WO2021143647A1 - 一种连续梁超长束钢绞线穿束施工方法 - Google Patents

一种连续梁超长束钢绞线穿束施工方法 Download PDF

Info

Publication number
WO2021143647A1
WO2021143647A1 PCT/CN2021/071086 CN2021071086W WO2021143647A1 WO 2021143647 A1 WO2021143647 A1 WO 2021143647A1 CN 2021071086 W CN2021071086 W CN 2021071086W WO 2021143647 A1 WO2021143647 A1 WO 2021143647A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rope
steel
construction method
steel wire
continuous beam
Prior art date
Application number
PCT/CN2021/071086
Other languages
English (en)
French (fr)
Inventor
杨玉平
杜宪武
周建军
邓宗仁
安友理
王海波
王晶
王杰
李小雷
张彬
李小玉
贾朝杰
Original Assignee
中铁北京工程局集团(天津)工程有限公司
中铁北京工程局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁北京工程局集团(天津)工程有限公司, 中铁北京工程局集团有限公司 filed Critical 中铁北京工程局集团(天津)工程有限公司
Publication of WO2021143647A1 publication Critical patent/WO2021143647A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges

Definitions

  • the embodiments of the present application relate to the technical field of bridge construction methods, in particular to a construction method of continuous beam ultra-long strand steel strands.
  • the steel strands need to pass through the full bridge length for pre-stress tensioning. Due to the long length of the full bridge, the steel strands are long and heavy; and the inner diameter of the corrugated pipe embedded in the beam is small and corrugated. There are many pipe joints, the frictional resistance of the steel strand in the corrugated pipe is relatively large, and there is a problem that the steel strand is difficult to thread. At present, the domestic largest power beam piercing machine has 7 rounds of power and 11KW with frequency conversion, which cannot complete the 250-meter beam. The task of threading steel strands, and manual threading is even more difficult due to the excessive weight of the steel strands and the large moving friction in the corrugated pipe.
  • the embodiment of the present application provides a construction method for the continuous beam ultra-long strand steel strands to solve the problem of the difficulty in the construction of the steel strands in the large-span bridge construction process in the prior art.
  • a construction method for traversing an ultra-long steel strand of a continuous beam includes the following steps:
  • Step S10 the glass fiber is bundled in the continuous beam through the glass fiber piercing machine
  • Step S20 After the glass fiber passes, the glass fiber is connected to the first steel wire rope, and after the connection is manually pulled, the first steel wire rope is used as a lead wire;
  • Step S30 connect the first steel wire rope with the second steel wire rope by buckle, and check the interface, arrange a winch on the side of the small mileage, use this winch for construction, and pull the second steel wire rope through the first steel wire rope;
  • Step S40 Snap-connect the second steel wire rope with the multiple steel strands, drag the multiple steel strands from the corrugated pipe by the hoist, and fix the multiple steel strands with anchors.
  • the beam length of the continuous beam is 250 meters.
  • the diameter of the first steel wire rope is 12 mm; the diameter of the second steel wire rope is 20 mm.
  • the hoisting machine is a low-power hoisting machine.
  • step S40 the number of steel strands is 15.
  • step S10 it is ensured that the tunnel is unobstructed during the beam threading process.
  • the nominal diameter of the steel wire rope of the steel strand is D
  • the range of the minimum breaking force coefficient K'of the steel wire rope is between 0.322 and 0.382.
  • the value of the safety factor n is 5.
  • the value of the friction coefficient ⁇ is determined according to the on-site pull experiment of the bellows.
  • This application has the following advantages: through the construction method of this application, the construction equipment is simple, the construction materials are conventional materials, and are easy to obtain; the construction method is simple, easy to implement, and completes the tasks that the current largest beam piercing machine cannot complete; the construction speed is fast and can be The overall stranding of the steel strand is completed at one time; this method speeds up the stranding speed of the steel strand and achieves the purpose of saving cost compared with the use of the domestic maximum power piercing machine.
  • Fig. 1 is a flow chart of a construction method for traversing a continuous beam with an ultra-long strand steel strand provided by some embodiments of the application.
  • FIG. 2 is a 40-168-40 tied arch bridge structure diagram of a continuous beam ultra-long strand steel strand construction method provided by some embodiments of the application.
  • Figure 3 is a continuous beam structure diagram of a continuous beam ultra-long strand steel strand construction method provided by some embodiments of the application.
  • FIG. 4 is a schematic diagram of step S10 of a construction method for traversing an ultra-long steel strand of a continuous beam according to some embodiments of the application.
  • FIG. 5 is a schematic diagram of step S20 of a construction method for traversing an ultra-long strand steel strand of a continuous beam according to some embodiments of the application.
  • Fig. 6 is a schematic diagram of step S30 of a construction method for traversing a continuous beam with an ultra-long strand steel strand provided by some embodiments of the application.
  • FIG. 7 is a schematic diagram of step S40 of a construction method for traversing an ultra-long strand steel strand of a continuous beam according to some embodiments of the application.
