WO2021139841A2 - 校园智能引导机器人 - Google Patents

校园智能引导机器人 Download PDF

Info

Publication number
WO2021139841A2
WO2021139841A2 PCT/CN2021/089475 CN2021089475W WO2021139841A2 WO 2021139841 A2 WO2021139841 A2 WO 2021139841A2 CN 2021089475 W CN2021089475 W CN 2021089475W WO 2021139841 A2 WO2021139841 A2 WO 2021139841A2
Authority
WO
WIPO (PCT)
Prior art keywords
fixedly connected
plate
rod
support
bearing plate
Prior art date
Application number
PCT/CN2021/089475
Other languages
English (en)
French (fr)
Other versions
WO2021139841A3 (zh
Inventor
李玲
郭广颂
李健
闫格格
闫梓麟
韦佳欣
郭泓序
雷新宇
Original Assignee
郑州航空工业管理学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州航空工业管理学院 filed Critical 郑州航空工业管理学院
Priority to PCT/CN2021/089475 priority Critical patent/WO2021139841A2/zh
Publication of WO2021139841A2 publication Critical patent/WO2021139841A2/zh
Publication of WO2021139841A3 publication Critical patent/WO2021139841A3/zh

Links

Definitions

  • the invention relates to a service robot, in particular to a campus intelligent guidance robot.
  • the existing guided robot will not affect the overall balance when one of the wheels is sunken, and at the same time, it can adjust the inclination of the robot due to the inclination of the ground in time, so that the robot can be It can move normally on the slope, and at the same time, the robot's walking device is shock-absorbing, which makes the robot more stable in the walking process.
  • the technical solution is to include a bearing plate, the bearing plate is vertically slidably connected with a plurality of support rods, the lower end of each support rod is rotatably connected with an electric wheel, and an upper support is sleeved between the upper end of each support rod and the upper end of the bearing plate Spring, a lower support spring is sleeved between the lower end of each support rod and the end surface of the bearing plate, and the upper end of each support rod is coaxially fixedly connected with a polygonal prism, and each polygonal prism is vertically slidably connected with a toggle rod, and each toggle The extension ends of the rods are fixedly connected with vertically arranged shift levers, and each shift lever is driven by rotating the dial plate connected to the upper end of the bearing plate.
  • the lower end surface of the dial plate is coaxially fixedly connected with an annular inner gear ring, which bears
  • a drive motor is fixedly connected to the upper surface of the board.
  • the drive motor is used to drive the dial and the gears between the drive motor shaft and the inner gear ring are matched.
  • the upper surface of the bearing board is provided with a correction device.
  • the number of support rods is a multiple of three, and the number of support rods is greater than or equal to six.
  • the number of the support rods is consistent with the number of sides of the polygonal prism.
  • a plurality of diverging and evenly spaced drive groups are fixedly connected to the dial, and the number of drive groups is the same as the number of support rods.
  • Each drive group includes an upper drive plate and a lower drive plate. The width of the interval between the plate and the lower drive plate is the same as the diameter of the toggle lever.
  • Each upper drive plate and the lower drive plate are provided with vertical through grooves, and each corresponding gear lever is slid and rotatably connected to the corresponding through In the slot.
  • the correction device includes a support plate fixedly connected to the upper end of the bearing plate, the upper end of the support plate is fixedly connected with a rotating table, the ball on the rotating table is hinged with a correction rod, and the upper end of the correction rod is fixedly connected with a correction plate, and the correction plate
  • the correction bracket is fixedly connected with a housing, the upper end of the correction board is fixedly connected with a correction frame, the upper end of the correction frame is extended downward with a gravity rod, the upper end of the gravity rod and the correction frame are ball hinged, and the upper end of the gravity rod
  • a correction ring is fixedly connected, and the ball hinge on the correction ring is provided with four pressure detection rods that are distributed in a divergent shape and arranged at even intervals.
  • each telescopic rod fixedly connected to the support plate is arranged between the lower end surface of the correcting plate and the upper end surface of the support plate, and the position of each telescopic rod corresponds to the position of the pressure monitoring rod.
  • the lower end surface of the correction plate is fixedly connected to the position corresponding to each telescopic rod position with a stop plate for restricting the telescopic rod, and the stop plate is arranged in a divergent shape and is respectively corresponding to the upper end of the telescopic rod. Sliding fit between.
  • each telescopic rod is fixedly connected with a spherical sliding body.
  • a weight ball is fixedly connected to the lower end of the gravity rod, and the weight ball always maintains a vertical state under the action of gravity.
