WO2021143359A1 - 油田示踪剂及油田示踪的方法 - Google Patents

油田示踪剂及油田示踪的方法 Download PDF

Info

Publication number
WO2021143359A1
WO2021143359A1 PCT/CN2020/131495 CN2020131495W WO2021143359A1 WO 2021143359 A1 WO2021143359 A1 WO 2021143359A1 CN 2020131495 W CN2020131495 W CN 2020131495W WO 2021143359 A1 WO2021143359 A1 WO 2021143359A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dots
carbon quantum
fluorescent carbon
nanometers
oil
Prior art date
Application number
PCT/CN2020/131495
Other languages
English (en)
French (fr)
Inventor
王允军
刘东强
Original Assignee
苏州星烁纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州星烁纳米科技有限公司 filed Critical 苏州星烁纳米科技有限公司
Publication of WO2021143359A1 publication Critical patent/WO2021143359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V15/00Tags attached to, or associated with, an object, in order to enable detection of the object
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • This application belongs to the field of oilfield analysis, and in particular relates to an oilfield tracer and an oilfield tracer method.
  • Oilfield tracer technology is one of the on-site production test technologies. Its technology is to add tracer from the injection well of the oilfield, and then take samples from the surrounding oilfield production wells according to certain sampling regulations, and monitor the process of the tracer so as to guide The design of oil well development and the adjustment of the later stage of oil field development. Oilfield tracers can qualitatively describe the reservoir conditions, such as: the advancing direction and speed of the injected fluid, evaluation of volume sweep efficiency, fluid shielding, directional flow trend, heterogeneous characteristics of the reservoir, determination of remaining oil saturation and distribution Wait.
  • the commonly used tracers in oilfield tracing mainly include chemical tracers, isotope tracers, and trace material tracers.
  • chemical tracers include easily soluble inorganic salts, fluorescent dyes, halogenated hydrocarbons and alcohols with low molecular weight.
  • Isotope tracers include radioisotope tracers and stable isotope tracers.
  • tracers all have different degrees of shortcomings: chemical tracers use large amounts, high cost, easy to be adsorbed by rocks, etc.; isotope tracers require professional construction personnel and use special equipment for detection, which is not conducive to large-scale promotion and application; The substance tracer requires the use of high-end analytical equipment such as inductively coupled plasma mass spectrometry.
  • this application provides an oil field tracer and an oil field tracing method.
  • the tracing method has the advantages of environmental friendliness and low detection limit.
  • an oilfield tracing method including the following steps:
  • the oil field tracer including fluorescent carbon quantum dots
  • the step of analyzing whether the fluorescent carbon quantum dots exist in the oil-water mixture includes:
  • the method further includes:
  • the pH value of the polar solvent containing fluorescent carbon quantum dots is adjusted.
  • the step of adjusting the pH value of the polar solvent containing fluorescent carbon quantum dots includes: adding an acid or a base to the polar solvent.
  • the polar solvent includes water, formamide, dimethylformamide, dimethylsulfoxide, acetonitrile, hexamethylphosphoramide, methanol, ethanol, isopropanol, pyridine, tetramethylethylenediamine Or acetone.
  • the step of adding the oil field tracer to the oil field injection well includes: injecting an aqueous solution containing the petroleum tracer into the oil field injection well.
  • the fluorescent carbon quantum dots can be excited at a wavelength between more than 200 nanometers and less than 400 nanometers, or between more than 500 nanometers and less than 1100 nanometers.
  • the fluorescence emission peak of the fluorescent carbon quantum dots is greater than 400 nanometers and less than 1100 nanometers.
  • an oil field tracer including: fluorescent carbon quantum dots; the fluorescent carbon quantum dots are amphiphilic.
  • the fluorescent carbon quantum dots can be excited at a wavelength between more than 200 nanometers and less than 400 nanometers, or between more than 500 nanometers and less than 1100 nanometers.
  • the fluorescence emission peak of the fluorescent carbon quantum dots is greater than 400 nanometers and less than 1100 nanometers.
  • the solubility ratio of the fluorescent carbon quantum dots in the oil phase and the water phase is between (1:99) and (99:1).
  • the surface of the fluorescent carbon quantum dot is bonded with a functional group
  • the functional group includes a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an epoxy group, a mercapto group, a sulfonic acid group, a phosphoric acid group, or a sulfuric acid group.
  • the size of the fluorescent carbon quantum dots is between 1 nanometer and 100 nanometers.
  • the constituent elements of the fluorescent carbon quantum dots include at least carbon element, hydrogen element and oxygen element.
  • the constituent elements of the fluorescent carbon quantum dots include at least carbon element, hydrogen element, oxygen element and nitrogen element.
  • this method is not limited by the oil-water ratio of the sample to be tested obtained from the oilfield production well.
  • the fluorescence emission properties of fluorescent carbon quantum dots can be adjusted, such as adjusting the wavelength of the fluorescence emission peak and enhancing the intensity of the fluorescence emission peak, making it easier to achieve Detection of the fluorescence signal of fluorescent carbon quantum dots.
  • the fluorescent carbon quantum dots in this application have environmentally friendly characteristics as an oilfield tracer, and the fluorescent carbon quantum dots exhibit excellent environmental stability to high temperatures, acids, alkalis, and salts.
  • the amphiphilic fluorescent carbon quantum dots have a certain solubility in both oil and water. When sampling and testing in the production well, it is suitable for the use of polar solvents to directly extract the fluorescent carbon quantum dots from the oil-water mixture. It is more suitable to detect fluorescent carbon quantum dots in a solvent environment.
  • the fluorescent carbon quantum dots can be excited at a wavelength between more than 200 nanometers and less than 400 nanometers, or between more than 500 nanometers and less than 1100 nanometers, that is, fluorescent carbon quantum dots can be excited by light of different wavelength bands.
  • Figure 1 is a schematic diagram of an oil field tracing method in an embodiment
  • Figure 2 is a schematic diagram of an oil field tracing method in an embodiment
  • Figure 3 is a schematic diagram of an oil field tracing method in an embodiment
  • Figure 4-1 shows the fluorescence emission spectrum of the fluorescent carbon quantum dots in the oil-water mixture detected in Example 1;
  • FIG. 4-2 Example 1 Fluorescence test standard curve diagram of different concentrations of fluorescent carbon quantum dot standard solutions
  • Fig. 5 is the fluorescence emission spectrum of the fluorescent carbon quantum dots in the oil-water mixture detected in Example 2;
  • Fig. 6 is the fluorescence emission spectrum of the fluorescent carbon quantum dots in the oil-water mixture detected in Example 3;
  • Figure 7-1 shows the fluorescence emission spectrum of the fluorescent carbon quantum dots in the oil-water mixture detected in Example 4.
  • Figure 8-1 is the fluorescence emission spectrum of the fluorescent carbon quantum dots in the oil-water mixture detected in Example 5;
  • Fig. 8-2 The fluorescence test standard curve diagram of the fluorescent carbon quantum dot standard solutions of different concentrations in Example 5;
  • FIG. 9 is a fluorescence emission spectrum diagram of the fluorescent carbon quantum dots in the detection of the oil-water mixture in Example 6; FIG.
  • Figure 10-1 is the fluorescence emission spectrum of the fluorescent carbon quantum dots in the oil-water mixture detected in Example 7;
  • FIG. 10-2 Example 7 Fluorescence test standard curve diagram of different concentrations of fluorescent carbon quantum dot standard solutions
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections Should not be restricted by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Therefore, without departing from the teaching of the present embodiment, the first element, component, region, layer or section discussed below may be referred to as a second element, component, region, layer or section.
  • adjacent refers to close or adjacent. Adjacent objects may be spaced apart from each other, or may be in physical or direct contact with each other. In some cases, adjacent objects may be connected to each other, or may be integrally formed with each other.
  • linked objects refers to operative coupling or linking.
  • the linked objects may be directly coupled to each other, or may be indirectly coupled to each other via another set of objects.
  • relative terms such as “inside”, “inside”, “outside”, “outside”, “top”, “bottom”, “front”, “back”, “back”, “upper”, “Lower”, “vertical”, “horizontal”, “above” and “below” refer to the orientation of a group of objects to each other first, but not during manufacture or use, for example, according to the drawings. Require the specific orientation of these objects.
  • a method for oilfield tracing which includes the following steps:
  • oil field tracer to the injection well of the oil field, the oil field tracer includes fluorescent carbon quantum dots;
  • this method is not limited by the oil-water ratio of the sample to be tested obtained from the oilfield production well, and can meet the requirements of a variety of oilfield environments.
  • the existing common oil field tracers they are generally water-phase tracers or oil-phase tracers.
  • the detection of whether there is a tracer in oil or water is generally performed. In this way, when the sampling in the production well is oil, the water phase tracer cannot be used; and when the sampling in the production well is water, the oil phase tracer cannot be used, resulting in the use of tracers.
  • This application provides a method that can directly detect the oil field tracer in the oil-water mixture, and this method can be applied regardless of the content of the water component or the oil component in the sample to be tested.
  • fluorescent carbon quantum dots as the petroleum tracer can greatly reduce the damage to the oilfield environment caused by the existing common oilfield tracers. Compared with common organic or inorganic oilfield tracers, fluorescent carbon quantum dots are basically non-toxic and will not cause damage to the oilfield environment if they remain in the oilfield. In addition, fluorescent carbon quantum dots have high fluorescence intensity and are easy to detect and identify.
  • the step of adding the oil field tracer to the oil field injection well may include: injecting an aqueous solution containing the petroleum tracer into the oil field injection well, but is not limited to this.
  • the substances injected into the injection well along with the aqueous solution include but are not limited to proppant particles, salt, and the like.
  • the step of analyzing whether there are fluorescent carbon quantum dots in the oil-water mixture includes: extracting the fluorescent carbon quantum dots in the oil-water mixture with a polar solvent to obtain a polar solvent containing fluorescent carbon quantum dots, and detecting the presence of fluorescent carbon The process of fluorescence of quantum dots in polar solvents.
  • the method of oil field tracing includes the following steps:
  • the oilfield tracer includes fluorescent carbon quantum dots;
  • step S23 when a polar solvent is used to extract the fluorescent carbon quantum dots in the oil-water mixture, the polar solvent and the oil-water mixture can be directly mixed uniformly, and then further layered to separate the polar solvent from the oil. Since the water and some other substances in the oil-water mixture have good compatibility with polar solvents, the obtained polar solvent containing fluorescent carbon quantum dots may also contain water or other substances that are easily soluble in polar solvents. .
