WO2021143250A1 - 一种使用氧气处理 dcc 合成过程中产生的硫化碱废水的方法 - Google Patents

一种使用氧气处理 dcc 合成过程中产生的硫化碱废水的方法 Download PDF

Info

Publication number
WO2021143250A1
WO2021143250A1 PCT/CN2020/123239 CN2020123239W WO2021143250A1 WO 2021143250 A1 WO2021143250 A1 WO 2021143250A1 CN 2020123239 W CN2020123239 W CN 2020123239W WO 2021143250 A1 WO2021143250 A1 WO 2021143250A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
alkali sulfide
wastewater
dcc
treat
Prior art date
Application number
PCT/CN2020/123239
Other languages
English (en)
French (fr)
Inventor
王乐强
赵攀峰
姜福元
崔全胜
王明飞
张路军
Original Assignee
山东汇海医药化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东汇海医药化工有限公司 filed Critical 山东汇海医药化工有限公司
Publication of WO2021143250A1 publication Critical patent/WO2021143250A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds

Definitions

  • the invention belongs to the technical field of organic chemistry synthesis, and particularly relates to a one-pot method for synthesizing triazine rings.
  • N,N'-Dicyclohexylcarbodiimide is a good low-temperature biochemical dehydrating agent, mainly used in the artificial synthesis of polypeptides, and also used in the synthesis of acids, anhydrides, aldehydes, ketones, etc. Can be used for the synthesis of nucleic acids.
  • the current method of DCC synthesis is mainly the thiourea oxidation method, which is easy to produce sulfur. In order to remove the sulfur in the solvent, it is usually removed by the alkali sulfide method, which produces a large amount of alkali sulfide wastewater.
  • the main components of the alkali sulfide wastewater produced in the oxidation reaction are sodium sulfide, sodium polysulfide, etc.
  • the concentration range of alkali sulfide is 100 ⁇ 10g ⁇ L-1.
  • the current common treatment method is mainly through the reaction of acid and alkali sulfide. Generate hydrogen sulfide, and then use liquid caustic soda to absorb the hydrogen sulfide generated by the reaction.
  • the hydrogen sulfide generated by the reaction has an adverse effect on the working environment of the employees.
  • the wastewater after the reaction is relatively acidic, corrosive to the equipment, and troublesome subsequent processing.
  • the present invention provides a method for using oxygen to treat the alkali sulfide wastewater generated in the DCC synthesis process, which solves the defects of the prior art that the hydrogen sulfide pollution is large and the human body and equipment are damaged.
  • a method for using oxygen to treat alkali sulfide wastewater produced in the DCC synthesis process includes the following steps in sequence:
  • the amount of catalyst added is 100-150mg per liter of wastewater; further, the amount of catalyst added is 130mg per liter of wastewater; experiments have shown that within a certain range, the addition of catalyst The more the amount, the better the catalytic efficiency for oxidation, but when the amount of catalyst added exceeds 130mg/L, the catalytic efficiency basically changes little, so the amount of catalyst added is preferably 130mg/L.
  • the reaction temperature is controlled at 25-35°C.
  • the oxygen gas blowing rate is 1-1.5 L ⁇ min -1 .
  • the concentration of alkali sulfide in the alkali sulfide wastewater is 100 ⁇ 10 g ⁇ L -1 ; in the step (2), the oxygen gas blowing rate is 1-1.5 L ⁇ min -1 , The reaction time is 0.5-1h.
  • the inert gas is nitrogen.
  • the removal rate of sulfide in the wastewater after the treatment of the present invention can reach more than 99.5%.
  • the product is mainly sodium sulfate, and a small amount of sodium thiosulfate and sodium sulfite.
  • the content of alkali sulfide can be controlled below 10 mg ⁇ L -1 , which is extremely It eliminates sulfide pollution and has the following advantages compared with the prior art:
  • Adding a catalyst to the catalytic oxidation process not only speeds up the reaction process, but also facilitates recycling, avoiding the introduction of other impurity ions in the wastewater, and the catalyst is cheap and easy to obtain and easy to store.
  • alkali sulfide wastewater (alkali sulfide content 100g ⁇ L -1 ).
  • the temperature is controlled at 30°C.
  • nitrogen is blown for 5 minutes, and then it is turned on for emptying, and oxygen is blown in while stirring.
  • the oxygen blowing rate is controlled at 1.5L ⁇ min -1 , and oxygen is ventilated for 60 minutes.
  • the content of alkali sulfide in the wastewater was 3mg ⁇ L -1 .
  • alkali sulfide wastewater (alkali sulfide content 100g ⁇ L -1 ).
  • the temperature is controlled at 30°C.
  • nitrogen is blown for 5 minutes, and then it is turned on for emptying.
  • oxygen is blown in.
  • the oxygen blowing rate is controlled at 1L ⁇ min -1 , and oxygen is ventilated for 30 minutes.
  • the content of alkali sulfide in the wastewater was 8mg ⁇ L -1 .
  • alkali sulfide wastewater (alkali sulfide content 100g ⁇ L -1 ).
  • the temperature is controlled at 25°C.
  • nitrogen is blown for 5 minutes, and then it is turned on for emptying, and oxygen is blown in while stirring.
  • the oxygen gas blowing rate is controlled at 1L ⁇ min -1 , and oxygen is ventilated for 60 minutes.
  • the content of alkali sulfide in the wastewater was 7mg ⁇ L -1 .
  • alkali sulfide wastewater (alkali sulfide content 100g ⁇ L -1 ).
  • the temperature is controlled at 35°C.
  • nitrogen is blown for 5 minutes, and then it is turned on for emptying.
  • oxygen is blown in.
  • the oxygen blowing rate is controlled at 1L ⁇ min -1 , and oxygen is supplied for 45 minutes.
  • the content of alkali sulfide in the wastewater is 5mg ⁇ L -1 .
  • alkali sulfide wastewater (alkali sulfide content 100g ⁇ L -1 ).
  • the temperature is controlled at 35°C.
  • nitrogen is blown for 5 minutes, and then it is turned on for emptying.
  • oxygen is blown in.
  • the oxygen gas blowing rate is controlled at 1L ⁇ min -1 , and oxygen is ventilated for 60 minutes.
  • the content of alkali sulfide in the wastewater is 6mg ⁇ L -1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