  • the construction method of the continuous beam super-long strand steel stranded wire in this embodiment includes the following steps: step S10, the glass fiber 3 is bundled in the continuous beam 1 through a glass fiber piercing machine; S20. After the glass fiber 3 passes, the glass fiber 3 is connected to the first steel wire rope 4, and after the connection is manually pulled, the first steel wire rope 4 is used as the lead wire; step S30, the first steel wire rope 4 and the second steel wire rope 5 are adopted Snap connection, and check the interface, arrange a winch 9 on the side of the small mileage, use this winch 9 for construction, and pull the second wire rope 5 through the first wire rope 4; step S40, the second wire rope 5 and multiple The steel strands 6 are snap-connected, and the multiple steel strands 6 are dragged from the corrugated pipe 2 by the hoist 9, and the multiple steel strands 6 are fixed with anchors.
  • Fig. 4 is a schematic diagram of step S10
  • Fig. 5 is a schematic diagram of step S20
  • Fig. 6 is a schematic diagram of step S30
  • Fig. 7 is a schematic diagram of step S40.
  • One side of the winch 9 and the right side of Figs. 4 to 7 are in the direction of large mileage.
  • step S30 of the present embodiment since the glass fiber 3 is a hard plastic material, mechanical pulling cannot be used, and only manual labor can be used.
  • the technical effects achieved by this embodiment are: through the construction method of this embodiment, the construction equipment is simple, the construction materials are conventional materials and are easy to obtain; the construction method is simple and easy to implement, and the task that the current largest beam piercing machine cannot complete is completed; The speed is fast, and the overall stranding of the steel strand 6 can be completed at one time; this method speeds up the stranding speed of the steel strand and achieves the purpose of saving cost compared with the use of the domestic maximum power stranding machine.
  • the construction method of a continuous beam ultra-long strand steel stranded wire in this embodiment includes all the technical features in embodiment 1.
  • the continuous beam 1 The length of the bundle is 250 meters; the diameter of the first steel wire rope 4 is 12mm; the diameter of the second steel wire rope 5 is 20mm; in step S30, the hoist 9 is a low-power hoist; in step S40, the number of steel strands 6 is 15 roots; in step S10, ensure that the tunnel is unobstructed during the piercing process.
  • the newly-built Lianyungang-Xuzhou station front II bid 1 branch Donghai super bridge (40+168+40) m tied arch continuous beam 1, starting and ending construction mileage DK54+980.715 ⁇ DK55 +229.915, with a total length of 248.7m (including 0.80m from the beam end to the centerline of the side support on both sides).
  • the longitudinal length of the full bridge is 249.5m, a total of 24 beams are used to cross the beam.
  • the inner diameter of the corrugated pipe 2 in the continuous beam 1 is only 9cm.
  • Each bundle is bent at 6 places, with an average bending angle of 12.4 degrees, which makes it extremely difficult to pass the bundle; the purpose of this embodiment is to provide a 250-meter-long steel stranded wire bundle construction method, which only requires a low-power windlass and glass fiber 3.
  • the steel wire rope can be used to successfully thread 15 250-meter steel strands 6 (the steel strands 6 weighing 4 tons).
  • This embodiment speeds up the stranding speed of the steel strand and achieves the purpose of saving cost compared with the use of the domestic maximum power beam piercing machine to pierce the bundle.
  • the construction method of a continuous beam ultra-long strand steel strand in this embodiment includes all the technical features in Embodiment 1.
  • the method of this embodiment involves the tensile strength of the steel wire rope. Because the 15 steel strands 6 have a relatively large weight, choosing a reasonable diameter of the steel wire rope is the core of this embodiment.
  • the tensile strength of steel wire rope can be calculated according to the standard GB8918-2006:
  • F 0 is the minimum breaking force of the wire rope, KN; D is the nominal diameter of the wire rope, mm; the nominal tensile strength of the wire rope, Mpa; R 0 is the minimum breaking force coefficient of the wire rope, between 0.322 and 0.382;
  • F 0 is the minimum breaking force of the wire rope, KN;
  • F is the minimum allowable breaking force of the wire rope, KN;
  • n is the safety factor, which is generally selected as 5;
  • a suitable wire rope diameter can be selected.
  • wire rope model 16*19-20, IWS, wire rope diameter 20mm, wire rope nominal tensile strength R 0 is 1570, K'is 0.356, wire rope minimum breaking force F 0 is 223, safety factor n is 5, and the minimum allowable breaking force F of the wire rope is 44.6KN.
  • the wire rope model is 16*19-18, IWS, the diameter of the wire rope is 18mm, the nominal tensile strength of the wire rope R 0 is 1570, K'is 0.356, the minimum breaking force F 0 of the wire rope is 181, the safety factor n is 5, and the minimum breaking of the wire rope
  • the allowable pulling force F is 36.2KN.
  • the weight of 15 250-meter steel strand 6 is 4.387 tons, the weight of G is 43KN, the friction coefficient ⁇ is 0.9, and the friction force f is 40.14KN.
  • the method has simple construction equipment, and the construction materials are conventional materials, which are easy to obtain.
  • the construction method is simple and easy to implement, completing the task that the current largest beam piercing machine cannot complete.
  • the construction speed is fast, and the overall stranding of the steel strand 6 can be completed at one time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ropes Or Cables (AREA)