  • step S24 after the fluorescent carbon quantum dots in the oil-water mixture are extracted into the polar solvent, the fluorescence of the fluorescent carbon quantum dots can be detected in the polar solvent. Since the fluorescence interference substance basically remains in the oil, the fluorescence interference substance existing in the polar solvent will be greatly reduced, so the detection accuracy of the fluorescent carbon quantum dots in the polar solvent is significantly increased.
  • the luminescence properties of fluorescent carbon quantum dots are extremely susceptible to external environmental influences. For example, different pH values and different solvents may have spectral changes. Therefore, when detecting fluorescence in a polar solvent, the pH value of the polar solvent containing the fluorescent carbon quantum dots can be further adjusted, so that the fluorescence performance of the fluorescent carbon quantum dots in the polar solvent can be easily detected, such as changing the polarity. After the pH value of the organic solvent, the emission wavelength of the fluorescence emission peak of the fluorescent carbon quantum dots can be adjusted, or the fluorescence emission intensity of the fluorescent carbon quantum dots can be increased. As shown in Figure 3, in one embodiment, the method of oil field tracing includes the following steps:
  • the oil field tracer includes fluorescent carbon quantum dots;
  • the step of adjusting the pH value of the polar solvent containing the fluorescent carbon quantum dots includes adding an appropriate amount of acid or base to the polar solvent.
  • Acids that can be used to adjust pH include organic acids or inorganic acids, for example, including but not limited to sulfuric acid, nitric acid, hydrochloric acid, sulfurous acid, phosphoric acid, carbonic acid, citric acid, hydrofluoric acid, malic acid, gluconic acid, formic acid, lactic acid, Benzoic acid, acrylic acid, acetic acid, propionic acid, stearic acid, hydrosulfuric acid, hypochlorous acid, boric acid, etc.
  • the alkali that can be used to adjust pH includes organic or inorganic alkalis, for example, including but not limited to caustic soda, potassium hydroxide, barium hydroxide, calcium hydroxide, aluminum hydroxide, lithium hydroxide, magnesium hydroxide, zinc hydroxide, Copper hydroxide, iron hydroxide, lead hydroxide, cobalt hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, ammonium hydroxide, soda ash, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, amines Compound etc.
  • caustic soda potassium hydroxide, barium hydroxide, calcium hydroxide, aluminum hydroxide, lithium hydroxide, magnesium hydroxide, zinc hydroxide, Copper hydroxide, iron hydroxide, lead hydroxide, cobalt hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, ammonium hydroxide, soda ash, sodium carbonate, sodium bicarbonate,
  • polar solvents include but are not limited to water, formamide, dimethyl formamide, dimethyl sulfoxide, acetonitrile, hexamethylphosphoramide, methanol, ethanol, isopropanol, pyridine, tetramethyl ethyl Diamine or acetone.
  • the fluorescent carbon quantum dots that can be used for oil field tracking have amphiphilicity, which means that the fluorescent carbon quantum dots have a certain solubility in oil or water.
  • the solubility ratio of the fluorescent carbon quantum dots in the oil phase and the water phase is between (1:99) and (99:1).
  • the oil phase refers to highly non-polar substances, such as petroleum and various hydrocarbon compounds
  • the water phase refers to water.
  • the fluorescent carbon quantum dots have a certain solubility in both the oil phase and the water phase.
  • the solubility ratio of the fluorescent carbon quantum dots in the oil phase and the water phase can be between (1:99) and (1:90) , (1:80), (1:70), (1:60), (1:50), (1:40), (1:30), (1:20), (1:10), ( 1:1), (10:1), (20:1), (30:1), (40:1), (50:1), (60:1), (70:1), (80: 1) Or (90:1), but not limited to this.
  • the fluorescent carbon quantum dots may be excited at a wavelength between more than 200 nanometers and less than 400 nanometers, or between more than 500 nanometers and less than 1100 nanometers.
  • fluorescent carbon quantum dots can be at 210 nanometers, 220 nanometers, 240 nanometers, 260 nanometers, 280 nanometers, 300 nanometers, 320 nanometers, 340 nanometers, 360 nanometers, 380 nanometers, 390 nanometers, or 510 nanometers, 530 nanometers, and 550 nanometers.
  • Nanometer 570nm, 590nm, 610nm, 630nm, 650nm, 670nm, 690nm, 710nm, 730nm, 750nm, 770nm, 790nm, 810nm, 830nm, 850nm, 870nm, 890 nanometers, 910 nanometers, 930 nanometers, 950 nanometers, 970 nanometers, 990 nanometers, 1000 nanometers, 1020 nanometers, 1040 nanometers, 1060 nanometers, 1080 nanometers. Since the fluorescent carbon quantum dots can be excited by light of a variety of different wavelengths, the applicable range is extremely wide.
  • the fluorescence emission peak of the fluorescent carbon quantum dots is in the range of greater than 400 nanometers and less than 1100 nanometers.
  • the fluorescence emission peaks of the fluorescent carbon quantum dots may be 410 nanometers, 420 nanometers, and 440 nanometers.
  • nanometers 480 nanometers, 500 nanometers, 520 nanometers, 540 nanometers, 560 nanometers, 580 nanometers, 590 nanometers, 600 nanometers, 610 nanometers, 620 nanometers, 630 nanometers, 640 nanometers, 650 nanometers, 660 nanometers, 670 nanometers, 680 nanometers Nanometer, 690 nanometer, 700 nanometer, 710 nanometer, 720 nanometer, 730 nanometer, 740 nanometer, 750 nanometer, 760 nanometer, 770 nanometer, 780 nanometer, 790 nanometer, 800 nanometer, 810 nanometer, 820 nanometer, 830 nanometer, 840 nanometer, 850 nanometer, 860 nanometer, 870 nanometer, 880 nanometer, 890 nanometer, 900 nanometer, 910 nanometer, 920 nanometer, 930 nanometer, 940 nanometer, 950 nanometer, 960 nanometer, 970 nanometer, 980 nanometer, 990 nanometer, 910
  • the fluorescence emission peak of fluorescent carbon quantum dots can be further preferably between 580 nanometers and 1000 nanometers, especially when the emission peak of fluorescent carbon quantum dots is in the red or near-infrared light region, it can be better distinguished from those in petroleum Other fluorescent substances increase the accuracy of detection.
  • an oil field tracer is provided.
  • the oil field tracer includes fluorescent carbon quantum dots, and the fluorescent carbon quantum dots are amphiphilic.
  • Amphiphilic refers to the solubility of fluorescent carbon quantum dots in oil or water.
  • the solubility ratio of the fluorescent carbon quantum dots in the oil phase and the water phase is between (1:99) and (99:1).
  • the oil phase refers to highly non-polar substances, such as petroleum and various hydrocarbon compounds
  • the water phase refers to water.
  • the fluorescent carbon quantum dots have a certain solubility in both the oil phase and the water phase.
  • the solubility ratio of the fluorescent carbon quantum dots in the oil phase and the water phase can be between (1:99) and (1:90) , (1:80), (1:70), (1:60), (1:50), (1:40), (1:30), (1:20), (1:10), ( 1:1), (10:1), (20:1), (30:1), (40:1), (50:1), (60:1), (70:1), (80: 1) Or (90:1), but not limited to this.
  • the solubility ratio of the fluorescent carbon quantum dots in the oil phase and the water phase can be between (1:5) and (5:1). In this way, the fluorescent carbon quantum dots are more uniformly dispersed in the oil phase or the water phase, so that the oil-water ratio of the oil sample in the production well is lower.
  • the fluorescent carbon quantum dots may be excited at a wavelength between more than 200 nanometers and less than 400 nanometers, or between more than 500 nanometers and less than 1100 nanometers.
  • fluorescent carbon quantum dots can be at 210 nanometers, 220 nanometers, 240 nanometers, 260 nanometers, 280 nanometers, 300 nanometers, 320 nanometers, 340 nanometers, 360 nanometers, 380 nanometers, 390 nanometers, or 510 nanometers, 530 nanometers, and 550 nanometers.
  • Nanometer 570nm, 590nm, 610nm, 630nm, 650nm, 670nm, 690nm, 710nm, 730nm, 750nm, 770nm, 790nm, 810nm, 830nm, 850nm, 870nm, 890 nanometers, 910 nanometers, 930 nanometers, 950 nanometers, 970 nanometers, 990 nanometers, 1000 nanometers, 1020 nanometers, 1040 nanometers, 1060 nanometers, 1080 nanometers. Since the fluorescent carbon quantum dots can be excited by light of a variety of different wavelength bands, they can be applied in a wide range.
  • the fluorescence emission peak of the fluorescent carbon quantum dots is in the range of greater than 400 nanometers and less than 1100 nanometers.
  • the fluorescence emission peaks of the fluorescent carbon quantum dots may be 410 nanometers, 420 nanometers, 440 nanometers, and 460 nanometers.
  • the fluorescence emission peak of fluorescent carbon quantum dots can be further preferably between 580 nanometers and 1000 nanometers, especially when the emission peak of fluorescent carbon quantum dots is in the red or near-infrared light region, it can be better distinguished from those in petroleum Other fluorescent substances increase the accuracy of detection.
  • the surface of the fluorescent carbon quantum dot is bonded with a functional group
  • the functional group includes but is not limited to a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an epoxy group, a sulfhydryl group, a sulfonic acid group, a phosphoric acid group, or a sulfuric acid group.
  • the above-mentioned surface-bonded functional groups can change the hydrophilic and hydrophobic properties of the fluorescent carbon quantum dots, and the fluorescence emission properties of the fluorescent carbon quantum dots.
  • the size of the fluorescent carbon quantum dots is between 1 and 100 nanometers. That is, the dimensions of the fluorescent carbon quantum dots in three dimensions are all between 1 and 100 nanometers, and the shape of the fluorescent carbon quantum dots is preferably spherical.
  • the size of the fluorescent carbon quantum dots is between 1 and 20 nanometers, and can be 1 nanometer, 2 nanometers, 3 nanometers, 4 nanometers, 5 nanometers, 6 nanometers, 7 nanometers, 8 nanometers, 9 nanometers, 10 nanometers, 11 nanometers. Nanometer, 12 nanometer, 13 nanometer, 14 nanometer, 15 nanometer, 16 nanometer, 17 nanometer, 18 nanometer, 19 nanometer, 20 nanometer, but not limited to this.
  • the constituent elements of the fluorescent carbon quantum dots include at least carbon element, hydrogen element, and oxygen element.
  • the content of oxygen is in the range of 0.1 atomic% to 50 atomic %
  • the content of carbon is in the range of 30 atomic% to 99 atomic %
  • the content of hydrogen is 0.1 atomic% to 40 atomic %.
  • the constituent elements of the fluorescent carbon quantum dots also include at least nitrogen.
  • the content of oxygen is in the range of 0.1 atomic% to 50 atomic %
  • the content of carbon is in the range of 30 atomic% to 30 atomic %.
  • the content of nitrogen element is in the range of 0.5 atomic% to 40 atomic %
  • the content of hydrogen element is in the range of 0.1 atomic% to 40 atomic %.
  • the preparation method of fluorescent carbon quantum dots in Example 1 is as follows:
  • the surface of the fluorescent carbon quantum dots to be amino-functionalized is modified with amino groups: in a 250 ml three-necked flask, take 1 g of the fluorescent carbon quantum dots to be amino-functionalized, 100 ml of ammonia, and 2 g of sodium bisulfate and mix well. Then it was poured into a 300ml stainless steel hydrothermal reactor with a polytetrafluoroethylene lining, and reacted at 200°C for 12 hours to obtain the final fluorescent carbon quantum dots.
  • the obtained fluorescent carbon quantum dots can be dispersed in the water phase or the oil phase.
  • Example 1 The method of using the fluorescent carbon quantum dots in Example 1 for oil field tracing is as follows:
  • Example 1 Take a blank petroleum sample (oil-water mixture containing water and oil), and after adding the fluorescent carbon quantum dots in Example 1 (simulating the oil-water mixture obtained from the production well), take an appropriate amount of the above-mentioned fluorescent carbon quantum dots
  • 10 ml of ethanol solution followed by excess sodium hydroxide (NaOH) and 3 ml of ammonia.
  • NaOH sodium hydroxide
  • 3 ml of ammonia After reacting for 5 minutes, centrifuge the layer at 10000rpm, take the supernatant, the supernatant is an ethanol solution containing sodium hydroxide and quantum dots (the ethanol solution contains part of water), and then measure the fluorescence of the supernatant Emission peak.
  • the fluorescence emission peak of the supernatant containing fluorescent carbon quantum dots is about 612 nanometers.
  • Example 1 Take the fluorescent carbon quantum dots in Example 1 to prepare a standard solution, and the solvent environment of the standard solution is NaOH (1mol/L) ethanol solution. Among them, the content of fluorescent carbon quantum dots is 50 ⁇ g/ml, 10 ⁇ g/ml, 0.5 ⁇ g/ml, 0.025mg/ml in ethanol solution of NaOH. Then the fluorescence intensity was tested separately (excitation wavelength is 280 nanometers), and the test data results are shown in Table 1 below:
  • the fluorescence intensity (excitation wavelength of 280 nm) of a blank sample is measured.
  • the results of the 11 fluorescence intensity measurements were 0.0043, 0.0045, 0.0046, 0.0044, 0.0043, 0.0045, 0.0045, 0.0044, 0.0045, 0.0046, 0.0044.
  • the fluorescent carbon quantum dots are placed in blank petroleum samples (oil-water mixtures containing water and oil) with different acids, alkalis, and salts to detect fluorescent carbon quantum dots. The stability of the point in the oil tracer.
  • test process is as follows: take 20ml of blank petroleum sample, add 1ml of 1mg/ml carbon quantum dot aqueous solution and 10ml interference solution, put it in an oven at 85 degrees Celsius for aging test, take samples at different time periods for fluorescence test.
  • the fluorescent carbon quantum dots can maintain the fluorescence stability for a long time under different salts, acids, alkalis and high temperatures, which fully demonstrates the excellent performance of the fluorescent carbon quantum dots in the oilfield tracing method in this application. That is, when the above-mentioned oilfield tracer is used for oilfield tracing, the fluorescent carbon quantum dots can maintain good stability in the high-temperature, acidic, alkaline, or high-salt oil environment of the underground oil layer, which is beneficial to Follow-up testing.
  • the preparation method of fluorescent carbon quantum dots in Example 2 is as follows:
  • the surface of the fluorescent carbon quantum dots to be amino-functionalized is modified with amino groups: in a 250 ml three-necked flask, take 1 g of the fluorescent carbon quantum dots to be amino-functionalized, 100 ml of ammonia, and 2 g of sodium bisulfate and mix well. Then it was poured into a 300ml stainless steel hydrothermal reactor with a polytetrafluoroethylene lining, and reacted at 200°C for 12 hours to obtain the final fluorescent carbon quantum dots.
  • the obtained fluorescent carbon quantum dots can be dispersed in the water phase or the oil phase.
  • Example 2 The method of using the fluorescent carbon quantum dots in Example 2 for oil field tracing is as follows:
  • Example 2 Take a blank petroleum sample (oil-water mixture containing water and oil), and after adding the fluorescent carbon quantum dots in Example 2 (simulating the oil-water mixture obtained from the production well), take an appropriate amount of the above-mentioned fluorescent carbon quantum dots
  • After spotting the petroleum sample add 10 ml of ethanol solution, and then add excess hydrochloric acid. After reacting for 5 minutes, centrifuge the layer at 10000rpm, take the supernatant, the supernatant is an ethanol solution containing hydrochloric acid and quantum dots (the ethanol solution contains part of water), and then measure the fluorescence emission peak of the supernatant .
  • the fluorescence emission peak of the supernatant containing fluorescent carbon quantum dots is about 538 nanometers.
  • the preparation method of fluorescent carbon quantum dots in Example 3 is as follows:
  • the obtained fluorescent carbon quantum dots can be dispersed in the water phase or the oil phase.
  • Example 3 The method of using the fluorescent carbon quantum dots in Example 3 for oil field tracing is as follows:
  • Example 3 Take a blank petroleum sample (oil-water mixture containing water and oil), and after adding the fluorescent carbon quantum dots in Example 3 (simulating the oil-water mixture obtained from the production well), take an appropriate amount of the above-mentioned fluorescent carbon quantum dots
  • 10 ml of ethanol solution followed by excess sodium hydroxide (NaOH) and 3 ml of ammonia.
  • NaOH sodium hydroxide
  • 3 ml of ammonia After reacting for 5 minutes, centrifuge the layer at 10000rpm, take the supernatant, the supernatant is an ethanol solution containing sodium hydroxide and quantum dots (the ethanol solution contains part of water), and then measure the fluorescence of the supernatant Emission peak.
  • the fluorescence emission peak of the supernatant containing fluorescent carbon quantum dots is about 444 nanometers.
  • the preparation method of fluorescent carbon quantum dots in Example 4 is as follows:
  • the obtained fluorescent carbon quantum dots can be dispersed in the water phase or the oil phase.
  • Example 4 The method of using the fluorescent carbon quantum dots in Example 4 for oil field tracing is as follows:
  • Example 4 Take a blank petroleum sample (oil-water mixture containing water and oil), and after adding the fluorescent carbon quantum dots in Example 4 (simulating the oil-water mixture obtained from the production well), take an appropriate amount of the above-mentioned fluorescent carbon quantum dots.
  • After spotting the petroleum sample add 10 ml of ethanol solution, followed by excess sodium hydroxide (NaOH) and 3 ml of ammonia. After reacting for 5 minutes, centrifuge the layer at 10000rpm, take the supernatant, the supernatant is an ethanol solution containing sodium hydroxide and quantum dots (the ethanol solution contains part of water), and then measure the fluorescence of the supernatant Emission peak.
  • the fluorescence emission peak of the supernatant containing fluorescent carbon quantum dots is about 630 nanometers.
  • Example 4 Take the fluorescent carbon quantum dots in Example 4 to prepare a standard solution, wherein the fluorescent carbon quantum dots are respectively equipped with aqueous solutions with a content of 80.00 ⁇ g/ml, 8.00 ⁇ g/ml, 0.80 mg/ml, and 0.16 mg/ml. Then test the fluorescence intensity separately (excitation wavelength is 365 nanometers), and the test data results are shown in Table 3 below:
  • the fluorescence intensity of the blank sample (excitation wavelength is 365 nm) is measured.
  • the results of the 11 fluorescence intensity measurements were 0.0043, 0.0042, 0.0044, 0.0043, 0.0044, 0.0043, 0.0044, 0.0045, 0.0042, 0.0043, 0.0045.
  • Example 5 The preparation method of fluorescent carbon quantum dots is as follows:
  • Example 5 The method of using the fluorescent carbon quantum dots in Example 5 for oil field tracing is as follows:
  • Example 5 Take a blank petroleum sample (oil-water mixture containing water and oil), after adding the fluorescent carbon quantum dots in Example 5 (simulating the oil-water mixture obtained from the production well), take an appropriate amount of the above-mentioned fluorescent carbon quantum dots After spotting the petroleum sample, shake it well for 5 minutes, centrifuge it at 10,000 rpm for layering, remove the lower clear liquid, the lower clear liquid is an aqueous solution of quantum dots, and then measure the fluorescence emission peak of the lower liquid. As shown in 8-1, at an excitation wavelength of 365 nanometers, the fluorescence emission peak of the supernatant containing fluorescent carbon quantum dots is about 515 nanometers.
  • Example 5 Take the fluorescent carbon quantum dots in Example 5 to prepare a standard solution, where the content of fluorescent carbon quantum dots is 0.1667 ⁇ g/ml, 0.03333 ⁇ g/ml, 0.016667 ⁇ g/ml, 0.003333mg/ml, 0.001667mg/ml, 0.0003337 mg/ml aqueous solution. Then the fluorescence intensity was tested separately (excitation wavelength is 450 nm), and the test data results are shown in Table 5 below:
  • the fluorescence intensity of the blank sample (excitation wavelength is 365 nm) is measured.
  • the results of the 11 fluorescence intensity measurements were 0.0042, 0.0043, 0.0043, 0.0044, 0.0045, 0.0044, 0.0043, 0.0042, 0.0044, 0.0045, 0.0043, respectively.
  • Example 6 The preparation method of fluorescent carbon quantum dots is as follows:
  • Example 6 The method of using the fluorescent carbon quantum dots in Example 6 for oil field tracing is as follows:
  • Example 3 Take a blank petroleum sample (oil-water mixture containing water and oil), and after adding the fluorescent carbon quantum dots in Example 3 (simulating the oil-water mixture obtained from the production well), take an appropriate amount of the above-mentioned fluorescent carbon quantum dots. After spotting the petroleum sample, shake it well for 5 minutes, centrifuge it at 10,000 rpm for layering, remove the lower clear liquid, the lower clear liquid is an aqueous solution of quantum dots, and then measure the fluorescence emission peak of the lower liquid. As shown in Figure 9, at an excitation wavelength of 365 nanometers, the fluorescence emission peak of the supernatant containing fluorescent carbon quantum dots is about 434 nanometers.
  • Example 7 The preparation method of fluorescent carbon quantum dots is as follows:
  • Example 7 The method of using the fluorescent carbon quantum dots in Example 7 for oil field tracing is as follows:
  • Example 3 Take a blank petroleum sample (oil-water mixture containing water and oil), and after adding the fluorescent carbon quantum dots in Example 3 (simulating the oil-water mixture obtained from the production well), take an appropriate amount of the above-mentioned fluorescent carbon quantum dots After spotting the petroleum sample, shake it well for 5 minutes, centrifuge it at 10,000 rpm for layering, remove the lower clear liquid, the lower clear liquid is an aqueous solution of quantum dots, and then measure the fluorescence emission peak of the lower liquid. As shown in Figure 10-1, at an excitation wavelength of 365 nanometers, the fluorescence emission peak of the supernatant containing fluorescent carbon quantum dots is about 421 nanometers.
  • Example 7 Take the fluorescent carbon quantum dots in Example 7 to prepare a standard solution, wherein the fluorescent carbon quantum dots are respectively equipped with aqueous solutions with a content of 0.03333 ⁇ g/ml, 0.016667 ⁇ g/ml, 0.003333 mg/ml, and 0.001667 mg/ml.
  • the fluorescence intensity was tested separately (excitation wavelength is 365 nanometers), and the test data results are shown in Table 7 below:
  • the fluorescence intensity of the blank sample (excitation wavelength is 365 nm) is measured.
  • the results of the 11 fluorescence intensity measurements were 0.0042, 0.0043, 0.0043, 0.0044, 0.0045, 0.0044, 0.0043, 0.0042, 0.0044, 0.0045, 0.0043, respectively.
  • an ethanol solution of sodium hydroxide or an ethanol solution containing hydrochloric acid is used as the detection environment of the fluorescent carbon quantum dots.
  • fluorescent carbon quantum dots may also exhibit excellent fluorescence performance. As long as the conditions are suitable for fluorescence detection of fluorescent carbon quantum dots, they can be Finally, the environment of fluorescent carbon quantum dots is detected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种油田示踪剂及油田示踪的方法。油田示踪的方法,包括步骤:在油田注入井中加入油田示踪剂,油田示踪剂包括荧光碳量子点;在油田产出井处获取油水混合物;分析油水混合物中是否存在荧光碳量子点。在油田产出井的油水混合物中检测油田示踪剂,该方法不受油田产出井处获取的待检测样品的油水比例的限制,可满足多种油田环境的要求。通过使用极性溶剂萃取油水混合物中的荧光碳量子点,可以将油中的部分荧光碳量子点转移至极性溶剂中、实现在极性溶剂中检测荧光碳量子点,从而避免在油中直接检测荧光碳量子点时,受到石油中背景物质的干扰。

