
  • a multi-well plate having two or more wells is preferably used. Examples of the multi-well plate include well plates having a number of wells of 24, 48, 96, 384, 1, 536 and the like.
  • the volume of the well is not particularly limited and can be appropriately selected depending on the purpose, but considering the amount of sample used in a general genetic testing apparatus, 10 ⁇ L or more and 1,000 ⁇ L or less is preferable.
  • the material of the well is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include polystyrene, polypropylene, polyethylene, fluororesin, acrylic resin, polycarbonate, polyurethane, polyvinyl chloride, polyethylene terephthalate and the like.
  • the color of the well may be, for example, transparent, translucent, colored, completely shaded, or the like.
  • the wettability of the well is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it may be water repellent. When the wettability of the well is water repellency, the adsorption of the reagent on the inner wall of the well can be reduced. Further, when the wettability of the well is water-repellent, it is easy to move the reagent in the well in a solution state.
  • the method for making the inner wall of the well water repellent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method for forming a fluorine-based resin film, a fluorine plasma treatment, and an embossing process. In particular, by performing a water repellent treatment having a contact angle of 100 ° or more, it is possible to suppress a decrease in reagents, uncertainty, and an increase in coefficient of variation due to liquid spillage.
  • the device of the present embodiment is preferably a plate-shaped device having wells provided on a base material, but may be a connection type well tube such as an 8-series tube.
  • the base material is not particularly limited in terms of material, shape, size, structure, etc., and can be appropriately selected depending on the intended purpose.
  • the material of the base material is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include semiconductors, ceramics, metals, glass, quartz glass, and plastics. Of these, plastics are preferable.
  • plastics examples include polystyrene, polypropylene, polyethylene, fluororesin, acrylic resin, polycarbonate, polyurethane, polyvinyl chloride, polyethylene terephthalate and the like.
  • the shape of the base material is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a plate shape and a plate shape.
  • the structure of the base material is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it may be a single-layer structure or a multi-layer structure.
  • the device of the present embodiment has an identification means capable of discriminating information on the specific number of molecules of nucleic acid A (for example, the number of cells) and information on the ratio A / B of the number of molecules of nucleic acid A to the number of molecules of nucleic acid B. You may be doing it.
  • the identification means is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a memory, an IC chip, a barcode, a QR code (registered trademark), and a Radio Frequency Identifier (hereinafter, also referred to as “RFID”) may be used. Yes), color coding, printing, etc.
  • the position where the identification means is provided and the number of identification means are not particularly limited, and can be appropriately selected according to the purpose.
  • the information stored in the identification means includes, for example, an analysis result (for example, PM value) in addition to the information on the specific number of molecules of nucleic acid A and the information on the ratio A / B of the number of molecules of nucleic acid A to the number of molecules of nucleic acid B. , PM value variation, etc.), cell life and death, which well among a plurality of wells is filled with the performance evaluation sample, the type of the performance evaluation sample, the measurement date and time, the name of the measurer, and the like.
  • an analysis result for example, PM value
  • PM value in addition to the information on the specific number of molecules of nucleic acid A and the information on the ratio A / B of the number of molecules of nucleic acid A to the number of molecules of nucleic acid B.
  • cell life and death which well among a plurality of wells is filled with the performance evaluation sample, the type of the performance evaluation sample, the measurement date and time, the name of the measurer, and the like.
  • the information stored in the identification means can be read by using various reading means.
  • the identification means is a barcode
  • a barcode reader is used as the reading means.
  • the method of writing information in the identification means is not particularly limited and may be appropriately selected depending on the purpose. For example, a specific number of molecules of nucleic acid A when manually inputting or dispensing a performance evaluation sample into a well. Examples include a method of writing data directly from a droplet forming device that counts data, a method of transferring data stored in a server, and a method of transferring data stored in the cloud.
  • the other members are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a sealing member and the like.
  • the device of the present embodiment preferably has a sealing member in order to prevent foreign matter from entering the well or the filling material from flowing out.
  • a sealing member in order to prevent foreign matter from entering the well or the filling material from flowing out.
  • the sealing member at least one well can be sealed, and each well may be detachably configured by a cutting line so that each well can be individually sealed or opened.
  • Examples of the shape of the sealing member include a cap shape that matches the diameter of the inner wall of the well, a film shape that covers the well opening, and the like.
  • sealing member examples include polyolefin resin, polyester resin, polystyrene resin, polyamide resin and the like.
  • the sealing member is preferably in the form of a film that can seal all the wells at once. Further, the adhesive strength between the wells that need to be resealed and the wells that do not need to be resealed may be different so as to reduce misuse by the user.
  • the specific number of molecules of nucleic acid A in one well and the specific number of molecules of nucleic acid A in other wells may all be the same, or may be two or more different from each other. good.
  • the specific number of molecules is, for example, 1 molecule, 5 molecules, 10 molecules, 20 molecules, 40 molecules, and 80 molecules in all wells. , 160 molecules and the like.
  • the specific number of molecules is, for example, 1, 5, 20, 40, 80, 160, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
  • nucleic acid A may not be contained in a part of the wells and may be used as a negative control.
  • a device in which a specific number of molecules of nucleic acid A in one well and a specific number of molecules of nucleic acid A in another well are all the same makes it easy to compare the evaluation results between wells. Therefore, it can be suitably used for performance evaluation of a genetic testing device.
  • the device of this embodiment may have a group of two or more wells in which a specific number of molecules of nucleic acid A is different.
  • the substrate of the device is a plate with a plurality of wells
  • each group forms each group "region" on the plate.
  • the "regions" formed by two or more groups having different specific molecular numbers of nucleic acid A may have wells adjacent to each other or separated from each other.
  • FIG. 22A is a perspective view showing an example of the device of the present embodiment.
  • 22 (b) is a cross-sectional view taken along the line bb'of FIG. 22 (a).
  • the device 1 has a base material 6 and a plurality of reaction spaces 7 formed in the base material 6, and the reaction space 7 is filled with the performance evaluation sample 1.
  • the performance evaluation sample 1 contains nucleic acid A (2) and nucleic acid B (3) having a specific number of molecules.
  • the reaction space is a well. Further, the opening of the well may be covered with a sealing member (not shown).
  • An IC chip or bar code (identification means) for storing the information of the above may be arranged between the sealing member and the base material 6 and at a position other than the opening of the well (not shown). By arranging the identification means at this position, it is possible to prevent, for example, unintended modification of the identification means. Further, since the device 1 has the identification means, it is possible to distinguish it from a general well plate having no identification means. Therefore, it is possible to prevent the device from being mistaken.
  • the production method of the present embodiment is a cell suspension generation step of producing a cell suspension containing a plurality of cells having nucleic acid A in the nucleus and a solvent, and a plate by ejecting the cell suspension as droplets.
  • a droplet landing step in which droplets are sequentially landed in the wells, and a cell number counting step in which the number of cells contained in the droplets is counted by a sensor after the droplets are ejected and before the droplets land on the wells.
  • the droplet landing step is the same as the "nucleic acid A filling step" of the above "method for preparing a sample for performance evaluation of a genetic testing device". Therefore, the same steps as the above-mentioned "method for preparing a sample for performance evaluation of a genetic testing device", a cell suspension generation step, a droplet landing step, a cell number counting step, a step of calculating certainty, an output step, and a recording The description of the process will be omitted.
  • the nucleic acid extraction step is a step of extracting nucleic acid A from the cells in the well. Extraction means destroying cell membranes, cell walls, etc., and extracting nucleic acids.
  • a method for extracting nucleic acid A from cells a method of heat treatment at 90 ° C. or higher and 100 ° C. or lower is known. Heat treatment at 90 ° C. or lower may not extract DNA, and heat treatment at 100 ° C. or higher may decompose DNA. It is preferable to add a surfactant and heat-treat.
  • the surfactant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an ionic surfactant and a nonionic surfactant. These may be used alone or in combination of two or more. Among these, a nonionic surfactant is preferable from the viewpoint of not denaturing and inactivating the protein, although it depends on the amount added.
  • ionic surfactant examples include fatty acid sodium, fatty acid potassium, alpha sulfo fatty acid ester sodium, linear alkylbenzene sulfonate sodium, alkyl sulfate ester sodium, alkyl ether sulfate sodium, sodium alpha olefin sulfonate and the like. These may be used alone or in combination of two or more. Of these, sodium fatty acid is preferable, and sodium dodecyl sulfate (SDS) is more preferable.
  • SDS sodium dodecyl sulfate
  • nonionic surfactants include alkyl glycosides, alkyl polyoxyethylene ethers (Brij series, etc.), octylphenol ethoxylates (Totiton X series, Igepal CA series, Nonidet P series, Nikkol OP series, etc.), polysorbates (, etc.).
  • Tween series such as Tween 20
  • sorbitan fatty acid ester polyoxyethylene fatty acid ester
  • alkyl maltoside sucrose fatty acid ester, glycoside fatty acid ester, glycerin fatty acid ester, propylene glycol fatty acid ester, fatty acid monoglyceride and the like. These may be used alone or in combination of two or more. Of these, polysorbates are preferable.
  • the content of the surfactant is preferably 0.01% by mass or more and 5.00% by mass or less with respect to the total amount of the cell suspension in the well.
  • the content is 0.01% by mass or more, it can exert an effect on DNA extraction, and when it is 5.00% by mass or less, inhibition of amplification can be prevented during PCR, and thus both.
  • the above-mentioned 0.01% by mass or more and 5.00% by mass or less is preferable as the numerical range in which the effect of
  • DNA may not be sufficiently extracted by the above method.
  • osmotic shock method freeze-thaw method
  • enzyme digestion method use of DNA extraction kit, sonication method, French press method, homogenizer and the like can be mentioned.
  • the enzyme digestion method is preferable because the loss of the extracted DNA is small.
  • the other steps are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an enzyme deactivation step and a step of adding a reagent.
  • the enzyme inactivation process is a process of inactivating the enzyme.
  • the enzyme include DNase, RNase, and the enzyme used for extracting nucleic acid in the nucleic acid extraction step.
  • the method for inactivating the enzyme is not particularly limited, and can be appropriately selected depending on the intended purpose, and a known method can be preferably used.
  • reagent examples include the same reagents as those exemplified in the above-mentioned "device for evaluating the performance of the genetic testing device".
  • the performance evaluation method of the present embodiment includes a PM value information acquisition step of acquiring PM value information in the device using the performance evaluation device of the genetic testing device (hereinafter, may be simply referred to as “device”). It includes a performance evaluation step of evaluating the performance of the genetic testing apparatus based on PM value information, and further includes other steps as necessary.
  • the nucleic acid sequence analysis of the performance evaluation sample is performed using the genetic testing device to be evaluated, and the PM value information is acquired.
  • the processing in the nucleic acid sequence analysis can be appropriately selected depending on the type of the genetic testing apparatus. Specifically, for example, the nucleic acid in the performance evaluation sample is fragmented, the fragmented nucleic acid is recovered (pretreatment), and then the sequence of the recovered nucleic acid is read (sequencing).
  • the sequencing primer used for sequencing is not particularly limited, and is appropriately set based on a sequence suitable for amplifying the target region. Further, as for the reagent used for sequencing, a suitable reagent may be selected according to the sequencing technique to be used and the type of sequencer.
  • nucleic acid A and nucleic acid B in the performance evaluation sample are fragmented to a length for reading the sequence with a sequencer.
  • Fragmentation of the sample DNA can be performed by a known method such as ultrasonic treatment or treatment with a reagent that fragmentes nucleic acid.
  • the resulting DNA fragment can be, for example, tens to hundreds of bp in length.
  • a primer designed to amplify the target sequences (nucleic acid A and nucleic acid B) without fragmentation is used.
  • the sample for performance evaluation is subjected to the PCR reaction.
  • the resulting PCR product can be tens to hundreds of bp long. At this time, by performing tailed PCR in which the adapter sequence is added to the primer, the following adapter addition step can also be performed.
  • this step is an indispensable step when the sequencer is an Illumina sequencer or a device which adopts the same method as the Illumina sequencer, but when another type of sequencer is used, it is a step. , May be omitted.
  • the adapter sequence is a sequence used to execute sequencing in a later process. In one embodiment, it can be a sequence for hybridizing to oligo DNA immobilized on beads for use in emulsion PCR. In another embodiment, it may be a sequence for hybridizing to an oligo DNA immobilized on a flow cell for use in Bridge PCR.
  • the adapter sequence may be added directly to both ends of the DNA fragment.
  • a method known in the art can be used.
  • the DNA sequence may be blunted and the adapter sequence may be ligated.
  • sequencing technique As the sequencing technique, a known method can be appropriately selected and used, and specific examples thereof include the same sequencing technique as exemplified in the above-mentioned "Sample for performance evaluation of genetic testing apparatus".
  • the sequencing method by emulsion PCR and ion semiconductor sequencing will be described below.
  • the DNA fragment to which the adapter sequence is added and the beads to which the short oligo DNA complementary to the adapter sequence is bound are mixed so as to bind 1: 1 and encapsulated in a water-in-oil emulsion together with an amplification reagent.
  • a microreactor containing only one bead and one DNA fragment is formed in the oil. This allows each DNA fragment to be amplified to millions of copies on the beads without mixing with other sequences.
  • the emulsion is destroyed to concentrate the beads, and the beads are placed in microwells on the semiconductor sequencing chip for sequence analysis.
  • the extension reaction by DNA polymerase is carried out from the primer complementary to the adapter.
  • hydrogen ions are released in the process of incorporating nucleotides into DNA by the polymerase, so that a detectable pH change is exhibited.
  • the microwells on the semiconductor sequencing chip contain approximately 1 million copies of DNA molecules per well. New nucleotides are added to the chip one after another by an ionic semiconductor sequencer (eg, Ion Personal Genome Sequencer (PGM® sequencer, etc.)), and the added nucleotides have a sequence complementary to the sequence of DNA in the microwell.
  • an ionic semiconductor sequencer eg, Ion Personal Genome Sequencer (PGM® sequencer, etc.
  • this nucleotide is incorporated into the DNA and hydrogen ions are released.
  • the pH in the well changes and the ion sensor detects this.
  • the chemical information thus detected is direct digital information. If two identical bases are present in the sequencer in a row, the charge is doubled and the chip detects it as two bases. If the next nucleotide added does not match the template, the charge changes. Is not recorded and the bases are not read. In this way, the ion semiconductor sequencing system does not require a scanner, camera, light source, etc. to directly detect the bases, and records the uptake of each base in a few seconds. The time required for is greatly reduced.
  • emulsion PCR The procedure for emulsion PCR is the same as the above-mentioned "sequencing method by emulsion PCR and ion semiconductor sequencing", and then the emulsion is destroyed to concentrate the beads, and a picotita with innumerable holes for one bead. Sequencing is performed by placing it on a plate. On the plate, the extension reaction by DNA polymerase is carried out from the primer complementary to the adapter. At this time, dNTPs are replaced one by one, such as a reaction in which only dATP is added as a material for elongation, a reaction in which only dGTP is added, and so on. Since pyrophosphate is liberated when an extension reaction occurs, it can be detected by a luminescence reaction with luciferase, and nucleic acid sequence information can be obtained.
  • the DNA fragment to be analyzed is amplified on the flow cell by the Bridge PCR method. That is, the DNA fragment to be analyzed has two different adapter sequences at both ends by the above-mentioned pretreatment, the DNA fragment is made into a single strand, and the adapter sequence on the 5'end side is fixed on the flow cell.
  • the adapter sequence on the 5'end side is fixed in advance on the flow cell, and the adapter sequence on the 3'end side of the DNA fragment seems to be bridged by binding to the adapter sequence on the 5'end side on the flow cell. And a bridge is formed.
  • a DNA elongation reaction is carried out with DNA polymerase and denatured to obtain two single-stranded DNA fragments.
  • sequence is read by sequencing-by-synthesis using the single-stranded DNA forming the cluster as a template.
  • a DNA polymerase and a fluorescently labeled dNTP whose 3'terminal side is blocked are added to the single-stranded DNA immobilized on the flow cell, and then a sequence primer is added.
  • the sequence primer may be designed to hybridize to, for example, a part of the adapter sequence.
  • the sequence primer may be designed to amplify a DNA fragment derived from the sample DNA, and when an index sequence is added, it may be designed to further amplify the index sequence.
  • Photographs are taken using a fluorescence microscope for each fluorescence color corresponding to each of A, C, G, and T while changing the wavelength filter in order to determine four types of bases. After capturing all the photographs, the base is determined from the photograph data. Then, the fluorescent substance and the protecting group blocking the 3'end side are removed, and the next polymerase reaction proceeds. By repeating this flow as one cycle and repeating the second cycle and the third cycle, the total length can be sequenced.
  • the read sequence information is data indicating the base sequence read by the sequencer.
  • the read sequence information may include the quality score of each base in the sequence together with the read sequence.
  • nucleic acid sequence analysis is evaluated.
  • the evaluation of the nucleic acid sequence analysis is preferably performed based on a value such as a PM value (also referred to as a PM score).
  • a PM value also referred to as a PM score.
  • the inventor has found that the variation in PM value is particularly useful as an index for accurately evaluating the performance of the genetic testing apparatus.
  • the PM value is calculated from the read sequence information, is Plasma Mutation score, and is defined by the number of reads of each mutation per 100,000 reads.
  • a small PM value indicates a small amount of nucleic acid A
  • a large PM value indicates a large amount of nucleic acid A.
  • the variation in PM value means the variation between PM values obtained in each reaction space when nucleic acid sequence analysis under the same conditions is performed in a plurality of reaction spaces.
  • the small variation in PM value means that the performance of the genetic testing device is high. Furthermore, it means that the accuracy of the analysis by the genetic testing device is good.
  • the large variation in PM value means that the pretreatment conditions and sequence conditions were not performed under the optimum conditions.
  • the performance evaluation program of the present embodiment includes a PM value information acquisition step of acquiring PM value information in the device using the above device, and a PM value information acquisition step. It includes a performance evaluation step for evaluating the performance of the genetic testing apparatus based on PM value information, and further includes other steps as necessary.
  • the performance evaluation device of the present embodiment uses the above device to acquire PM value information in the device, and a PM value information acquisition unit. It includes a performance evaluation unit that evaluates the performance of the genetic testing device based on PM value information, and further includes other steps as necessary.
  • the control performed by the control unit or the like in the performance evaluation device of the present embodiment is synonymous with implementing the performance evaluation method of the genetic test device described above, the performance of the genetic test device is described through the explanation of the performance evaluation device of the present embodiment. The details of the evaluation method will also be clarified. Further, since the performance evaluation program of the present embodiment realizes the performance evaluation device of the genetic testing device by using a computer or the like as a hardware resource, the performance evaluation device of the present embodiment will be described. The details of the performance evaluation program will also be clarified.
  • the step of acquiring the PM value information is the above-mentioned step of acquiring the PM value information using the device (PM value information acquisition step), and is carried out by the information acquisition unit.
  • Information on the PM value can be obtained by analyzing (sequencing) the nucleic acid sequence in a genetic testing apparatus using the above-mentioned device.
  • the PM value information includes PM value, variation in PM value, and the like. One of these pieces of information may be used alone for evaluation, or two or more types may be used in combination for evaluation.
  • the variation in PM value is the same as that described above. Examples of the variation in PM value include standard deviation and CV value.
  • the evaluation step is a step of evaluating the performance of the genetic testing apparatus based on the information of the PM value, and is carried out by the evaluation unit.
  • the above-mentioned device may be used to analyze the nucleic acid sequence (sequencing) in a genetic testing device, measure the PM value, and calculate the average PM value.
  • the in-plane characteristics can be evaluated as " ⁇ " when the PM value of each well is within 10% of the average PM value and "x" when the PM value of each well is larger than 10% of the average PM value. ..
  • the device of the present embodiment by using the device of the present embodiment and performing measurement for a certain period of time, it is possible to obtain a time-dependent change in the information of the nucleic acid sequence analysis.
  • the in-plane characteristics for example, if the PM value of each well exceeds 10% of the average PM value, it is possible to calibrate the genetic testing device or take measures not to use the measurement location. can.
  • the specific number of molecules arranged is an absolute value, it is possible to compare the performance between genetic testing devices by using a device in which the same specific number of molecules is arranged.
  • the device of the present embodiment by using the device of the present embodiment and performing measurement for a certain period of time, it is possible to obtain a time-dependent change in the information of the nucleic acid sequence analysis.
  • a numerical value deviating from the quality control value is obtained as in the case of the in-plane characteristic, it is possible to calibrate the genetic testing device or take measures not to use the measurement location.
  • the number of arranged molecules is an absolute value, it is possible to compare the performance between genetic testing devices by using a device in which the same number of molecules is arranged.
  • the processing by the performance evaluation program of this embodiment can be executed by using a computer having a control unit constituting the performance evaluation device.
  • the hardware configuration and functional configuration of the performance evaluation device will be described below.
  • FIG. 23 is a block diagram showing an example of the hardware configuration of the performance evaluation device 100 of the genetic testing device.
  • the performance evaluation device 100 includes a CPU (Central Processing Unit) 101, a main storage device 102, an auxiliary storage device 103, an output device 104, an input device 105, and a communication interface (communication I / F) 106. Has. Each of these parts is connected via a bus 107.
  • CPU Central Processing Unit
  • the CPU 101 is a processing device that performs various controls and calculations.
  • the CPU 101 realizes various functions by executing an OS (Operating System) or a program stored in the main storage device 102 or the like. That is, the CPU 101 functions as the control unit 130 of the performance evaluation device 100 of the genetic test device by executing the performance evaluation program of the genetic test device.
  • OS Operating System
  • the CPU 101 controls the operation of the entire performance evaluation device 100 of the genetic testing device.
  • the device that controls the operation of the entire performance evaluation device 100 is the CPU 101, but the device is not limited to this, and may be, for example, an FPGA (Field Programmable Gate Array) or the like.
  • the performance evaluation program of the genetic testing device and various databases do not necessarily have to be stored in the main storage device 102, the auxiliary storage device 103, or the like.
  • the performance evaluation program and various databases of the genetic testing device are installed in other information processing devices connected to the performance evaluation device 100 of the genetic testing device via the Internet, LAN (Local Area Network), WAN (Wide Area Network), etc. You may memorize it.
  • the performance evaluation device 100 of the genetic testing device may acquire and execute a performance evaluation program of the genetic testing device and various databases from these other information processing devices.
  • the main storage device 102 stores various programs and stores data and the like necessary for executing various programs.
  • the main storage device 102 has a ROM (Reed Only Memory) and a RAM (Random Access Memory) (not shown).
  • the ROM stores various programs such as BIOS (Basic Input / Output System).
  • BIOS Basic Input / Output System
  • the RAM functions as a work range expanded when various programs stored in the ROM are executed by the CPU 101.
  • the RAM is not particularly limited and can be appropriately selected depending on the purpose. Examples of the RAM include DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory), and the like.
  • the auxiliary storage device 103 is not particularly limited as long as it can store various information, and can be appropriately selected according to the purpose. Examples thereof include a solid state drive and a hard disk drive. Further, the auxiliary storage device 103 may be a portable storage device such as a CD (Compact Disc) drive, a DVD (Digital entirely Disc) drive, or a BD (Blu-ray (registered trademark) Disc) drive.
  • a CD Compact Disc
  • DVD Digital Paris Disc
  • BD Blu-ray (registered trademark) Disc
  • a display As the output device 104, a display, a speaker, or the like can be used.
  • the display is not particularly limited, and a known display can be used as appropriate, and examples thereof include a liquid crystal display and an organic EL display.
  • the input device 105 is not particularly limited as long as it can accept various requests for the performance evaluation device 100 of the inspection device, and a known input device 105 can be used as appropriate. Examples thereof include a keyboard, a mouse, and a touch panel.
  • the communication interface (communication I / F) 106 is not particularly limited, and a known one can be used as appropriate, and examples thereof include a communication device using wireless or wired communication.
  • the processing function of the performance evaluation device 100 of the genetic testing device can be realized.
  • FIG. 24 is a diagram showing an example of the functional configuration of the performance evaluation device 100 of the genetic testing device.
  • the performance evaluation device 100 includes an input unit 110, an output unit 120, a control unit 130, and a storage unit 140.
  • the control unit 130 has an information acquisition unit 131 and an evaluation unit 132.
  • the control unit 130 controls the entire performance evaluation device 100.
  • the storage unit 140 has an information database 141 and an evaluation result database 142.
  • the “database” may be referred to as "DB".
  • the information acquisition unit 131 acquires information on the analysis of the nucleic acid sequence using the data stored in the information DB 141 of the storage unit 140.
  • the information DB 141 for example, as described above, data such as a PM value obtained in advance by an experiment is stored.
  • the information associated with the device may be stored in the information DB 141.
  • the input to the DB may be performed from another information processing device connected to the performance evaluation device 100, or may be performed by an operator.
  • the evaluation unit 132 evaluates the performance of the genetic testing device based on the information of the nucleic acid sequence analysis.
  • the specific method for evaluating the performance of the genetic testing device is as described above.
  • the performance evaluation result of the genetic testing apparatus obtained by the evaluation unit 132 is stored in the evaluation result DB 142 of the storage unit 140.
  • FIG. 25 is a flowchart showing a processing procedure of a performance evaluation program in the control unit 130 of the performance evaluation device 100 of the genetic testing device.
  • step S110 the information acquisition unit 131 of the control unit 130 of the performance evaluation device 100 acquires the information data of the nucleic acid sequence analysis stored in the information DB 141 of the storage unit 140, and shifts the process to S111.
  • step S111 the evaluation unit 132 of the control unit 130 of the performance evaluation device 100 evaluates the performance of the genetic testing device based on the acquired information, and shifts the process to S112.
  • step S112 the control unit 130 of the performance evaluation device 100 saves the obtained performance evaluation result of the genetic testing device in the evaluation result DB 142 of the storage unit 140, and ends this process.
  • Example 1 (Filling of nucleic acid with low copy number and evaluation of filling accuracy) 1.
  • Preparation of Nucleic Acid with Low Copy Number (1) Design of Artificial Nucleic Acid In (2) described later, an artificial nucleic acid for incorporation into yeast was prepared. The artificial nucleic acid has a sequence homologous to the regions of exons 18, 19, 20, and 21 of the EGFR gene, and is designed so that it can be amplified with the same primer during mutation analysis of the EGFR gene. Restriction enzyme sites were inserted between the sequences of each exon. Artificial nucleic acids contain five mutations that are targeted for detection.
  • the integrated mutations are five prominent mutations in the EGFR gene: e19_deletion, T790M, C779S, L858R, and L861Q.
  • the produced artificial nucleic acid consists of the base sequence represented by SEQ ID NO: 1.
  • yeast Saccharomyces cerevisiae YIL015W BY4741 (ATCC, ATCC4001408) is used as a carrier cell of one copy of a specific nucleic acid sequence. Then, a recombinant was prepared.
  • a specific nucleic acid sequence a plasmid in which the artificial nucleic acid designed in (1) above and the URA3 gene, which is a selectable marker, were introduced so as to line up in tandem was prepared in advance.
  • one copy of artificial nucleic acid was introduced into the Bar1 gene region of the genomic DNA of the carrier cell to prepare a transgenic yeast.
  • One type of recombinant having a mutant EGFR gene was prepared.
  • ⁇ -factor darbecolinic acid buffered physiological saline (Thermofisher Scientific Co., Ltd.) 14190-144, hereinafter sometimes referred to as "DPBS")
  • DPBS darbecolinic acid buffered physiological saline
  • bioshaker manufactured by Titec Co., Ltd., BR-23FH
  • shaking speed 250 rpm temperature 28 ° C. for 2 hours. Incubation was performed to obtain a yeast suspension in which yeast was tuned to the G0 / G1 phase.
  • Counting the number of yeast suspensions Dispensing The number of yeasts in the droplets is counted using the following method, and one cell is discharged into each well. A plate with a known number of cells was prepared. Specifically, a piezoelectric application method is used as a droplet ejection means to each well of 96 plates (“MicroAmp 96-well Reaction plate” (trade name), manufactured by Thermo Fisher) using a droplet forming apparatus (manufactured by Ricoh). The yeast suspension ink was sequentially ejected at 10 Hz using the ejection head (manufactured by Ricoh) of. A high-sensitivity camera (sCMOS pco.
  • Edge manufactured by Tokyo Instruments Co., Ltd. was used as a means for receiving the yeast in the ejected droplets.
  • a YAG laser (Explorer ONE-532-200-KE manufactured by Spectra Physics Co., Ltd.) is used as a light source, and the number of cells is counted by performing image processing using Image J, which is image processing software, as a particle counting means for captured images. Then, a plate with a known number of cells was prepared.
  • the number of cells in the droplets is the number of cells in the droplets counted by analyzing the image of the droplets ejected by the ejection means, and the number of cells ejected by the ejection means for each of the landed droplets landed on the slide glass.
  • the number of cells obtained by microscopic observation was used.
  • the number of nucleic acid copies in cells (cell cycle) was calculated using the proportion of cells corresponding to the G1 phase of the cell cycle (99.5%) and the proportion of cells corresponding to the G2 phase (0.5%). ..
  • the number of cells in the well the number of ejected droplets landed in the well was counted, but since all the droplets landed in the well in the count of 96 samples, the factor of the number of cells in the well is uncertain. Excluded from the calculation.
  • 4 ⁇ L of the ink filtrate was subjected to three trials to confirm whether nucleic acids other than the introduced nucleic acids in the nucleus of the cells were mixed in the ink solution by real-time PCR. As a result, the lower limit of detection was reached in all three times, so the cause of contamination was also excluded from the uncertainty calculation.
  • Uncertainty is the standard deviation obtained from the measured values of each factor, multiplied by the sensitivity coefficient, and unified into the unit of measurement (hereinafter, may be referred to as "standard uncertainty (unit of measurement)").
  • the composite standard uncertainty was calculated by the sum of squares method. Since the composite standard uncertainty includes only the value in the range of about 68% of the normal distribution, the uncertainty considering the range of about 95% of the normal distribution is calculated by doubling the composite standard uncertainty to the extended uncertainty. Obtainable. The results are shown in Table 2.
  • symbol means an arbitrary symbol associated with a factor of uncertainty.
  • value ( ⁇ ) is the experimental standard deviation of the average value, which is the calculated experimental standard deviation divided by the square root value of the number of data.
  • the "probability distribution” is the probability distribution of the uncertainty factor. In the case of A type uncertainty evaluation, leave it blank, and in the B type uncertainty evaluation, enter either the normal distribution or the rectangular distribution. do.
  • Divisor means a number that normalizes the uncertainty obtained from each factor.
  • Standard uncertainty is the value obtained by dividing the “value ( ⁇ )” by the “divisor”.
  • Stress coefficient means a value used to unify the unit of measurement.
  • the specific number of copies was 1, that is, the accuracy of dispensing one copy of nucleic acid (one yeast) into the well was ⁇ 0.1281 copies.
  • the accuracy with which a specific number of copies of nucleic acid is filled is considered to be determined by the accumulation of this accuracy.
  • the obtained extended uncertainty is stored as device data as an index of measurement variation, so that the person using the experiment can use the uncertainty index as a criterion for determining the reliability of the measurement result for each well. Can be used as. Further, by using the above-mentioned reliability judgment criteria, the performance evaluation of the analytical inspection can be performed with high accuracy.
  • Example 2 (Mutation analysis of EGFR gene) 1.
  • 1 copy yeast containing the artificial nucleic acid (mutant EGFR gene) designed in Example 1 was placed in the same procedure as in Example 1 so as to have a predetermined number of copies.
  • the default number of copies was 53 for the wells used for the mutation analysis of e19_deletion, 64 copies for the wells used for the mutation analysis of T790M and C779S, and 7 copies for the wells used for the mutation analysis of L858R and L861Q.
  • the sample filling well filled with yeast was filled with 4.0 ⁇ L (7.5 ng / ⁇ L) of Human genomic DNA (manufactured by Promega). This filling amount corresponds to an amount containing about 10,000 copies of the normal EGFR gene.
  • mixing was performed to prepare a sample having an ultra-low allelic frequency of 0.07%, 0.53%, or 0.64% in the sample filling well.
  • the sample added to the wells was controlled so that the number of copies (7, 53, 64 copies) of the yeast genomic DNA into which the artificial nucleic acid (mutant EGFR gene) designed in Example 1 was introduced was manually diluted. Prepared as.
  • Human genomic DNA (manufactured by Promega) was added thereto in the same manner as described above to prepare a hand-diluted sample (control group).
  • the yeast genomic DNA used in the control group was extracted using Gen Toru-kun (registered trademark) yeast) High Recovery (manufactured by Takara Bio Inc.).
  • PCR primer R 10 ⁇ M
  • KOD-Plus 1 U / ⁇ L
  • Human genomic DNA 7.5 ng / ⁇ L
  • mutant EGFR gene Zymolyase 0.4U
  • PCR primer R 24 kinds of indexes were given to each exon, and the indexed primers were used. Specifically, a primer consisting of the following base sequence was used.
  • the index sequence (INDEX) is a sequence consisting of any 5 bases.
  • the amplification reaction of DNA by the PCR method was carried out using T100TM Thermal Cycler (manufactured by Bio-rad). As specific reaction conditions, first, incubation was carried out at 94 ° C. for 2 minutes. Then, 40 temperature cycles consisting of 3 steps of 94 ° C. for 15 seconds, 50 ° C. for 30 seconds, and 68 ° C. for 15 seconds were performed. Finally, the mixture was cooled to 10 ° C. to terminate the reaction.
  • PCR product was purified by using QIAquick (manufactured by QIAGEN). The operation followed the protocol. At this time, it was transferred to a PCR reaction vessel for emulsion PCR using the subsequent ION chef system.
  • Emulsion PCR and chip loading using the ION chef system were performed according to the ION chef system protocol.
  • FIG. 26 is a diagram showing PM scores calculated based on the number of reads obtained from 3 runs of the IJ group and 1 run of a hand-diluted sample (control group, sometimes referred to as “manual group”).
  • IJ1 to IJ3 mean the analysis results of the first run to the third run, respectively. It was clarified that the variability of the IJ group was smaller in all the samples.
  • FIGS. 27 and 28 are tables showing the PM scores, and it was clarified that the IJ group had smaller variation under all conditions even when compared by CV value.
  • the "CV value” is a percentage of the standard deviation divided by the average value.
  • Example 3 (Examination of linearity of mutation analysis of EGFR gene) 1.
  • 1 copy yeast containing the artificial nucleic acid (mutant EGFR gene) designed in Example 1 was placed in the same procedure as in Example 1 so as to have a predetermined number of copies. Was filled with.
  • As the default number of copies 5 levels of 0, 7, 53, 64, 100 copies were prepared.
  • the sample filling well filled with yeast was filled with 4.0 ⁇ L (7.5 ng / ⁇ L) of Human genomic DNA (manufactured by Promega). This filling amount corresponds to an amount containing about 10,000 copies of the normal EGFR gene.
  • the samples were mixed to prepare samples having an ultra-low allele frequency of 0.07%, 0.53%, 0.64%, and 1.00% in the sample filling well.
  • Emulsion PCR using the ION chef system and loading onto the chip were performed using the same method as described in Example 2.
  • FIG. 29 is a diagram showing a PM score calculated based on the number of reads obtained from the one run.
  • the vertical axis represents the PM score, and the horizontal axis represents the number of copies introduced into each well. It was revealed that both T790M and L858R show high linearity.
  • the black dashed line is the PM score expected from the number of copies introduced, and the reason why the two mutations do not match this line is that the amplification efficiency or detection efficiency differs between the mutant and wild-type sequences.
  • the mutant T790M has better amplification or detection efficiency than the wild type and has a higher PM score than the number of copies actually introduced.
  • L858R has poor amplification efficiency or detection efficiency, and has a score generally lower than the expected PM score.
  • Example 4 (Mutation analysis of EGFR gene 2) The same operation as in Example 2 was performed using three different workers and two different devices, and the differences were visualized. The specific procedure is as shown below.
  • sample filling well 1 copy yeast containing the artificial nucleic acid (mutant EGFR gene) designed in Example 1 was placed in the same procedure as in Example 1 so as to have a predetermined number of copies. Was filled with. As the default number of copies, four level wells of 10 copies, 30 copies, 50 copies, and 100 copies were prepared. Next, the sample filling well filled with yeast was filled with 4.0 ⁇ L (7.5 ng / ⁇ L) of Human genomic DNA (manufactured by Promega). This filling amount corresponds to an amount containing about 10,000 copies of the normal EGFR gene. After filling, mixing was performed to prepare a sample having an ultra-low allelic frequency of 0.1%, 0.3%, or 0.5%, 1.0% in the sample filling well.
  • PCR primer R (10 ⁇ M) 2.0 ⁇ L, KOD-Plus (1 U / ⁇ L): 1.0 ⁇ L, Human genomic DNA (7.5 ng / ⁇ L): 4.0 ⁇ L, including mutant EGFR gene (Zymolyase 0.4U) ): 4.0 ⁇ L, totaling 50 ⁇ L.
  • As the PCR primer 24 kinds of indexes were given to each exon, and the indexed primers were used. Specifically, a primer consisting of the base sequence shown in Table 4 above was used.
  • the index sequence (INDEX) is a sequence consisting of any 5 bases.
  • the amplification reaction of DNA by the PCR method was carried out using T100TM Thermal Cycler (manufactured by Bio-rad). As specific reaction conditions, first, incubation was carried out at 94 ° C. for 2 minutes. Then, 40 temperature cycles consisting of 3 steps of 94 ° C. for 15 seconds, 50 ° C. for 30 seconds, and 68 ° C. for 15 seconds were performed. Finally, the mixture was cooled to 10 ° C. to terminate the reaction.
  • PCR product Purification of PCR product by QIAquick
  • QIAquick manufactured by QIAGEN
  • the operation followed the protocol. At this time, it was transferred to a PCR reaction vessel for emulsion PCR using the subsequent ION chef system.
  • Concentration measurement Qubit3.0 (manufactured by Thermo Fisher) was used for the concentration measurement of the PCR product. Based on the measured concentration, all the samples were dispensed into 1.5 mL tubes so as to have the same concentration, and diluted to 15 nM using Nuclease-Free Water (NFW). Hereinafter, this may be referred to as a library.
  • NFW Nuclease-Free Water
  • Emulsion PCR using ION chef system and loading to chip Workers A and B performed emulsion PCR reaction and loading to chip using ION chef system of instrument 1 according to the protocol. Worker C performed an emulsion PCR reaction and loading onto a chip according to the protocol using the ION chef system of instrument 2.
  • Sequence by ION PGM Workers A and B performed sequence analysis according to the protocol using the ION PGM of the device 1. Worker A carried out 4 runs and Worker B carried out 2 runs. Worker C performed sequence analysis according to the protocol using the ION PGM of the device 2. Worker C carried out two runs. After that, the library used in the first run was run again, and a total of 3 runs were carried out.
  • Fig. 30 shows the PM score calculated based on the number of leads obtained from 4 runs of worker A / equipment 1, 2 runs of worker B / equipment 1, and 3 runs of worker C / equipment 2. It is a figure. Since the first run and the third run of the worker C use the same library, they are connected by a solid line on the figure to show this. The average value and CV of each level are shown in Tables 5 to 9 below. Asterisks are attached to levels where CV exceeds 30%.
  • Example 5 (Examination of linearity of mutation analysis of EGFR gene 2) 1.
  • 1 copy yeast containing the artificial nucleic acid (mutant EGFR gene) designed in Example 1 was placed in the same procedure as in Example 1 so as to have a predetermined number of copies. Was filled with.
  • the sample filling well filled with yeast was filled with 4.0 ⁇ L (7.5 ng / ⁇ L) of Human genomic DNA (manufactured by Promega). This filling amount corresponds to an amount containing about 10,000 copies of the normal EGFR gene.
  • the samples were mixed to prepare samples having ultra-low allele frequencies of 0.1%, 0.3%, 0.5%, and 1.0% in the sample filling wells.
  • Emulsion PCR using the ION chef system and loading onto the chip were performed using the same method as described in Example 2.
  • FIGS. 31 and 32 Graphs showing the relationship between the PM score calculated based on the number of reads obtained from one run of sample with an ultra-low allele frequency and the allele frequency are shown in FIGS. 31 (T790M, L861Q, C797S) and 32 (E19_del, L858R). show.
  • the vertical axis represents the PM score and the horizontal axis represents the allele frequency. It was revealed that all of T790M, L861Q, C797S, E19_del, and L858R showed high linearity.
  • Example 6 Method of determining the number of copies of nucleic acid B using the measured value of nucleic acid A
  • Nucleic acid B is also subjected to qPCR in the same manner, and this measured value is compared with the extrapolated value of the calibration curve of the nucleic acid A to confirm that the measured value of the nucleic acid B is within a certain acceptance criterion.
  • the number of copies of nucleic acid B was defined. The specific procedure is shown below.
  • Example 1 Preparation of sample with ultra-low allele frequency
  • 1 copy yeast containing the artificial nucleic acid (mutant EGFR gene) designed in Example 1 was placed in Example 1 so as to have a predetermined number of copies. It was filled using the same procedure as in. As the default number of copies, four levels of 10, 30, 50, and 100 copies were prepared. 12 wells were prepared for each level.
  • the sample filling well to be nucleic acid B was filled with 4.0 ⁇ L (7.5 ng / ⁇ L) of Human genomic DNA (manufactured by Promega). This filling amount corresponds to an amount containing about 10,000 copies of the normal EGFR gene. This was prepared for 48 wells.
  • the sample having an ultra-low allele frequency prepared in "1.” was subjected to an amplification reaction by the qPCR method in each well.
  • the composition of the reaction solution was: Hybrid free water: 3.6 ⁇ L, TaqMan (registered trademark) Universal PCR Master Mix: 10.0 ⁇ L, primer F (10 ⁇ M) for qPCR 1.0 ⁇ L, primer R (10 ⁇ M) 1.0 ⁇ L for qPCR, TaqMan® Probe: 0.4 ⁇ L, Human genomic DNA (7.5 ng / ⁇ L) or mutant EGFR gene (including Zymolyase 0.4U): 4.0 ⁇ L, totaling 20 ⁇ L.
  • the primer for qPCR, TaqMan (registered trademark) Probe used a primer having the following base sequence.
  • QPCR was performed using Quant Studio 12K Flex Real-Time PCR System (manufactured by Thermo Fisher Scientific). As a specific reaction condition, incubation was carried out at 50 ° C. for 2 minutes. Then, the incubation was carried out at 95 ° C. for 10 minutes. Then, 50 temperature cycles consisting of two steps of 95 ° C. for 30 seconds and 61 ° C. for 1 minute were performed. Finally, the mixture was cooled to 10 ° C. to terminate the reaction.
  • regression analysis and calculation of extrapolated values A regression line was obtained from the measurement results (Cq value: quantification cycle) of 10 to 100 copies of the reaction well containing nucleic acid A.
  • the common logarithm of the number of copies (base 10) was taken, and the regression line was obtained by a linear function.
  • regression lines were determined for 5 levels including the Cq value of 10000 copies of nucleic acid B in addition to 10-100 copies of the reaction well containing the nucleic acid.
  • the left figure of FIG. 33 shows the horizontal axis represented by the number of copies, and the right figure of FIG. 33 shows the horizontal axis represented by the common logarithm of the number of copies.
  • the present invention includes the following aspects.
  • a sample for evaluating the performance of a genetic testing device Contains Nucleic Acid A and Nucleic Acid B
  • the nucleic acid A and the nucleic acid B consist of different sequences from each other. Containing the nucleic acid A of a specific number of molecules
  • the nucleic acid B is contained in a larger number than the number of molecules of the nucleic acid A.
  • nucleic acid A and the nucleic acid B are human genomic DNA.
  • the method according to any one of (1) to (7), wherein the ratio A / B of the number of molecules of the nucleic acid A to the number of molecules of the nucleic acid B corresponds to the frequency of occurrence of a specific genetic disease. sample.
  • nucleic acid A is an EGFR gene having a mutation
  • nucleic acid B is an EGFR gene having no mutation.
  • nucleic acid A comprises a base sequence containing a sequence in which exons 18, 19, 20 and 21 of the EGFR gene are linked in tandem.
  • Preparation method including. (13) The preparation method according to (12), wherein the cells are yeast or mammalian cells. (14) The preparation method according to (12) or (13), wherein in the nucleic acid B filling step, the number of molecules of the nucleic acid B is measured by an absorption analysis method or a real-time PCR method.
  • the nucleic acid B filling step the nucleic acid B and a plurality of the nucleic acids A having different molecular numbers are measured by a real-time PCR method, and a calibration curve prepared by the plurality of nucleic acid A having different molecular numbers is used.
  • (16) Having a plurality of reaction spaces A device for evaluating the performance of a genetic testing apparatus, which comprises the sample according to any one of (1) to (11) in at least a part of the reaction space.
  • a PM value information acquisition step of acquiring PM value information in the performance evaluation device using the performance evaluation device of the genetic testing apparatus according to (16).
  • a PM value information acquisition unit that acquires PM value information in the performance evaluation device, and a PM value information acquisition unit.
  • a performance evaluation unit that evaluates the performance of the genetic testing device based on the PM value information A performance evaluation device for a genetic testing device.
  • dispensing device 401, 401A, 401B, 401C ... droplet forming device, 700, 700' ... plate, 710 ... Well, 800 ... stage, 900 ... control device, L ... light, Lf, Lf 1 , Lf 2 ... fluorescence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