Abstract

一种连续梁超长束钢绞线(6)穿束施工方法,包括步骤:将玻璃纤维(3)通过玻璃纤维穿束机在连续梁(1)中穿束;在玻璃纤维(3)通过之后,将玻璃纤维(3)与第一钢丝绳(4)连接,连接后人工拽拉,将第一钢丝绳(4)作为引线;将第一钢丝绳(4)与第二钢丝绳(5)采用卡扣连接,检查接口,在小里程侧布置卷扬机(9),采用卷扬机(9)施工,将第二钢丝绳(5)通过第一钢丝绳(4)拽过来;将第二钢丝绳(5)与多根钢绞线(6)卡扣连接,通过卷扬机(9)将多根钢绞线(6)从波纹管内拖拽,将多根钢绞线(6)用锚具固定。解决现有技术大跨度桥梁施工过程中钢绞线穿束施工难度大的问题,施工设备简单且材料常规,易获取;施工方法简单易实现,完成最大穿束机无法完成的任务;施工速度快,可一次完成钢绞线整体穿束。

Description

一种连续梁超长束钢绞线穿束施工方法
本申请要求于2020年1月13日提交中国专利局、申请号为CN202010032548.X、申请名称为“一种连续梁超长束钢绞线穿束施工方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及桥梁施工方法技术领域,具体涉及一种连续梁超长束钢绞线穿束施工方法。
背景技术
大跨度桥梁施工过程中,钢绞线需穿过全桥长度进行预应力张拉,由于全桥长度长,导致钢绞线长度长、重量重;又梁内预埋的波纹管内径小,波纹管接头多,钢绞线在波纹管穿束内摩擦力阻力较大,存在钢绞线穿束难的问题;目前,国内最大功率穿束机7轮功率11KW带变频,无法完成250米梁的钢绞线穿束任务,而人工穿束由于钢绞线重量过大,波纹管内移动摩阻力大,更是难上加难。
申请内容
为此,本申请实施例提供一种连续梁超长束钢绞线穿束施工方法,以解决现有技术中大跨度桥梁施工过程中钢绞线穿束施工难度大的问题。
为了实现上述目的,本申请实施例提供如下技术方案:
根据本申请实施例的第一方面,一种连续梁超长束钢绞线穿束施工方法, 包括以下步骤:
步骤S10、将玻璃纤维通过玻璃纤维穿束机在连续梁中穿束;
步骤S20、在玻璃纤维通过之后,将玻璃纤维与第一钢丝绳连接,连接后采用人工拽拉,然后将第一钢丝绳作为引线;
步骤S30、将第一钢丝绳与第二钢丝绳采用卡扣连接,并检查接口,在小里程侧布置一台卷扬机,采用这台卷扬机进行施工,将第二钢丝绳通过第一钢丝绳拽过来;
步骤S40、将第二钢丝绳与多根钢绞线卡扣连接,通过卷扬机将多根钢绞线从波纹管内拖拽过来,并将多根钢绞线用锚具固定好。
进一步地,在步骤S10中,连续梁的穿束长为250米。
进一步地,第一钢丝绳的直径为12mm;第二钢丝绳的直径为20mm。
进一步地,在步骤S30中,卷扬机为小功率卷扬机。
进一步地,在步骤S40中,钢绞线的数量为15根。
进一步地,在步骤S10中,穿束过程中确保孔道通畅。
进一步地,在步骤S40中,钢绞线的钢丝绳公称直径为D,钢丝绳公称直径D满足如下关系式:
Figure PCTCN2021071086-appb-000001
f=Gμ;且需要满足条件F≥f;在上述关系式中,F 0为钢丝绳最小破断拉力,R 0为钢丝绳公称抗拉强度,K’为钢丝绳最小破断拉力系数,F为钢丝绳最小破断许用拉力,n为安全系数,f为摩擦力,G为多根钢绞线的自重,μ为摩擦系数。
进一步地,钢丝绳最小破断拉力系数K’的范围为0.322~0.382之间。
进一步地,安全系数n的数值为5。
进一步地,摩擦系数μ的数值根据现场波纹管内拉拽实验确定。