Description

油田示踪剂及油田示踪的方法 技术领域
本申请属于油田分析领域,尤其涉及一种油田示踪剂及油田示踪的方法。
背景技术
油田示踪技术是现场生产测试技术之一,其技术是从油田注入井加入示踪剂,其后按一定的取样规定在周围的油田产出井取样,监测其示踪剂的过程,从而指导油井开采的设计和油田开发后期的调整。油田示踪剂可以定性的描述油藏情况,比如:注入流体的推进方向和速度,评价体积波及效率,流体遮挡,方向性流动趋势,油藏的非均质特征,测定剩余油饱和度及分布等。
长期以来,油田示踪中常用的示踪剂主要有化学示踪剂、同位素示踪剂、微量物质示踪剂三种。如化学示踪剂包括易溶的无机盐,荧光染料,卤代烃及低相对分子质量的醇等。同位素示踪剂包括放射性同位素示踪剂,稳定性同位素示踪剂。这些示踪剂均存在不同程度的缺点:化学示踪剂用量大、成本高、易被岩石吸附等;同位素示踪剂则要求专业施工人员,应用专用设备检测,不利于大规模推广应用;微量物质示踪剂需要采用高端的分析设备比如电感耦合等离子质谱等。
随着油田中石油储量减少,石油的开采变得越来越难,定位和测绘油藏的方法变得越来越重要,开发用于油田示踪的新方法以及新材料具有重要的意义。
发明内容
针对上述技术问题,本申请提供一种油田示踪剂及油田示踪的方法,该示踪的方法具有环境友好、检出限低等优点。
根据本申请的一个方面,提供一种油田示踪的方法,包括以下步骤:
在油田注入井中加入油田示踪剂,所述油田示踪剂包括荧光碳量子点;
在油田产出井处获取油水混合物;
分析所述油水混合物中是否存在所述荧光碳量子点。
优选地,分析所述油水混合物中是否存在所述荧光碳量子点的步骤包括:
使用极性溶剂萃取所述油水混合物中的荧光碳量子点,得到含有荧光碳量子点的极性溶剂;
以及检测所述含有荧光碳量子点的极性溶剂的荧光的过程。
优选地,在检测所述含有荧光碳量子点的极性溶剂的荧光的过程之前,还包括:
调节所述含有荧光碳量子点的极性溶剂的pH值。
优选地,调节所述含有荧光碳量子点的极性溶剂的pH值的步骤包括:在所述极性溶剂中加入酸或者碱。
优选地,所述极性溶剂包括水、甲酰胺、二甲基甲酰胺、二甲基亚砜、乙腈、六甲基磷酰胺、甲醇、乙醇、异丙醇、吡啶、四甲基乙二胺或者丙酮。
优选地,在油田注入井中加入油田示踪剂的步骤包括:将含有石油示踪剂的水溶液注射至油田注入井中。
优选地,所述荧光碳量子点可在大于200纳米且小于400纳米之间、或者大于500纳米且小于1100纳米之间的波长处被激发。
优选地,所述荧光碳量子点的荧光发射峰大于400纳米且小于1100纳米。
根据本申请的另一个方面,提供一种油田示踪剂,包括:荧光碳量子点;所述荧光碳量子点具有两亲性。
优选地,所述荧光碳量子点可在大于200纳米且小于400纳米之间、或者大于500纳米且小于1100纳米之间的波长处被激发。
优选地,所述荧光碳量子点的荧光发射峰大于400纳米且小于1100纳米。
优选地,所述荧光碳量子点在油相和水相中的溶解度之比在(1:99)至(99:1)之间。
优选地,所述荧光碳量子点的表面键合有官能团,所述官能团包括羟基、羧基、氨基、羰基、环氧基、巯基、磺酸基、磷酸基团、或者硫酸基团。
优选地,所述荧光碳量子点的尺寸在1纳米至100纳米之间。
优选地,所述荧光碳量子点的构成元素至少包括碳元素、氢元素和氧元素。
优选地,所述荧光碳量子点的构成元素至少包括碳元素、氢元素、氧元素和氮元素。
有益效果:
(1)在油田产出井的油水混合物中检测油田示踪剂,该方法不受油田产出井处获取的待检测样品的油水比例的限制。
(2)通过使用极性溶剂萃取油水混合物中的荧光碳量子点,可以将油中的部分荧光碳量子点转移至极性溶剂中、实现在极性溶剂中检测荧光碳量子点,从而避免在油中直接检测荧光碳量子点时,受到石油中背景物质的干扰。
(3)通过调节含有荧光碳量子点的极性溶剂的pH值,可以对荧光碳量子点的荧光发射性质进行调节,比如调节荧光发射峰的波长以及增强荧光发射峰的强度,从而更易于实现对 荧光碳量子点的荧光信号的检测。
(4)本申请中荧光碳量子点作为油田示踪剂具有环境友好的特性、且荧光碳量子点对于高温、酸、碱以及盐等均表现优良的环境稳定性。
(5)具有两亲性的荧光碳量子点在油和水中均具有一定的溶解度,在产出井进行取样测试时,适用于采用极性溶剂直接在油水混合物中萃取荧光碳量子点,从而在更合适的溶剂环境中检测荧光碳量子点。
(6)荧光碳量子点可在大于200纳米且小于400纳米之间、或者大于500纳米且小于1100纳米之间的波长处被激发,即荧光碳量子点可以被不同波段的光激发。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为一个实施方式中油田示踪方法的示意图;
图2为一个实施方式中油田示踪方法的示意图;
图3为一个实施方式中油田示踪方法的示意图;
图4-1为实施例1检测油水混合物中荧光碳量子点的荧光发射光谱图;
图4-2实施例1不同浓度的荧光碳量子点标准溶液的荧光测试标准曲线图;
图5为实施例2检测油水混合物中荧光碳量子点的荧光发射光谱图;
图6为实施例3检测油水混合物中荧光碳量子点的荧光发射光谱图;
图7-1为实施例4检测油水混合物中荧光碳量子点的荧光发射光谱图;
图7-2实施例4不同浓度的荧光碳量子点标准溶液的荧光测试标准曲线图;
图8-1为实施例5检测油水混合物中荧光碳量子点的荧光发射光谱图;
图8-2实施例5不同浓度的荧光碳量子点标准溶液的荧光测试标准曲线图;
图9为实施例6检测油水混合物中荧光碳量子点的荧光发射光谱图;
图10-1为实施例7检测油水混合物中荧光碳量子点的荧光发射光谱图;
图10-2实施例7不同浓度的荧光碳量子点标准溶液的荧光测试标准曲线图;
在附图中相同的部件使用了相同的附图标记。附图仅示意性地显示了本申请的实施方案。
具体实施方式
下面将结合本申请实施方式,对本申请实施例中的技术方案进行详细的描述。应注意的是,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部实施方式。
本文中使用的术语仅用于描述具体实施方式的目的且不意图为限制性的。如果未另外定义,说明书中的所有术语(包括技术和科学术语)可如本领域技术人员通常理解的那样定义。常用字典中定义的术语应被解释为具有与它们在相关领域的背景和本公开内容中的含义一致的含义,并且不可以理想方式或者过宽地解释,除非清楚地定义。此外,除非明确地相反描述,措辞“包括”和措辞“包含”当用于本说明书中时表明存在所陈述的特征、区域、整体、步骤、操作、要素、和/或组分,但是不排除存在或添加一个或多个其它特征、区域、整体、步骤、操作、要素、组分、和/或其集合。因此,以上措辞将被理解为意味着包括所陈述的要素,但不排除任何其它要素。
将理解,尽管术语第一、第二、第三等可在本文中用于描述各种元件、组分、区域、层和/或部分,但这些元件、组分、区域、层和/或部分不应受这些术语限制。这些术语仅用于将一个元件、组分、区域、层或部分区别于另外的元件、组分、区域、层或部分。因而,在不背离本实施方式的教导的情况下,下面讨论的第一元件、组分、区域、层或部分可称为第二元件、组分、区域、层或部分。
以下定义适用于关于本发明一些实施方式描述的一些方面,这些定义同样可以在本文得到扩展。
除非上下文另做清楚规定,否则如本文使用的,单数形式“一个”和“所述”包括多个指代物。除非上下文另做清楚规定,否则提到一个对象可包括多个对象。
如本文使用的,术语“邻近”是指接近或邻接。邻近的对象可彼此间隔开,或者可彼此实际或直接接触。在一些情况中,邻近的对象可彼此连接,或者可彼此整体的形成。
如本文使用的,术语“连接”、是指操作性耦接或链接。链接的对象可彼此直接耦接,或者可经由另一组对象彼此间接地耦接。
如本文使用的,相对性术语,例如“里边”、“内部”、“外面”、“外部”、“顶部”、“底部”、“正面”、“背面”、“后面”、“上部”、“下部”、“垂直”、“横向”、“在……之上”及“在……之下”是指例如根据附图,一组对象先对彼此的取向,但在制造或使用期间不要求这些对象的特定取向。
根据本申请的一个实施方式,如图1所示,提供一种油田示踪的方法,包括以下步骤:
S11、在油田注入井中加入油田示踪剂,油田示踪剂包括荧光碳量子点;
S12、在油田产出井处获取油水混合物;
S13、分析油水混合物中是否存在荧光碳量子点。
在油田产出井的油水混合物中检测油田示踪剂时,该方法不受油田产出井处获取的待检测样品的油水比例的限制,可满足多种油田环境的要求。现有常见的油田示踪剂中,一般为水相的示踪剂或者是油相的示踪剂。在产出井检测是否存在示踪剂时,一般会根据示踪剂的 亲油特性或者亲水特性,选择性的去检测油或者是水中是否会存在示踪剂。这样,当在产出井的取样为油时,就无法使用水相的示踪剂;而当产出井的取样为水时,就无法使用油相示踪剂,导致示踪剂的使用受到极大的限制。而本申请提供了一种可以直接对油水混合物中的油田示踪剂进行检测的方法,不管所得到的待检测的样品中水成分或者是油成分的含量多少,均可以适用该方法。