一种使用氧气处理DCC合成过程中产生的硫化碱废水的方法,反应釜内加入催化剂和废硫化碱后,使用氮气对反应釜内空气进行置换,随后升温至指定温度保温,同时向反应釜内物料鼓入氧气,反应进行一段时间后取样检测废水中的硫化钠的含量,合格后即可。处理后,产物主要是硫酸钠,以及少量硫代硫酸钠和亚硫酸钠。

Description

一种使用氧气处理DCC合成过程中产生的硫化碱废水的方法 技术领域
本发明属于有机化学合成技术领域,尤其涉及一种一锅法合成三嗪环的方法。
背景技术
N,N’—二环已基碳二亚胺(DCC)是一种很好的低温生化脱水剂,主要用于多肽的人工合成,也用于酸、酐、醛、酮等的合成,还可用于核酸的合成。近几年来DCC销售形势持续增长,产品供不应求。目前DCC合成的方法主要是硫脲氧化法,过程中易产生硫磺,为了除去溶剂中的硫磺,通常采用硫化碱法除去,产生大量硫化碱废水。目前氧化反应中产生的硫化碱废水的主要成分是硫化钠、多硫化钠等,其中硫化碱浓度范围为100±10g·L-1,其目前常用处理方法主要是通过滴加酸与硫化碱反应生成硫化氢,再使用液碱吸收反应生成的硫化氢。该反应生成的硫化氢对职工工作环境存在不利影响,同时反应后的废水酸性较大,对设备存在腐蚀性,后续处理麻烦。
技术问题
针对现有技术不足,本发明提供了一种使用氧气处理DCC合成过程中产生的硫化碱废水的方法,解决了现有技术硫化氢污染大以及对人身、设备损害大的缺陷。
技术解决方案
本发明的技术方案如下:
一种使用氧气处理DCC合成过程中产生的硫化碱废水的方法,依次包括如下步骤:
(1)向反应器内加入硫化碱废水以及催化剂,使用惰性气体将反应器内空气置换,所述催化剂为氧化铜;
(2)鼓入氧气反应,反应至硫化钠含量达到预定数值。
进一步的,所述步骤(1)中,催化剂的加入量按照每L废水中加入100-150mg;更进一步的,催化剂的加入量按照每L废水中加入130mg;实验证明一定范围内,催化剂的加入量越多,对氧化的催化效率越好,但是催化剂加入量超过130mg/L后,催化效率基本变化不大,因此催化剂的加入量优选为130mg/L。
进一步的,所述步骤(2)中,反应温度控制在25-35℃。
进一步的,所述步骤(2)中,氧气鼓入速率为1-1.5L·min -1
进一步的,所述步骤(1)中,硫化碱废水中硫化碱的浓度为100±10g·L -1;所述步骤(2)中,氧气鼓入速率在1-1.5L·min -1,反应时间为0.5-1h。
进一步的,所述步骤(1)中,所述惰性气体为氮气。
有益效果
本发明处理后废水中的硫化物的去除率可达到99.5%以上,产物主要是硫酸钠,以及少量硫代硫酸钠和亚硫酸钠,硫化碱的含量可控制在10mg·L -1以下,极大的消除了硫化物的污染,与现有技术相比,具有以下优点:
1.  使用氧气处理硫化碱,原料相对于酸处理来说更易于储存,对设备的要求更小,同时减少了物料伤人的可能,也避免了硫化氢产生的过程。
加入催化剂催化氧化过程,既加快了反应进程,也利于回收,避免了在废水中引入其他杂质离子,同时催化剂廉价易得便于储存。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施实例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
实施例1
向1000ml中硫化碱废水(硫化碱含量100g·L -1)中加入氧化铜130mg,温度控制在30℃,装置密闭后,通入氮气置换5min,随后开启排空,搅拌的同时开始鼓入氧气,氧气鼓入速率控制在1.5L·min -1,通氧气60分钟。检测废水中硫化碱含量为3mg·L -1
本发明的实施方式
实施例2
向1000ml中硫化碱废水(硫化碱含量100g·L -1)中加入氧化铜100mg,温度控制在30℃,装置密闭后,通入氮气置换5min,随后开启排空,搅拌的同时开始鼓入氧气,氧气鼓入速率控制在1L·min -1,通氧气30分钟。检测废水中硫化碱含量为8mg·L -1
实施例3
向1000ml中硫化碱废水(硫化碱含量100g·L -1)中加入氧化铜130mg,温度控制在25℃,装置密闭后,通入氮气置换5min,随后开启排空,搅拌的同时开始鼓入氧气,氧气鼓入速率控制在1L·min -1,通氧气60分钟。检测废水中硫化碱含量为7mg·L -1
实施例4
向1000ml中硫化碱废水(硫化碱含量100g·L -1)中加入氧化铜130mg,温度控制在35℃,装置密闭后,通入氮气置换5min,随后开启排空,搅拌的同时开始鼓入氧气,氧气鼓入速率控制在1L·min -1,通氧气45分钟。检测废水中硫化碱含量为5mg·L -1
实施例5
向1000ml中硫化碱废水(硫化碱含量100g·L -1)中加入氧化铜150mg,温度控制在35℃,装置密闭后,通入氮气置换5min,随后开启排空,搅拌的同时开始鼓入氧气,氧气鼓入速率控制在1L·min -1,通氧气60分钟。检测废水中硫化碱含量为6mg·L -1
序列表自由内容
本发明并不限于上述的实施方式,在本领域技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化,变化后的内容仍属于本发明的保护范围。