本申请具有如下优点:通过本申请的施工方法,施工设备简单,施工材料是常规材料,容易获取;施工方法简单,易于实现,完成了目前最大穿束机无法完成的任务;施工速度快,可以一次完成钢绞线整体穿束;该方法相比采用 国内最大功率穿束机穿束,加快了钢绞线穿束速度,达到节约成本的目的。
附图说明
为了更清楚地说明本申请的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容得能涵盖的范围内。
图1为本申请一些实施例提供的一种连续梁超长束钢绞线穿束施工方法的中的流程图。
图2为本申请一些实施例提供的一种连续梁超长束钢绞线穿束施工方法的40-168-40系杆拱桥结构图。
图3为本申请一些实施例提供的一种连续梁超长束钢绞线穿束施工方法的连续梁结构图。
图4为本申请一些实施例提供的一种连续梁超长束钢绞线穿束施工方法的步骤S10示意图。
图5为本申请一些实施例提供的一种连续梁超长束钢绞线穿束施工方法的步骤S20示意图。
图6为本申请一些实施例提供的一种连续梁超长束钢绞线穿束施工方法的步骤S30示意图。
图7为本申请一些实施例提供的一种连续梁超长束钢绞线穿束施工方法的步骤S40示意图。
图中:1、连续梁,2、波纹管,3、玻璃纤维,4、第一钢丝绳,5、第二 钢丝绳,6、钢绞线,9、卷扬机。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
如图1所示,本实施例中的一种连续梁超长束钢绞线穿束施工方法,包括以下步骤:步骤S10、将玻璃纤维3通过玻璃纤维穿束机在连续梁1中穿束;步骤S20、在玻璃纤维3通过之后,将玻璃纤维3与第一钢丝绳4连接,连接后采用人工拽拉,然后将第一钢丝绳4作为引线;步骤S30、将第一钢丝绳4与第二钢丝绳5采用卡扣连接,并检查接口,在小里程侧布置一台卷扬机9,采用这台卷扬机9进行施工,将第二钢丝绳5通过第一钢丝绳4拽过来;步骤S40、将第二钢丝绳5与多根钢绞线6卡扣连接,通过卷扬机9将多根钢绞线6从波纹管2内拖拽过来,并将多根钢绞线6用锚具固定好。
图4为步骤S10的示意图,图5为步骤S20的示意图,图6为步骤S30的示意图,图7为步骤S40的示意图,其中图4至图7的左侧均为小里程方向,即设置有卷扬机9的一侧,图4至图7的右侧均为大里程方向。
在本实施例的步骤S30中由于玻璃纤维3硬塑材料,不能采用机械拽拉,只能采用人工。
本实施例达到的技术效果为:通过本实施例的施工方法,施工设备简单,施工材料是常规材料,容易获取;施工方法简单,易于实现,完成了目前最大穿束机无法完成的任务;施工速度快,可以一次完成钢绞线6整体穿束;该方法相比采用国内最大功率穿束机穿束,加快了钢绞线穿束速度,达到节约成本的目的。
实施例2
如图1至图7所示,本实施例中的一种连续梁超长束钢绞线穿束施工方法,包括实施例1中的全部技术特征,除此之外,在步骤S10中,连续梁1的穿束长为250米;第一钢丝绳4的直径为12mm;第二钢丝绳5的直径为20mm;在步骤S30中,卷扬机9为小功率卷扬机;在步骤S40中,钢绞线6的数量为15根;在步骤S10中,穿束过程中确保孔道通畅。
在具体的实施过程中,实际应用中,例如,新建连云港至徐州站前II标一分部东海特大桥(40+168+40)m系杆拱连续梁1,起讫施工里程DK54+980.715~DK55+229.915,全长248.7m(含两侧梁端至边支座中心线各0.80m)。全桥纵向通长249.5m,共24束全桥穿束任务,连续梁1内的波纹管2内径仅仅9cm,单束共15根钢绞线6,单束钢绞线6重约4吨,每束6处弯曲,平均弯曲角度12.4度,穿束难度极大;本实施例的目的是提供一种250米长钢绞线穿束施工方法,该方法只需要一台小功率卷扬机、玻璃纤维3、钢丝绳就能到达到将15根250米的钢绞线6(钢绞线6重达4吨)成功穿束。