遺伝子検査装置の性能評価用試料は、核酸Aと核酸Bとを含み、前記核酸Aと前記核酸Bは互いに異なる配列からなり、特定の分子数の前記核酸Aを含み、前記核酸Bを前記核酸Aの分子数よりも多く含み、前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定されている。

Description

遺伝子検査装置の性能評価用試料及びその調製方法、並びに、遺伝子検査装置の性能評価用デバイス、性能評価方法、性能評価プログラム及び性能評価装置
 本発明は、遺伝子検査装置の性能評価用試料及びその調製方法、並びに、遺伝子検査装置の性能評価用デバイス、性能評価方法、性能評価プログラム及び性能評価装置に関する。
 本願は、2020年1月16日に、日本に出願された特願2020-005315号、及び2020年8月17日に、日本に出願された特願2020-137596号に基づき優先権を主張し、その内容をここに援用する。
 近年、血中循環DNA(circulating cell-free DNA:cfDNA)を対象とし、ガンや臓器異常の早期発見、胎児の様子や母体の健康を検査するための技術の開発が進められている。特に次世代シーケンサー(Next Generation Sequencer:NGS)を用いた検査では、同時に多数の領域を検査することができるだけでなく、他の手法と比較してターゲットを好感度に検出できるため、注目されている。また、NGSを用いた検査は、医療現場に限らず、例えば、水中や土壌の生物相を調査する環境DNA解析や、腸内や口腔内の微生物相の調査にも用いられている。
 しかしながら、これまでのNGSを用いた検査では、ガンを一例とした場合に、アレル比0.05%程度の超低濃度の変異も検出可能である一方で、その性能を正しく評価するための標準となる核酸試料が存在しない。具体的には、例えば、希釈法によりアレル比0.05%程度の標準試料を作製する場合に、特に、含有量比が少ない方のアレル(以下、「マイナーアレル」と称する場合がある)は分注時に必ずポアソン分布の影響を受けてしまい、終濃度にばらつきが生じるという問題がある。大容量で標準試料を作製することでこの問題を回避することはできるが、実際のNGSの配列検出検査で使用する核酸試料の体積は多くとも50μL程度であり、正確に超低濃度の標準試料を調製できても、最終的に、NGSの配列検出検査に供するために分注する際に、ポアソン分布の影響をうけるため、回避できない。他の手法として、マイナーアレルをポアソン分布の影響を受けないコピー数以上に用意する手法も考えられるが、この場合、含有量比が多い方のアレル(以下、「メジャーアレル」と称する場合がある)のコピー数が極めて大きくなる。この手法で得られた超高濃度の核酸試料は粘性が高くなり、また、反応液中のマグネシウムイオン濃度が下がり、PCR反応を含む、NGSを用いた検査において重要な諸反応を阻害する。
 現在、市場で購入可能なヒトゲノムDNAを各施設の作業者が手技により希釈調製したものが標準試料として用いられているが、上述したように、低アレル比の陽性標準試料(ポジティブコントロール)としての調製精度が担保できない。そのため、当該標準試料を用いて検査の性能を評価しても、標準試料のばらつきによるものなのか、或いは、検査の性能に不備があるのか判断ができない。これらのことから、検査の性能を正しく評価するための標準試料が求められている。また、液体生検を用いた方法(liquid biopsy)としてより正確且つ精密な情報を得るために、精度が保証された標準試料が求められている。
 特許文献1には、パネル検査等の複数の遺伝子を解析対象とした場合において、より精度の高い遺伝子検査の品質管理手法が開示されている。具体的には、被検体から採取した試料中の遺伝子に対し、第1の種別の遺伝子変異及び前記第1の種別とは異なる第2の種別の遺伝子変異を含む複数の種別の遺伝子変異を検査する遺伝子検査における品質評価方法であって、第1の種別の遺伝子変異を有する第1の標準遺伝子と、第2の種別の遺伝子変異を有する第2の標準遺伝子と、を含む品質管理試料を準備し、品質管理試料に含まれる遺伝子の配列情報を取得し、取得した前記配列情報に基づいて、遺伝子検査の品質を評価するための指標を出力することが開示されている。
 しかしながら、特許文献1に記載の品質管理試料は、異なる変異を有する2種の遺伝子の含有量比が特定されておらず、その調製方法について具体的な検討がなされていないことから、調製精度が担保されておらず、改良の余地がある。
 本発明は、反応空間内の総核酸量が抑えられ、且つ、遺伝子検査装置の性能を正しく評価できる遺伝子検査装置の性能評価用試料を提供する。
 遺伝子検査装置の性能評価用試料は、核酸Aと核酸Bとを含み、前記核酸Aと前記核酸Bは互いに異なる配列からなり、特定の分子数の前記核酸Aを含み、前記核酸Bを前記核酸Aの分子数よりも多く含み、前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定されている。
 本発明の遺伝子検査装置の性能評価用試料によれば、反応空間内の総核酸量が抑えられ、且つ、遺伝子検査装置の性能を正しく評価できる遺伝子検査装置の性能評価用試料を提供することができる。
ポアソン分布に基づくばらつきを持った分子数と変動係数CVとの関係を示すグラフである。 DNA複製済みの細胞の頻度と、蛍光強度との関係の一例を示すグラフである。 電磁バルブ方式の吐出ヘッドの一例を示す模式図である。 ピエゾ方式の吐出ヘッドの一例を示す模式図である。 図4におけるピエゾ方式の吐出ヘッドの変形例の模式図である。 (a)は、圧電素子に印加する電圧の一例を示す模式図である。(b)は、圧電素子に印加する電圧の他の一例を示す模式図である。 (a)~(c)は、液滴の状態の一例を示す模式図である。 ウェル内に順次液滴を着弾させるための分注装置の一例を示す概略図である。 液滴形成装置の一例を示す模式図である。 図9の液滴形成装置の制御手段のハードウェアブロックを例示する図である。 図9の液滴形成装置の制御手段の機能ブロックを例示する図である。 液滴形成装置の動作の一例を示すフローチャートである。 液滴形成装置の変形例を示す模式図である。 液滴形成装置の他の変形例を示す模式図である。 (a)及び(b)は、飛翔する液滴に2個の蛍光粒子が含まれる場合を例示する図である。 粒子同士の重なりが生じない場合の輝度値Liと、実測される輝度値Leとの関係を例示する図である。 液滴形成装置の他の変形例を示す模式図である。 液滴形成装置の他の一例を示す模式図である。 マイクロ流路中を通過してきた細胞をカウントする方法の一例を示す模式図である。 吐出ヘッドのノズル部近傍の画像を取得する方法の一例を示す模式図である。 確率P(>2)と平均細胞数の関係を表すグラフである。 (a)及び(b)は、本発明の遺伝子検査装置の性能評価用デバイスの一例を示す図(斜視図及び断面図)である。 本発明の遺伝子検査装置の性能評価装置のハードウェア構成の一例を示すブロック図である。 本発明の遺伝子検査装置の性能評価装置の機能構成の一例を示す図である。 本発明の遺伝子検査装置の性能評価プログラム処理の一例を示すフローチャートである。 (a)~(e)は、実施例2における、超低アレル頻度である試料(IJ群)3ラン及び手希釈試料(manual群)1ランから得られたリード数を基に計算したPMスコアを示す図である。 実施例2における、超低アレル頻度である試料(IJ群)3ラン及び手希釈試料(manual群)1ランから得られたリード数を基に計算したPMスコアを示す表である。 実施例2における、超低アレル頻度である試料(IJ群)3ラン及び手希釈試料(manual群)1ランから得られたリード数を基に計算したPMスコア(IJ群の再現性評価)を示す表である。 実施例3における、超低アレル頻度である試料(IJ群)1ランから得られたリード数を基に計算したPMスコアと添加コピー数の関係を示すグラフである。 実施例4における、作業者A・機器1の4ラン、作業者B・機器1の2ラン及び作業者C・機器2の3ランから得られたリード数を基に計算したPMスコアを示す図である。 実施例5における、超低アレル頻度である試料1ランから得られたリード数を基に計算したPMスコアとアレル頻度の関係を示すグラフである。 実施例5における、超低アレル頻度である試料1ランから得られたリード数を基に計算したPMスコアとアレル頻度の関係を示すグラフである。 実施例6における、横軸をコピー数で表した場合の回帰直線(左図)及び横軸をコピー数の対数で表した場合の回帰直線(右図)を示すグラフである。
 以下、本発明の一実施形態に係る遺伝子検査装置の性能評価用試料及びその調製方法、並びに、遺伝子検査装置の性能評価用デバイス、性能評価方法、性能評価プログラム及び性能評価装置(以下、それぞれ単に「本実施形態の性能評価用試料」、「本実施形態の調製方法」、「本実施形態のデバイス」、「本実施形態の性能評価方法」、「本実施形態の性能評価プログラム」、「本実施形態の性能評価装置」と称する場合がある)について、必要に応じて特定の実施形態及び図面を参照して説明する。かかる実施形態及び図面は、本発明の理解を容易にするための一例に過ぎず、本発明を限定するものではない。すなわち、以下に説明する部材の形状、寸法、配置等については、本発明の趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれる。
 また、すべての図面において、同様な構成要素には同様の符号を付し、重複する説明は適宜省略する。
 本明細書において別様に定義されない限り、本明細書で用いる全ての技術用語および科学用語は、当業者が通常理解しているものと同じ意味を有する。本明細書中で参照する全ての特許、出願および他の出版物や情報は、その全体を参照により本明細書に援用する。また本明細書において参照された出版物と本明細書の記載に矛盾が生じた場合は、本明細書の記載が優先されるものとする。
<遺伝子検査装置の性能評価用試料>
 本実施形態の性能評価用試料は、核酸Aと核酸Bとを含み、核酸Aと核酸Bは互いに異なる配列からなる。また、本実施形態の試料は、特定の分子数の核酸Aを含み、核酸Bを核酸Aの分子数よりも多く含む。さらに、本実施形態の試料において、核酸Bの分子数に対する核酸Aの分子数の比率A/Bが特定されている。
 本実施形態の試料において、核酸Aの分子数は正確に計測された特定の分子数であることから、その含有量を1分子等の極微量とすることができ、これにより、核酸Bが核酸Aに対して大量に存在しても、核酸Aと核酸Bの総核酸量を抑えることができる。また、後述する実施例に示すように、核酸Aの分子数の正確性により、精度が保証された標準試料として、遺伝子検査装置を正しく評価できる。遺伝子検査装置としては、例えば、定量PCR装置、核酸配列決定装置(シーケンサー)(例えば、次世代シーケンサー)等が挙げられる。
 定量PCR装置としては、例えば、リアルタイムPCR装置等が挙げられる。
 リアルタイムPCR装置とは、PCRによる増幅を経時的(リアルタイム)に測定することで、増幅率に基づいて鋳型核酸を定量する装置である。定量は蛍光色素を用いて行われ、主に、インターカレーション法とハイブリダイゼーション法が存在する。
 インターカレーション法では、二本鎖DNAに特異的に挿入(インターカレート)して蛍光を発するインターカレーターの存在下で鋳型核酸の増幅反応を行う。インターカレーターとしては、SYBR Green I(CAS番号:163795-75-3)又はその誘導体が挙げられる。一方、ハイブリダイゼーション法ではTaqMan(登録商標)プローブを用いる方法が最も一般的であり、対象核酸配列に相補的なオリゴヌクレオチドに蛍光物質及び消光物質を結合させたプローブが用いられる。
 次世代シーケンサーは、近年開発の進められている一群の塩基配列解析装置であり、クローン的に増幅したDNAテンプレートまたは単独DNA分子をフローセル内で大量に並列処理を行うことによって、飛躍的に向上した解析能力を有している。
 本実施形態において使用可能なシークエンシング技術は、同一の領域を重複して読むこと(ディープシーケンシング)により複数のリードを取得するシーケンシング技術であり得る。
 本実施形態において使用可能なシークエンシング技術として具体的には、特に限定されず、イオン半導体シークエンシング、パイロシークエンシング(pyrosequencing)、可逆色素ターミネータを使用するシークエンシング-バイ-シンセシス(sequencing-by-synthesis)、シークエンシング-バイ-ライゲーション(sequencing-by-ligation)、オリゴヌクレオチドのプローブ結紮によるシークエンシング等の、サンガー法以外のシーケンス原理に基づく、1ラン当たりに多数のリードを取得可能なシーケンシング技術が挙げられる。
 遺伝子検査装置の性能としては、各反応空間の塩基配列解析性能、各反応空間の蛍光測定性能等が挙げられる。遺伝子検査装置の性能が高いとは、例えば、各反応空間の塩基配列解析精度、蛍光測定精度にばらつきがないことであってもよい。
 なお、本明細書において、「分子数」は、遺伝子検査装置において、1核酸として読み取られる分子を1分子として計数(カウント)する。
[特定の分子数]
 本明細書において、特定の分子数とは、試料中に含まれている核酸Aの分子数が一定以上の精度で特定されていることを意味する。すなわち、実際に試料中に含まれている核酸Aの分子数が既知であるということができる。つまり、本明細書における特定の分子数は、従来の系列希釈により得られる所定の分子数(算出推定値)よりも、数としての精度、信頼性が高く、特に、1,000以下の低分子数領域であってもポアソン分布によらない制御された値となる。
 制御された値は、概ね、不確かさを表す変動係数CVが平均分子数xに対し、CV<1/√x又はCV≦20%のどちらかの値の大きさの中に収まっていることが好ましい。
 本実施形態の試料では、試料中に含まれる核酸Aの分子数が特定されていることにより、従来よりも正確に遺伝子検査装置の性能評価を行うことが可能となる。
 核酸Aの分子数としては、核酸Bよりも少ない特定の分子数であればよいが、具体的には、核酸Aと核酸Bの総核酸量を抑える観点から、1以上200以下が好ましく、1以上100以下がより好ましく、1以上50以下がさらに好ましい。
 ここで、核酸Aの「分子数」と「コピー数」が対応付けられる場合もある。具体的には、例えば、核酸Aの塩基配列をゲノム上の2箇所に導入したG1期の酵母菌の場合、酵母菌数=1なら核酸Aが導入された同一の染色体数=1、核酸Aの分子数=核酸Aのコピー数=2となる。本明細書においては、核酸Aの特定の分子数を核酸Aの絶対数という場合がある。
 本実施形態の試料を用いて、遺伝子検査装置の性能評価を行なう際に、核酸Aを含む反応空間(以下、「ウェル」と称する場合もある)が複数存在する場合、各ウェル内に含まれる核酸Aのコピー数が同一であるとは、試料を反応空間に充填する際に生じる、核酸Aの数のばらつきが許容範囲内であることを意味する。核酸Aの数のばらつきが許容範囲内にあるか否かについては、以下に示す不確かさの情報に基づいて判断することができる。
 核酸Aの特定の分子数に関する情報としては、例えば、不確かさの情報、後述する担体の情報、核酸Aの情報等が挙げられる。
 「不確かさ」とは、「測定の結果に付随した、合理的に測定量に結びつけられ得る値のばらつきを特徴づけるパラメータ」であるとISO/IEC Guide99:2007[国際計量計測用語-基本及び一般概念並びに関連用語(VIM)]に定義されている。
 ここで、「合理的に測定量に結びつけられ得る値」とは、測定量の真の値の候補を意味する。すなわち、不確かさとは、測定対象の製造に係る操作、機器等に起因する測定結果のばらつきの情報を意味する。不確かさが大きいほど、測定結果として予想されるばらつきが大きくなる。不確かさは、例えば、測定結果から得られる標準偏差であってもよく、真の値が所定の確率以上で含まれている値の幅として表す信頼水準の半分の値であってもよい。
 不確かさは、Guide to the Expression of Uncertainty in Measurement(GUM:ISO/IEC Guide98-3)及びJapan Accreditation Board Note 10試験における測定の不確かさに関するガイドライン等に基づいて算出することができる。
 不確かさを算出する方法としては、例えば、測定値等の統計を用いたタイプA評価法と、校正証明書、製造者の仕様書、公表されている情報等から得られる不確かさの情報を用いたタイプB評価法の2つの方法を適用することができる。
 不確かさは、操作及び測定等の要因から得られる不確かさを全て標準不確かさに変換することにより、同じ信頼水準で表現することができる。標準不確かさとは、測定値から得られた平均値のばらつきを示す。
 不確かさを算出する方法の一例としては、例えば、不確かさを引き起こす要因を抽出し、それぞれの要因の不確かさ(標準偏差)を算出する。続いて、算出したそれぞれの要因の不確かさを平方和法により合成し、合成標準不確かさを算出する。合成標準不確かさの算出において、平方和法を用いるため、不確かさを引き起こす要因の中で不確かさが十分に小さい要因については無視することができる。
 不確かさの情報としては、容器に充填される核酸Aの変動係数を用いてもよい。変動係数とは、例えば、核酸Aを容器に充填する際に生じる各容器に充填される核酸Aの数のばらつきの相対値を意味する。すなわち、変動係数とは、核酸Aに充填した核酸Aの数の充填精度を意味する。変動係数とは、標準偏差σを平均値xで除した値である。ここでは、標準偏差σを平均コピー数(平均充填コピー数)xで除した値を変動係数CVとすると、下記式1の関係式になる。
Figure JPOXMLDOC01-appb-M000001
 一般的に、核酸Aは試料中でポアソン分布のランダムな分布状態を取っている。そのため、段階希釈法、すなわち、ポアソン分布におけるランダムな分布状態では、標準偏差σは、平均コピー数xと下記式2の関係式を満たすとみなすことができる。これより、核酸Aを含む試料を段階希釈法により希釈した場合、標準偏差σと平均コピー数xとから平均コピー数xの変動係数CV(CV値)を、上記式1及び下記式2から導出された下記式3を用いて求めると、表1及び図1に示すようになる。ポアソン分布に基づくばらつきを持った分子数の変動係数のCV値は図1から求めることができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 表1及び図1の結果から、例えば、ウェルに100コピー数の核酸Aを段階希釈法により充填する場合には、最終的にウェルに充填される核酸Aのコピー数はその他の精度を無視しても、少なくとも10%の変動係数(CV値)を持つことがわかる。
 核酸Aの分子数は、変動係数のCV値と、核酸Aの平均特定コピー数xとが、次式、CV<1/√xを満たすことが好ましく、CV<1/2√xを満たすことがより好ましい。
 不確かさの情報としては、核酸Aを含むウェルが複数存在する場合、ウェルに含まれる核酸Aの特定の分子数に基づく、ウェル全体としての不確かさの情報を用いることが好ましい。
 不確かさを引き起こす要因としてはいくつか考えられ、例えば、核酸Aを細胞に導入して当該細胞をウェルに計数及び分注する場合には、細胞内の核酸Aの数(例えば、細胞の細胞周期等)、細胞をウェルに配置する手段(インクジェット装置、インクジェット装置の動作のタイミングを制御する装置等の各部位の動作による結果を含む。例えば、細胞懸濁液を液滴化した時の液滴に含まれる細胞数等)、細胞がウェルの適切な位置に配置された頻度(例えば、ウェル内に配置された細胞数等)、細胞が細胞懸濁液中で破壊されることにより核酸Aが細胞懸濁液中に混入することによるコンタミネーション(夾雑物の混入、以下、「コンタミ」という場合がある。)等が挙げられる。
 核酸Aの情報としては、例えば、核酸Aの分子数に関する情報が挙げられる。核酸Aの分子数に関する情報としては、例えば、ウェルに含まれる核酸Aの分子数の不確かさの情報等が挙げられる。
[核酸A]
 一般に、核酸とは、プリン又はピリミジンから導かれる含窒素塩基、糖及びリン酸が規則的に結合した高分子の有機化合物を意味し、核酸アナログ等も含まれる。核酸としては、特に限定されず、目的に応じて適宜選択することができ、例えば、DNA、RNA、cDNA等が挙げられる。核酸Aは核酸断片であってもよいし、細胞の核中に組み込まれていてもよいが、細胞の核中に組み込まれていることが好ましい。
 核酸Aは、生物から得られる天然物であってもよく、その加工物であってもよく、遺伝子組換え技術を利用して製造されたものであってもよく、化学的に合成された人工合成核酸であってもよい。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。核酸Aを2種以上併用する場合には、いずれの核酸Aも核酸Bよりも少ない既知の分子数含まれる。人工合成核酸とすることにより、不純物が少なくなり、低分子化することが可能となるため、初期反応効率を向上させることができる。
 核酸Aの配列は、真核生物、原核生物、多細胞生物、単細胞生物のいずれの生物に由来する配列であってもよい。真核生物としては、例えば、動物、昆虫、植物、真菌、藻類、原生動物等が挙げられる。動物としては、例えば、魚類、両生類、爬虫類、鳥類、哺乳類等の脊椎動物であることが好ましい。本実施形態の性能評価試料において、核酸Aが脊椎動物のDNAであることで、本実施形態の性能評価試料を魚類環境DNA解析、食肉種判別、ハラル検査等の各種DNA混合試料を測定する際の、精度が保証された標準試料として、活用することができる。
 脊椎動物の中でも、哺乳類であることがより好ましい。哺乳動物としては、例えば、ヒト、サル、マーモセット、イヌ、ウシ、ウマ、ヒツジ、ブタ、ウサギ、マウス、ラット、モルモット、ハムスター等が挙げられるが、ヒトが好ましい。
 中でも、核酸Aとしては、ヒトゲノムDNA又はその断片であることが好ましい。
 人工合成核酸とは、天然に存在するDNA又はRNAと同様の構成成分(塩基、デオキシリボース、リン酸)からなる核酸を人工的に合成した核酸を意味する。人工合成核酸は、例えば、タンパク質をコードする塩基配列を有する核酸であってもよく、任意の塩基配列を有する核酸であってもよい。
 核酸又は核酸断片のアナログとしては、核酸又は核酸断片に非核酸成分を結合させたもの、核酸又は核酸断片を蛍光色素や同位元素等の標識剤で標識したもの(例えば、蛍光色素や放射線同位体で標識されたプライマーやプローブ)、核酸又は核酸断片を構成するヌクレオチドの一部の化学構造を変化させた人工核酸(例えば、PNA、BNA、LNA等)が挙げられる。
 核酸Aの形態は、特に限定されず、目的に応じて適宜選択することができ、例えば、二本鎖核酸、一本鎖核酸、部分的に二本鎖又は一本鎖である核酸等が挙げられ、環状又は直鎖状のプラスミドであってもよい。また、核酸は修飾又は変異を有していてもよい。
 核酸Aは、塩基配列が明らかな特定の塩基配列を有することが好ましい。特定の塩基配列は、特に限定されず、目的に応じて適宜選択することができ、例えば、遺伝子疾患検査に用いられる塩基配列、自然界には存在しない非天然の塩基配列、動物細胞由来の塩基配列、植物細胞由来の塩基配列、真菌細胞由来の塩基配列、細菌由来の塩基配列、ウイルス由来の塩基配列等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。
 核酸Aとして遺伝子疾患検査に用いられる塩基配列を用いる場合、遺伝子疾患特有の塩基配列を含んでいれば、特に限定されず、目的に応じて適宜選択することができる。
 核酸Aは、使用する細胞由来の核酸であってもよく、遺伝子導入により導入された核酸であってもよい。核酸Aの種類は、1種類であってもよいし、2種類以上であってもよい。核酸Aを2種以上含む場合には、いずれの核酸Aも核酸Bよりも少ない既知の分子数含まれる。核酸Aとして、細胞の核中に遺伝子導入により組み込まれた核酸を使用する場合には、1細胞に特定の分子数(例えば、1分子(1コピー))の核酸Aが導入されていることを確認することが好ましい。特定の分子数の核酸Aが導入されていることの確認方法は、特に限定されず、目的に応じて適宜選択することができ、例えば、シーケンス、PCR法、サザンブロット法等が挙げられる。
 細胞の核中に核酸Aを導入する場合、遺伝子導入の方法としては、特定の核酸配列が目的の場所に目的のコピー数導入できれば特に限定されず、例えば、相同組換え、CRISPR/Cas9、CRISPR/Cpf1、TALEN、Zinc finger nuclease、Flip-in、Jump-in等が挙げられる。あるいは、プラスミド、人工染色体等の形態で細胞の核中に核酸Aを導入してもよい。例えば、細胞として酵母菌(酵母細胞)を用いる場合、これらの中でも効率の高さ及び制御のしやすさの点から、相同組換えが好ましい。
 核酸Aは、微小領域や担体によって、試料中において微小区画化されていてもよい。このとき、微小領域や担体により微小区画化された核酸Aは1分子であってもよく、2分子以上であってもよい。また、2分子以上の核酸Aが微小区画された場合に、複数存在する核酸Aは同じ配列からなるものであってもよく、異なる配列からなるものであってもよい。核酸Aが担体によって、試料中において微小区画化された場合に、核酸Aは担体に直接またはリンカー等を介して間接的に結合して存在する。
 微小領域としては、例えば、細胞、リポソーム、マイクロカプセル、ウイルス、ドロップレット、エマルジョン等の形態が挙げられる。担体としては、例えば、金属粒子、磁性粒子、セラミックス粒子、高分子粒子、タンパク質粒子等の形態が挙げられる。
(細胞)
 細胞は、生物体を形成する構造的及び機能的単位であり、核中の特定配列を核酸Aとして用いることができる。核酸Aは、核中に本来存在する塩基配列であってもよく、外部から導入されたものであってもよい。
 細胞としては、特に限定されず、目的に応じて適宜選択することができ、例えば、真核細胞、原核細胞、多細胞生物細胞、単細胞生物細胞等が挙げられる。細胞は、1種を単独で使用してもよく、2種以上を併用してもよい。
 真核細胞としては、特に限定されず、目的応じて適宜選択することができ、例えば、動物細胞、昆虫細胞、植物細胞、真菌細胞、藻類、原生動物等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。中でも、動物細胞又は真菌細胞が好ましい。
 動物細胞の由来となる動物としては、上記「核酸A」において例示されたものと同様のものが挙げられる。中でも、哺乳動物が好ましい。
 動物細胞は接着性細胞であってもよく、浮遊性細胞であってもよい。接着性細胞は、組織や器官から直接採取した初代細胞であってもよく、組織や器官から直接採取した初代細胞を何代か継代させたものであってもよく、分化した細胞であってもよく、未分化の細胞であってもよい。
 分化した細胞は、特に限定されず、目的に応じて適宜選択することができ、例えば、肝臓の実質細胞である肝細胞、星細胞、クッパー細胞、血管内皮細胞、類道内皮細胞、角膜内皮細胞等の内皮細胞;繊維芽細胞、骨芽細胞、砕骨細胞、歯根膜由来細胞、表皮角化細胞等の表皮細胞;気管上皮細胞、消化管上皮細胞、子宮頸部上皮細胞、角膜上皮細胞等の上皮細胞;乳腺細胞、ペリサイト;平滑筋細胞、心筋細胞等の筋細胞、腎細胞、膵ランゲルハンス島細胞;末梢神経細胞、視神経細胞等の神経細胞;軟骨細胞、骨細胞等が挙げられる。
 未分化の細胞は、特に限定されず、目的に応じて適宜選択することができ、例えば、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)等の全能性幹細胞;間葉系幹細胞等の多能性幹細胞;血管内皮前駆細胞等の単能性幹細胞等が挙げられる。
 真菌細胞は、特に限定されず、目的に応じて適宜選択することができ、例えば、カビ、酵母菌等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。中でも、細胞周期を調節することができ、1倍体を使用することができる点から、酵母菌が好ましい。細胞周期とは、細胞が増えるとき、細胞分裂が生じ、細胞分裂で生じた細胞(娘細胞)が再び細胞分裂を行う細胞(母細胞)となって新しい娘細胞を生み出す過程を意味する。
 酵母菌は、特に限定されず、目的に応じて適宜選択することができるが、例えば、G0/G1期に同調して同調培養され、G1期で固定されたものが好ましい。また、酵母菌としては、例えば、細胞周期をG1期に制御するフェロモン(性ホルモン)の感受性が増加したBar1遺伝子欠損酵母が好ましい。酵母菌がBar1遺伝子欠損酵母であると、細胞周期が制御できていない酵母菌の存在比率を低くすることができるため、試料に含まれる細胞中の核酸Aの分子数の増加等を防ぐことができる。
 原核細胞は、特に限定されず、目的に応じて適宜選択することができ、例えば、大腸菌等の真正細菌、古細菌等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。
 細胞は、死細胞であることが好ましい。死細胞であると、分取後に細胞分裂が起こり、細胞内核酸量が変化することを防ぐことができる。細胞は、光を受光したときに発光可能であることが好ましい。光を受光したときに発光可能な細胞であると、細胞の数を高精度に制御してウェル内に着弾させることができる。
 細胞は、光を受光した時に発光可能であることが好ましい。受光とは、光を受けることを意味する。細胞の発光は、光学センサで検出する。光学センサとは、人間の目で見ることができる可視光線と、それより波長の長い近赤外線や短波長赤外線、熱赤外線領域までの光のいずれかの光をレンズで集め、対象物である細胞の形状等を画像データとして取得する受動型センサを意味する。
 光を受光したときに発光可能な細胞は、特に限定されず、目的に応じて適宜選択することができ、例えば、蛍光色素で染色された細胞、蛍光タンパク質を発現した細胞、蛍光標識抗体により標識された細胞等が挙げられる。細胞における蛍光色素による染色部位、蛍光タンパク質の発現部位、蛍光標識抗体による標識部位としては、特に制限はなく、細胞全体、細胞核、細胞膜等が挙げられる。
 蛍光色素としては、例えば、フルオレセイン類、アゾ類、ローダミン類、クマリン類、ピレン類、シアニン類等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。中でも、フルオレセイン類、アゾ類、ローダミン類、又はシアニン類が好ましく、エオシン、エバンスブルー、トリパンブルー、ローダミン6G、ローダミンB、ローダミン123、又はCy3がより好ましい。
 蛍光色素としては、市販品を用いることができ、市販品としては、例えば、商品名:EosinY(和光純薬工業株式会社製)、商品名:エバンスブルー(和光純薬工業株式会社製)、商品名:トリパンブルー(和光純薬工業株式会社製)、商品名:ローダミン6G(和光純薬工業株式会社製)、商品名:ローダミンB(和光純薬工業株式会社製)、商品名:ローダミン123(和光純薬工業株式会社製)等が挙げられる。
 蛍光タンパク質としては、例えば、Sirius、EBFP、ECFP、mTurquoise、TagCFP、AmCyan、mTFP1、MidoriishiCyan、CFP、TurboGFP、AcGFP、TagGFP、Azami-Green、ZsGreen、EmGFP、EGFP、GFP2、HyPer、TagYFP、EYFP、Venus、YFP、PhiYFP、PhiYFP-m、TurboYFP、ZsYellow、mBanana、KusabiraOrange、mOrange、TurboRFP、DsRed-Express、DsRed2、TagRFP、DsRed-Monomer、AsRed2、mStrawberry、TurboFP602、mRFP1、JRed、KillerRed、mCherry、mPlum、PS-CFP、Dendra2、Kaede、EosFP、KikumeGR等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 蛍光標識抗体は、対象細胞に結合することができ、蛍光標識されていれば特に限定されず、目的に応じて適宜選択することができ、例えば、FITC標識抗CD4抗体、PE標識抗CD8抗体等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 細胞の体積平均粒径は、遊離状態において、30μm以下が好ましく、10μm以下がより好ましく、7μm以下が特に好ましい。体積平均粒径が、30μm以下であれば、インクジェット法やセルソーター等の液滴吐出手段に好適に用いることができる。
 細胞の体積平均粒径は、例えば、次のような測定方法で測定することができる。細胞として酵母を用いた場合、作製した染色済み酵母分散液から10μL取り出してPMMA製プラスチックスライドに載せ、自動セルカウンター(商品名:Countess Automated Cell Counter、invitrogen社製)を用いること等により体積平均粒径を測定することができる。なお、細胞数も同様の測定方法により求めることができる。