Claims (7)

  1. 一种使用氧气处理DCC合成过程中产生的硫化碱废水的方法,其特征在于,依次包括如下步骤:
    (1)向反应器内加入硫化碱废水以及催化剂,使用惰性气体将反应器内空气置换,所述催化剂为氧化铜;
    (2)鼓入氧气反应,反应至硫化钠含量达到预定数值。
  2. 根据权利要求1所述的使用氧气处理DCC合成过程中产生的硫化碱废水的方法,其特征在于:所述步骤(1)中,催化剂的加入量按照每L废水中加入100-150mg。
  3. 根据权利要求2所述的使用氧气处理DCC合成过程中产生的硫化碱废水的方法,其特征在于:所述步骤(1)中,催化剂的加入量按照每L废水中加入130mg。
  4. 根据权利要求1所述的使用氧气处理DCC合成过程中产生的硫化碱废水的方法,其特征在于:所述步骤(2)中,反应温度控制在25-35℃。
  5. 根据权利要求1所述的使用氧气处理DCC合成过程中产生的硫化碱废水的方法,其特征在于:所述步骤(2)中,氧气鼓入速率为1-1.5L·min -1
  6. 根据权利要求3所述的使用氧气处理DCC合成过程中产生的硫化碱废水的方法,其特征在于:所述步骤(1)中,硫化碱废水中硫化碱的浓度为100±10g·L-1;所述步骤(2)中,氧气鼓入速率在1-1.5L·min -1,反应时间为0.5-1h。
  7. 根据权利要求1所述的使用氧气处理DCC合成过程中产生的硫化碱废水的方法,其特征在于:所述步骤(1)中,所述惰性气体为氮气。
PCT/CN2020/123239 2020-01-15 2020-10-23 一种使用氧气处理 dcc 合成过程中产生的硫化碱废水的方法 WO2021143250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010042682.8 2020-01-15
CN202010042682.8A CN111099712A (zh) 2020-01-15 2020-01-15 一种使用氧气处理dcc合成过程中产生的硫化碱废水的方法

Publications (1)

Publication Number Publication Date
WO2021143250A1 true WO2021143250A1 (zh) 2021-07-22

Family

ID=70427053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123239 WO2021143250A1 (zh) 2020-01-15 2020-10-23 一种使用氧气处理 dcc 合成过程中产生的硫化碱废水的方法

Country Status (2)