本实施例中的有益效果为:本实施例相比采用国内最大功率穿束机穿束,加快了钢绞线穿束速度,达到节约成本的目的。
实施例3
如图1至图7所示,本实施例中的一种连续梁超长束钢绞线穿束施工方法,包括实施例1中的全部技术特征,除此之外,在步骤S40中,钢绞线6的钢丝绳公称直径为D,钢丝绳公称直径D满足如下关系式:
Figure PCTCN2021071086-appb-000002
f=Gμ;且需要满足条件F≥f;在上述关系式中,F 0为钢丝绳最小破断拉力,R 0为钢丝绳公称抗拉强度,K’为钢丝绳最小破断拉力系数,F为钢丝绳最小破断许用拉力,n为安全系数,f为摩擦力,G为多根钢绞线6的自重,μ为摩擦系数;钢丝绳最小破断拉力系数K’的范围为0.322~0.382之间;安全系数n的数值为5;摩擦系数μ的数值根据现场波纹管2内拉拽实验确定。
在具体的实施过程中,本实施例的方法涉及到钢丝绳的拉伸强度问题,因 15根钢绞线6自重较大,选择合理的钢丝绳直径是本实施例的核心。
钢丝绳拉伸强度计算可根据规范GB8918-2006:
Figure PCTCN2021071086-appb-000003
式中:F 0为钢丝绳最小破断拉力,KN;D为钢丝绳公称直径,mm;钢丝绳公称抗拉强度,Mpa;R 0为钢丝绳最小破断拉力系数,0.322~0.382之间;
钢丝绳工作时许用荷载:
Figure PCTCN2021071086-appb-000004
式中:F 0为钢丝绳最小破断拉力,KN;F为钢丝绳最小破断许用拉力,KN;n为安全系数,一般选取5;
拖拽过程摩擦力计算:
f=Gμ       (3),
式中:f为摩擦力,KN;G为n根钢绞线6自重,单根钢绞线6自重1.17Kg/m;μ为摩擦系数,根据现场波纹管2内拉拽试验可确定摩擦系数。
当F≥f时,可选取合适的钢丝绳直径。
以250米穿束为例,选取钢丝绳型号:16*19-20,IWS,钢丝绳直径20mm,钢丝绳公称抗拉强度R 0为1570,K’为0.356,钢丝绳最小破断拉力F 0为223,安全系数n为5,钢丝绳最小破断许用拉力F为44.6KN。
若采用钢丝绳型号:16*19-18,IWS,钢丝绳直径18mm,钢丝绳公称抗拉强度R 0为1570,K’为0.356,钢丝绳最小破断拉力F 0为181,安全系数n为5,钢丝绳最小破断许用拉力F为36.2KN。
15根250米钢绞线6重量4.387吨,G自重为43KN,摩擦系数μ为0.9,摩擦力f为40.14KN。
根据计算选取直径20mm合理。
本实施例中的有益效果为:该方法施工设备简单,施工材料是常规材料,容易获取。施工方法简单,易于实现,完成了目前最大穿束机无法完成的任务。施工速度快,可以一次完成钢绞线6整体穿束。
现实中应用于连徐高铁东海特大桥。
虽然,上文中已经用一般性说明及具体实施例对本申请作了详尽的描述,但在本申请基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本申请精神的基础上所做的这些修改或改进,均属于本申请要求保护的范围。
本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”等的用语,亦仅为便于叙述的明了,而非用以限定本申请可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本申请可实施的范畴。