 細胞懸濁液における細胞の密度は、特に限定されず、目的に応じて適宜選択することができるが、5×10個/mL以上5×10個/mL以下が好ましく、5×10個/mL以上5×10個/mL以下がより好ましい。細胞密度が上記の範囲であると、吐出した液滴中に細胞を確実に含むことができる。細胞密度は、体積平均粒径の測定方法と同様にして、自動セルカウンター(商品名:Countess Automated Cell Counter、invitrogen社製)等を用いて測定することができる。
(リポソーム)
 リポソームとは、脂質分子を含む脂質二重層から形成される脂質小胞体であり、具体的には、脂質分子の疎水性基と親水性基の極性に基づいて生じる脂質二重層により外界から隔てられた空間を有する閉鎖された脂質を含む小胞体を意味する。
(マイクロカプセル)
 リポソームは、脂質を用いた脂質二重膜で形成される閉鎖小胞体であり、その閉鎖小胞の空間内に水相(内水相)を有する。内水相には、水等が含まれる。リポソームはシングルラメラ(単層ラメラ、ユニラメラ、二重層膜が一重)であっても、多層ラメラ(マルチラメラ、タマネギ状の構造をした多数の二重層膜で、個々の層は水様の層で仕切られている)であってもよい。
 リポソームは、核酸Aを内包することができることが好ましく、その形態は特に限定されない。「内包」とは、リポソームに対して核酸が内水相又は膜自体に含まれる形態をとることを意味する。例えば、膜で形成された閉鎖空間内に核酸Aを封入する形態、膜自体に核酸Aを内包する形態等が挙げられ、これらの組合せでもよい。
 リポソームの大きさ(平均粒子径)は、核酸Aを内包することができれば特に限定されない。また、形態は球状又はそれに近い形態が好ましい。
 リポソームの脂質二重層を構成する成分(膜成分)は、脂質から選ばれる。脂質としては、水溶性有機溶媒及びエステル系有機溶媒の混合溶媒に溶解するものであれば任意に使用することができる。具体的な脂質としては、リン脂質、リン脂質以外の脂質、コレステロール類、それらの誘導体等が挙げられる。これらの成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
(マイクロカプセル)
 マイクロカプセルとは、壁材と中空構造とを有する微小な粒体を意味し、中空構造に核酸Aを内包することができる。マイクロカプセルは、特に限定されず、適宜目的に応じて、壁材、大きさ等を選択することができる。
 マイクロカプセルの壁材としては、例えば、ポリウレタン樹脂、ポリ尿素、ポリ尿素-ポリウレタン樹脂、尿素-ホルムアルデヒド樹脂、メラミン-ホルムアルデヒド樹脂、ポリアミド、ポリエステル、ポリスルホンアミド、ポリカーボネート、ポリスルフィネート、エポキシリ、アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、ゼラチン等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 マイクロカプセルの大きさは、核酸Aを内包することができれば特に限定されず、目的に応じて適宜選択することができる。マイクロカプセルの製造方法は、特に限定されず、目的に応じて適宜選択することができ、例えば、in-situ法、界面重合法、コアセルベーション法等が挙げられる。
[核酸B]
 核酸Bとしては、上記核酸Aにおいて例示されたものと同様のものが挙げられる。中でも、核酸Bとしては、ヒトゲノムDNA又はその断片であることが好ましい。
 本実施形態の試料はこのような核酸Bを、1種単独で含んでもよく、2種以上組み合わせて含んでもよい。核酸Bを2種以上含む場合には、いずれの核酸Bも核酸Aよりも多く含まれる。
 核酸Bの分子数としては、核酸Aの分子数よりも多い分子数であればよいが、核酸Aの分子数よりも過剰量とする観点から、200以上が好ましく、1000以上がより好ましく、5000以上がさらに好ましく、10000以上が特に好ましい。一方、核酸Bの上限としては、核酸Aと核酸Bとの総核酸量が遺伝子検査装置における各種処理(PCR反応を含む)を妨げない量とする観点から、例えば、10以下程度とすることができる。
 核酸Bを2種以上含む場合には、核酸Bそれぞれの分子数が上記下限値以上であって、核酸Bの合計分子数が上記上限値以下となることが好ましい。
 核酸Bの分子数に対する核酸Aの分子数の比率A/Bは、特定された既知の値であればよく、特別に限定されないが、核酸Bの分子数が核酸Aの分子数よりも過剰量となるような比率であることが好ましく、10%以下が好ましく、1%以下がより好ましく、1%未満がさらに好ましい。
 また、上記比率A/Bは、特定の遺伝子疾患の発生頻度と対応していることが好ましい。例えば、特定の遺伝子疾患がホモ変異型であり、その発生頻度が1%であった場合に、核酸Aは変異を有する配列既知の遺伝子であり、核酸Bは変異を有しない配列既知の遺伝子であり、上記比率A/Bを1/99に特定することができる。また、特定の遺伝子疾患がヘテロ変異型であり、その発生頻度が1%であった場合に、核酸Aは変異を有する配列既知の遺伝子であり、核酸Bは変異を有しない配列既知の遺伝子であり、上記比率A/Bを1/199に特定することができる。また、後述する実施例に示すように、例えば、核酸Aが変異を有するEGFR遺伝子であり、核酸Bが変異を有しないEGFR遺伝子である場合に、EGFR遺伝子変異の発生頻度の値に対応するように、比率A/Bを特定することができる。このとき、核酸Aとしては、EGFR遺伝子のエキソン18、19、20及び21をタンデムに結んだ配列を含む塩基配列からなることが好ましい。エキソン18の5’末端、各エキソン間、及びエキソン21の3’末端には、例えば、後述する実施例に示すように、制限酵素サイト等の配列や、核酸Aの増幅に用いられるプライマーに相同な配列が更に付加されていてもよい。このような核酸Aとして具体的には、例えば、配列番号1で表される塩基配列からなる核酸等が挙げられる。
 一般に、「遺伝子疾患」とは、単一遺伝子病、多因子遺伝疾患、染色体異常等がある。中でも、変異により発症する疾患が好ましい。ここでいう変異としては、遺伝子の核酸の置換、欠失、若しくは挿入、遺伝子の融合、又はコピー数多型が含まれる。「置換」は、遺伝子の配列のうち少なくとも1塩基が異なる塩基である状態を意味する。「置換」は、点突然変異及び1塩基多型を含む。「欠失」及び「挿入」は、遺伝子の配列のうち少なくとも1塩基が挿入され、及び/又は欠失する状態を意味する。「遺伝子の融合」は、染色体の転座等により、ある遺伝子の5’側の配列と、別の遺伝子の3’末端側の配列とが結合する状態を意味する。「コピー数多型」とは、1細胞あたりのゲノム上のコピー数が、個体間で異なることをいう。具体的には、VNTR(Variable Nucleotide of tandem Repeat、反復配列多型)、STRP(Short Tandem Repeat Polymorphism、マイクロサテライト多型)、遺伝子増幅等が挙げられる。
 本実施形態の試料に含まれる総核酸量、すなわち、核酸A及び核酸Bの合計分子数は、遺伝子検査装置における各種処理(PCR反応を含む)を妨げない量であればよく、例えば、10以下程度とすることができる。また、本実施形態の試料をLiquid biopsyにおける標準試料として用いる場合には、当該検査に用いられる試料中の核酸量(ヒトゲノム30~90ng程度)と同程度であることが望ましいため、核酸A及び核酸Bの合計分子数は、30000以下であることが好ましく、25000以下であることがより好ましい。
 一方、総核酸量の下限については、特に限定されないが、例えば、3以上とすることができ、200超とすることができる。
[その他成分]
 本実施形態の性能評価用試料は、その他成分としては、溶媒を含むことができる。溶媒としては、水、エタノール、ジメチルスルホキシド(DMSO)、アセトン、N,N-ジメチルホルムアミド(DMF)等の水溶性の溶媒であることが好ましい。
 本実施形態の試料は、バイオ関連産業、ライフサイエンス産業及び医療産業等において幅広く使用することができ、例えば、遺伝子検査装置の性能評価、精度管理等に好適に用いることができる。また、遺伝子疾患検査において、その検査の精度を評価するために好適に用いることができる。
<遺伝子検査装置の性能評価用試料の調製方法>
 本実施形態の調製方法について、以下に説明する。
 本実施形態の調製方法は、前記核酸Aを細胞の核中の核酸に組み込む組み込み工程と、容器中に前記核酸Aが核中の核酸に組み込まれた細胞を1つ含む液滴を作製し、当該液滴の個数を制御することにより特定の個数の細胞を充填する核酸A充填工程と、前記容器中に前記核酸Bを、前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定の比率となるように、充填する核酸B充填工程と、を含む。本実施形態の調製方法は、細胞懸濁液精製工程及び細胞数計数工程を更に含むことが好ましく、細胞懸濁液生成工程、核酸A充填工程及び細胞数計数工程において推定した核酸Aの分子数の確からしさを算出する工程、出力工程及び記録工程を更に含むことがより好ましく、更に必要に応じてその他の工程を含む。
[組み込み工程]
 組み込み工程では、前記核酸Aを細胞の核中の核酸に組み込む。
 細胞の核中の核酸に組み込まれる核酸Aの分子数は、特定の分子数であれば、特に限定はないが、導入効率の観点から、1分子であることが好ましい。
 核酸Aの核中の核酸への組み込み方法としては、上記「核酸A」において「遺伝子導入の方法」として例示された方法と同様の方法が挙げられる。
[核酸A充填工程]
 核酸A充填工程では、核中の核酸に核酸Aが組み込まれた細胞を1つ含む液滴を作製し、当該液滴の個数を制御することにより特定の個数の細胞を充填する。なお、液滴とは、表面張力によりまとまった液体のかたまりを意味する。
 液滴の作製及び充填は、例えば、核中の核酸に核酸Aが組み込まれた細胞を含む細胞懸濁液を液滴として吐出することにより容器内に液滴を順次着弾させることで達成できる。吐出とは、細胞懸濁液を液滴として飛翔させることを意味する。順次とは、次々に順序どおりにすることを意味する。着弾とは、液滴をウェルに到達させることを意味する。
 容器としては、1穴マイクロチューブ、8連チューブ、96穴、384穴のウェルプレート等を用いることが好ましいが、ウェルが複数である場合には、これらのプレートにおけるウェルには同じ個数の細胞を分注することも可能であるし、異なる水準の個数の細胞を入れることも可能である。また、細胞が含まれないウェルが存在していてもよい。
 吐出手段としては、細胞懸濁液を液滴として吐出する手段(以下、「吐出ヘッド」とも称することがある)を好適に用いることができる。
 細胞懸濁液を液滴として吐出する方式としては、例えば、インクジェット法におけるオンデマンド方式、コンティニュアス方式等が挙げられる。これらの中でもコンティニュアス方式の場合、安定的な吐出状態に至るまでの空吐出、液滴量の調整、ウェル間を移動する際にも連続的に液滴形成を行い続ける等の理由から、用いる細胞懸濁液のデッドボリュームが多くなる傾向にある。本実施形態では細胞数を調整する観点からデッドボリュームによる影響を低減させることが好ましく、そのため、上記2つの方式では、オンデマンド方式の方がより好適である。
 オンデマンド方式としては、例えば、液体に圧力を加えることによって液体を吐出する圧力印加方式、加熱による膜沸騰によって液体を吐出するサーマル方式、静電引力によって液滴を引っ張ることによって液滴を形成する静電方式等の既知の複数の方式等が挙げられる。これらの中でも、以下の理由から、圧力印加方式が好ましい。
 静電方式は、細胞懸濁液を保持して液滴を形成する吐出部に対向して電極を設置する必要がある。本実施形態の製造方法では、液滴を受けるためのプレートが対向して配置されており、プレート構成の自由度を上げるため電極の配置は無いことが好ましい。サーマル方式は、局所的な加熱が発生するため生体材料である細胞への影響や、ヒーター部への焦げ付き(コゲーション)が懸念される。熱による影響は、含有物やプレートの用途に依存するため、一概に除外する必要はないが、圧力印加方式は、サーマル方式よりヒーター部への焦げ付きの懸念がないという点から好ましい。
 圧力印加方式としては、ピエゾ素子を用いて液体に圧力を加える方式、電磁バルブ等のバルブによって圧力を加える方式等が挙げられる。細胞懸濁液の液滴吐出に使用可能な液滴生成デバイスの構成例を図3~5に示す。
 図3は、電磁バルブ方式の吐出ヘッドの一例を示す模式図である。電磁バルブ方式の吐出ヘッドは、電動機13a、電磁弁112、液室11a、細胞懸濁液300a及びノズル111aを有する。電磁バルブ方式の吐出ヘッドとしては、例えば、TechElan社のディスペンサ等を好適に用いることができる。
 図4は、ピエゾ方式の吐出ヘッドの一例を示す模式図である。ピエゾ方式の吐出ヘッドは、圧電素子13b、液室11b、細胞懸濁液300b及びノズル111bを有する。ピエゾ方式の吐出ヘッドとしては、Cytena社のシングルセルプリンター等を好適に用いることができる。
 これらの吐出ヘッドのいずれも用いることが可能であるが、電磁バルブによる圧力印加方式では高速に繰り返し液滴を形成することができないため、プレートの生成のスループットを上げるためにはピエゾ方式を用いることが好ましい。また、一般的な圧電素子13bを用いたピエゾ方式の吐出ヘッドでは、沈降によって細胞濃度のムラが発生すること
や、ノズル詰まりが生じることが問題として生じることがある。
 このため、より好ましい構成として図5に示した構成等が挙げられる。図5は、図4における圧電素子を用いたピエゾ方式の吐出ヘッドの変形例の模式図である。図5の吐出ヘッドは、圧電素子13c、液室11c、細胞懸濁液300c及びノズル111cを有する。
 図5の吐出ヘッドでは、図示していない制御装置から圧電素子13cに対して電圧印加することにより、紙面横方向に圧縮応力が加わりメンブレン12cを紙面上下方向に変形させることができる。
 オンデマンド方式以外の方式としては、例えば、連続的に液滴を形成させるコンティニュアス方式等が挙げられる。コンティニュアス方式では、液滴を加圧してノズルから押し出す際に圧電素子やヒーターによって定期的なゆらぎを与え、それによって微小な液滴を連続的に作り出すことができる。更に、飛翔中の液滴の吐出方向を、電圧を印加することによって制御することにより、ウェルに着弾させるか、回収部に回収するかを選ぶことも可能である。このような方式は、セルソーター又はフローサイトメーターで用いられており、例えば、ソニー株式会社製の装置名:セルソーターSH800Zを用いることができる。
 図6(a)は、圧電素子に印加する電圧の一例を示す模式図である。また、図6(b)は、圧電素子に印加する電圧の他の一例を示す模式図である。図6(a)は、液滴を形成するための駆動電圧を示す。電圧(V、V、V)の強弱により、液滴を形成することができる。図6(b)は、液滴の吐出を行わずに細胞懸濁液を撹拌するための電圧を示している。
 液滴を吐出しない期間中に、液滴を吐出するほどには強くない複数のパルスを入力することによって、液質内の細胞懸濁液を撹拌することが可能であり、細胞沈降による濃度分布の発生を抑制することができる。
 本実施形態において使用することができる吐出ヘッドの液滴形成動作に関して、以下に説明する。吐出ヘッドは、圧電素子に形成された上下電極に、パルス状の電圧を印加することにより液滴を吐出することができる。図7(a)~(c)は、それぞれのタイミングにおける液滴の状態を示す模式図である。
 まず、図7(a)に示すように、圧電素子13cに電圧を印加することにより、メンブレン12cが急激に変形し、それにより、液室11c内に保持された細胞懸濁液とメンブレン12cとの間に高い圧力が発生し、この圧力によってノズル部から液滴が外に押し出される。
 次に、図7(b)に示すように、圧力が上方に緩和するまでの時間、ノズル部からの液押し出しが続き液滴が成長する。最後に、図7(c)に示すように、メンブレン12cが元の状態に戻る際に細胞懸濁液とメンブレン12cとの界面近傍の液圧力が低下し、液滴310’が形成される。
 本実施形態の調製方法では、ウェルが形成されたプレートからなる容器を移動可能なステージ上に固定し、ステージの駆動と吐出ヘッドとからの液滴形成を組み合わせることにより、ウェルに順次液滴を着弾させてもよい。ここで、ステージの移動としてプレートを移動させる方法を示したが、当然のことながら吐出ヘッドを移動させてもよい。
 プレートとしては、特に制限はなく、バイオ分野において一般的に用いられるウェルが形成されたものを用いることができる。プレートにおけるウェルの数は、特に制限はなく、目的に応じて適宜選択することができ、単数であってもよく、複数であってもよい。プレートとして具体的には、1穴マイクロチューブ、8連チューブ、96穴、384穴のウェルプレート等を用いることが好ましいが、ウェルが複数である場合には、これらのプレートにおけるウェルには同じ個数の細胞を分注することも可能であり、異なる水準の個数の細胞を入れることも可能である。また、細胞が含まれないウェルが存在していてもよい。
 図8は、プレートのウェル内に順次液滴を着弾させるための分注装置400の一例を示す概略図である。図8に示すように、液滴を着弾させるための分注装置400は、液滴形成装置401と、プレート700と、ステージ800と、制御装置900とを有している。
 分注装置400において、プレート700は、移動可能に構成されたステージ800上に配置されている。プレート700には液滴形成装置401の吐出ヘッドから吐出された液滴310が着滴する複数のウェル710(凹部)が形成されている。制御装置900は、ステージ800を移動させ、液滴形成装置401の吐出ヘッドとそれぞれのウェル710との相対的な位置関係を制御する。これにより、液滴形成装置401の吐出ヘッドからそれぞれのウェル710中に順次、蛍光染色細胞350を含む液滴310を吐出することができる。
 制御装置900は、例えば、CPU、ROM、RAM、メインメモリ等を含む構成とすることができる。この場合、制御装置900の各種機能は、ROM等に記録されたプログラムがメインメモリに読み出されてCPUにより実行されることによって実現できる。ただし、制御装置900の一部又は全部は、ハードウェアのみにより実現されてもよい。また、制御装置900は、物理的に複数の装置等により構成されてもよい。
 吐出する液滴としては、ウェル内に細胞懸濁液を着弾させる際に、複数の水準を得るように液滴をウェル内に着弾させることが好ましい。複数の水準とは、標準となる複数の基準を意味する。複数の水準としては、例えば、ウェル内に核酸Aを有する複数の細胞が所定の濃度勾配が挙げられる。複数の水準は、センサによって計数される値を用いて制御することができる。
[核酸B充填工程]
 核酸B充填工程では、前記容器中に前記核酸Bを、前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定の比率となるように、充填する。
 核酸Bは溶剤に分散又は溶解した形態で充填することができる。充填方法としては、特に限定されず、例えば、マイクロピペット等を用いて手技で、或いは、オートサンプラー等を用いて自動で充填することができる。
 核酸Bの分子数は、核酸Aの分子数に対して、過剰量であることが好ましいことから、比率A/Bが特定の既知の比率となる数値範囲であれば多少の測定誤差は許容されるものであり、核酸Aの分子数のように、厳密且つ正確に分子数を特定しなくてもよい。核酸Bの分子数の測定方法として具体的には、特に限定されず、例えば、吸光分析法、リアルタイムPCR法、デジタルPCR法、核酸塩基を分析対象とした高速液体クロマトグラフィー同位体希釈質量分析法(LC-IDMS)、核酸構造中のリンを指標とした誘導結合プラズマ発光分析法(ICP-OES)、誘導結合プラズマ質量分析法(ICP-MS)等が挙げられる。中でも、吸光分析法、リアルタイムPCR法、又はデジタルPCR法が好ましい。
 吸光分析法では、例えば、核酸Bを含む溶液について260nmにおける吸光度(OD260)を測定し、核酸Bの濃度を定量した後、定量された核酸Bの質量を分子量で除することで、分子数を算出することができる。
 リアルタイムPCR法は、定量PCR(Q-PCR)の一種であり、PCRによる増幅を経時的(リアルタイム)に測定することで、増幅率に基づいて核酸Bを定量するものである。定量は蛍光色素を用いて行われ、主に、インターカレーション法とハイブリダイゼーション法が存在する。
 インターカレーション法では、二本鎖DNAに特異的に挿入(インターカレート)して蛍光を発するインターカレーターの存在下で核酸Aの増幅反応を行う。インターカレーターとしては、SYBR Green I(CAS番号:163795-75-3)又はその誘導体が挙げられる。一方、ハイブリダイゼーション法ではTaqMan(登録商標)プローブを用いる方法が最も一般的であり、対象核酸配列に相補的なオリゴヌクレオチドに蛍光物質及び消光物質を結合させたプローブが用いられる。
 リアルタイムPCR法を用いて核酸Bの分子数を算出する場合には、後述する実施例に示すように、核酸B及び分子数が互いに異なる複数の核酸A(例えば、10分子(コピー)、50分子(コピー)、100分子(コピー)の3点等)をリアルタイムPCR法で測定し、分子数が互いに異なる複数の核酸Aにより作成された検量線を用いて、核酸Bの分子数を決定することができる。
[細胞懸濁液生成工程]
 細胞懸濁液生成工程は、核中に核酸Aを有する複数の細胞及び溶剤を含む細胞懸濁液を生成する工程である。溶剤とは、細胞を分散させるために用いる液体を意味する。細胞懸濁液における懸濁とは、細胞が溶剤中に分散して存在する状態を意味する。生成とは、作り出すことを意味する。
(細胞懸濁液)
 細胞懸濁液は、核中に核酸Aを有する複数の細胞及び溶剤を含み、添加剤を含むことが好ましく、更に必要に応じてその他の成分を含む。核中に核酸Aを有する複数の細胞については、上記「核酸A」の「細胞」において説明したとおりである。
(溶剤)
 溶剤は、特に限定されず、目的に応じて適宜選択することができ、例えば、水、培養液、分離液、希釈液、緩衝液、有機物溶解液、有機溶剤、高分子ゲル溶液、コロイド分散液、電解質水溶液、無機塩水溶液、金属水溶液又はこれらの混合液体等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。中でも、水、又は緩衝液が好ましく、水、リン酸緩衝生理食塩水(PBS)、又はTris-EDTA緩衝液(TE)がより好ましい。
(添加剤)
 添加剤は、特に限定されず、目的に応じて適宜選択することができ、例えば、界面活性剤、核酸、樹脂等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。
 界面活性剤は、細胞同士の凝集を防止し、連続吐出安定性を向上することができる。界面活性剤は、特に限定されず、目的に応じて適宜選択することができ、例えば、イオン性界面活性剤、非イオン性界面活性剤等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。これらの中でも、添加量にもよるが、タンパク質を変性及び失活させない点から、非イオン性界面活性剤が好ましい。
 イオン性界面活性剤としては、例えば、脂肪酸ナトリウム、脂肪酸カリウム、アルファスルホ脂肪酸エステルナトリウム、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキル硫酸エステルナトリウム、アルキルエーテル硫酸エステルナトリウム、アルファオレフィンスルホン酸ナトリウム等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。中でも、脂肪酸ナトリウムが好ましく、ドデシル硫酸ナトリウム(SDS)がより好ましい。
 非イオン性界面活性剤としては、例えば、アルキルグリコシド、アルキルポリオキシエチレンエーテル(Brijシリーズ等)、オクチルフェノールエトキシレート(Triton Xシリーズ、Igepal CAシリーズ、Nonidet Pシリーズ、Nikkol OPシリーズ等)、ポリソルベート類(Tween20等のTweenシリーズ等)、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、アルキルマルトシド、ショ糖脂肪酸エステル、グリコシド脂肪酸エステル、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、脂肪酸モノグリセリド等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。中でも、ポリソルベート類が好ましい。
 界面活性剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、細胞懸濁液全量に対して、0.001質量%以上30質量%以下が好ましい。含有量が、0.001質量%以上であると、界面活性剤の添加による効果を得ることができ、30質量%以下であると、細胞の凝集を抑制することができるため、細胞懸濁液中の核酸のコピー数を厳密に制御することができる。
 核酸としては、検査対象の核酸(核酸A及び核酸B)の検出に影響しないものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ColE1 DNA等が挙げられる。核酸を添加すると、核酸Aが、ウェルの壁面等に付着することを防ぐことができる。
 樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレンイミド等が挙げられる。
(その他の成分)
 その他の成分としては、特に限定されず、目的に応じて適宜選択することができ、例えば、架橋剤、pH調整剤、防腐剤、酸化防止剤、浸透圧調整剤、湿潤剤、分散剤等が挙げられる。
 細胞を分散する方法は、特に限定されず、目的に応じて適宜選択することができ、例えば、ビーズミル等のメディア方式、超音波ホモジナイザー等の超音波方式、フレンチプレス等の圧力差を利用する方式等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。これらの中でも、細胞へのダメージが少ないことから超音波方式が好ましい。メディア方式では、解砕能力が強いため、細胞膜や細胞壁を破壊することや、メディアがコンタミとして混入することがある。
 細胞のスクリーニング方法は、特に限定されず、目的に応じて適宜選択することができ、例えば、湿式分級、セルソーター、フィルタによるスクリーニング等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。中でも、細胞へのダメージが少ないことから、セルソーター、フィルタによるスクリーニングが好ましい。
 細胞は、細胞の細胞周期を測定することにより、細胞懸濁液に含まれる細胞数から核酸Aの分子数を推定することが好ましい。細胞周期を測定するとは、細胞分裂による細胞数を数値化することを意味する。核酸Aの分子数を推定するとは、細胞数から、核酸Aのコピー数を求めることを意味する。
 計数対象が細胞数ではなく核酸Aが何個入っているかであってもよい。通常は、細胞1個につき核酸Aが1コピー導入されたものを選択するか、又は、遺伝子組換えにより核酸Aを細胞に導入するため、核酸Aの数は細胞数と等しいと考えてよい。ただし、細胞は特定の周期で細胞分裂を起こすため、細胞内で核酸の複製が行われる。細胞周期は細胞の種類によって異なるが、細胞懸濁液から所定量の溶液を抜き取り複数細胞の周期を測定することによって、細胞1個中に含まれる核酸Aの数に対する期待値及びその確からしさを算出することが可能である。これは、例えば、核染色した細胞をフローサイトメーターによって観測することによって可能である。
 確からしさとは、いくつかの事象の生じる可能性がある場合に、特定の1つの事象が起こる可能性の程度を事前に予測して、その事象の起こる確率を意味する。算出とは、計算して求める数値を出すことを意味する。
 図2は、DNA複製済みの細胞の頻度と、蛍光強度との関係の一例を示すグラフである。図2に示すように、ヒストグラム上でDNAの複製有無により2つのピークが現れるため、DNA複製済みの細胞がどの程度の割合で存在するかを算出することが可能である。この算出結果から1細胞中に含まれる平均的な核酸Aの分子数を算出することが可能であり、前述の細胞数計数結果に乗じることにより、核酸Aの推定分子数を算出することが可能である。
 また、細胞懸濁液を作製する前に細胞周期を制御する処理を行うことが好ましく、上述したような複製が起きる前又は後の状態に揃えることによって、核酸Aの分子数を細胞数からより精度良く算出することが可能になる。
 推定する特定の分子数は、確からしさ(確率)を算出することが好ましい。確からしさ(確率)を算出することにより、これらの数値に基づき確からしさを分散又は標準偏差として表現して出力することが可能である。複数因子の影響を合算する場合には、一般的に用いられる標準偏差の二乗和平方根を用いることが可能である。例えば、因子として吐出した細胞数の正答率、細胞内のDNA数、吐出された細胞がウェル内に着弾する着弾率等を用いることができる。これらの中で影響の大きい項目を選択して算出することもできる。
[細胞数計数工程]
 細胞数計数工程は、液滴の作製後、かつ液滴の容器への着弾前に、液滴に含まれる細胞数をセンサによって計数する工程である。センサとは、自然現象や人工物の機械的・電磁気的、熱的、音響的又は化学的性質、あるいはそれらにより示される空間情報・時間情報を、何らかの科学的原理を応用して、人間や機械が扱い易い別媒体の信号に置き換える装置を意味する。計数とは、数を数えることを意味する。
 細胞数計数工程としては、液滴の吐出後、かつ液滴のウェルへの着弾前に、液滴に含まれる細胞数をセンサによって計数すれば特に限定されず、目的に応じて適宜選択することができ、吐出前に細胞を観測する処理、着弾後の細胞をカウントする処理を含んでいてもよい。
 液滴の吐出後、かつ液滴のウェルへの着弾前に、液滴に含まれる細胞数の計数としては、液滴がプレートのウェルに確実に入ることが予測されるウェル開口部の直上の位置にあるタイミングにて液滴中の細胞を観測することが好ましい。
 液滴中の細胞を観測する方法としては、例えば、光学的に検出する方法、電気的又は磁気的に検出方法等が挙げられる。
(光学的に検出する方法)
 図9、図13及び図14を用いて、光学的に検出する方法に関して以下に述べる。図9は、液滴形成装置401の一例を示す模式図である。図13及び図14は、液滴形成装置の他の一例(401A、401B)を示す模式図である。図9に示すように、液滴形成装置401は、吐出ヘッド(液滴吐出手段)10と、駆動手段20と、光源30と、受光素子60と、制御手段70とを有する。
 図9では、細胞懸濁液として細胞を特定の色素によって蛍光染色した後に所定の溶液に分散した液を用いており、吐出ヘッドから形成した液滴に光源から発せられる特定の波長を有する光を照射し細胞から発せられる蛍光を受光素子によって検出することによって計数を行う。このとき、蛍光色素によって細胞を染色する方法に加え、細胞中に元々含まれる分子が発する自家蛍光を利用してもよいし、細胞に蛍光タンパク質(例えば、GFP(Green Fluorescent Protein))をコードする遺伝子を予め導入しておき細胞が蛍光を発するようにしておいてもよい。光を照射するとは、光をあてることを意味する。
 吐出ヘッド10は、液室11と、メンブレン12と、駆動素子13とを有しており、蛍光染色細胞350を懸濁した細胞懸濁液300を液滴として吐出することができる。
 液室11は、蛍光染色細胞350を懸濁した細胞懸濁液300を保持する液体保持部であり、下面側には貫通孔であるノズル111が形成されている。液室11は、例えば、金属やシリコン、セラミックス等から形成することができる。蛍光染色細胞350としては、蛍光色素によって染色された無機微粒子や有機ポリマー粒子等が挙げられる。
 メンブレン12は、液室11の上端部に固定された膜状部材である。メンブレン12の平面形状は、例えば、円形とすることができるが、楕円状や四角形等としてもよい。
 駆動素子13は、メンブレン12の上面側に設けられている。駆動素子13の形状は、メンブレン12の形状に合わせて設計することができる。例えば、メンブレン12の平面形状が円形である場合には、円形の駆動素子13を設けることが好ましい。
 駆動素子13に駆動手段20から駆動信号を供給することにより、メンブレン12を振動させることができる。メンブレン12の振動により、蛍光染色細胞350を含有する液滴310を、ノズル111から吐出させることができる。