以荧光碳量子点作为石油示踪剂可以极大的减小现有常见油田示踪剂对油田环境的破坏。与常见的有机或者无机油田示踪剂相比,由于荧光碳量子点基本无毒,残留在油田中也不会对油田环境造成破坏。此外,荧光碳量子点的荧光强度较高,易于检测和识别。
在油田注入井中加入油田示踪剂的步骤可以包括:将含有石油示踪剂的水溶液注射至油田注入井中,但是不限定于此。除油田示踪剂之外,随着水溶液一起注射至注入井中的物质包括但是不限于支撑剂粒子、盐等。
在一个实施方式中,分析油水混合物中是否存在荧光碳量子点的步骤包括:使用极性溶剂萃取油水混合物中的荧光碳量子点,得到含有荧光碳量子点的极性溶剂,以及检测含有荧光碳量子点的极性溶剂的荧光的过程。
如图2所示,在一个实施方式中,油田示踪的方法,包括以下步骤:
S21、在油田注入井中加入油田示踪剂,油田示踪剂包括荧光碳量子点;
S22、在油田产出井处获取油水混合物;
S23、使用极性溶剂萃取油水混合物中的荧光碳量子点,得到含有荧光碳量子点的极性溶剂、以及
S24、检测含有荧光碳量子点的极性溶剂的荧光的过程。
在步骤S23中,使用极性溶剂萃取油水混合物中的荧光碳量子点时,可以直接将极性溶剂与油水混合物混合均匀后、进一步分层,即可将极性溶剂与油分开。由于油水混合物中水、以及部分其他物质与极性溶剂之间的相容性较好,得到的含有荧光碳量子点的极性溶剂中可能还含有水或者其他易溶于极性溶剂的其他物质。
由于石油中存在着大量的荧光干扰物,直接在油水混合物中检测荧光时,会导致较大的误差。而在步骤S24中,当将油水混合物中的荧光碳量子点萃取至极性溶剂中后,则可在极性溶剂中对荧光碳量子点的荧光进行检测。由于荧光干扰物基本残留在油中,在极性溶剂中存在的荧光干扰物会大大减小,所以在极性溶剂中对荧光碳量子点的检测的准确性显著增加。
荧光碳量子点的发光性能极其容易受到外部环境的影响,比如不同的pH值、以及不同的溶剂中均可能会出现光谱变化的现象。故在极性溶剂中检测荧光时,可以进一步的调节含有荧光碳量子点的极性溶剂的pH值,使得在极性溶剂中的荧光碳量子点的荧光性能达到易于检测的目的,比如改变极性溶剂的pH值之后,可以调节荧光碳量子点的荧光发射峰的发射波长,或者是提高荧光碳量子点的荧光发射强度。如图3所示,在一个实施方式中,油田示踪的方 法,包括以下步骤:
S31、在油田注入井中加入油田示踪剂,油田示踪剂包括荧光碳量子点;
S32、在油田产出井处获取油水混合物;
S33、使用极性溶剂萃取油水混合物中的荧光碳量子点,得到含有荧光碳量子点的极性溶剂;
S34、调节所述含有荧光碳量子点的极性溶剂的pH值;
S35、检测含有荧光碳量子点的极性溶剂的荧光的过程。
步骤S34中,调节含有荧光碳量子点的极性溶剂的pH值的步骤包括在极性溶剂中加入适量的酸或者碱。可用于调节pH的酸包括有机酸或者无机酸,例如,包括但是不限定于硫酸、硝酸、盐酸、亚硫酸、磷酸、碳酸、柠檬酸、氢氟酸,苹果酸、葡萄糖酸、甲酸、乳酸、苯甲酸、丙烯酸、醋酸、丙酸,硬脂酸,氢硫酸,次氯酸,硼酸等。可用于调节pH的碱包括有机碱或者无机碱,例如,包括但是不限定于烧碱、氢氧化钾、氢氧化钡、氢氧化钙、氢氧化铝、氢氧化锂、氢氧化镁、氢氧化锌、氢氧化铜、氢氧化铁、氢氧化铅、氢氧化钴、氢氧化铬、氢氧化锆、氢氧化镍、氢氧化铵、纯碱、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、胺类化合物等。
本申请中,极性溶剂包括但是不限于水、甲酰胺、二甲基甲酰胺、二甲基亚砜、乙腈、六甲基磷酰胺、甲醇、乙醇、异丙醇、吡啶、四甲基乙二胺或者丙酮。当将极性溶剂与待检测的油水混合物相互混合之后,极性溶剂会与油水混合物中的油组分相互分离、分层,可以通过离心的方式促进油和极性溶剂的分离。
在一个实施方式中,可用于油田示踪的荧光碳量子点具有两亲性,两亲性是指荧光碳量子点在油或者是水中均具有一定的溶解性。
荧光碳量子点具有两亲性时,不管在产出井中取样的油水混合物中油和水的比例如何,在油水混合物中加入极性溶剂之后,极性溶剂必然会从油水混合物中萃取出部分的荧光碳量子点。在一个实施方式中,荧光碳量子点在油相和水相中的溶解度之比在(1:99)至(99:1)之间。油相是指高非极性的物质,比如石油、各种烃类化合物等,水相是指水。本实施方式中,荧光碳量子点在油相和水相中均具有一定的溶解度,荧光碳量子点在油相和水相中的溶解度之比可以在(1:99)、(1:90)、(1:80)、(1:70)、(1:60)、(1:50)、(1:40)、(1:30)、(1:20)、(1:10)、(1:1)、(10:1)、(20:1)、(30:1)、(40:1)、(50:1)、(60:1)、(70:1)、(80:1)或者(90:1),但是不限定于此。
在一个实施方式中,荧光碳量子点可在大于200纳米且小于400纳米之间、或者大于500纳米且小于1100纳米之间的波长处被激发。具体的,荧光碳量子点可以在210纳米、220纳米、240纳米、260纳米、280纳米、300纳米、320纳米、340纳米、360纳米、380纳米、390纳米,或者510纳米、530纳米、550纳米、570纳米、590纳米、610纳米、630纳米、 650纳米、670纳米、690纳米、710纳米、730纳米、750纳米、770纳米、790纳米、810纳米、830纳米、850纳米、870纳米、890纳米、910纳米、930纳米、950纳米、970纳米、990纳米、1000纳米、1020纳米、1040纳米、1060纳米、1080纳米。由于荧光碳量子点可被多种不同波段的光激发,可适用的范围极广。
在本申请的一个实施方式中,荧光碳量子点的荧光发射峰在大于400纳米且小于1100纳米的范围内,具体的,荧光碳量子点的荧光发射峰可以在410纳米、420纳米、440纳米、460纳米、480纳米、500纳米、520纳米、540纳米、560纳米、580纳米、590纳米、600纳米、610纳米、620纳米、630纳米、640纳米、650纳米、660纳米、670纳米、680纳米、690纳米、700纳米、710纳米、720纳米、730纳米、740纳米、750纳米、760纳米、770纳米、780纳米、790纳米、800纳米、810纳米、820纳米、830纳米、840纳米、850纳米、860纳米、870纳米、880纳米、890纳米、900纳米、910纳米、920纳米、930纳米、940纳米、950纳米、960纳米、970纳米、980纳米、990纳米、1000纳米、1020纳米、1040纳米、1060纳米、1080纳米,但是不限定于此。荧光碳量子点的荧光发射峰可以进一步的优选在580纳米至1000纳米之间,尤其是当荧光碳量子点的发射峰位于红光或者近红外光区域时,可以更好的区别于石油中的其它荧光物质,增加检测的准确性。
在本申请的一个实施方式中,提供一种油田示踪剂,油田示踪剂包括荧光碳量子点,荧光碳量子点具有两亲性。两亲性是指荧光碳量子点在油或者是水中均具有一定的溶解性。在一个实施方式中,荧光碳量子点在油相和水相中的溶解度之比在(1:99)至(99:1)之间。油相是指高非极性的物质,比如石油、各种烃类化合物等,水相是指水。本实施方式中,荧光碳量子点在油相和水相中均具有一定的溶解度,荧光碳量子点在油相和水相中的溶解度之比可以在(1:99)、(1:90)、(1:80)、(1:70)、(1:60)、(1:50)、(1:40)、(1:30)、(1:20)、(1:10)、(1:1)、(10:1)、(20:1)、(30:1)、(40:1)、(50:1)、(60:1)、(70:1)、(80:1)或者(90:1),但是不限定于此。荧光碳量子点在油相和水相中的溶解度之比可以在(1:5)至(5:1)之间。这样,使得荧光碳量子点在油相或者水相中的分散更加均匀,从而对产出井中的石油样品的油水比例的要求更低。
在一个实施方式中,荧光碳量子点可在大于200纳米且小于400纳米之间、或者大于500纳米且小于1100纳米之间的波长处被激发。具体的,荧光碳量子点可以在210纳米、220纳米、240纳米、260纳米、280纳米、300纳米、320纳米、340纳米、360纳米、380纳米、390纳米,或者510纳米、530纳米、550纳米、570纳米、590纳米、610纳米、630纳米、650纳米、670纳米、690纳米、710纳米、730纳米、750纳米、770纳米、790纳米、810纳米、830纳米、850纳米、870纳米、890纳米、910纳米、930纳米、950纳米、970纳米、990纳米、1000纳米、1020纳米、1040纳米、1060纳米、1080纳米。由于荧光碳量子点可被多种不同波段的光激发,可适用的范围广。