Country Link
CN (1) CN111099712A (zh)
WO (1) WO2021143250A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099712A (zh) * 2020-01-15 2020-05-05 山东汇海医药化工有限公司 一种使用氧气处理dcc合成过程中产生的硫化碱废水的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338463A (en) * 1993-05-12 1994-08-16 Mobil Oil Corporation Wastewater treatment by catalytic oxidation
CN101143746A (zh) * 2006-09-13 2008-03-19 中国石油天然气股份有限公司 一种含硫废碱液的处理方法
CN101495404A (zh) * 2006-05-24 2009-07-29 萨克特本化学有限责任公司 将硫化物催化氧化成硫酸盐的方法
CN102557327A (zh) * 2010-12-10 2012-07-11 新奥科技发展有限公司 一种处理废水的方法
MD4214C1 (ro) * 2012-06-18 2013-11-30 Институт Химии Академии Наук Молдовы Procedeu de modificare a structurii poroase a cărbunelui activ impregnat cu Cu(II) şi utilizarea lui la purificarea apelor subterane de hidrogen sulfurat şi sulfuri
CN111099712A (zh) * 2020-01-15 2020-05-05 山东汇海医药化工有限公司 一种使用氧气处理dcc合成过程中产生的硫化碱废水的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338463A (en) * 1993-05-12 1994-08-16 Mobil Oil Corporation Wastewater treatment by catalytic oxidation
CN101495404A (zh) * 2006-05-24 2009-07-29 萨克特本化学有限责任公司 将硫化物催化氧化成硫酸盐的方法
CN101143746A (zh) * 2006-09-13 2008-03-19 中国石油天然气股份有限公司 一种含硫废碱液的处理方法
CN102557327A (zh) * 2010-12-10 2012-07-11 新奥科技发展有限公司 一种处理废水的方法
MD4214C1 (ro) * 2012-06-18 2013-11-30 Институт Химии Академии Наук Молдовы Procedeu de modificare a structurii poroase a cărbunelui activ impregnat cu Cu(II) şi utilizarea lui la purificarea apelor subterane de hidrogen sulfurat şi sulfuri
CN111099712A (zh) * 2020-01-15 2020-05-05 山东汇海医药化工有限公司 一种使用氧气处理dcc合成过程中产生的硫化碱废水的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIAN JIN-JUN, YE QING-GUO, KONG DE-LIANG, DING KE: "Study on the Kinetics of Wet Peroxide Oxidation of Sodium Sulfide Containing Wastewater", JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES, ZHEJIANG DAXUE CAILIAO YU HUAXUE GONGCHENG XUEYUAN, CN, vol. 19, no. 2, 1 April 2005 (2005-04-01), CN, pages 268 - 272, XP055829723, ISSN: 1003-9015 *

Also Published As

Publication number Publication date
CN111099712A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN106467293B (zh) 一种制取硫磺的方法及制取硫磺的系统装置
CN107051144A (zh) 一种含氰有机废气的处理方法及系统
US3311449A (en) Process of recovering valuable components from red mud
US4956057A (en) Process for complete removal of nitrites and nitrates from an aqueous solution
CN107442100B (zh) 多孔空心结构三氧化二镓光催化剂的制备方法及应用
WO2019062455A1 (zh) 烟气脱硫脱硝剂及其制备方法和应用
JP2021514294A (ja) 自己結合によるナノ触媒型汚水処理剤の生産方法
WO2021143250A1 (zh) 一种使用氧气处理 dcc 合成过程中产生的硫化碱废水的方法
CN109569643A (zh) 一种负载型常温除臭氧催化剂的制备方法
CN111729692A (zh) 一种失活cos水解剂的再生方法
CN110090385A (zh) 一种催化热分解脱除锌氰络合物的方法
JPH06218230A (ja) ガス混合物中の硫化カルボニルの加水分解法
CN114950519B (zh) 一种渗氮有机硫水解催化剂的制备方法
JPS60255620A (ja) 塩基性炭酸亜鉛及び微細酸化亜鉛の製造方法
JP2004275895A (ja) 硫酸製造工程からの排ガスの処理方法
CN114951236A (zh) 一种垃圾焚烧飞灰资源化处理方法
CN112194103A (zh) 一种除去乙炔清净废硫酸臭味的方法
CN1425487A (zh) 一种用稀硝酸单级循环吸收尾气中氮氧化物的方法
JPS6360833B2 (zh)
JPS5834080A (ja) 酸消化廃液の処理方法
CN114408870B (zh) 一种硫化铜废剂的再生方法
CN107151078A (zh) 钢铁废水处理方法
JPS60340B2 (ja) スルファミン酸グアニジンの製造法
CN107673459A (zh) 一种去除废水中乙酰苯胺的方法
CN105692566A (zh) 一种干燥氯气后剩余废硫酸的再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913567

Country of ref document: EP

Kind code of ref document: A1