 駆動素子13として圧電素子を用いる場合には、例えば、圧電材料の上面及び下面に電圧を印加するための電極を設けた構造とすることができる。この場合、駆動手段20から圧電素子の上下電極間に電圧を印加することによって紙面横方向に圧縮応力が加わり、メンブレン12を紙面上下方向に振動させることができる。圧電材料としては、例えば、ジルコン酸チタン酸鉛(PZT)を用いることができる。この他にも、ビスマス鉄酸化物、ニオブ酸金属物、チタン酸バリウム、或いはこれらの材料に金属や異なる酸化物を加えたもの等、様々な圧電材料を用いることができる。
 光源30は、飛翔中の液滴310に光Lを照射する。なお、飛翔中とは、液滴310が液滴吐出手段10から吐出されてから、着滴対象物に着滴するまでの状態を意味する。飛翔中の液滴310は、光Lが照射される位置では略球状となっている。又、光Lのビーム形状は略円形状である。
 ここで、液滴310の直径に対し、光Lのビーム直径が10倍~100倍程度であることが好ましい。これは、液滴310の位置ばらつきが存在する場合においても、光源30からの光Lを確実に液滴310に照射するためである。
 ただし、液滴310の直径に対し、光Lのビーム直径が100倍を大きく超えることは好ましくない。これは、液滴310に照射される光のエネルギー密度が下がるため、光Lを励起光として発する蛍光Lfの光量が低下し、受光素子60で検出し難くなるからである。
 光源30から発せられる光Lはパルス光であることが好ましく、例えば、固体レーザー、半導体レーザー、色素レーザー等が好適に用いられる。光Lがパルス光である場合のパルス幅は10μs以下が好ましく、1μs以下がより好ましい。単位パルス当たりのエネルギーとしては、集光の有無等、光学系に大きく依存するが、概ね0.1μJ以上が好ましく、1μJ以上がより好ましい。
 受光素子60は、飛翔中の液滴310に蛍光染色細胞350が含有されていた場合に、蛍光染色細胞350が光Lを励起光として吸収して発する蛍光Lfを受光する。蛍光Lfは、蛍光染色細胞350から四方八方に発せられるため、受光素子60は蛍光Lfを受光可能な任意の位置に配置することができる。この際、コントラストを向上するため、光源30から出射される光Lが直接入射しない位置に受光素子60を配置することが好ましい。
 受光素子60は、蛍光染色細胞350から発せられる蛍光Lfを受光できる素子であれば特に制限はなく、目的に応じて適宜選択することができるが、液滴に特定の波長を有する光を照射して液滴内の細胞からの蛍光を受光する光学センサが好ましい。受光素子60としては、例えば、フォトダイオード、フォトセンサ等の1次元素子が挙げられるが、高感度な測定が必要な場合には、光電子増倍管やアバランシェフォトダイオードを用いることが好ましい。受光素子60として、例えば、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)、ゲートCCD等の2次元素子を用いてもよい。
 なお、光源30が発する光Lと比較して蛍光染色細胞350の発する蛍光Lfが弱いため、受光素子60の前段(受光面側)に光Lの波長域を減衰させるフィルタを設置してもよい。これにより、受光素子60において、非常にコントラストの高い蛍光染色細胞350の画像を得ることができる。フィルタとしては、例えば、光Lの波長を含む特定波長域を減衰させるノッチフィルタ等を用いることができる。
 また、前述のように、光源30から発せられる光Lはパルス光であることが好ましいが、光源30から発せられる光Lを連続発振の光としてもよい。この場合には、連続発振の光が飛翔中の液滴310に照射されるタイミングで受光素子60が光を取り込み可能となるように制御し、受光素子60に蛍光Lfを受光させることが好ましい。
 制御手段70は、駆動手段20及び光源30を制御する機能を有している。また、制御手段70は、受光素子60が受光した光量に基づく情報を入手し、液滴310に含有された蛍光染色細胞350の個数(ゼロである場合も含む)を計数する機能を有している。以下、図10~図12を参照し、制御手段70の動作を含む液滴形成装置401の動作について説明する。
 図10は、図9の液滴形成装置の制御手段のハードウェアブロックを例示する図である。図11は、図9の液滴形成装置の制御手段の機能ブロックを例示する図である。図12は、液滴形成装置の動作の一例を示すフローチャートである。
 図10に示すように、制御手段70は、CPU71と、ROM72と、RAM73と、通信インターフェイス(通信I/F)74と、バスライン75とを有している。CPU71、ROM72、RAM73及びI/F74は、バスライン75を介して相互に接続されている。
 CPU71は、制御手段70の各機能を制御する。記憶手段であるROM72は、CPU71が制御手段70の各機能を制御するために実行するプログラムや、各種情報を記憶している。記憶手段であるRAM73は、CPU71のワークエリア等として使用される。また、RAM73は、所定の情報を一時的に記憶することができる。I/F74は、液滴形成装置401を他の機器等と接続するためのインターフェイスである。液滴形成装置401は、I/F74を介して、外部ネットワーク等と接続されてもよい。
 図11に示すように、制御手段70は、機能ブロックとして、吐出制御手段701と、光源制御手段702と、細胞数計数手段(細胞数検知手段)703とを有している。
 図11及び図12を参照しながら、液滴形成装置401の細胞数計数について説明する。まず、ステップS11において、制御手段70の吐出制御手段701は、駆動手段20に吐出の指令を出す。吐出制御手段701から吐出の指令を受けた駆動手段20は、駆動素子13に駆動信号を供給してメンブレン12を振動させる。メンブレン12の振動により、蛍光染色細胞350を含有する液滴310が、ノズル111から吐出される。
 次に、ステップS12において、制御手段70の光源制御手段702は、液滴310の吐出に同期して(駆動手段20から液滴吐出手段10に供給される駆動信号に同期して)光源30に点灯の指令を出す。これにより、光源30が点灯し、飛翔中の液滴310に光Lを照射する。
 なお、ここで、同期するとは、液滴吐出手段10による液滴310の吐出と同時に(駆動手段20が液滴吐出手段10に駆動信号を供給するのと同時に)発光することではなく、液滴310が飛翔して所定位置に達したときに液滴310に光Lが照射されるタイミングで、光源30が発光することを意味する。つまり、光源制御手段702は、液滴吐出手段10による液滴310の吐出(駆動手段20から液滴吐出手段10に供給される駆動信号)に対して、所定時間だけ遅延して発光するように光源30を制御する。
 例えば、液滴吐出手段10に駆動信号を供給した際に吐出する液滴310の速度vを予め測定しておく。そして、測定した速度vに基づいて液滴310が吐出されてから所定位置まで到達する時間tを算出し、液滴吐出手段10に駆動信号を供給するタイミングに対して、光源30が光を照射するタイミングをtだけ遅延させる。これにより、良好な発光制御が可能となり、光源30からの光を確実に液滴310に照射することができる。
 次に、ステップS13において、制御手段70の細胞数計数手段703は、受光素子60からの情報に基づいて、液滴310に含有された蛍光染色細胞350の個数(ゼロである場合も含む)を計数する。ここで、受光素子60からの情報とは、蛍光染色細胞350の輝度値(光量)や面積値である。
 細胞数計数手段703は、例えば、受光素子60が受光した光量と予め設定された閾値とを比較して、蛍光染色細胞350の個数を計数することができる。この場合には、受光素子60として1次元素子を用いても2次元素子を用いても構わない。
 受光素子60として2次元素子を用いる場合は、細胞数計数手段703は、受光素子60から得られた2次元画像に基づいて、蛍光染色細胞350の輝度値或いは面積を算出するための画像処理を行う手法を用いてもよい。この場合、細胞数計数手段703は、画像処理により蛍光染色細胞350の輝度値或いは面積値を算出し、算出された輝度値或いは面積値と、予め設定された閾値とを比較することにより、蛍光染色細胞350の個数を計数することができる。
 なお、蛍光染色細胞350は、細胞や染色細胞であってもよい。染色細胞とは、蛍光色素によって染色された細胞、又は、蛍光タンパク質を発現可能な細胞を意味する。染色細胞において、蛍光色素としては、上述したものを用いることができる。また、蛍光タンパク質としては、上述したものを用いることができる。
 このように、液滴形成装置401では、蛍光染色細胞350を縣濁した細胞懸濁液300を保持する液滴吐出手段10に、駆動手段20から駆動信号を供給して、蛍光染色細胞350を含有する液滴310を吐出させ、飛翔中の液滴310に光源30から光Lを照射する。そして、飛翔する液滴310に含有された蛍光染色細胞350が光Lを励起光として蛍光Lfを発し、蛍光Lfを受光素子60が受光する。更に、受光素子60からの情報に基づいて、細胞数計数手段703が、飛翔する液滴310に含有された蛍光染色細胞350の個数を計数(カウント)する。
 つまり、液滴形成装置401では、飛翔する液滴310に含有された蛍光染色細胞350の個数を実際にその場で観察するため、蛍光染色細胞350の個数の計数精度を従来よりも向上することが可能となる。又、飛翔する液滴310に含有された蛍光染色細胞350に光Lを照射して蛍光Lfを発光させて蛍光Lfを受光素子60で受光するため、高いコントラストで蛍光染色細胞350の画像を得ることが可能となり、蛍光染色細胞350の個数の誤計数の発生頻度を低減できる。
 図13は、図9の液滴形成装置401の変形例を示す模式図である。図13に示すように、液滴形成装置401Aは、受光素子60の前段にミラー40を配置した点が、液滴形成装置401(図9参照)と相違する。なお、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 このように、液滴形成装置401Aでは、受光素子60の前段にミラー40を配置したことにより、受光素子60のレイアウトの自由度を向上することができる。
 例えば、ノズル111と着滴対象物を近づけた際に、図9のレイアウトでは着滴対象物と液滴形成装置401の光学系(特に受光素子60)との干渉が発生するおそれがあるが、図13のレイアウトにすることで、干渉の発生を回避することができる。
 図13に示すように、受光素子60のレイアウトを変更することにより、液滴310が着滴する着滴対象物とノズル111との距離(ギャップ)を縮めることが可能となり、着滴位置のばらつきを抑制することができる。その結果、分注の精度を向上することが可能となる。
 図14は、図9の液滴形成装置401の他の変形例を示す模式図である。図14に示すように、液滴形成装置401Bは、蛍光染色細胞350から発せられる蛍光Lfを受光する受光素子60に加え、蛍光染色細胞350から発せられる蛍光Lfを受光する受光素子61を設けた点が、液滴形成装置401(図9参照)と相違する。なお、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 ここで、蛍光Lf及びLfは、蛍光染色細胞350から四方八方に発せられる蛍光の一部を示している。受光素子60及び61は、蛍光染色細胞350から異なる方向に発せられる蛍光を受光できる任意の位置に配置することができる。なお、蛍光染色細胞350から異なる方向に発せられる蛍光を受光できる位置に3つ以上の受光素子を配置してもよい。又、各受光素子は同一仕様としてもよいし、異なる仕様としてもよい。
 受光素子が1つであると、飛翔する液滴310に複数個の蛍光染色細胞350が含まれる場合に、蛍光染色細胞350同士が重なることに起因して、細胞数計数手段703が液滴310に含有された蛍光染色細胞350の個数を誤計数する(カウントエラーが発生する)おそれがある。
 図15(a)及び図15(b)は、飛翔する液滴に2個の蛍光染色細胞が含まれる場合を例示する図である。例えば、図15(a)に示すように、蛍光染色細胞350aと350bとに重なりが発生する場合や、図15(b)に示すように、蛍光染色細胞350aと350bとに重なりが発生しない場合があり得る。受光素子を2つ以上設けることで、蛍光染色細胞が重なる影響を低減することが可能である。
 前述のように、細胞数計数手段703は、画像処理により蛍光粒子の輝度値或いは面積値を算出し、算出された輝度値或いは面積値と、予め設定された閾値とを比較することにより、蛍光粒子の個数を計数することができる。
 受光素子を2つ以上設置する場合,それぞれの受光素子から得られる輝度値或いは面積値のうち、最大値を示すデータを採択することで、カウントエラーの発生を抑制することが可能である。これに関して、図16を参照して、より詳しく説明する。
 図16は、粒子同士の重なりが生じない場合の輝度値Liと、実測される輝度値Leとの関係を例示する図である。図16に示すように、液滴内の粒子同士の重なりがない場合には、Le=Liとなる。例えば、細胞1個の輝度値をLuとすると、細胞数/滴=1個の場合はLe=Luであり、細胞数/滴=n個の場合はLe=nLuである(n:自然数)。
 しかし、実際には、nが2以上の場合には粒子同士の重なりが発生し得るため、実測される輝度値はLu≦Le≦nLu(図16の網掛部分)となる。そこで、細胞数/滴=n個の場合、例えば、閾値を(nLu-Lu/2)≦閾値<(nLu+Lu/2)と設定することができる。そして、複数の受光素子を設置する場合、それぞれの受光素子から得られたデータのうち最大値を示すものを採択することで、カウントエラーの発生を抑制することが可能となる。なお、輝度値に代えて面積値を用いてもよい。
 また、受光素子を複数設置する場合、得られる複数の形状データを基に、細胞数を推定するアルゴリズムにより細胞数を決定づけてもよい。このように、液滴形成装置401Bでは、蛍光染色細胞350が異なる方向に発した蛍光を受光する複数の受光素子を有しているため、蛍光染色細胞350の個数の誤計数の発生頻度を更に低減できる。
 図17は、図9の液滴形成装置401の他の変形例を示す模式図である。図17に示すように、液滴形成装置401Cは、液滴吐出手段10が液滴吐出手段10Cに置換された点が、液滴形成装置401(図9参照)と相違する。なお、既に説明した実施の形態と同一構成部についての説明は省略する場合がある。
 液滴吐出手段10Cは、液室11Cと、メンブレン12Cと、駆動素子13Cとを有している。液室11Cは、液室11C内を大気に開放する大気開放部115を上部に有しており、細胞懸濁液300中に混入した気泡を大気開放部115から排出可能に構成されている。
 メンブレン12Cは、液室11Cの下端部に固定された膜状部材である。メンブレン12Cの略中心には貫通孔であるノズル121が形成されており、液室11Cに保持された細胞懸濁液300はメンブレン12Cの振動によりノズル121から液滴310として吐出される。メンブレン12Cの振動の慣性により液滴310を形成するため、高表面張力(高粘度)の細胞懸濁液300でも吐出が可能である。メンブレン12Cの平面形状は、例えば、円形とすることができるが、楕円状や四角形等としてもよい。
 メンブレン12Cの材質としては特に限定はないが、柔らか過ぎるとメンブレン12Cが簡単に振動し、吐出しないときに直ちに振動を抑えることが困難であるため、ある程度の硬さがある材質を用いることが好ましい。メンブレン12Cの材質としては、例えば、金属材料やセラミック材料、ある程度硬さのある高分子材料等を用いることができる。
 特に、蛍光染色細胞350として細胞を用いる際には、細胞やタンパク質に対する付着性の低い材料であることが好ましい。細胞の付着性は一般的に材質の水との接触角に依存性があるといわれており、材質の親水性が高い又は疎水性が高いときには細胞の付着性が低い。親水性の高い材料としては各種金属材料やセラミック(金属酸化物)を用いることが可能であり、疎水性が高い材料としてはフッ素樹脂等を用いることが可能である。
 このような材料の他の例としては、ステンレス鋼やニッケル、アルミニウム等や、二酸化ケイ素、アルミナ、ジルコニア等を挙げることができる。これ以外にも、材料表面をコーティングすることで細胞接着性を低下させることも考えられる。例えば、材料表面を前述の金属又は金属酸化物材料でコーティングすることや、細胞膜を模した合成リン脂質ポリマー(例えば、日油株式会社製、Lipidure)によってコーティングすることが可能である。
 ノズル121は、メンブレン12Cの略中心に実質的に真円状の貫通孔として形成されていることが好ましい。この場合、ノズル121の径としては特に限定はないが、蛍光染色細胞350がノズル121に詰まることを避けるため、蛍光染色細胞350の大きさの2倍以上とすることが好ましい。蛍光染色細胞350が例えば、動物細胞、特にヒトの細胞である場合、ヒトの細胞の大きさは一般的に5μm~50μm程度であるため、ノズル121の径を、使用する細胞に合わせて10μm以上が好ましく、100μm以上がより好ましい。
 一方で、液滴が大きくなり過ぎると微小液滴を形成するという目的の達成が困難となるため、ノズル121の径は200μm以下であることが好ましい。つまり、液滴吐出手段10Cにおいては、ノズル121の径は、典型的には10μm以上200μm以下の範囲となる。
 駆動素子13Cは、メンブレン12Cの下面側に形成されている。駆動素子13Cの形状は、メンブレン12Cの形状に合わせて設計することができる。例えば、メンブレン12Cの平面形状が円形である場合には、ノズル121の周囲に平面形状が円環状(リング状)の駆動素子13Cを形成することが好ましい。駆動素子13Cの駆動方式は、駆動素子13と同様とすることができる。
 駆動手段20は、メンブレン12Cを振動させて液滴310を形成する吐出波形と、液滴310を形成しない範囲でメンブレン12Cを振動させる撹拌波形とを駆動素子13Cに選択的に(例えば、交互に)付与することができる。
 例えば、吐出波形及び撹拌波形をいずれも矩形波とし、吐出波形の駆動電圧よりも撹拌波形の駆動電圧を低くすることで、撹拌波形の印加により液滴310が形成されないようにすることができる。つまり、駆動電圧の高低により、メンブレン12Cの振動状態(振動の程度)を制御することができる。
 液滴吐出手段10Cでは、駆動素子13Cがメンブレン12Cの下面側に形成されているため、駆動素子13Cによりメンブレン12が振動すると、液室11Cの下部方向から上部方向への流れを生じさせることが可能である。
 この時、蛍光染色細胞350の動きは下から上への運動となり、液室11C内で対流が発生して蛍光染色細胞350を含有する細胞懸濁液300の撹拌が起きる。液室11Cの下部方向から上部方向への流れにより、沈降、凝集した蛍光染色細胞350が液室11Cの内部に均一に分散する。
 つまり、駆動手段20は、吐出波形を駆動素子13Cに加え、メンブレン12Cの振動状態を制御することにより、液室11Cに保持された細胞懸濁液300をノズル121から液滴310として吐出させることができる。又、駆動手段20は、撹拌波形を駆動素子13Cに加え、メンブレン12Cの振動状態を制御することにより、液室11Cに保持された細胞懸濁液300を撹拌することができる。なお、撹拌時には、ノズル121から液滴310は吐出されない。
 このように、液滴310を形成していない間に細胞懸濁液300を撹拌することにより、蛍光染色細胞350がメンブレン12C上に沈降、凝集することを防ぐと共に、蛍光染色細胞350を細胞懸濁液300中にムラなく分散させることができる。これにより、ノズル121の詰まり及び吐出する液滴310中の蛍光染色細胞350の個数のばらつきを抑えることが可能となる。その結果、蛍光染色細胞350を含有する細胞懸濁液300を、長時間連続して安定的に液滴310として吐出することができる。
 また、液滴形成装置401Cにおいて、液室11C内の細胞懸濁液300中に気泡が混入する場合がある。この場合でも、液滴形成装置401Cでは、液室11Cの上部に大気開放部115が設けられているため、細胞懸濁液300中に混入した気泡を、大気開放部115を通じて外気に排出できる。これによって、気泡排出のために大量の液を捨てることなく、連続して安定的に液滴310を形成することが可能となる。
 即ち、ノズル121の近傍に気泡が混入した場合や、メンブレン12C上に多数の気泡が混入した場合には吐出状態に影響を及ぼすため、長い時間安定的に液滴の形成を行うためには、混入した気泡を排出する必要がある。通常、メンブレン12C上に混入した気泡は、自然に若しくはメンブレン12Cの振動によって上方に移動するが、液室11Cには大気開放部115が設けられているため、混入した気泡を大気開放部115から排出可能となる。そのため、液室11Cに気泡が混入しても不吐出が発生することを防止可能となり、連続して安定的に液滴310を形成することができる。
 なお、液滴を形成しないタイミングで、液滴を形成しない範囲でメンブレン12Cを振動させ、積極的に気泡を液室11Cの上方に移動させてもよい。
(電気的又は磁気的に検出する方法)
 電気的又は磁気的に検出する方法としては、図18に示すように、液室11’から細胞懸濁液を液滴310’としてプレート700’に吐出する吐出ヘッドの直下に、細胞数計数のためのコイル200がセンサとして設置されている。細胞は特定のタンパク質によって修飾され細胞に接着することが可能な磁気ビーズによって覆うことにより、磁気ビーズが付着した細胞がコイル中を通過する際に発生する誘導電流によって、飛翔液滴中の細胞の有無を検出することが可能である。一般的に、細胞はその表面に細胞特有のタンパク質を有しており、このタンパク質に接着することが可能な抗体を磁気ビーズに修飾することによって、細胞に磁気ビーズを付着させることが可能である。このような磁気ビーズとしては既製品を用いることが可能であり、例えば、株式会社ベリタス製のDynabeads(商標登録)が利用可能である。
(吐出前に細胞を観測する処理)
 吐出前に細胞を観測する処理としては、図19に示すマイクロ流路250中を通過してきた細胞350’をカウントする方法や、図20に示す吐出ヘッドのノズル部近傍の画像を取得する方法等が挙げられる。
 図19に示す方法は、セルソーター装置において用いられている方法であり、例えば、ソニー株式会社製のセルソーターSH800Zを用いることができる。図19では、マイクロ流路250中に光源260からレーザー光を照射して散乱光や蛍光を、集光レンズ265を用いて検出器255により検出することによって細胞の有無や、細胞の種類を識別しながら液滴を形成することが可能である。本方法を用いることによって、マイクロ流路250中に通過した細胞の数から所定のウェル中に着弾した細胞の数を推測することが可能である。
 また、図20に示す吐出ヘッド10’としては、Cytena社製のシングルセルプリンターを用いることが可能である。図20では、吐出前において、ノズル部近傍をレンズ265’を介して、画像取得部255’において画像取得した結果からノズル部近傍の細胞350”が吐出されたと推定することや、吐出前後の画像から差分により吐出されたと考えられる細胞の数を推定することによって、所定のウェル中に着弾した細胞の数を推測することができる。図19に示すマイクロ流路中を通過してきた細胞をカウントする方法では、液滴が連続的に生成されるのに対して、図20は、オンデマンドで液滴形成が可能であるため、より好ましい。
(着弾後の細胞をカウントする処理)
 着弾後の細胞をカウントする処理としては、プレートにおけるウェルを蛍光顕微鏡等により観測することにより、蛍光染色した細胞を検出する方法を取ることが可能である。この方法は、例えば、参考文献1(Moon S., et al., Drop-on-demand single cell isolation andtotal RNA analysis, PLoS One, Vol. 6, Issue 3, e17455, 2011)等に記載されている。
 液滴の吐出前及び着弾後に細胞を観測する方法では、以下に述べる問題があり、生成するプレートの種類によっては吐出中の液滴内の細胞を観測することが最も好ましい。
 吐出前に細胞を観測する手法においては、流路中を通過した細胞数や吐出前(及び吐出後)の画像観測から、着弾したと思われる細胞数を計数するため、実際にその細胞が吐出されたのかどうかの確認は行われておらず、思いがけないエラーが発生することがある。例えば、ノズル部が汚れていることにより液滴が正しく吐出せず、ノズルプレートに付着し、それに伴い液滴中の細胞も着弾しない、といったケースが発生する。他にも、ノズル部の狭い領域に細胞が残留することや、細胞が吐出動作によって想定以上に移動し観測範囲外に出てしまうといった問題の発生も起こりうる。
 また、着弾後のプレート上の細胞を検出する手法においても問題がある。まず、プレートとして顕微鏡観察が可能であるものを準備する必要がある。観測可能なプレートとして、一般的に底面が透明かつ平坦なプレート、特に底面がガラス製となっているプレートが用いられるが、特殊なプレートとなってしまうため、一般的なウェルを使用することができなくなる問題がある。また、細胞数が数十個等多いときには、細胞の重なりが発生するため正確な計数ができなくなる問題もある。
 そのため、液滴の吐出後、かつ液滴のウェルへの着弾前に、液滴に含まれる細胞数をセンサ及び細胞数計数手段によって計数することに加えて、吐出前に細胞を観測する処理、着弾後の細胞をカウントする処理を行うことが好ましい。
 受光素子としては1又は少数の受光部を有する受光素子、例えば、フォトダイオード、アバランシェフォトダイオード、光電子増倍管を用いることが可能であるし、その他に2次元アレイ状に受光素子が設けられたCCD(Charge Copuled Device)、CMOS(Complementary Metal Oxide Semiconductor)、ゲートCCD等二次元センサを用いることも可能である。
 1又は少数の受光部を有する受光素子を用いる際には、蛍光強度から細胞が何個入っているかを予め用意された検量線を用いて決定することも考えられるが、主として飛翔液滴中の細胞有無を二値的に検出することが行われる。細胞懸濁液の細胞濃度が十分に低く、液滴中に細胞が1個又は0個しかほぼ入らない状態で吐出を行う際には、二値的な検出で十分精度よく計数を行うことが可能である。
 細胞懸濁液中で細胞はランダムに配置していることを前提とすれば、飛翔液滴中の細胞数はポアソン分布にしたがうと考えられ、液滴中に細胞数が2個以上入る確率P(>2)は下記式4で表される。
Figure JPOXMLDOC01-appb-M000005
 図21は、確率P(>2)と平均細胞数の関係を表すグラフである。ここで、λは液滴中の平均細胞数であり、細胞懸濁液中の細胞濃度に吐出液滴の体積を乗じたものになる。
 二値的な検出で細胞数計数を行う場合には、確率P(>2)が十分小さい値であることが精度を確保する上では好ましく、確率P(>2)が1%以下となるλ<0.15であることが好ましい。光源としては、細胞の蛍光を励起できるものであれば特に制限はなく、目的に応じて適宜選択することができ、水銀ランプやハロゲンランプ等の一般的なランプに特定の波長を照射するようにフィルタをかけたものや、LED(Light Emitting Diode)、レーザー等を用いることが可能である。ただし、特に1nL以下の微小な液滴を形成するときには、狭い領域に高い光強度を照射する必要があるため、レーザーを用いるのが好ましい。レーザー光源としては、固体レーザーやガスレーザー、半導体レーザー等一般的に知られている多種のレーザーを用いることが可能である。また、励起光源としては、液滴が通過する領域を連続的に照射したものであってもよいし、液滴の吐出に同期して液滴吐出動作に対して所定時間遅延を付けたタイミングでパルス的に照射するものであってもよい。
[細胞懸濁液生成工程、核酸A充填工程及び細胞数計数工程において推定した核酸Aの分子数の確からしさを算出する工程]
 本工程は、核酸A充填工程及び細胞数計数工程それぞれの工程における確からしさを算出する工程である。推定する核酸Aの分子数の確からしさの算出は、細胞懸濁液生成工程における確からしさと同様に算出することができる。
 なお、確からしさの算出タイミングは、細胞数計数工程の次工程で、まとめて算出してもよいし、細胞懸濁液生成工程、核酸A充填工程及び細胞数計数工程の各工程の最後に算出し、細胞数計数工程の次工程で各不確かさを合成して算出してもよい。いいかえれば、上記各工程での確からしさは、合成算出までに適宜算出しておけばよい。
[出力工程]
 出力工程は、容器内に着弾した細胞懸濁液に含まれる細胞数として、センサにより測定された検出結果に基づいて細胞数計数手段にて計数された値を出力する工程である。計数された値とは、センサにより測定された検出結果から、細胞数計数手段にて当該容器に含まれる細胞数を意味する。
 出力とは、原動機、通信機、計算機等の装置が入力を受けて計数された値を外部の計数結果記憶手段としてのサーバに電子情報として送信することや、計数された値を印刷物として印刷することを意味する。
 出力工程は、プレートの生成時に、プレートにおける各ウェルの細胞数又は標的核酸数を観察又は推測し、観測値又は推測値を外部の記憶部に出力する。出力は、細胞数計数工程と同時に行ってもよく、細胞数計数工程の後に行ってもよい。
[記録工程]
 記録工程は、出力工程において、出力された観測値又は推測値を記録する工程である。記録工程は、記録部において好適に実施することができる。記録は、出力工程と同時に行ってもよく、出力工程の後に行ってもよい。記録とは、記録媒体に情報を付与することだけでなく、記録部に情報を保存することも含む。この場合、記録部は記憶部ともいえる。
[その他工程]
 その他の工程は、特に限定されず、目的に応じて適宜選択することができ、例えば、酵素失活工程等が挙げられる。
 酵素失活工程は、酵素を失活させる工程である。酵素としては、例えば、DNase、RNase等が挙げられる。酵素を失活させる方法は、特に限定されず、目的に応じて適宜選択することができ、公知の方法を好適に用いることができる。
<遺伝子検査装置の性能評価用デバイス>
 本実施形態のデバイスは、複数の反応空間を有し、前記複数の反応空間の少なくとも一部に、上述した遺伝子検査装置の性能評価用試料(以下、単に「性能評価用試料」と称する場合がある)を含む。
 本実施形態のデバイスは、上述した遺伝子検査装置の性能評価の用途に特に適している。具体的には、例えば、本実施形態のデバイスは、遺伝子検査装置として定量PCR装置又は次世代シーケンサーを用いた、Liquid Biopsyに適用することができる。
 反応空間は、性能評価用試料の他にも、遺伝子検査装置による処理及びその前処理で使用される試薬を含んでいてもよい。
 試薬としては、例えば、プライマー、増幅試薬等が挙げられる。プライマーは、ポリメラーゼ連鎖反応(PCR)において、鋳型DNA(本実施形態においては、核酸A及び核酸B)に特異的な18~30塩基の相補的塩基配列を持つ合成オリゴヌクレオチドであり、増幅対象領域を挟むようにフォワードプライマー(センスプライマー)とリバースプライマー(アンチセンスプライマー)の2か所(一対)設定される。
 増幅試薬としては、ポリメラーゼ連鎖反応(PCR)において、例えば、酵素としてDNAポリメラーゼ、基質として4種の塩基(dGTP、dCTP、dATP、dTTP)、Mg2+(終濃度約1mM以上2mM以下程度の塩化マグネシウム)、最適pH(pH7.5~9.5)を保持するバッファー等が挙げられる。
 反応空間内の性能評価用試料、並びに、存在する場合、プライマー及び増幅試薬の状態は、特に限定されず、目的に応じて適宜選択することができる。例えば、溶液又は固体のいずれかの状態であってもよい。
 使用性の観点からは、特に、溶液状態であることが好ましい。溶液状態であると、使用者はすぐに試験に用いることができる。輸送上の観点からは、特に、固体状態であることが好ましく、固体乾燥状態がより好ましい。固体乾燥状態であると、分解酵素等による試薬の分解速度を低減化することができ、試薬の保存性を向上させることができる。
 乾燥方法としては、特に限定されず、目的に応じて適宜選択することができ、例えば、凍結乾燥、加熱乾燥、熱風乾燥、真空乾燥、蒸気乾燥、吸引乾燥、赤外線乾燥、バレル乾燥、スピン乾燥等が挙げられる。
 反応空間は、デバイスの使用直前に、固体乾燥状態の試薬をバッファーや水に溶解させることで、すぐに反応液として用いることができるよう、適正量の試薬を含んでいることが好ましい。
 本実施形態のデバイスは、複数の反応空間の全部に性能評価用試料を含んでいてもよいし、複数の反応空間の一部に性能評価用試料を含んでいてもよい。後者の場合、残部の反応空間は、例えば空であってもよく、異なる組成の試薬を含んでいてもよい。
 本実施形態のデバイスにおいて、反応空間の形態は特に限定されず、例えば、ウェル、液滴、基板上の区画等が挙げられる。例えば、反応空間がウェルである場合、本実施形態のデバイスはウェルプレートの形態であってもよい。
[ウェル]
 ウェルは、その形状、数、容積、材質、色等については特に制限はなく、目的に応じて適宜選択することができる。ウェルの形状としては、性能評価用試料、及び、存在する場合、試薬を含むことができれば特に限定されず、目的に応じて適宜選択することができ、例えば、平底、丸底、U底、V底等の凹部等が挙げられる。