在一个实施方式中,荧光碳量子点的荧光发射峰在大于400纳米且小于1100纳米的范围内,具体的,荧光碳量子点的荧光发射峰可以在410纳米、420纳米、440纳米、460纳米、480纳米、500纳米、520纳米、540纳米、560纳米、580纳米、590纳米、600纳米、610纳 米、620纳米、630纳米、640纳米、650纳米、660纳米、670纳米、680纳米、690纳米、700纳米、710纳米、720纳米、730纳米、740纳米、750纳米、760纳米、770纳米、780纳米、790纳米、800纳米、810纳米、820纳米、830纳米、840纳米、850纳米、860纳米、870纳米、880纳米、890纳米、900纳米、910纳米、920纳米、930纳米、940纳米、950纳米、960纳米、970纳米、980纳米、990纳米、1000纳米、1020纳米、1040纳米、1060纳米、1080纳米,但是不限定于此。荧光碳量子点的荧光发射峰可以进一步的优选在580纳米至1000纳米之间,尤其是当荧光碳量子点的发射峰位于红光或者近红外光区域时,可以更好的区别于石油中的其它荧光物质,增加检测的准确性。
在一个实施方式中,荧光碳量子点的表面键合有官能团,官能团包括但是不限定于羟基、羧基、氨基、羰基、环氧基、巯基、磺酸基、磷酸基团、或者硫酸基团。上述表面键合的官能团可以改变荧光碳量子点的亲水、疏水性能,以及荧光碳量子点的荧光发射性能。
在本申请一个实施方式中,荧光碳量子点的尺寸在1至100纳米之间。即,荧光碳量子点在三个维度上的尺寸均在1至100纳米之间,荧光碳量子点的形状优选为球状。优选地,荧光碳量子点的尺寸在1至20纳米之间,可以为1纳米、2纳米、3纳米、4纳米、5纳米、6纳米、7纳米、8纳米、9纳米、10纳米、11纳米、12纳米、13纳米、14纳米、15纳米、16纳米、17纳米、18纳米、19纳米、20纳米,但是不限定于此。
在本申请一个实施方式中,荧光碳量子点的构成元素至少包括碳元素、氢元素和氧元素。按照元素的组成,氧元素的含量在0.1原子%至50原子%的范围内,碳元素的含量在30原子%至99原子%的范围内,和氢元素的含量在0.1原子%至40原子%的范围内。在另一个实施方式中,荧光碳量子点的构成元素至少还包括氮元素,按照元素的组成,氧元素的含量在0.1原子%至50原子%的范围内,碳元素的含量在30原子%至99原子%的范围内,氮元素的含量在0.5原子%至40原子%的范围内,和氢元素的含量在0.1原子%至40原子%的范围内。
实施例1中荧光碳量子点的制备方法如下:
将1g的3,4,9,10-四硝基苝置于500ml烧杯中,加入200ml的乙醇、3g的NaOH以及1g的柠檬酸钠,超声溶解得到混合液。之后将混合液倒入300ml的具有聚四氟乙烯内衬的不锈钢水热反应釜中,在200℃下反应12小时后,分离提纯得到待氨基官能化的荧光碳量子点。
接着对待氨基官能化的荧光碳量子点的表面进行氨基修饰:在250ml的三口烧瓶中,取1g上述待氨基官能化的荧光碳量子点、100ml的氨水、和2g的硫酸氢钠混合均匀。接着将其倒入300ml的具有聚四氟乙烯内衬的不锈钢水热反应釜中,在200℃下反应12小时后,得到最终的荧光碳量子点。所得到的荧光碳量子点可分散在水相或者油相中。
将实施例1中荧光碳量子点用于油田示踪的方式如下:
取空白的石油样品(含有水和油的油水混合物),在其中加入实施例1中的荧光碳量子点之后(模拟产出井中获取的待检测的油水混合物),取适量的上述含有荧光碳量子点的石油样品后,在其中加入10毫升的乙醇溶液,接着加入过量的氢氧化钠(NaOH)和3毫升的氨水。 反应5分钟后,在10000rpm下使得其离心分层,取上清液,上清液为含有氢氧化钠和量子点的乙醇溶液(该乙醇溶液中含有部分水),接着测定上清液的荧光发射峰。如图4-1所示,在280纳米的激发波长下,含有荧光碳量子点的上清液的荧光发射峰约在612纳米。
荧光碳量子点作为油田示踪剂的标准曲线绘制过程如下所示:
取实施例1中的荧光碳量子点配制标准溶液,标准溶液的溶剂环境为NaOH(1mol/L)的乙醇溶液。其中,分别配置荧光碳量子点含量为50μg/ml,10μg/ml,0.5μg/ml,0.025mg/ml的NaOH的乙醇溶液。再分别对其荧光强度进行测试(激发波长为280纳米),测试数据结果如下表1所示:
表1
浓度(μg/ml) 50 10 0.5 0.025
荧光强度(A.U.) 1.0525 0.2553 0.02518 0.01802
根据上表中,不同浓度的荧光碳量子点的标准溶液的荧光强度-浓度绘制标准曲线图,如图4-2所示,图中拟合可知,该方法的灵敏度为S=0.0206。
接着,测定空白样本(不含有荧光量子点的NaOH的乙醇溶液)的荧光强度(激发波长为280纳米)。11次的荧光强度测定结果分别为:0.0043、0.0045、0.0046、0.0044、0.0043、0.0045、0.0045、0.0044、0.0045、0.0046、0.0044。
根据上述对空白样本的荧光强度的多次测定,计算得空白样本的标准偏差为Sb=0.000103,从而可以计算出该方法的检出限约为0.015μg/ml。
由于地下油层中的温度、酸、碱、盐环境等都对石油示踪剂的稳定性提出严格的要求。在一个实施方式中,为检测荧光碳量子点的稳定性,将荧光碳量子点置于不同酸、碱、盐的空白的石油样品(含有水和油的油水混合物)中,从而检测荧光碳量子点在石油示踪中的稳定性。
测试过程如下:量取20ml的空白的石油样品,加入1ml的1mg/ml的碳量子点水溶液及10ml干扰溶液,将其置于85摄氏度的烘箱中进行老化测试,在不同的时间段取样进行荧光测试。
干扰溶液的配置如下:分别称取计算量的NaCl,ZnCl 2,CuSO 4,Sr(Ac) 2·1/2H 2O,FeCl 3,MgSO 4,CaCl 2,KCl及10ml的水加入50ml烧杯中,超声溶解,制得1wt%(以金属离子计算)的干扰溶液;以及pH=1的HCl水溶液、pH=13的NaOH水溶液的干扰溶液。
老化测试如下表2所示:
表2
Figure PCTCN2020131495-appb-000001
Figure PCTCN2020131495-appb-000002
从上述表格可知,荧光碳量子点在不同的盐、酸、碱和高温下,均能长时间的保持荧光稳定性,充分说明本申请中荧光碳量子点在油田示踪方法中的优良性能。即,当将上述油田示踪剂用于油田示踪时,荧光碳量子点在地下油层的高温、酸性、碱性或者高盐性的石油环境中,均能保持良好的稳定性,从而有利于后续检测。
实施例2中荧光碳量子点的制备方法如下:
将1g的3,4,9,10-四硝基苝置于500ml烧杯中,加入200ml的乙醇、3g的NaOH以及1g的柠檬酸钠,超声溶解得到混合液。之后将混合液倒入300ml的具有聚四氟乙烯内衬的不锈钢水热反应釜中,在200℃下反应12小时后,分离提纯得到待氨基官能化的荧光碳量子点。
接着对待氨基官能化的荧光碳量子点的表面进行氨基修饰:在250ml的三口烧瓶中,取1g上述待氨基官能化的荧光碳量子点、100ml的氨水、和2g的硫酸氢钠混合均匀。接着将其倒入300ml的具有聚四氟乙烯内衬的不锈钢水热反应釜中,在200℃下反应12小时后,得到最终的荧光碳量子点。所得到的荧光碳量子点可分散在水相或者油相中。
采用实施例2中荧光碳量子点用于油田示踪的方式如下:
取空白的石油样品(含有水和油的油水混合物),在其中加入实施例2中的荧光碳量子点之后(模拟产出井中获取的待检测的油水混合物),取适量的上述含有荧光碳量子点的石油样品后,在其中加入10毫升的乙醇溶液,接着加入过量的盐酸。反应5分钟后,在10000rpm下使得其离心分层,取上清液,上清液为含有盐酸和量子点的乙醇溶液(该乙醇溶液中含有部分水),接着测定上清液的荧光发射峰。如图5所示,在370纳米的激发波长下,含有荧光碳量子点的上清液的荧光发射峰约在538纳米。
实施例3中荧光碳量子点的制备方法如下:
将1g的柠檬酸、2ml的聚乙二醇和20ml的去离子水置于50ml水热反应釜中后,在180℃下反应12h,得到最终的荧光碳量子点。所得到的荧光碳量子点可分散在水相或者油相中。
采用实施例3中荧光碳量子点用于油田示踪的方式如下:
取空白的石油样品(含有水和油的油水混合物),在其中加入实施例3中的荧光碳量子点 之后(模拟产出井中获取的待检测的油水混合物),取适量的上述含有荧光碳量子点的石油样品后,在其中加入10毫升的乙醇溶液,接着加入过量的氢氧化钠(NaOH)和3毫升的氨水。反应5分钟后,在10000rpm下使得其离心分层,取上清液,上清液为含有氢氧化钠和量子点的乙醇溶液(该乙醇溶液中含有部分水),接着测定上清液的荧光发射峰。如图6所示,在365纳米的激发波长下,含有荧光碳量子点的上清液的荧光发射峰约在444纳米。
实施例4中荧光碳量子点的制备方法如下:
将1g的对苯二胺,0.5g的柠檬酸,20ml的乙醇,置于50ml的水热反应釜中后,在180℃下反应12h,得到最终的荧光碳量子点。所得到的荧光碳量子点可分散在水相或者油相中。
采用实施例4中荧光碳量子点用于油田示踪的方式如下:
取空白的石油样品(含有水和油的油水混合物),在其中加入实施例4中的荧光碳量子点之后(模拟产出井中获取的待检测的油水混合物),取适量的上述含有荧光碳量子点的石油样品后,在其中加入10毫升的乙醇溶液,接着加入过量的氢氧化钠(NaOH)和3毫升的氨水。反应5分钟后,在10000rpm下使得其离心分层,取上清液,上清液为含有氢氧化钠和量子点的乙醇溶液(该乙醇溶液中含有部分水),接着测定上清液的荧光发射峰。如图7-1所示,在550纳米的发波长下,含有荧光碳量子点的上清液的荧光发射峰约在630纳米。
取实施例4中的荧光碳量子点配制标准溶液,其中,分别配置荧光碳量子点含量为80.00μg/ml,8.00μg/ml,0.80mg/ml,0.16mg/ml的水溶液。再分别对其荧光强度进行测试(激发波长为365纳米),测试数据结果如下表3所示:
表3
实际浓度(ppm) 80.00 8.00 0.80 0.16
荧光强度(A.U.) 4.7900 0.4800 0.0300 0.0063
根据上表中,不同浓度的荧光碳量子点的标准溶液的荧光强度-浓度绘制标准曲线图,如图7-2所示,图中拟合可知,该方法的灵敏度为S=0.06。
接着,测定空白样本的荧光强度(激发波长为365纳米)。11次的荧光强度测定结果分别为:0.0043、0.0042、0.0044、0.0043、0.0044、0.0043、0.0044、0.0045、0.0042、0.0043、0.0045。
根据上述对空白样本的荧光强度的多次测定,计算得空白样本的标准偏差为Sb=0.00009,从而可以计算出该方法的检出限约为0.0045μg/ml。
老化测试结果如下表4:
表4
Figure PCTCN2020131495-appb-000003
Figure PCTCN2020131495-appb-000004
实施例5荧光碳量子点的制备方法如下:
将1g的荧光素钠置于500ml烧杯中,加入200ml的乙醇、10ml聚乙二醇600,超声溶解得到混合液。之后将混合液倒入300ml的具有聚四氟乙烯内衬的不锈钢水热反应釜中,在200℃下反应6小时后,分离提纯得到羧基官能化的荧光碳量子点。所得到的荧光碳量子点可分散在水相或者油相中。
采用实施例5中荧光碳量子点用于油田示踪的方式如下:
取空白的石油样品(含有水和油的油水混合物),在其中加入实施例5中的荧光碳量子点之后(模拟产出井中获取的待检测的油水混合物),取适量的上述含有荧光碳量子点的石油样品后,摇匀5分钟后,在10000rpm下使得其离心分层,取下层清液,下层清液为量子点的水溶液,接着测定下层液的荧光发射峰。如8-1所示,在365纳米的激发波长下,含有荧光碳量子点的上清液的荧光发射峰约在515纳米。
取实施例5中的荧光碳量子点配制标准溶液,其中,分别配置荧光碳量子点含量为0.1667μg/ml,0.03333μg/ml,0.016667μg/ml,0.003333mg/ml,0.001667mg/ml,0.0003337mg/ml的水溶液。再分别对其荧光强度进行测试(激发波长为450纳米),测试数据结果如下表5所示:
表5
Figure PCTCN2020131495-appb-000005
根据上表中,不同浓度的荧光碳量子点的标准溶液的荧光强度-浓度绘制标准曲线图,如图8-2所示,图中拟合可知,该方法的灵敏度为S=48.44344。
接着,测定空白样本的荧光强度(激发波长为365纳米)。11次的荧光强度测定结果分别为:0.0042、0.0043、0.0043、0.0044、0.0045、0.0044、0.0043、0.0042、0.0044、0.0045、0.0043。
根据上述对空白样本的荧光强度的多次测定,计算得空白样本的标准偏差为Sb=0.00009,从而可以计算出该方法的检出限约为5.7×10^ -6μg/ml。
老化测试结果如下表6:
表6
Figure PCTCN2020131495-appb-000006
实施例6荧光碳量子点的制备方法如下:
将0.2g半胱氨酸溶于30ml乙醇中,超声溶解,再将其转移至50ml聚四氟乙烯内衬水热合成反应釜中,180℃反应8h,反应结束,冷却至室温,得到巯基修饰的荧光碳量子点。所得到的荧光碳量子点可分散在水相或者油相中。
采用实施例6中荧光碳量子点用于油田示踪的方式如下:
取空白的石油样品(含有水和油的油水混合物),在其中加入实施例3中的荧光碳量子点之后(模拟产出井中获取的待检测的油水混合物),取适量的上述含有荧光碳量子点的石油样品后,摇匀5分钟后,在10000rpm下使得其离心分层,取下层清液,下层清液为量子点的水溶液,接着测定下层液的荧光发射峰。如图9所示,在365纳米的激发波长下,含有荧光碳量子点的上清液的荧光发射峰约在434纳米。
实施例7荧光碳量子点的制备方法如下:
称量3g柠檬酸,2g L-半胱氨酸和10mL超纯水,然后在100mL的烧杯中均匀混合,将上述混合液进行超声溶解,使其充分溶解。将澄清透明的前驱体溶液放入微波炉(850W)中,调参数为高火,反应时间为5min。反应结束,即得微波合成的碳量子点。
采用实施例7中荧光碳量子点用于油田示踪的方式如下:
取空白的石油样品(含有水和油的油水混合物),在其中加入实施例3中的荧光碳量子点之后(模拟产出井中获取的待检测的油水混合物),取适量的上述含有荧光碳量子点的石油样品后,摇匀5分钟后,在10000rpm下使得其离心分层,取下层清液,下层清液为量子点的水溶液,接着测定下层液的荧光发射峰。如图10-1所示,在365纳米的激发波长下,含有荧光碳量子点的上清液的荧光发射峰约在421纳米。
取实施例7中的荧光碳量子点配制标准溶液,其中,分别配置荧光碳量子点含量为0.03333μg/ml,0.016667μg/ml,0.003333mg/ml,0.001667mg/ml的水溶液。再分别对其荧光强 度进行测试(激发波长为365纳米),测试数据结果如下表7所示:
表7
实际浓度(ppm) 0.001667 0.003333 0.016667 0.033333
荧光强度(A.U..) 0.0078471 0.012924 0.16626 0.62584
根据上表中,不同浓度的荧光碳量子点的标准溶液的荧光强度-浓度绘制标准曲线图,如图10-2所示,图中拟合可知,该方法的灵敏度为S=21.92。
接着,测定空白样本的荧光强度(激发波长为365纳米)。11次的荧光强度测定结果分别为:0.0042、0.0043、0.0043、0.0044、0.0045、0.0044、0.0043、0.0042、0.0044、0.0045、0.0043。
根据上述对空白样本的荧光强度的多次测定,计算得空白样本的标准偏差为Sb=0.00009,从而可以计算出该方法的检出限约为1.2×10^ -5μg/ml。
老化测试结果如下表8:
表8
Figure PCTCN2020131495-appb-000007
且由图4-1、图5、图6、图7-1中可知,所制备的荧光碳量子点在不同的溶剂环境比如酸或者碱中,在不同的激发波长下,荧光发射峰均很明显,图中并未见到其他的干扰峰。充分说明本申请中的荧光碳量子点的油田示踪剂具有易于识别和荧光信号强的优点。
在上述的实施方式的示踪方法中,采用氢氧化钠的乙醇溶液、或者是含有盐酸的乙醇溶液作为荧光碳量子点的检测环境。当然,在其它的溶液环境中,比如,在固定的溶剂、pH值下,荧光碳量子点也可能表现出优良的荧光性能,只要是适合于荧光碳量子点的荧光检测的条件,均可以为最终检测荧光碳量子点的环境。
尽管发明人已经对本申请的技术方案做了较详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例作出修改和/或变通或者采用等同的替代方案是显然的,都不能脱离本申请精神的实质,本申请中出现的术语用于对本申请技术方案的阐述和理解,并不能构成对本申请的限制。