Claims (10)

  1. 一种连续梁超长束钢绞线穿束施工方法,其特征在于,包括以下步骤:
    步骤S10、将玻璃纤维(3)通过玻璃纤维穿束机在连续梁(1)中穿束;
    步骤S20、在玻璃纤维(3)通过之后,将玻璃纤维(3)与第一钢丝绳(4)连接,连接后采用人工拽拉,然后将第一钢丝绳(4)作为引线;
    步骤S30、将第一钢丝绳(4)与第二钢丝绳(5)采用卡扣连接,并检查接口,在小里程侧布置一台卷扬机(9),采用这台卷扬机(9)进行施工,将第二钢丝绳(5)通过第一钢丝绳(4)拽过来;
    步骤S40、将第二钢丝绳(5)与多根钢绞线(6)卡扣连接,通过卷扬机(9)将多根钢绞线(6)从波纹管(2)内拖拽过来,并将多根钢绞线(6)用锚具固定好。
  2. 根据权利要求1所述的一种连续梁超长束钢绞线穿束施工方法,其特征在于,在步骤S10中,所述连续梁(1)的穿束长为250米。
  3. 根据权利要求1所述的一种连续梁超长束钢绞线穿束施工方法,其特征在于,所述第一钢丝绳(4)的直径为12mm;所述第二钢丝绳(5)的直径为20mm。
  4. 根据权利要求1所述的一种连续梁超长束钢绞线穿束施工方法,其特征在于,在步骤S30中,所述卷扬机(9)为小功率卷扬机。
  5. 根据权利要求1所述的一种连续梁超长束钢绞线穿束施工方法,其特征在于,在步骤S40中,所述钢绞线(6)的数量为15根。
  6. 根据权利要求1所述的一种连续梁超长束钢绞线穿束施工方法,其特征在于,在步骤S10中,穿束过程中确保孔道通畅。
  7. 根据权利要求1所述的一种连续梁超长束钢绞线穿束施工方法,其特征在于,在步骤S40中,钢绞线(6)的钢丝绳公称直径为D,所述钢丝绳公 称直径D满足如下关系式:
    Figure PCTCN2021071086-appb-100001
    f=Gμ;且需要满足条件F≥f;在上述关系式中,F 0为钢丝绳最小破断拉力,R 0为钢丝绳公称抗拉强度,K’为钢丝绳最小破断拉力系数,F为钢丝绳最小破断许用拉力,n为安全系数,f为摩擦力,G为多根钢绞线(6)的自重,μ为摩擦系数。
  8. 根据权利要求7所述的一种连续梁超长束钢绞线穿束施工方法,其特征在于,所述钢丝绳最小破断拉力系数K’的范围为0.322~0.382之间。
  9. 根据权利要求7所述的一种连续梁超长束钢绞线穿束施工方法,其特征在于,安全系数n的数值为5。
  10. 根据权利要求7所述的一种连续梁超长束钢绞线穿束施工方法,其特征在于,摩擦系数μ的数值根据现场波纹管(2)内拉拽实验确定。
PCT/CN2021/071086 2020-01-13 2021-01-11 一种连续梁超长束钢绞线穿束施工方法 WO2021143647A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010032548.XA CN111236072A (zh) 2020-01-13 2020-01-13 一种连续梁超长束钢绞线穿束施工方法
CN202010032548.X 2020-01-13

Publications (1)

Publication Number Publication Date
WO2021143647A1 true WO2021143647A1 (zh) 2021-07-22

Family

ID=70862040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071086 WO2021143647A1 (zh) 2020-01-13 2021-01-11 一种连续梁超长束钢绞线穿束施工方法

Country Status (2)

Country Link
CN (1) CN111236072A (zh)
WO (1) WO2021143647A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111236072A (zh) * 2020-01-13 2020-06-05 中铁北京工程局集团(天津)工程有限公司 一种连续梁超长束钢绞线穿束施工方法