 ウェルの数は複数であり、5以上が好ましく、50以上がより好ましい。ウェルの数が2以上であるマルチウェルプレートが好適に用いられる。マルチウェルプレートとしては、ウェル数が、例えば、24、48、96、384、1,536等であるウェルプレートが挙げられる。
 ウェルの容積は特に限定されず、目的に応じて適宜選択することができるが、一般的な遺伝子検査装置に用いられる試料量を考慮すると、10μL以上1,000μL以下が好ましい。
 ウェルの材質は特に限定されず、目的に応じて適宜選択することができ、例えば、ポリスチレン、ポリプロピレン、ポリエチレン、フッ素樹脂、アクリル樹脂、ポリカーボネート、ポリウレタン、ポリ塩化ビニル、ポリエチレンテレフタレート等が挙げられる。
 ウェルの色は、例えば、透明、半透明、着色、完全遮光等であってよい。ウェルの濡れ性は特に限定されず、目的に応じて適宜選択することができ、例えば、撥水性であってもよい。ウェルの濡れ性が、撥水性であると、ウェル内壁への試薬の吸着を低減化することができる。また、ウェルの濡れ性が撥水性であると、ウェル内の試薬を溶液状態で移動することが容易である。
 ウェル内壁の撥水化の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ素系樹脂被膜を形成する方法、フッ素プラズマ処理、エンボス加工等が挙げられる。特に、接触角が100°以上となる撥水化処理を施すことで、液体の取りこぼしによる試薬の減少、不確かさ、変動係数の増大を抑えることができる。
[基材]
 本実施形態のデバイスは、ウェルが基材に設けられたプレート状のものが好ましいが、8連チューブ等の連結タイプのウェルチューブであってもよい。基材としては、その材質、形状、大きさ、構造等について特に限定されず、目的に応じて適宜選択することができる。
 基材の材質は、特に限定されず、目的に応じて適宜選択することができ、例えば、半導体、セラミックス、金属、ガラス、石英ガラス、プラスチックス等が挙げられる。中でも、プラスチックスが好ましい。
 プラスチックスとしては、例えば、ポリスチレン、ポリプロピレン、ポリエチレン、フッ素樹脂、アクリル樹脂、ポリカーボネート、ポリウレタン、ポリ塩化ビニル、ポリエチレンテレフタレート等が挙げられる。
 基材の形状は、特に限定されず、目的に応じて適宜選択することができ、例えば、板状、プレート状等が挙げられる。基材の構造は、特に限定されず、目的に応じて適宜選択することができ、例えば、単層構造であってもよく、複数層構造であってもよい。
[識別手段]
 本実施形態のデバイスは、核酸Aの特定の分子数の情報(例えば、細胞の数)及び核酸Bの分子数に対する核酸Aの分子数の比率A/Bの情報を識別可能な識別手段を有していてもよい。識別手段は、特に限定されず、目的に応じて適宜選択することができ、例えば、メモリ、ICチップ、バーコード、QRコード(登録商標)、Radio Frequency Identifier(以下、「RFID」とも称することがある)、色分け、印刷等が挙げられる。
 識別手段を設ける位置及び識別手段の数は、特に限定されず、目的に応じて適宜選択することができる。
 識別手段に記憶させる情報としては、核酸Aの特定の分子数の情報及び核酸Bの分子数に対する核酸Aの分子数の比率A/Bの情報以外にも、例えば、分析結果(例えば、PM値、PM値のばらつき等)、細胞の生死、複数のウェルのうちどのウェルに性能評価用試料が充填されているのか、性能評価用試料の種類、測定日時、測定者の氏名等が挙げられる。
 識別手段に記憶された情報は、各種読取手段を用いて読み取ることができ、例えば、識別手段がバーコードであれば読取手段としてバーコードリーダーが用いられる。
 識別手段に情報を書き込む方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、手入力、ウェルに性能評価用試料を分注する際に核酸Aの特定の分子数を計数する液滴形成装置から直接データを書き込む方法、サーバに保存されているデータの転送、クラウドに保存されているデータの転送等が挙げられる。
[その他の部材]
 その他の部材は、特に限定されず、目的に応じて適宜選択することができ、例えば、密閉部材等が挙げられる。
 本実施形態のデバイスは、ウェルへの異物混入又は充填物の流出等を防ぐために、密閉部材を有することが好ましい。密閉部材としては、少なくとも1つのウェルを密閉可能であり、1つ1つのウェルを個別に密閉又は開封できるように、切り取り線により切り離し可能に構成してもよい。
 密閉部材の形状としては、ウェル内壁径と一致するキャップ状、ウェル開口部を被覆するフィルム状等が挙げられる。
 密閉部材の材質としては、例えば、ポリオレフィン樹脂、ポリエステル樹脂、ポリスチレン樹脂、ポリアミド樹脂等が挙げられる。密閉部材としては、全てのウェルを一度に密閉可能なフィルム状であることが好ましい。また、使用者の誤使用を低減化できるように再開封が必要なウェルと不必要なウェルとの接着強度が異なるように構成されていてもよい。
 本実施形態のデバイスは、一のウェルにおける核酸Aの特定の分子数と、他のウェルにおける核酸Aの特定の分子数とが全て同一であってもよいし、互いに異なる2以上であってもよい。前者の場合、具体的な分子数としては、例えば、全てのウェルの分子数が1分子の場合、5分子の場合、10分子の場合、20分子の場合、40分子の場合、80分子の場合、160分子の場合等が挙げられる。後者の場合、具体的な分子数としては、例えば、1、5、20、40、80、160の場合、1、2、3、4、5、6、7、8、9、10の場合、1、3、5、7、9の場合、2、4、6、8、10の場合等が挙げられる。また、ウェルの一部に核酸Aを含有させず、ネガティブコントロールとして用いてもよい。
 一のウェルにおける核酸Aの特定の分子数と、他のウェルにおける核酸Aの特定の分子数とが全て同一であるデバイスは、ウェル間の評価結果を比較しやすい。このため、遺伝子検査装置の性能評価のために好適に用いることができる。
 本実施形態のデバイスは、核酸Aの特定の分子数が異なる2以上のウェルのグループ(群)を有していてもよい。例えば、デバイスの基材が、複数のウェルを有するプレートである場合には、プレート上で各グループにより各グループ「領域」が形成される。なお、核酸Aの特定の分子数が異なる2以上のグループで形成される「領域」は、ウェル同士が隣接していてもよく、また、離れていてもよい。
 これにより、例えば、本実施形態のデバイスを用いて遺伝子検査装置による測定を行って得られた結果において、異なる位置の特定の分子数が同じウェルを比較し使用に適さないウェル(不適合ウェル)があった場合に、再度遺伝子検査装置の校正を行うか、実際のサンプルでは不適合ウェルにおけるサンプルを適用除外とするかの判断ができる。
 図22(a)は、本実施形態のデバイスの一例を示す斜視図である。図22(b)は、図22(a)のb-b’線における矢視断面図である。
 デバイス1は、基材6と、基材6に形成された複数の反応空間7を有しており、反応空間7に性能評価用試料1が充填されている。性能評価用試料1には、特定の分子数の核酸A(2)及び核酸B(3)が含まれる。図22(a)及び図22(b)の例では、反応空間はウェルである。また、ウェルの開口部が密閉部材で覆われていてもよい(図示せず)。
 また、例えば、各反応空間7に充填する核酸A(2)の特定の分子数の情報、核酸B(3)の分子数に対する核酸A(2)の分子数の比率A/Bの情報、その他の情報を記憶するICチップ又はバーコード(識別手段)が、密閉部材と基材6との間で且つウェルの開口部以外の位置に配置されていてもよい(図示せず)。識別手段がこの位置に配置されていることにより、例えば識別手段の意図しない改変等を防止することができる。また、デバイス1が識別手段を有することにより、識別手段を有しない一般のウェルプレートとの区別が可能である。このため、デバイスの取り違えを防止することができる。
<遺伝子検査装置の性能評価用デバイスの製造方法>
 ここで、複数の反応空間を有し、前記複数の反応空間の少なくとも一部に、性能評価用試料を含むデバイスの製造方法について説明する。
 本実施形態の製造方法は、核中に核酸Aを有する複数の細胞及び溶剤を含む細胞懸濁液を生成する細胞懸濁液生成工程と、細胞懸濁液を液滴として吐出することによりプレートのウェル内に液滴を順次着弾させる液滴着弾工程と、液滴の吐出後、かつ液滴のウェルへの着弾前に、液滴に含まれる細胞数をセンサによって計数する細胞数計数工程と、を含み、細胞懸濁液生成工程、液滴着弾工程及び細胞数計数工程において推定した核酸Aの分子数の確からしさを算出する工程、ウェル内の細胞から核酸Aを抽出する核酸抽出工程、出力工程、記録工程を含むことが好ましく、更に必要に応じてその他の工程を含む。
 液滴着弾工程は、上記「遺伝子検査装置の性能評価用試料の調製方法」の「核酸A充填工程」と同じである。よって、上記「遺伝子検査装置の性能評価用試料の調製方法」と同じ工程である、細胞懸濁液生成工程、液滴着弾工程、細胞数計数工程、確からしさを算出する工程、出力工程、記録工程については、その説明を省略する。
[核酸抽出工程]
 核酸抽出工程は、ウェル内の細胞から核酸Aを抽出する工程である。抽出とは、細胞膜や細胞壁等を破壊し、核酸をぬき出すことを意味する。細胞から核酸Aを抽出する方法としては、90℃以上100℃以下で熱処置する方法が知られている。90℃以下で熱処理するとDNAが抽出されない可能性があり、100℃以上で熱処理するとDNAが分解される可能性がある。界面活性剤を添加して熱処理することが好ましい。
 界面活性剤は、特に限定されず、目的に応じて適宜選択することができ、例えば、イオン性界面活性剤、非イオン性界面活性剤等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、添加量にもよるが、タンパク質を変性及び失活させない点から、非イオン性界面活性剤が好ましい。
 イオン性界面活性剤としては、例えば、脂肪酸ナトリウム、脂肪酸カリウム、アルファスルホ脂肪酸エステルナトリウム、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキル硫酸エステルナトリウム、アルキルエーテル硫酸エステルナトリウム、アルファオレフィンスルホン酸ナトリウム等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。中でも、脂肪酸ナトリウムが好ましく、ドデシル硫酸ナトリウム(SDS)がより好ましい。
 非イオン性界面活性剤としては、例えば、アルキルグリコシド、アルキルポリオキシエチレンエーテル(Brijシリーズ等)、オクチルフェノールエトキシレート(Totiton Xシリーズ、Igepal CAシリーズ、Nonidet Pシリーズ、Nikkol OPシリーズ等)、ポリソルベート類(Tween20等のTweenシリーズ等)、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、アルキルマルトシド、ショ糖脂肪酸エステル、グリコシド脂肪酸エステル、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、脂肪酸モノグリセリド等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を併用してもよい。中でも、ポリソルベート類が好ましい。
 界面活性剤の含有量としては、ウェル中の細胞懸濁液全量に対して、0.01質量%以上5.00質量%以下が好ましい。含有量が、0.01質量%以上であると、DNA抽出に対して効果を発揮でき、5.00質量%以下であると、PCRの際に増幅の阻害を防止することができるため、両方の効果を得られる数値範囲として上記0.01質量%以上5.00質量%以下が好適である。
 細胞壁を保有している細胞に関しては、上記の方法で十分にDNA抽出されないことがある。その場合、例えば、浸透圧ショック法、凍結融解法、酵素消化法、DNA抽出用キットの使用、超音波処理法、フレンチプレス法、ホモジナイザー等の方式等が挙げられる。中でも、抽出DNAのロスが少ないことから、酵素消化法が好ましい。
[その他の工程]
 その他の工程は、特に限定されず、目的に応じて適宜選択することができ、例えば、酵素失活工程、試薬を添加する工程等が挙げられる。
 酵素失活工程は、酵素を失活させる工程である。酵素としては、例えば、DNase、RNase、核酸抽出工程において核酸を抽出するために使用した酵素等が挙げられる。酵素を失活させる方法は、特に限定されず、目的に応じて適宜選択することができ、公知の方法を好適に用いることができる。
 試薬としては、上記「遺伝子検査装置の性能評価用デバイス」において例示されたものと同様のものが挙げられる。
<遺伝子検査装置の性能評価方法>
 本実施形態の性能評価方法は、上記遺伝子検査装置の性能評価用デバイス(以下、単に「デバイス」と称する場合がある)を用い、デバイスにおけるPM値の情報を取得するPM値情報取得工程と、
 PM値の情報に基づき遺伝子検査装置の性能を評価する性能評価工程と、含み、更に必要に応じてその他の工程を含む。
[PM値情報取得工程]
 PM値情報取得工程では、評価対象である遺伝子検査装置を用いて、性能評価用試料の核酸配列解析を行い、PM値の情報を取得する。核酸配列解析における処理としては、遺伝子検査装置の種類に応じて、適宜選択することができる。具体的には、例えば、性能評価用試料中の核酸を断片化して、断片化された核酸を回収した後(前処理)、回収された核酸の配列を読み取る(シークエンシング)。
 シーケンシングに用いるシーケンシングプライマーは特に限定されず、目的の領域を増幅させるのに適した配列に基づいて、適宜設定される。また、シーケンシングに用いられる試薬についても、用いるシーケンシング技術及びシーケンサーの種類に応じて好適な試薬を選択すればよい。
(前処理)
 前処理として具体的には、性能評価用試料中の核酸A及び核酸Bをシーケンサーで配列を読み取るための長さに断片化する。試料DNAの断片化は、例えば、超音波処理や、核酸を断片化する試薬による処理等の公知の方法によって行うことができる。得られるDNA断片(核酸断片)は、例えば、数十から数百bpの長さであり得る。
 或いは、前処理の別の例としては、PCR反応を用いたターゲットシーケンスの場合、断片化は行わず、ターゲットとなる配列(核酸A及び核酸B)が増幅するように組まれたプライマーを用いて性能評価用試料をPCR反応に供する。得られるPCR産物は、数十から数百bpの長さであり得る。この際に前記プライマーにアダプター配列を付加するTailed PCRを行うことで、下記のアダプター付加ステップを兼ねることができる。
 続いて、得られたDNA断片の両端(3’末端及び5’末端)に、使用するシーケンサーの種類やシーケンシングプロトコルに対応するアダプター配列を付与する。但し、本工程は、シーケンサーが、イルミナ社のシーケンサー、又は、イルミナ社のシーケンサーと同様の方式を採用する装置である場合には必須の工程であるが、他の種類のシーケンサーを用いる場合には、省略できる場合もある。
 アダプター配列は、後の工程においてシーケンシングを実行するために使用する配列である。一実施形態において、エマルジョンPCRに供するためのビーズに固定化されたオリゴDNAにハイブリダイズするための配列であり得る。別の実施形態において、Bridge PCRに供するためのフローセルに固定化されたオリゴDNAにハイブリダイズするための配列であり得る。
 DNA断片の両端に直接アダプター配列を付加してもよい。DNA断片へのアダプター配列の付加は、当該分野において公知の手法を用いることができる。例えば、DNA配列を平滑化し、アダプター配列をライゲーションしてもよい。
(シークエンシング)
 シークエンシング技術としては、公知の方法を適宜選択して用いることができ、具体的には、上記「遺伝子検査装置の性能評価用試料」において例示されたシークエンシング技術と同じものが挙げられる。
 一実施形態において、エマルジョンPCR及びイオン半導体シークエンシングによるシークエンシング法について以下に説明する。
 まず、アダプター配列を付加したDNA断片と、アダプター配列と相補的な短いオリゴDNAが結合したビーズと、を1:1で結合するように混合し、増幅試薬とともに油中水滴エマルジョンに内包させて、オイル中にビーズ1つとDNA断片1つだけを内包するマイクロリアクターを形成する。これにより、各DNA断片は他の配列が混ざることなく、ビーズ上で数百万コピーにまで増幅される。
 次いで、エマルジョンを破壊してビーズを濃縮し、ビーズを半導体シーケンシングチップ上のマイクロウェル内に入れて配列解析を行う。マイクロウェル上ではアダプターに相補的なプライマーから、DNAポリメラーゼによる伸長反応が行われる。この際、ポリメラーゼによってヌクレオチドがDNAに取り込まれる過程で水素イオンが放出されるため、検出可能なpH変化を示す。半導体シーケンシングチップ上のマイクロウェルには、DNA分子が1ウェルあたり約100万コピー入る。このチップに新しいヌクレオチドがイオン半導体シーケンサー(例えば、Ion Personal Genome Machine(PGM(登録商標)シーケンサー等)によって次々と加えられる。添加されたヌクレオチドがマイクロウェル中のDNAの配列と相補的な配列になっている場合、このヌクレオチドがDNAに取り込まれ、水素イオンが放出される。その結果、ウェル内のpHが変化し、イオンセンサーがこれを検出する。このように検出された化学情報が直接デジタル情報に変換される。DNA鎖に同じ塩基が2つ連続して存在すると、電荷は倍になり、チップは2塩基として検出する。次に加えられたヌクレオチドがテンプレートに一致しない場合は、電荷の変化が記録されず、塩基も読み取られない。このように、イオン半導体シーケンシングシステムは、塩基を直接検出するためスキャナやカメラ、光源等を必要とせず、各塩基の取り込みを数秒で記録するためランの所要時間が大幅に短縮される。
 別の実施形態において、エマルジョンPCR及びパイロシークエンシングによるシークエンシング法について以下に説明する。
 エマルジョンPCRの手順については、上記「エマルジョンPCR及びイオン半導体シークエンシングによるシークエンシング法」と同様であり、次いで、エマルジョンを破壊してビーズを濃縮し、ビーズ1つが収まる穴が無数に開いたピコタイタープレート上に載せて配列解析を行う。プレート上ではアダプターに相補的なプライマーから、DNAポリメラーゼによる伸長反応が行われる。この際、伸長のための材料としてdATPのみを添加した反応、dGTPのみを添加した反応、というようにdNTPをひとつずつ入れ替えていく。伸長反応が起こればピロリン酸が遊離するため、ルシフェラーゼによる発光反応で検出でき、核酸の配列情報が得られる。
 別の実施形態において、Bridge PCR及びシークエンシング-バイ-シンセシスによるシークエンシング法について以下に説明する。
 まず、DNA断片の配列をフローセルにアプライする。次いで、フローセル上において、Bridge PCR法により、解析対象となるDNA断片を増幅する。すなわち、解析対象となるDNA断片は、上述した前処理によって、両末端に2種類の異なるアダプター配列、このDNA断片を1本鎖にし、5’末端側のアダプター配列をフローセル上に固定させる。
 フローセル上には予め5’末端側のアダプター配列が固定されており、DNA断片の3’末端側のアダプター配列が、フローセル上の5’末端側のアダプター配列と結合することにより、橋渡しをしたような状態となり、ブリッジが形成される。
 この状態でDNAポリメラーゼによってDNA伸長反応を行い、変性させると、2本の1本鎖DNA断片が得られる。
 このようなブリッジの形成、DNA伸長反応及び変性をこの順に繰り返すことにより、多数の1本鎖DNA断片を局所的に増幅固定させて、クラスターを形成することができる。
 次いで、クラスターを形成する1本鎖DNAを鋳型として、シークエンシング-バイ-シンセシスにより、配列を読み取る。
 具体的には、まず、フローセル上に固定された1本鎖DNAに対し、DNAポリメラーゼ、及び、蛍光標識され、3’末端側がブロックされたdNTPを添加し、さらに、シーケンスプライマーを添加する。
 シーケンスプライマーは、例えば、アダプター配列の一部分にハイブリダイズするように設計されていればよい。換言すれば、シーケンスプライマーは、試料DNA由来のDNA断片を増幅するように設計されていればよく、インデックス配列を付加した場合には、さらにインデックス配列を増幅するように設計されていればよい。
 シーケンスプライマーを添加後、DNAポリメラーゼによって3’末端ブロック蛍光dNTPの1塩基伸長反応を行う。3’末端側がブロックされたdNTPを用いるため、1塩基分伸長したところで、ポリメラーゼ反応は停止する。そして、DNAポリメラーゼを除去し、1塩基伸長した1本鎖DNAに対し、レーザー光により塩基に結合している蛍光物質を励起させて、そのときに起こる発光を写真として記録する。
 写真は、蛍光顕微鏡を用いて、4種類の塩基を決定させるために、波長フィルタを変更しながら、A、C、G、Tそれぞれに対応する蛍光色毎に撮影する。すべての写真を取り込んだ後、写真データから塩基を決定する。そして、蛍光物質および3’末端側をブロックしている保護基を除去して、次のポリメラーゼ反応に進む。この流れを1サイクルとして、2サイクル目、3サイクル目と繰り返していくことにより、全長をシーケンシングすることができる。
 これらのシークエンシングにより得られたリード配列情報を得る。リード配列情報は、シーケンサーで読み取られた塩基配列を示すデータである。リード配列情報には、読み取られた配列と共に、配列中の各塩基のクオリティスコアが含まれていてもよい。
[性能評価工程]
 性能評価工程では、核酸配列解析を評価する。核酸配列解析の評価は、PM値(PMスコアともいう)等の値に基づいて行うことが好ましい。実施例において後述するように、発明者は、特に、PM値のばらつきが、遺伝子検査装置の性能を精度よく評価する指標として有用であることを見出した。
 PM値とは、リード配列情報から計算により算出されるものであって、Plasma Mutation scoreのことであり、10万リードあたりの各変異のリード数で定義される。PM値が小さいことは核酸A量が少ないことを示し、PM値が大きいことは核酸A量が多いことを示す。本実施形態の性能評価方法において、PM値のばらつきとは、複数の反応空間内で同条件の核酸配列解析を行った場合に、各反応空間で求められたPM値同士のばらつきをいう。PM値のばらつきが小さいことは遺伝子検査装置の性能が高いことを意味する。さらに、遺伝子検査装置での解析の精度が良好であることを意味する。一方、PM値のばらつきが大きいことは前処理条件やシークエンス条件が最適な条件で行われなかったことを意味する。
<遺伝子検査装置の性能評価プログラム及び性能評価装置>
 本実施形態の性能評価プログラムは、上記デバイスを用いて、デバイスにおけるPM値の情報を取得するPM値情報取得ステップと、
 PM値の情報に基づき遺伝子検査装置の性能を評価する性能評価ステップと、含み、更に必要に応じてその他の工程を含む。
 本実施形態の性能評価装置は、上記デバイスを用いて、デバイスにおけるPM値の情報を取得するPM値情報取得部と、
 PM値の情報に基づき遺伝子検査装置の性能を評価する性能評価部と、含み、更に必要に応じてその他の工程を含む。
 本実施形態の性能評価装置における制御部等が行う制御は、上述した遺伝子検査装置の性能評価方法を実施することと同義であるので、本実施形態の性能評価装置の説明を通じて遺伝子検査装置の性能評価方法の詳細についても明らかにする。また、本実施形態の性能評価プログラムは、ハードウェア資源としてのコンピュータ等を用いることにより、遺伝子検査装置の性能評価装置が実現することから、本実施形態の性能評価装置の説明を通じて本実施形態の性能評価プログラムの詳細についても明らかにする。
[PM値情報取得ステップ及び情報取得部]
 PM値の情報を取得するステップは、上述した、デバイスを用いたPM値の情報を取得する工程(PM値情報取得工程)であり、情報取得部により実施される。PM値の情報は、上述したデバイスを用い、遺伝子検査装置において核酸配列の解析(シークエンシング)を行うことにより求めることができる。
 PM値の情報としては、PM値、PM値のばらつき等が挙げられる。これらの情報は1種を単独で評価に用いてもよいし、2種以上を組み合わせて評価に用いてもよい。PM値のばらつきについては上述したものと同様である。PM値のばらつきとしては、例えば標準偏差、CV値等が挙げられる。
(評価工程及び評価部)
 評価工程は、PM値の情報に基づき遺伝子検査装置の性能を評価する工程であり、評価部により実施される。
 例えば、定性的な評価では、上述したデバイスを用い、遺伝子検査装置において核酸配列の解析(シークエンシング)を行なって、PM値を測定し、平均PM値を算出してもよい。各ウェルのPM値が平均PM値の10%以内であれば「○」、各ウェルのPM値が平均PM値の10%より大きい場合を「×」として、面内特性を評価することができる。
 また、本実施形態のデバイスを用い、一定期間の計測を行うことにより、核酸配列の解析の情報の経時変化を得ることができる。それによって、面内特性と同様に、例えば、各ウェルのPM値が平均PM値の10%を超える場合は、遺伝子検査装置の校正を行うか、その計測場所を使用しないという対応をとることができる。また、配置された特定の分子数が絶対値であることから、同じ特定の分子数を配置したデバイスを用いることにより、遺伝子検査装置間の性能を比較することができる。
 定量的な評価では、本実施形態のデバイスを用い、一定期間の計測を行うことにより、核酸配列の解析の情報の経時変化を得ることができる。それによって、面内特性と同様に、品質管理値から逸脱した数値が得られた場合は、遺伝子検査装置の校正を行うか、その計測場所を使用しないという対応をとることができる。また、配置された分子数が絶対値であることから、同じ分子数を配置したデバイスを用いることにより、遺伝子検査装置間の性能を比較することができる。
(その他の工程及びその他の部)
 その他の工程及びその他の部は特に限定されず、目的に応じて適宜選択することができ、例えば、表示工程及び表示部等が挙げられる。
 本実施形態の性能評価プログラムによる処理は、性能評価装置を構成する制御部を有するコンピュータを用いて実行することができる。以下、性能評価装置のハードウェア構成及び機能構成について説明する。
(性能評価装置のハードウェア構成)
 図23は、遺伝子検査装置の性能評価装置100のハードウェア構成の一例を示すブロック図である。図23に示すように、性能評価装置100は、CPU(Central Processing Unit)101、主記憶装置102、補助記憶装置103、出力装置104、入力装置105、通信インターフェイス(通信I/F)106の各部を有する。これらの各部は、バス107を介してそれぞれ接続されている。
 CPU101は、種々の制御や演算を行う処理装置である。CPU101は、主記憶装置102等が記憶するOS(Operating System)やプログラムを実行することにより、種々の機能を実現する。すなわち、CPU101は、遺伝子検査装置の性能評価プログラムを実行することにより、遺伝子検査装置の性能評価装置100の制御部130として機能する。
 また、CPU101は、遺伝子検査装置の性能評価装置100全体の動作を制御する。なお、ここでは、性能評価装置100全体の動作を制御する装置をCPU101としたが、これに限ることなく、例えば、FPGA(Field Programmable Gate Array)等としてもよい。
 遺伝子検査装置の性能評価プログラムや各種データベースは、必ずしも主記憶装置102や、補助記憶装置103等に記憶されていなくともよい。インターネット、LAN(Local Area Network)、WAN(Wide Area Network)等を介して、遺伝子検査装置の性能評価装置100に接続される他の情報処理装置等に遺伝子検査装置の性能評価プログラムや各種データベースを記憶させてもよい。遺伝子検査装置の性能評価装置100がこれら他の情報処理装置から遺伝子検査装置の性能評価プログラムや各種データベースを取得して実行するようにしてもよい。
 主記憶装置102は、各種プログラムを記憶し、各種プログラムを実行するために必要なデータ等を記憶する。主記憶装置102は、図示しない、ROM(Reed Only Memory)と、RAM(Random Access Memory)と、を有する。
 ROMは、BIOS(Basic Input/Output System)等の各種プログラム等を記憶している。RAMは、ROMに記憶された各種プログラムがCPU101により実行される際に展開される作業範囲として機能する。RAMとしては、特に制限はなく、目的に応じて適宜選択することができる。RAMとしては、例えば、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)等が挙げられる。
 補助記憶装置103としては、各種情報を記憶できれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ソリッドステートドライブ、ハードディスクドライブ等が挙げられる。また、補助記憶装置103は、例えば、CD(Compact Disc)ドライブ、DVD(Digital Versatile Disc)ドライブ、BD(Blu-ray(登録商標) Disc)ドライブ等の可搬記憶装置としてもよい。
 出力装置104としては、ディスプレイやスピーカー等を用いることができる。ディスプレイは、特に限定されず、適宜公知のものを用いることができ、例えば、液晶ディスプレイ、有機ELディスプレイが挙げられる。
 入力装置105は、検査装置の性能評価装置100に対する各種要求を受け付けることができれば、特に限定されず、適宜公知のものを用いることができ、例えば、キーボード、マウス、タッチパネル等が挙げられる。
 通信インターフェイス(通信I/F)106は、特に限定されず、適宜公知のものを用いることができ、例えば、無線又は有線を用いた通信デバイス等が挙げられる。
 以上のようなハードウェア構成によって、遺伝子検査装置の性能評価装置100の処理機能を実現することができる。
(性能評価装置の機能構成)
 図24は、遺伝子検査装置の性能評価装置100の機能構成の一例を示す図である。図24に示すように、性能評価装置100は、入力部110、出力部120、制御部130、記憶部140を有する。
 制御部130は、情報取得部131と、評価部132とを有する。制御部130は、性能評価装置100全体を制御する。記憶部140は、情報データベース141、評価結果データベース142を有する。以下、「データベース」を「DB」という場合がある。情報取得部131は、記憶部140の情報DB141で記憶されているデータを用い、核酸配列の解析の情報を取得する。情報DB141には、例えば、上述したように予め実験により得られたPM値等のデータが記憶されている。
 なお、デバイスに紐付けられている情報が、情報DB141に記憶されていてもよい。DBへの入力は、性能評価装置100に接続される他の情報処理装置から行ってもよく、作業者が行ってもよい。
 評価部132は、核酸配列の解析の情報に基づき、遺伝子検査装置の性能を評価する。遺伝子検査装置の性能を評価する具体的な手法は、上述した通りである。評価部132で求められた、遺伝子検査装置の性能評価結果は、記憶部140の評価結果DB142に記憶される。
 続いて、本実施形態の性能評価プログラムの処理手順を示す。図25は、遺伝子検査装置の性能評価装置100の制御部130における性能評価プログラムの処理手順を示すフローチャートである。
 ステップS110では、性能評価装置100の制御部130の情報取得部131は、記憶部140の情報DB141に記憶された核酸配列の解析の情報データを取得し、処理をS111に移行する。
 ステップS111では、性能評価装置100の制御部130の評価部132は、取得した情報に基づき遺伝子検査装置の性能を評価し、処理をS112に移行する。
 ステップS112では、性能評価装置100の制御部130は、得られた遺伝子検査装置の性能評価結果を記憶部140の評価結果DB142へ保存し、本処理を終了する。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(低コピー数の核酸の充填及び充填精度の評価)
1.低コピー数の核酸の調製
(1)人工核酸の設計
 後述する(2)において酵母に組み込むための人工核酸を作製した。人工核酸はEGFR遺伝子のエキソン18、19、20、21の領域と相同な配列を有し、EGFR遺伝子の変異解析時に同じプライマーで増幅しうるように設計した。各エキソンの配列の間には制限酵素サイトを挿入した。人工核酸は検出のターゲットとなる5種の変異を含む。組み込んだ変異はEGFR遺伝子の著名な変異であるe19_deletion、T790M、C797S、L858R、及びL861Qの5種である。作製された人工核酸は、配列番号1で表される塩基配列からなる。