Claims (14)

  1. 一种油田示踪剂,其特征在于,包括:荧光碳量子点,所述荧光碳量子点具有两亲性。
  2. 根据权利要求1所述的油田示踪剂,其特征在于,所述荧光碳量子点可在大于200纳米且小于400纳米之间、或者大于500纳米且小于1100纳米之间的波长处被激发。
  3. 根据权利要求1所述的油田示踪剂,其特征在于,所述荧光碳量子点的荧光发射峰大于400纳米且小于1100纳米。
  4. 根据权利要求1所述的油田示踪剂,其特征在于,所述荧光碳量子点在油相和水相中的溶解度之比在(1:99)至(99:1)之间。
  5. 根据权利要求1所述的油田示踪剂,其特征在于,所述荧光碳量子点的表面键合有官能团,所述官能团包括羟基、羧基、氨基、羰基、环氧基、巯基、磺酸基、磷酸基团、或者硫酸基团。
  6. 根据权利要求1所述的油田示踪剂,其特征在于,所述荧光碳量子点包括碳元素、氢元素和氧元素,按照元素的组成,氧元素的含量在0.1原子%至50原子%的范围内,碳元素的含量在30原子%至99原子%的范围内,和氢元素的含量在0.1原子%至40原子%的范围内。
  7. 根据权利要求1所述的油田示踪剂,其特征在于,所述荧光碳量子点的尺寸在1纳米至100纳米之间。
  8. 一种油田示踪的方法,其特征在于,包括以下步骤:
    在油田注入井中加入如权利要求1至7中任一项所述的油田示踪剂,所述油田示踪剂包括荧光碳量子点;
    在油田产出井处获取油水混合物;
    分析所述油水混合物中是否存在所述荧光碳量子点。
  9. 根据权利要求8所述的方法,其特征在于,分析所述油水混合物中是否存在所述荧光碳量子点的步骤包括:
    使用极性溶剂萃取所述油水混合物中的所述荧光碳量子点,得到含有荧光碳量子点的极性溶剂;
    以及检测所述含有荧光碳量子点的极性溶剂的荧光的过程。
  10. 根据权利要求9所述的方法,其特征在于,在检测所述含有荧光碳量子点的极性溶剂的荧光之前,还包括:
    调节所述含有荧光碳量子点的极性溶剂的pH值。
  11. 根据权利要求10所述的方法,其特征在于,调节所述含有荧光碳量子点的极性溶剂的pH值的步骤包括:在所述极性溶剂中加入酸或者碱。
  12. 根据权利要求11所述的方法,其特征在于,所述极性溶剂包括水、甲酰胺、二甲基甲酰胺、二甲基亚砜、乙腈、六甲基磷酰胺、甲醇、乙醇、异丙醇、吡啶、四甲基乙二胺或者丙酮。
  13. 根据权利要求8所述的方法,其特征在于,所述荧光碳量子点可在大于200纳米且小于400纳米之间、或者大于500纳米且小于1100纳米之间的波长处被激发。
  14. 根据权利要求8所述的方法,其特征在于,所述荧光碳量子点的荧光发射峰大于400纳米且小于1100纳米。
PCT/CN2020/131495 2020-01-13 2020-11-25 油田示踪剂及油田示踪的方法 WO2021143359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010031058.8A CN111257967A (zh) 2020-01-13 2020-01-13 油田示踪剂及油田示踪的方法
CN202010031058.8 2020-01-13

Publications (1)

Publication Number Publication Date
WO2021143359A1 true WO2021143359A1 (zh) 2021-07-22

Family

ID=70944059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131495 WO2021143359A1 (zh) 2020-01-13 2020-11-25 油田示踪剂及油田示踪的方法

Country Status (2)

Country Link
CN (1) CN111257967A (zh)
WO (1) WO2021143359A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117234091A (zh) * 2023-11-14 2023-12-15 四川省威沃敦石油科技股份有限公司 一种油气井测试量子点投放系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257967A (zh) * 2020-01-13 2020-06-09 苏州星烁纳米科技有限公司 油田示踪剂及油田示踪的方法
CN112322285A (zh) * 2020-10-29 2021-02-05 苏州星烁纳米科技有限公司 一种用于对极性溶剂进行示踪检测的示踪剂及示踪检测的方法
CN113980675B (zh) * 2020-12-15 2023-08-01 苏州星烁纳米科技有限公司 一种石油示踪剂及其应用、油田示踪的方法
CN112878983A (zh) * 2021-01-06 2021-06-01 北京合力奇点科技有限公司 油气井智能生产动态监测调流控水完井方法
CN112961667A (zh) * 2021-02-05 2021-06-15 中国石油大学(北京) 一种缓释示踪支撑剂及其制备方法及应用
CN112986199B (zh) * 2021-02-22 2022-07-15 江南大学 一种油中酸值的荧光检测方法
CN112943228A (zh) * 2021-03-10 2021-06-11 四川佳衡建设工程有限公司 一种荧光纳米支撑剂产能剖面测试方法
CN115521779B (zh) * 2021-06-24 2023-08-22 中国石油化工股份有限公司 一种红色荧光量子点和缓释红色荧光量子点及其制备方法和应用
CN114002198A (zh) * 2021-10-29 2022-02-01 中海油田服务股份有限公司 提高海上油田采出液中荧光微球调驱剂检出灵敏度的方法
CN114940488B (zh) * 2022-06-24 2023-08-11 青岛大学 岩藻多糖碳量子点、制备方法及其在根管消毒中的应用
CN116200191A (zh) * 2022-08-31 2023-06-02 新疆大学 一种多色碳点油田示踪剂的制备方法及其应用
CN115993666B (zh) * 2023-03-23 2023-07-07 成都理工大学 一种油基硅包dna示踪剂的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958643A (zh) * 2011-05-13 2014-07-30 沙特阿拉伯石油公司 作为油藏纳米试剂的碳基荧光示踪剂
CN104789217A (zh) * 2015-04-28 2015-07-22 安徽大学 一种两亲性碳量子点及其制备方法
CN109385269A (zh) * 2018-11-08 2019-02-26 西北师范大学 一种pH敏感型双荧光聚合物量子点的制备和应用
CN109399607A (zh) * 2018-11-01 2019-03-01 新乡医学院 一种通过微波法快速合成两亲性碳量子点的制备方法
US10280737B2 (en) * 2015-06-15 2019-05-07 Baker Hughes, A Ge Company, Llc Methods of using carbon quantum dots to enhance productivity of fluids from wells
WO2020008174A1 (en) * 2018-07-04 2020-01-09 Johnson Matthey Public Limited Company Method of monitoring a fluid, use of a tracer, and tracer composition
CN111257967A (zh) * 2020-01-13 2020-06-09 苏州星烁纳米科技有限公司 油田示踪剂及油田示踪的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1166964C (zh) * 2001-12-13 2004-09-15 刘安建 油田微量物质井间示踪测试技术
FR2976967B1 (fr) * 2011-06-22 2015-05-01 Total Sa Fluides traceurs a effet memoire pour l'etude d'un gisement petrolier
KR101403534B1 (ko) * 2013-05-30 2014-06-03 부경대학교 산학협력단 탄소양자점 제조방법
US9715036B2 (en) * 2015-06-15 2017-07-25 Baker Hughes Incorporated Wellbores including carbon quantum dots, and methods of forming carbon quantum dots
CN106566534B (zh) * 2016-11-04 2019-05-17 中国矿业大学 一种具有高产率和量子产率的红光碳点及其制备方法
US11407941B2 (en) * 2018-03-30 2022-08-09 Institute Of Process Engineering, Chinese Academy Of Sciences Fluorescent nanomaterial and preparation method and applications thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958643A (zh) * 2011-05-13 2014-07-30 沙特阿拉伯石油公司 作为油藏纳米试剂的碳基荧光示踪剂
CN104789217A (zh) * 2015-04-28 2015-07-22 安徽大学 一种两亲性碳量子点及其制备方法
US10280737B2 (en) * 2015-06-15 2019-05-07 Baker Hughes, A Ge Company, Llc Methods of using carbon quantum dots to enhance productivity of fluids from wells
WO2020008174A1 (en) * 2018-07-04 2020-01-09 Johnson Matthey Public Limited Company Method of monitoring a fluid, use of a tracer, and tracer composition
CN109399607A (zh) * 2018-11-01 2019-03-01 新乡医学院 一种通过微波法快速合成两亲性碳量子点的制备方法
CN109385269A (zh) * 2018-11-08 2019-02-26 西北师范大学 一种pH敏感型双荧光聚合物量子点的制备和应用
CN111257967A (zh) * 2020-01-13 2020-06-09 苏州星烁纳米科技有限公司 油田示踪剂及油田示踪的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117234091A (zh) * 2023-11-14 2023-12-15 四川省威沃敦石油科技股份有限公司 一种油气井测试量子点投放系统
CN117234091B (zh) * 2023-11-14 2024-01-23 四川省威沃敦石油科技股份有限公司 一种油气井测试量子点投放系统

Also Published As

Publication number Publication date
CN111257967A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021143359A1 (zh) 油田示踪剂及油田示踪的方法
Wang et al. Sensitive and selective colorimetric detection of cadmium (II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole
CN104927867B (zh) 一种二价铜离子的比率荧光探针及其制备方法和应用
US20140323363A1 (en) Nanotracers for labeling oil field injection waters
CN107884376A (zh) 用于汞离子检测的比率型荧光探针及其制备方法
Liu et al. Design of smartphone platform by ratiometric fluorescent for visual detection of silver ions
CN104096849B (zh) 金核银壳纳米探针的制备方法及其在氰根离子比色检测中的应用
CN107101990B (zh) 一种牛奶中双酚a残留的表面增强拉曼检测方法
Luo et al. Glutathione‐stabilized Cu nanocluster‐based fluorescent probe for sensitive and selective detection of Hg2+ in water
Na et al. An aggregation-induced emission-based fluorescent chemosensor of aluminium ions
Shabani et al. Indirect spectrophotometric determination of ultra trace amounts of selenium based on dispersive liquid–liquid microextraction–solidified floating organic drop
CN104597015B (zh) 锌离子检测用量子点比率荧光探针及其检测方法
CN110609024B (zh) 一种荧光增强型双色可视化毒品检测探针及其制备方法
CN108659815A (zh) 用于铜离子检测的金铜纳米簇荧光探针及其制备方法
CN108440548B (zh) 一种含酰肼基团的罗丹明6g类荧光探针及其制备与应用
Shang et al. Silver nanoparticles capped with 8-hydroxyquinoline-5-sulfonate for the determination of trace aluminum in water samples and for intracellular fluorescence imaging
Chen et al. Quantitative image analysis method for detection of nitrite with cyanine dye-NaYF4: Yb, Tm@ NaYF4 upconversion nanoparticles composite luminescent probe
Kun et al. Construction of ratio fluorescence sensor based on CdTe quantum dots and benzocoumarin-3-carboxylic acid for Hg2+ detection
CN108440547B (zh) 一种罗丹明6g席夫碱类荧光探针及其制备与应用
CN100533129C (zh) 一种镓含量的测定方法
CN108318471B (zh) 基于sers的检测亚硝酸根的磁性试纸及其制备、使用方法
CN102519955B (zh) 枪支射击时间的测定方法
Cai et al. Visual and absorption spectroscopic detections of melamine with 3-mercaptopriopionic acid-functionalized gold nanoparticles: A synergistic strategy induced nanoparticle aggregates
CN105642912B (zh) 一种金纳米粒子的制备方法和应用
Gu et al. Highly sensitive fluorescent probe and portable test strip based on polyacrylic acid functionalized quantum dots for rapid visual detection of malachite green

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913691

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20913691

Country of ref document: EP

Kind code of ref document: A1