CN112195786A (zh) * 2020-09-24 2021-01-08 中铁大桥局集团第一工程有限公司 一种长束预应力钢绞线穿束装置及钢绞线穿束方法
CN116695566B (zh) * 2023-05-12 2024-04-09 中建八局第三建设有限公司 预应力混凝土梁的张拉施工工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA200201849B (en) * 2001-03-07 2002-10-28 Ind Roll Formers Pty Ltd Expansion shell.
CN1978802A (zh) * 2005-12-06 2007-06-13 杨中源 超长预应力地梁施工方法
CN101571007A (zh) * 2009-05-26 2009-11-04 上海建科结构新技术工程有限公司 超长预应力孔道的预应力筋后穿束方法
CN202925479U (zh) * 2012-12-12 2013-05-08 中铁上海工程局有限公司 一种预应力孔道中钢绞线穿引设备
CN103147400A (zh) * 2013-03-01 2013-06-12 天津第四市政建筑工程有限公司 一种现浇箱梁桥腹板超长预应力筋一次张拉施工方法
CN106758836A (zh) * 2016-12-23 2017-05-31 中铁十四局集团第二工程有限公司 一种后张法预应力混凝土大距离钢绞线穿索法
CN208564000U (zh) * 2018-06-03 2019-03-01 天津达陆钢绞线有限公司 一种混凝土预应力钢绞线穿线引导装置
CN111236072A (zh) * 2020-01-13 2020-06-05 中铁北京工程局集团(天津)工程有限公司 一种连续梁超长束钢绞线穿束施工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310379B2 (ja) * 2003-11-04 2009-08-05 三井住友建設株式会社 橋梁の架設方法
CN102522718A (zh) * 2011-12-15 2012-06-27 绍兴电力局 一种利用迪尼玛绳将电缆穿入保护管的方法
CN203129020U (zh) * 2013-03-01 2013-08-14 天津第四市政建筑工程有限公司 一种现浇箱梁超长张拉穿束装置
CN207368577U (zh) * 2017-09-13 2018-05-15 江苏鸿盛电气工程有限公司 电缆穿管器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA200201849B (en) * 2001-03-07 2002-10-28 Ind Roll Formers Pty Ltd Expansion shell.
CN1978802A (zh) * 2005-12-06 2007-06-13 杨中源 超长预应力地梁施工方法
CN101571007A (zh) * 2009-05-26 2009-11-04 上海建科结构新技术工程有限公司 超长预应力孔道的预应力筋后穿束方法
CN202925479U (zh) * 2012-12-12 2013-05-08 中铁上海工程局有限公司 一种预应力孔道中钢绞线穿引设备
CN103147400A (zh) * 2013-03-01 2013-06-12 天津第四市政建筑工程有限公司 一种现浇箱梁桥腹板超长预应力筋一次张拉施工方法
CN106758836A (zh) * 2016-12-23 2017-05-31 中铁十四局集团第二工程有限公司 一种后张法预应力混凝土大距离钢绞线穿索法
CN208564000U (zh) * 2018-06-03 2019-03-01 天津达陆钢绞线有限公司 一种混凝土预应力钢绞线穿线引导装置
CN111236072A (zh) * 2020-01-13 2020-06-05 中铁北京工程局集团(天津)工程有限公司 一种连续梁超长束钢绞线穿束施工方法