(2)低コピー数の核酸系列用酵母懸濁液の作製
(2-1)遺伝子組換え酵母の調製
 出芽酵母YIL015W BY4741(ATCC製、ATCC4001408)を、1コピーの特定核酸配列のキャリア細胞として使用し、組換え体を作製した。特定核酸配列としては、上記(1)で設計した人工核酸と選択マーカーであるURA3遺伝子とがタンデムに並ぶように導入されたプラスミドを予め作出した。当該プラスミドを用いて相同組換えによって、キャリア細胞のゲノムDNAのBar1遺伝子領域に1コピーの人工核酸を導入し、遺伝子組換え酵母を作製した。変異型EGFR遺伝子を有する組換え体を1種類作製した。
(2-2)遺伝子組換え酵母の培養及び細胞周期の制御
 50g/LのYPD培地(タカラバイオ株式会社製、CLN-630409)で培養した遺伝子組換え酵母90mLを分取した三角フラスコに、500μg/mLのα1-Mating Factor acetate salt(Sigma-Aldrich社製、T6901-5MG、以下、「αファクター」と称する場合がある)を含有するダルベッコリン酸緩衝生理食塩水(サーモフィッシャーサイエンティフィック株式会社製、14190-144、以下、「DPBS」とも称する場合とがある)900μLを添加し、バイオシェイカー(タイテック株式会社製、BR-23FH)を用いて、振盪速度250rpm、温度28℃にて2時間インキュベートし、酵母をG0/G1期に同調させた酵母懸濁液を得た。
(2-3)遺伝子組換え酵母の固定化
 遠心管(アズワン株式会社製、VIO-50R)に、G0/G1期で同調されていることを確認した酵母懸濁液45mLを移し、遠心分離機(株式会社日立製作所製、F16RN)を用いて、回転速度3000rpmにて5分間遠心し、上澄み液を除去して酵母ペレットを得た。得られた酵母ペレットにホルマリン(和光純薬工業株式会社製、062-01661)を4mL添加し、5分間静置後、遠心して上澄み液を除去して酵母ペレットを得た。次いで、得られた酵母ペレットにエタノール10mLを添加して懸濁させることにより、固定化済みの酵母懸濁液を得た。
(2-4)遺伝子組換え酵母の核染色
 固定化済み酵母懸濁液200μLを分取し、DPBSで一回洗浄した後、480μLのDPBSに再懸濁した。20mg/mLのRNase A(株式会社ニッポンジーン製、318-06391)20μLを添加後、バイオシェイカーを用いて37℃で2時間インキュベートした。その後、20mg/mLのプロテイナーゼK(タカラバイオ株式会社製、TKR-9034)25μLを添加し、プチクール(ワケンビーテック株式会社製、プチクール MiniT-C)を用いて50℃で2時間インキュベートした。最後に、5mM SYTOX Green Nucleic Acid Stain(サーモフィッシャーサイエンティフィック株式会社製、S7020)6μLを加えて、遮光下で30分間染色した。
(2-5)遺伝子組換え酵母の分散
 核染色を行なった酵母懸濁液を超音波ホモジナイザー(ヤマト科学株式会社製、LUH150)を用いて、出力30%、10秒間分散処理して酵母懸濁インクを得た。
2.低コピー数の核酸の充填
(1)酵母懸濁液の個数計測分注
 以下の方法を用いて、液滴中の酵母菌の数を計数(カウント)して、各ウェルに1細胞ずつ吐出して細胞数が既知のプレートを作製した。具体的には、液滴形成装置(リコー製)を用いて、96プレート(「MicroAmp 96-well Reaction plate」(商品名)、Thermofisher社製)の各ウェルに、液滴吐出手段として圧電印加方式の吐出ヘッド(リコー製)を用いて10Hzにて酵母懸濁インクを順次吐出した。
 吐出された液滴中の酵母の受光手段としては高感度カメラ(東京インスツルメンツ株式会社製、sCMOS pco.edge)を用いて撮影した。光源としてはYAGレーザー(スペクトラ・フィジックス社製、Explorer ONE-532-200-KE)を用い、撮影した画像の粒子計数手段として画像処理ソフトウェアであるImage Jを用いて画像処理して細胞数を計数し、1細胞数の既知プレートを作製した。
(2)核酸抽出
 5ng/μLのColE1 DNA(和光純薬工業株式会社製、312-00434)を含有するTris-EDTA(TE) Buffer(以下、「ColE1/TE」と称する場合がある)に、Zymolyase(R) 100T(ナカライテスク株式会社製、07665-55)を1mg/mLとなるように添加して、Zymolyase溶液を調製した。
 作製した細胞数既知プレートの各ウェルにZymolyase溶液を4μL添加し、37.2℃にて30分間インキュベートすることにより、細胞壁溶解(核酸抽出)後、95℃で2分間熱処理して、参照デバイスを作製した。
(3)不確かさの算出
 次に、1細胞数の既知プレート(参照デバイス)から得られる結果の信頼性を考慮するために、1細胞数における不確かさを算出した。なお、特定コピー数毎に以下に示す方法を用いることにより、様々なコピー数における不確かさを算出することができる。
 液滴中の細胞数は、吐出手段より吐出された液滴の画像を解析し計数した液滴中の細胞数と、吐出手段で吐出した液滴をスライドガラスに着弾させ着弾した液滴毎に顕微鏡観察し得られた細胞数とを用いた。
 細胞中の核酸コピー数(細胞周期)は、細胞周期のG1期に該当する細胞の割合(99.5%)、及びG2期に該当する細胞の割合(0.5%)を用いて算出した。
 ウェル内の細胞数は、吐出した液滴がウェル内に着弾する数を計数したが、96サンプルの計数においてすべての液滴がウェル内に着弾していたため、ウェル内の細胞数の要因は不確かさの計算から除外した。
 コンタミネーションは、インクのろ液4μLをリアルタイムPCRで細胞中の核内の導入された核酸以外の核酸がインク液中に混入していないか3回の試行を行い確認した。その結果、3回すべてにおいて検出下限値となったため、コンタミネーションの要因についても不確かさの計算から除外した。
 不確かさは各要因の測定値から標準偏差を求め、感度係数を乗じて測定量の単位に統一した標準不確かさ(以下、「標準不確かさ(測定量の単位)」と称する場合がある)を平方和法により合成標準不確かさを求めた。合成標準不確かさでは、正規分布の約68%の範囲の値しか含まれないため、合成標準不確かさを2倍した拡張不確かさとすることにより正規分布の約95%の範囲を考慮した不確かさを得ることができる。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
 表2において、「記号」とは不確かさの要因に対応付けた任意の記号を意味する。「値(±)」とは、平均値の実験標準偏差であり、算出した実験標準偏差をデータの数の平方根の値で除したものである。「確率分布」とは、不確かさの要因がもつ確率分布であり、Aタイプの不確かさ評価の場合には空欄とし、Bタイプの不確かさ評価には、正規分布又は矩形分布のいずれかを記入する。「除数」とは、それぞれ要因から得られる不確かさを正規化する数を意味する。「標準不確かさ」とは「値(±)」を「除数」で除した値である。「感度係数」とは、測定量の単位に統一するために用いられる値を意味する。
 次に、ウェルに充填した核酸試料の平均特定コピー数及び不確かさを算出した。結果を表3に示す。変動係数CV値は不確かさの値を平均特定コピー数で除することにより算出した。
Figure JPOXMLDOC01-appb-T000007
 特定コピー数が1、即ち、1コピーの核酸(1つの酵母)をウェルに分注する精度は、±0.1281コピーであることが確かめられた。ウェルに1コピー以上を充填する場合には、特定コピー数の核酸が充填される精度は、この精度の積み重ねにより決定されると考えられる。
 以上の結果から、得られた拡張不確かさを測定のばらつきの指標として、デバイスのデータとして記憶させることで、実験で使用する者が不確かさの指標をウェル毎の測定結果の信頼性の判断基準として用いることができる。また、上記の信頼性の判断基準を用いることにより、分析検査の性能評価を高精度に行うことができる。
(4)ウェルへの不確かさの値付け
 次いで、表2において算出された不確かさ(又は変動係数)を各ウェルへ値付けした。
 以上により、低濃度核酸系列の平均核酸コピー数、その不確かさ及び変動係数を算出し、各ウェルへの値付けをすることができた。
[実施例2]
(EGFR遺伝子の変異解析)
1.超低アレル頻度の試料の調製
 試料充填用ウェルに、実施例1で設計した人工核酸(変異型EGFR遺伝子)を含む1コピー酵母を、既定のコピー数となるように実施例1と同様の手順を用いて充填した。既定のコピー数としては、e19_deletionの変異解析に用いるウェルでは53コピー、T790M及びC797Sの変異解析に用いるウェルではそれぞれ64コピー、L858R及びL861Qの変異解析に用いるウェルではそれぞれ7コピーとした。
 次いで、酵母を充填した試料充填用ウェルにHuman genomic DNA(プロメガ社製)を4.0μL(7.5ng/μL)ずつ充填した。この充填量は正常型EGFR遺伝子が約1万コピー含まれる量に相当する。充填後、混合することで、試料充填用ウェル中に0.07%、0.53%、又は0.64%の超低アレル頻度である試料を調製した。また、実施例1で設計した人工核酸(変異型EGFR遺伝子)を導入した酵母のゲノムDNAを手希釈にて各コピー数(7、53、64コピー)となるよう、ウェルに加えた試料を対照として用意した。これにHuman genomic DNA(プロメガ社製)を上記と同様に添加し、手希釈試料(対照群)とした。なお、対照群で用いた酵母のゲノムDNAはGenとるくん(登録商標)酵母用)High Recovery(タカラバイオ社製)を用いて抽出した。
2.PCR法による核酸増幅
 次いで、「1.」で調製された超低アレル頻度である試料及び手希釈試料について、「1.」と同様の方法を用いて核酸抽出に供した。次いで、抽出された核酸について、それぞれ試料充填用ウェル内で、PCR法による増幅反応に供した。反応液の組成は、Nuclease free water:25.0μL、10×KOD-Plus-Buffer:5.0μL、2mM dNTPs:5.0μL、25mM MgSO:2.0μL、PCR用プライマーF(10μM)2.0μL、PCR用プライマーR(10μM)2.0μL、KOD-Plus(1U/μL):1.0μL、Human genomic DNA(7.5ng/μL):4.0μL、変異型EGFR遺伝子(Zymolyase0.4Uを含む):4.0μLの合計50μLであった。PCR用プライマーは各エキソンに24種類ずつのインデックスを付与し、そのインデックスを付けたプライマーを使用した。具体的には、以下の塩基配列からなるプライマーを使用した。なお、インデックス配列(INDEX)は、任意の5塩基からなる配列である。
Figure JPOXMLDOC01-appb-T000008
 DNAのPCR法による増幅反応はT100TM Thermal Cycler(Bio-rad社製)を用いて行った。具体的な反応条件としては、まず、94℃で2分間のインキュベートを行った。その後、94℃で15秒間、50℃で30秒間、68℃で15秒間の3ステップからなる40回の温度サイクルを行った。最後に10℃まで冷却し、反応を終了させた。
3.QIAquickによるPCR産物の精製
 QIAquick(QIAGEN社製)を用いてPCR産物の精製を行った。操作はプロトコルに従った。この際、続くION chefシステムを利用したエマルジョンPCRのためにPCR反応容器に移し替えた。
4.濃度測定
 PCR産物の濃度測定はQubit3.0(Thermo Fisher社製)を用いた。測定した濃度を基準に、全サンプルが等濃度になるように1.5mLチューブに分注し、Nuclease-Free Water(NFW)を用いて12pMに希釈した。
5.ION chefシステムを利用したエマルジョンPCR及びチップへのローディング
 ION chefシステムのプロトコルに従って、エマルジョンPCR反応及びチップへのローディングを行った。
6.ION PGMによるシーケンス
 ION PGMのプロトコルに従って、シーケンス解析を行なった。以下、超低アレル頻度である試料(以下、総じて「IJ群」と称する場合がある)を3ラン(各n=24、5領域)、手希釈の試料を1ラン(各n=24、5領域)実施した。
7.データ取得及び解析
 EGFRリキッド(参考文献2:“Kukita Y, et. al., “Quantitative Identification of Mutant Alleles Derived from Lung Cancer in Plasma Cell-Free DNA via Anomaly Detection Using Deep Sequencing Data”, PLoS ONE, Vol. 8, Issue 11, e81468, 2013.)の手法に従って、データ取得及び解析を行なった。
8.考察
 図26はIJ群3ラン、手希釈試料(対照群、「manual群」と称する場合もある)1ランから得られたリード数をもとに計算したPMスコアを示した図である。なお、図26中において、IJ1~IJ3は、それぞれ1ラン目~3ラン目の解析結果を意味する。いずれのサンプルにおいてもIJ群のほうが、ばらつきが小さいことが明らかとなった。また、図27及び図28は、上記PMスコアを示す表であり、CV値で比較しても、すべての条件でIJ群のほうが、ばらつきが小さいことが明らかとなった。なお、「CV値」とは、標準偏差を平均値で除したものの百分率である。
 これらの結果は、手希釈で作製しえない低アレル頻度の試料をインクジェット法で正確に作製できることを示しており、liquid biopsyにおける標準試料としての妥当性及び再現性が示唆された。
[実施例3]
(EGFR遺伝子の変異解析の線形性の検討)
1.超低アレル頻度の試料の調製
 試料充填用ウェルに、実施例1で設計した人工核酸(変異型EGFR遺伝子)を含む1コピー酵母を、既定のコピー数となるように実施例1と同様の手順を用いて充填した。既定のコピー数としては、0,7,53,64,100コピーの5水準用意した。
 次いで、酵母を充填した試料充填用ウェルにHuman genomic DNA(プロメガ社製)を4.0μL(7.5ng/μL)ずつ充填した。この充填量は正常型EGFR遺伝子が約1万コピー含まれる量に相当する。充填後、混合することで、試料充填用ウェル中に0.07%、0.53%、0.64%、1.00%の超低アレル頻度である試料を調製した。
2.PCR法による核酸増幅
 実施例2に記載の方法と同様の方法を用いて、核酸増幅を行った。
3.QIAquickによるPCR産物の精製
 実施例2に記載の方法と同様の方法を用いて、PCR産物を精製した。
4.濃度測定
 実施例2に記載の方法と同様の方法を用いて、濃度を測定した。
5.ION chefシステムを利用したエマルジョンPCR及びチップへのローディング
 実施例2に記載の方法と同様の方法を用いて、ION chefシステムを利用したエマルジョンPCR及びチップへのローディングを行った。
6.ION PGMによるシーケンス
 ION PGMのプロトコルに従って、シーケンス解析を行なった。シーケンスは超低アレル頻度である試料(以下、総じて「IJ群」と称する場合がある)を1ラン(各水準n=4、5水準(0,7,53,64,100)、2領域(T790M、L858R))実施した。
7.データ取得及び解析
 実施例2に記載の方法と同様の方法を用いて、データ取得及び解析を行なった。
8.考察
 図29は前記1ランから得られたリード数をもとに計算したPMスコアを示した図である。縦軸はPMスコア、横軸は各ウェルに導入したコピー数を表す。T790M、L858R共に、高い線形性を示すことが明らかとなった。黒い破線は導入したコピー数から期待されるPMスコアであり、2つの変異がこの線と一致しない理由は、変異型と野生型の配列で増幅効率又は検出効率が異なるためである。本実施例では、T790Mの変異型は野生型よりも増幅効率又は検出効率が良く、実際に導入したコピー数よりもPMスコアが高くなっている。L858Rは逆に増幅効率又は検出効率が悪く、期待するPMスコアよりも総じて低いスコアとなっている。
 これらの結果は、変異ごとに出力されるPMスコアが異なることを意味する。手希釈で作製しえない低アレル頻度の試料をインクジェット法で正確に作製できることにより、検査の特性を明らかにすることができた例である。
[実施例4]
(EGFR遺伝子の変異解析2)
 実施例2と同様の操作を、3名の異なる作業者、及び2つの異なる機器を用いて行い、その違いを可視化した。具体的な手順は以下に示すとおりである。
1.超低アレル頻度の試料の調製
 試料充填用ウェルに、実施例1で設計した人工核酸(変異型EGFR遺伝子)を含む1コピー酵母を、既定のコピー数となるように実施例1と同様の手順を用いて充填した。既定のコピー数としては、10コピー、30コピー、50コピー、100コピーの4水準のウェルを用意した。次いで、酵母を充填した試料充填用ウェルにHuman genomic DNA(プロメガ社製)を4.0μL(7.5ng/μL)ずつ充填した。この充填量は正常型EGFR遺伝子が約1万コピー含まれる量に相当する。充填後、混合することで、試料充填用ウェル中に0.1%、0.3%、又は0.5%、1.0%の超低アレル頻度である試料を調製した。
2.試料の配布
 「1.」で調整された超低アレル頻度である試料を、作業者A、Bにそれぞれ必要量配布した。この時必要量は作業者Aが各コピー数水準を72ウェルずつ、作業者Bが36ウェルずつとした。
3.PCR法による核酸増幅
 「2.」で配布した超低アレル頻度である試料について、それぞれ試料充填用ウェル内で、PCR法による増幅反応に供した。反応液の組成は、Nuclease free water:25.0μL、10×KOD-Plus-Buffer:5.0μL、2mM dNTPs:5.0μL、25mM MgSO4:2.0μL、PCR用プライマーF(10μM)2.0μL、PCR用プライマーR(10μM)2.0μL、KOD-Plus(1U/μL):1.0μL、Human genomic DNA(7.5ng/μL):4.0μL、変異型EGFR遺伝子(Zymolyase0.4Uを含む):4.0μLの合計50μLであった。PCR用プライマーは各エキソンに24種類ずつのインデックスを付与し、そのインデックスを付けたプライマーを使用した。具体的には、上記表4に示す塩基配列からなるプライマーを使用した。なお、インデックス配列(INDEX)は、任意の5塩基からなる配列である。
 DNAのPCR法による増幅反応はT100TM Thermal Cycler(Bio-rad社製)を用いて行った。具体的な反応条件としては、まず、94℃で2分間のインキュベートを行った。その後、94℃で15秒間、50℃で30秒間、68℃で15秒間の3ステップからなる40回の温度サイクルを行った。最後に10℃まで冷却し、反応を終了させた。
4.QIAquickによるPCR産物の精製
 QIAquick(QIAGEN社製)を用いてPCR産物の精製を行った。操作はプロトコルに従った。この際、続くION chefシステムを利用したエマルジョンPCRのためにPCR反応容器に移し替えた。
5.濃度測定
 PCR産物の濃度測定はQubit3.0(Thermo Fisher社製)を用いた。測定した濃度を基準に、全サンプルが等濃度になるように1.5mLチューブに分注し、Nuclease-Free Water(NFW)を用いて15nMに希釈した。以下、これをライブラリと称する場合がある。
6.ライブラリの送付
 作業者Aは「5.」まで行ったライブラリのうち、2ラン分にあたる量を作業者Cに送付した。作業者Cは受け取ったライブラリについて再度「5.」濃度計測を行った。
7.ION chefシステムを利用したエマルジョンPCR及びチップへのローディング
 作業者A、Bは機器1のION chefシステムを用いて、プロトコルに従って、エマルジョンPCR反応及びチップへのローディングを行った。
 作業者Cは機器2のION chefシステムを用いて、プロトコルに従って、エマルジョンPCR反応及びチップへのローディングを行った。
8.ION PGMによるシーケンス
 作業者A、Bは機器1のION PGMを用いて、プロトコルに従って、シーケンス解析を行なった。作業者Aは4ラン、作業者Bは2ラン実施した。
 作業者Cは機器2のION PGMを用いて、プロトコルに従って、シーケンス解析を行なった。作業者Cは2ラン実施した。その後、1ラン目に供したライブラリについて再度ランを行い、合計3ラン実施した。
9.データ取得及び解析
 EGFRリキッド(上記参考文献2参照)の手法に従って、データ取得及び解析を行なった。
10.考察
 図30は作業者A・機器1の4ラン、作業者B・機器1の2ラン、作業者C・機器2の3ランから得られたリード数をもとに計算したPMスコアを示した図である。なお、作業者Cの1ラン目と3ラン目は同一のライブラリを使用しているため、図上において実線でつなぎ、これを示してある。それぞれの水準の平均値、CVを以下の表5~表9に示す。CVが30%を越えた水準について、アスタリスクを付している。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 図30及び表5~表9に示すように、手希釈で作製しえない低アレル頻度の試料をインクジェット法で正確に作製した結果、作業者間、機器間における差を示すことができた。
[実施例5]
(EGFR遺伝子の変異解析の線形性の検討2)
1.超低アレル頻度の試料の調製
 試料充填用ウェルに、実施例1で設計した人工核酸(変異型EGFR遺伝子)を含む1コピー酵母を、既定のコピー数となるように実施例1と同様の手順を用いて充填した。既定のコピー数としては、10、30、50、100コピーの4水準用意した。
 次いで、酵母を充填した試料充填用ウェルにHuman genomic DNA(プロメガ社製)を4.0μL(7.5ng/μL)ずつ充填した。この充填量は正常型EGFR遺伝子が約1万コピー含まれる量に相当する。充填後、混合することで、試料充填用ウェル中に0.1%、0.3%、0.5%、1.0%の超低アレル頻度である試料を調製した。
2.PCR法による核酸増幅
 実施例2に記載の方法と同様の方法を用いて、核酸増幅を行った。
3.QIAquickによるPCR産物の精製
 実施例2に記載の方法と同様の方法を用いて、PCR産物を精製した。
4.濃度測定
 実施例2に記載の方法と同様の方法を用いて、濃度を測定した。
5.ION chefシステムを利用したエマルジョンPCR及びチップへのローディング
 実施例2に記載の方法と同様の方法を用いて、ION chefシステムを利用したエマルジョンPCR及びチップへのローディングを行った。
6.ION PGMによるシーケンス
 ION PGMのプロトコルに従って、シーケンス解析を行なった。シーケンスは超低アレル頻度である試料を1ラン(各水準n=6、4水準(10、30、50、100)、5領域(T790M、L861Q、C797S、E19_del、L858R))実施した。
7.データ取得及び解析
 実施例2に記載の方法と同様の方法を用いて、データ取得及び解析を行なった。
8.考察
 超低アレル頻度である試料1ランから得られたリード数を基に計算したPMスコアとアレル頻度の関係を示すグラフを図31(T790M、L861Q、C797S)及び図32(E19_del、L858R)に示す。図31及び図32において、縦軸はPMスコア、横軸はアレル頻度を表す。T790M、L861Q、C797S、E19_del、L858Rのすべてにおいて、高い線形性を示すことが明らかとなった。
[実施例6]
(核酸Aの計測値を用いた核酸Bのコピー数の決定方法)
 核酸Aに比して高コピー数である核酸Bのコピー数を正確に規定する一手法を検討した。複数水準の核酸AをqPCRに供し、その計測値をもとに回帰分析を行い、これを検量線とした。前記検量線に核酸Bのコピー数となる数値を代入し、これを核酸Aの検量線の外挿値とした。核酸Bも同様にqPCRに供し、この計測値と、前記核酸Aの検量線の外挿値を比較し、一定の合格基準内に前記核酸Bの計測値が含まれることを確認することにより、核酸Bのコピー数を規定した。具体的な手順を以下に示す。
1.超低アレル頻度の試料の調製
 核酸Aとなる試料充填用ウェルに、実施例1で設計した人工核酸(変異型EGFR遺伝子)を含む1コピー酵母を、既定のコピー数となるように実施例1と同様の手順を用いて充填した。既定のコピー数としては、10、30、50、100コピーの4水準用意した。各水準について、12ウェルずつ用意した。
 次いで、核酸Bとなる試料充填用ウェルにHuman genomic DNA(プロメガ社製)を4.0μL(7.5ng/μL)ずつ充填した。この充填量は正常型EGFR遺伝子が約1万コピー含まれる量に相当する。これを48ウェル用意した。
2.qPCR
 「1.」で用意した超低アレル頻度である試料について、各ウェル内で、qPCR法による増幅反応に供した。反応液の組成は、Nuclease free water:3.6μL、TaqMan(登録商標) Universal PCR Master Mix:10.0μL、qPCR用プライマーF(10μM)1.0μL、qPCR用プライマーR(10μM)1.0μL、TaqMan(登録商標) Probe:0.4μL、Human genomic DNA(7.5ng/μL)又は、変異型EGFR遺伝子(Zymolyase0.4Uを含む):4.0μLの合計20μLであった。qPCR用プライマー、TaqMan(登録商標) Probeは、以下の塩基配列からなるプライマーを使用した。
Figure JPOXMLDOC01-appb-T000014
 qPCRはQuantStudiotm 12K Flex Real-Time PCR System(ThermoFisher Scientific社製)を用いて行った。具体的な反応条件としては、50℃2分間のインキュベートを行った。その後、95℃10分間のインキュベートを行った。次いで、95℃30秒間、61℃1分間の2ステップからなる50回の温度サイクルを行った。最後に10℃まで冷却し、反応を終了させた。 
3.回帰分析及び外挿値の計算
 核酸Aが含まれる反応ウェルの10~100コピーのqPCRの計測結果(Cq値:quantification cycle)から回帰直線を求めた。コピー数の常用対数(底は10)をとり、1次関数で回帰直線を求めた。この回帰直線の式に、核酸Bのコピー数である10000コピーの常用対数4を代入し、外挿値とした。
 次いで、核酸が含まれる反応ウェルの10~100コピーに加え、核酸Bの10000コピーのCq値も含めた5水準について回帰直線を求めた。前記核酸Aのみの回帰直線と同様、コピー数の常用対数を取り、1次関数で回帰直線を求めた。
 図33の左図は、横軸をコピー数で表示したもの、図33の右図は横軸をコピー数の常用対数で表示したものである。
4.考察(外挿値と核酸Bの平均値の比較)
 前記外挿値は26.10となり、核酸BのCq値の平均値は25.91となった。この差は0.19であり、コピー数に直した際の差は20.19であり、約14%となった。
 以上の結果から、インクジェット法で正確にコピー数を規定した核酸Aを用いて得た計測値を用いて、核酸Bのコピー数を規定することができた。
 本発明は以下の態様を含む。
(1) 遺伝子検査装置の性能評価用試料であって、
 核酸Aと核酸Bとを含み、
 前記核酸Aと前記核酸Bは互いに異なる配列からなり、
 特定の分子数の前記核酸Aを含み、
 前記核酸Bを前記核酸Aの分子数よりも多く含み、
 前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定されている、試料。
(2) 前記核酸Aの分子数が1以上200以下である、(1)に記載の試料。
(3) 前記核酸A及び前記核酸Bの合計分子数が30000以下である、(1)又は(2)に記載の試料。
(4) 前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが10%以下である、(1)~(3)のいずれか一つに記載の試料。
(5) 前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが1%以下である、(1)~(4)のいずれか一つに記載の試料。
(6) 前記核酸A及び前記核酸Bが脊椎動物のDNAである、(1)~(5)のいずれか一項に記載の試料。
(7) 前記核酸A及び前記核酸BがヒトゲノムDNAである、(1)~(6)のいずれか一つに記載の試料。
(8) 前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定の遺伝子疾患の発生頻度と対応している、(1)~(7)のいずれか一つに記載の試料。
(9) 前記核酸Aが変異を有するEGFR遺伝子であり、前記核酸Bが変異を有しないEGFR遺伝子である、(8)に記載の試料。
(10) 前記核酸Aが、EGFR遺伝子のエキソン18、19、20及び21をタンデムに連結した配列を含む塩基配列からなる、(9)に記載の試料。
(11) 前記遺伝子検査装置が次世代シーケンサーである、(1)~(10)のいずれか一つに記載の試料。
(12) (1)~(11)のいずれか一つに記載の試料の調製方法であって、
 前記核酸Aを細胞の核中の核酸に組み込む組み込み工程と、
 容器中に前記核酸Aが核中の核酸に組み込まれた細胞を1つ含む液滴を作製し、当該液滴の個数を制御することにより特定の個数の細胞を充填する核酸A充填工程と、
 前記容器中に前記核酸Bを、前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定の比率となるように、充填する核酸B充填工程と、
を含む、調製方法。
(13) 前記細胞が、酵母又は哺乳動物の細胞である、(12)に記載の調製方法。
(14) 前記核酸B充填工程において、前記核酸Bの分子数を、吸光分析法、又はリアルタイムPCR法で測定する、(12)又は(13)に記載の調製方法。
(15) 前記核酸B充填工程において、前記核酸B及び分子数が互いに異なる複数の前記核酸AをリアルタイムPCR法で測定し、分子数が互いに異なる複数の前記核酸Aにより作成された検量線を用いて、前記核酸Bの分子数を決定する、(14)に記載の調製方法。
(16) 複数の反応空間を有し、
 前記反応空間の少なくとも一部に、(1)~(11)のいずれか一つに記載の試料を含む、遺伝子検査装置の性能評価用デバイス。
(17) (16)に記載の遺伝子検査装置の性能評価用デバイスを用いて、前記性能評価用デバイスにおけるPM値の情報を取得するPM値情報取得工程と、
 前記PM値の情報に基づき前記遺伝子検査装置の性能を評価する性能評価工程と、
を含む、遺伝子検査装置の性能評価方法。
(18) コンピュータに、
 (16)に記載の遺伝子検査装置の性能評価用デバイスを用いて、前記性能評価用デバイスにおけるPM値の情報を取得するPM値情報取得ステップと、
 前記Ct値の情報に基づき前記遺伝子検査装置の性能を評価する性能評価ステップと、
を実行させる、遺伝子検査装置の性能評価プログラム。
(19) (16)に記載の遺伝子検査装置の性能評価用デバイスを用いて、前記性能評価用デバイスにおけるPM値の情報を取得するPM値情報取得部と、
 前記PM値の情報に基づき前記遺伝子検査装置の性能を評価する性能評価部と、
を備える、遺伝子検査装置の性能評価装置。
 1…デバイス、2…核酸A、3…核酸B、4…性能評価用試料、5…性能評価用試料重点領域、6…基材、7…反応空間(ウェル)、10,10’,10C…吐出ヘッド(液滴吐出手段)、11,11a,11b,11c,11C,11’…液室、12,12C…メンブレン、13,13C…駆動素子、13a…電動機、13b,13c…圧電素子、20…駆動手段、30,260…光源、40…ミラー、60,61…受光素子、70…制御手段、71,101…CPU、72…ROM、73…RAM、74,106…I/F、75…バスライン、100…性能評価装置、102…主記憶装置、103…補助記憶装置、104…出力装置、105…入力装置、107…バス、111,111a,111b,111c,121…ノズル、112…電磁弁、115…大気開放部、200…コイル、250…マイクロ流路、255…検出器、255’…画像取得部、265,265’…レンズ、300,300a,300b,300c…細胞懸濁液、310,310’…液滴、350,350a,350b,350’,350”…細胞、400…分注装置、401,401A,401B,401C…液滴形成装置、700,700’…プレート、710…ウェル、800…ステージ、900…制御装置、L…光、Lf,Lf,Lf…蛍光。
特開2019-80501号公報