Also Published As

Publication number Publication date
CN111236072A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021143647A1 (zh) 一种连续梁超长束钢绞线穿束施工方法
CN105565176B (zh) 一种单塔不对称缆索吊机
CN106498837B (zh) 一种桥梁及其施工方法
CN104213507B (zh) 一种基于碳纤维和钢绞线的高阻尼复合斜拉索
CN103147400A (zh) 一种现浇箱梁桥腹板超长预应力筋一次张拉施工方法
CN106087759B (zh) 一种预应力钢束穿线装置及预应力钢束的穿线方法
CN109653531A (zh) 一种体外预应力钢绞线连接器及配套张拉装置
CN110735401A (zh) 一种超长预应力钢绞线整体穿束方法
CN208039003U (zh) 采用同向回转拉索的斜拉桥
CN108775196A (zh) 一种用于输电塔架设的起吊与自爬升组合机构
CN106948263A (zh) 一种斜拉桥混凝土索塔用锚拉板
US20050055974A1 (en) Method for the assembly of a stay
CN111456449A (zh) 梁体后张法保证每束钢绞线受力均匀的施工装置及方法
KR102242110B1 (ko) 이동식 교량용 케이블 편조 장치, 이를 이용한 교량용 케이블 편조 방법 및 그 방법을 이용하여 제조된 교량용 케이블
CN212127323U (zh) 一种具有吊装功能的索道
CN209368697U (zh) 一种张拉用塔架
CN215594602U (zh) 大跨度张弦管桁架预应力屋盖构造
CN107762238A (zh) 一种塔柱预应力钢束吊装定位控制方法
CN213115554U (zh) 一种绞线穿束装置
CN201474306U (zh) 卸料平台吊环装置
CN212641470U (zh) 一种预应力鱼腹梁钢绞线施工导向装置
CN205975368U (zh) 一种预应力钢束穿线装置
CN206986723U (zh) 一种缆索吊承重绳并联式结构的锚固装置
Ahmed et al. Assessment of the Cable-Stayed and Cable Damping System Used in the Russky Bridge and Determination of the Force Acting on the Bridge's Cables
CN107447991B (zh) 下弦钢管内预应力拱架节点的施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21740810

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21740810

Country of ref document: EP

Kind code of ref document: A1