Claims (19)

  1.  遺伝子検査装置の性能評価用試料であって、
     核酸Aと核酸Bとを含み、
     前記核酸Aと前記核酸Bは互いに異なる配列からなり、
     特定の分子数の前記核酸Aを含み、
     前記核酸Bを前記核酸Aの分子数よりも多く含み、
     前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定されている、試料。
  2.  前記核酸Aの分子数が1以上200以下である、請求項1に記載の試料。
  3.  前記核酸A及び前記核酸Bの合計分子数が30000以下である、請求項1又は2に記載の試料。
  4.  前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが10%以下である、請求項1~3のいずれか一項に記載の試料。
  5.  前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが1%以下である、請求項1~4のいずれか一項に記載の試料。
  6.  前記核酸A及び前記核酸Bが脊椎動物のDNAである、請求項1~5のいずれか一項に記載の試料。
  7.  前記核酸A及び前記核酸BがヒトゲノムDNAである、請求項1~6のいずれか一項に記載の試料。
  8.  前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定の遺伝子疾患の発生頻度と対応している、請求項1~7のいずれか一項に記載の試料。
  9.  前記核酸Aが変異を有するEGFR遺伝子であり、前記核酸Bが変異を有しないEGFR遺伝子である、請求項8に記載の試料。
  10.  前記核酸Aが、EGFR遺伝子のエキソン18、19、20及び21をタンデムに連結した配列を含む塩基配列からなる、請求項9に記載の試料。
  11.  前記遺伝子検査装置が次世代シーケンサーである、請求項1~10のいずれか一項に記載の試料。
  12.  請求項1~11のいずれか一項に記載の試料の調製方法であって、
     前記核酸Aを細胞の核中の核酸に組み込む組み込み工程と、
     容器中に前記核酸Aが核中の核酸に組み込まれた細胞を1つ含む液滴を作製し、当該液滴の個数を制御することにより特定の個数の細胞を充填する核酸A充填工程と、
     前記容器中に前記核酸Bを、前記核酸Bの分子数に対する前記核酸Aの分子数の比率A/Bが特定の比率となるように、充填する核酸B充填工程と、
    を含む、調製方法。
  13.  前記細胞が、酵母又は哺乳動物の細胞である、請求項12に記載の調製方法。
  14.  前記核酸B充填工程において、前記核酸Bの分子数を、吸光分析法、又はリアルタイムPCR法で測定する、請求項12又は13に記載の調製方法。
  15.  前記核酸B充填工程において、前記核酸B及び分子数が互いに異なる複数の前記核酸AをリアルタイムPCR法で測定し、分子数が互いに異なる複数の前記核酸Aにより作成された検量線を用いて、前記核酸Bの分子数を決定する、請求項14に記載の調製方法。
  16.  複数の反応空間を有し、
     前記反応空間の少なくとも一部に、請求項1~11のいずれか一項に記載の試料を含む、遺伝子検査装置の性能評価用デバイス。
  17.  請求項16に記載の遺伝子検査装置の性能評価用デバイスを用いて、前記性能評価用デバイスにおけるPM値の情報を取得するPM値情報取得工程と、
     前記PM値の情報に基づき前記遺伝子検査装置の性能を評価する性能評価工程と、
    を含む、遺伝子検査装置の性能評価方法。
  18.  コンピュータに、
     請求項16に記載の遺伝子検査装置の性能評価用デバイスを用いて、前記性能評価用デバイスにおけるPM値の情報を取得するPM値情報取得ステップと、
     前記PM値の情報に基づき前記遺伝子検査装置の性能を評価する性能評価ステップと、
    を実行させる、遺伝子検査装置の性能評価プログラム。
  19.  請求項16に記載の遺伝子検査装置の性能評価用デバイスを用いて、前記性能評価用デバイスにおけるPM値の情報を取得するPM値情報取得部と、
     前記PM値の情報に基づき前記遺伝子検査装置の性能を評価する性能評価部と、
    を備える、遺伝子検査装置の性能評価装置。
PCT/JP2020/047471 2020-01-16 2020-12-18 遺伝子検査装置の性能評価用試料及びその調製方法、並びに、遺伝子検査装置の性能評価用デバイス、性能評価方法、性能評価プログラム及び性能評価装置 WO2021145140A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20913540.9A EP4092132A4 (en) 2020-01-16 2020-12-18 SAMPLE FOR EVALUATING THE PERFORMANCE OF A GENETIC TESTING APPARATUS, METHOD FOR PREPARING SAID SAMPLE, AND PERFORMANCE EVALUATION DEVICE, PERFORMANCE EVALUATION METHOD, PERFORMANCE EVALUATION PROGRAM, AND PERFORMANCE EVALUATION APPARATUS 'A GENETIC TESTING DEVICE
JP2021570701A JPWO2021145140A1 (ja) 2020-01-16 2020-12-18
CN202080091427.0A CN114929890A (zh) 2020-01-16 2020-12-18 用于评价基因检测装置的性能的样品、制备所述样品的方法、以及用于评价性能的设备、用于评价性能的方法、用于评价性能的程序和用于评价基因检测装置的性能的设备
US17/810,075 US20230011171A1 (en) 2020-01-16 2022-06-30 Sample for evaluating performance of genetic testing apparatus, method for preparing said sample, and device for evaluating performance, method for evaluating performance, program for evaluating performance, and apparatus for evaluating performance of genetic testing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-005315 2020-01-16
JP2020005315 2020-01-16
JP2020137596 2020-08-17
JP2020-137596 2020-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/810,075 Continuation US20230011171A1 (en) 2020-01-16 2022-06-30 Sample for evaluating performance of genetic testing apparatus, method for preparing said sample, and device for evaluating performance, method for evaluating performance, program for evaluating performance, and apparatus for evaluating performance of genetic testing apparatus

Publications (1)

Publication Number Publication Date
WO2021145140A1 true WO2021145140A1 (ja) 2021-07-22

Family

ID=76863975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047471 WO2021145140A1 (ja) 2020-01-16 2020-12-18 遺伝子検査装置の性能評価用試料及びその調製方法、並びに、遺伝子検査装置の性能評価用デバイス、性能評価方法、性能評価プログラム及び性能評価装置

Country Status (5)

Country Link
US (1) US20230011171A1 (ja)
EP (1) EP4092132A4 (ja)
JP (1) JPWO2021145140A1 (ja)
CN (1) CN114929890A (ja)
WO (1) WO2021145140A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542712A (ja) * 2010-07-29 2013-11-28 エフ.ホフマン−ラ ロシュ アーゲー 微生物核酸の定性的および定量的検出
JP2019080501A (ja) 2017-10-27 2019-05-30 シスメックス株式会社 品質評価方法、品質評価装置、プログラム、記録媒体、および品質管理試料
JP2019520800A (ja) * 2016-05-06 2019-07-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 分析標準及びその使用方法
JP2019216704A (ja) * 2017-11-21 2019-12-26 株式会社リコー デバイス
JP2020005315A (ja) 2013-06-20 2020-01-09 サターン ライセンシング エルエルシーSaturn Licensing LLC 表示装置
JP2020137596A (ja) 2019-02-27 2020-09-03 大王製紙株式会社 吸収性物品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018094183A1 (en) * 2016-11-17 2018-05-24 Seracare Life Sciences, Inc. Methods for preparing dna reference material and controls
CN107475387B (zh) * 2017-08-22 2020-12-04 上海格诺生物科技有限公司 用于检测片段化dna突变的质控品及其制备方法
CN108486158B (zh) * 2017-12-06 2020-11-17 上海泽因生物科技有限公司 基于酵母细胞的基因检测标准品的构建方法及其试剂盒
CN110484607A (zh) * 2019-03-22 2019-11-22 中国计量科学研究院 一种实时荧光定量pcr仪校准用标准物质及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542712A (ja) * 2010-07-29 2013-11-28 エフ.ホフマン−ラ ロシュ アーゲー 微生物核酸の定性的および定量的検出
JP2020005315A (ja) 2013-06-20 2020-01-09 サターン ライセンシング エルエルシーSaturn Licensing LLC 表示装置
JP2019520800A (ja) * 2016-05-06 2019-07-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 分析標準及びその使用方法
JP2019080501A (ja) 2017-10-27 2019-05-30 シスメックス株式会社 品質評価方法、品質評価装置、プログラム、記録媒体、および品質管理試料
JP2019216704A (ja) * 2017-11-21 2019-12-26 株式会社リコー デバイス
JP2020137596A (ja) 2019-02-27 2020-09-03 大王製紙株式会社 吸収性物品

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUKITA Y: "Quantitative Identification of Mutant Alleles Derived from Lung Cancer in Plasma Cell-Free DNA via Anomaly Detection Using Deep Sequencing Data", PLOS ONE, vol. 8, 2013, pages e81468
MOON S. ET AL.: "Drop-on-demand single cell isolation and total RNA analysis", PLOS ONE, vol. 6, 2011, pages e17455
See also references of EP4092132A4

Also Published As

Publication number Publication date
US20230011171A1 (en) 2023-01-12
EP4092132A4 (en) 2024-03-20
EP4092132A1 (en) 2022-11-23
CN114929890A (zh) 2022-08-19
JPWO2021145140A1 (ja) 2021-07-22

Similar Documents

Publication Publication Date Title
AU2018365934B2 (en) Device with specific number of cell(s) and nucleic acids in the wells and testing/calibration method using the device
JP6454434B1 (ja) 検査装置の性能評価用検査デバイス、検査装置の性能評価プログラム、検査装置の性能評価方法、及び検査装置の性能評価装置
JP7044114B2 (ja) 検出判定用デバイス
JP6446151B1 (ja) 検査デバイス及びデバイス
JP2019216704A (ja) デバイス
JP6897655B2 (ja) デバイス及び検査方法
JP7259279B2 (ja) デバイス、検査装置の性能評価プログラム、検査装置の性能評価方法、及び検査装置の性能評価装置
JP7322386B2 (ja) 検出判定方法、検出判定装置、検出判定プログラム、及びデバイス
EP3885450A1 (en) Carrier and testing method
WO2019103122A1 (en) Detection determining method, detection determining device, detection determining program, and device
WO2021145140A1 (ja) 遺伝子検査装置の性能評価用試料及びその調製方法、並びに、遺伝子検査装置の性能評価用デバイス、性能評価方法、性能評価プログラム及び性能評価装置
JP2019092506A (ja) デバイス、調製者の技能評価方法、調製者の技能評価プログラム、及び調製者の技能評価装置
EP3714062A1 (en) Detection determining method, detection determining device, detection determining program, and device
JP7317311B2 (ja) ライブラリー調製用デバイス
JP7477095B2 (ja) デバイス、核酸の検査方法及び核酸の検査装置、並びに遺伝子検査方法
US11705218B2 (en) Nucleic acid analysis method, nucleic acid analysis program, and device for library preparation
JP2021040499A (ja) デバイス、キット、評価方法及び判定方法
JP7098096B2 (ja) 検出精度特定方法、検出精度特定装置、及び検出精度特定プログラム
CN111334566A (zh) 核酸分析方法、核酸分析程序和文库制备装置
JP2019092507A (ja) デバイス、並びにノロウイルスの検査方法、検査プログラム、及び検査装置
US20220170076A1 (en) Method for manufacturing device, device, and kit
US20230295702A1 (en) Method of determining limit of detection and limit of quantitation in nucleic acid detection test
JP2022086982A (ja) デバイスの製造方法、デバイス及びキット
JP7058411B2 (ja) 検査デバイスの製造方法
WO2020129874A1 (en) Device, nucleic acid testing method and nucleic acid testing device, and gene testing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020913540

Country of ref document: EP

Effective date: 20220816