  • a display screen, a voice system, an infinite transmission module, a power module, a human-computer interaction module, and an induction module are fixedly connected to the housing.
  • the correction device always detects whether the housing is in a vertical state.
  • Figure 1 is an overall schematic diagram of the present invention.
  • Figure 2 is a schematic diagram of the internal structure of the present invention.
  • Figure 3 is a cross-sectional view of the internal structure of the present invention.
  • Figure 4 is a second view of the internal structure of the present invention.
  • Fig. 5 is a second perspective partial view of the schematic diagram of the internal structure of the present invention.
  • Figure 6 is a partial cross-sectional view of the present invention.
  • Fig. 7 is a partial schematic diagram of the correction device of the present invention.
  • Guidance work through the control panel input or voice interaction to conduct questions and answers or inquiries, if you need to guide the accompany to the target location, first confirm, and then guide the robot to guide the incoming person to the destination, and sense the person to be guided not to leave through the induction module Guide the robot to a certain range.
  • the vicinity of the path can be introduced during the guidance process, and the robot can be instructed to return to the original position if there is no need to guide in the middle.
  • the remaining electric wheels 3 always have a set of triangular stability to support the whole, and because the electric wheels 3 are difficult to steer when there are more electric wheels, and more than one is needed at the same time.
  • the support rod 2 turns at the same time and the steering angle is the same.
  • the buffer force is dispersed so as to reduce vibration.
  • the drive motor 11 is controlled to rotate. During the rotation, the drive motor 11 will rotate the dial 9 through the cooperation of the rack and pinion. 9 In the process of rotating, each gear lever 8 is controlled to act, and each gear lever 8 synchronously controls the corresponding polygonal prism 6 to rotate during the rotating process, and each polygonal prism 6 moves along with the corresponding support rod 2. During the lifting process, the height of the toggle rod 7 always remains the same, and the vertical sliding connection between each polygonal prism 6 and the corresponding toggle rod 7 is maintained. When walking on a sloping road, it will be corrected by a correction device to prevent the center of gravity. Make an offset and cause it to roll over.
  • the number of support rods 2 is always a multiple of three, so that no matter which electric wheel 3 does not support temporarily, there are always three groups of electric wheels arranged in a triangle to support, so as to always ensure the balance of guiding the robot, and the sides of the polygonal prism 6
  • the number is always the same as the number of support rods 2, which not only ensures that only one support rod 2 and one type of toggle rod 7 are produced during production, and no additional angle adjustment is required, so that one type of support rod 2 and a toggle rod 7 Corresponding support systems can be assembled and replaced easily.
  • the protruding end of the support rod 2 extends between the corresponding upper driving board 12 and the lower driving board 13.
  • the upper driving board 12 and the lower driving board 13 are used to limit the height of the lever 7 and then move it.
  • the vertically arranged gear lever 8 at the protruding end of the lever 7 rotates and is slidably connected in the corresponding through groove.
  • the dial 9 rotates, all the gear levers 8 are controlled to move.
  • the corresponding toggle lever 7 will be driven to rotate the corresponding angle. Since all the gear levers 8 extend toward the center of the toggle plate 9 in the initial position and the direction of the electric wheel 3 at the lower end of each support rod 2 is the same, so During the movement of the toggle lever 7, all the support levers 2 are driven to rotate synchronously.
  • the correcting rod 16 When guiding the robot to walk on a sloping road, the correcting rod 16 is hinged on the correcting frame 19 due to the upper end of the ball, the lower end of the correcting rod 16 will always remain vertical under the action of gravity, and the bearing plate 1 will tilt when walking on a sloping road. During the tilting process of the bearing plate 1, the correcting rod 16 always remains vertical. At this time, the pressure detecting rod 22 fixedly connected at the upper end of the correcting rod 16 will be compressed by the correcting rod 16 by a corresponding angle, and the compression amount is related to the tilt angle of the bearing plate. Each pressure detection rod 22 will synchronously transmit the pressure signal back to the corresponding telescopic rod 23.
  • Each telescopic rod 23 extends a corresponding length to perform an action. When each telescopic rod 23 extends, it will control another symmetrically arranged one.
  • the telescopic rod 23 on the side is contracted, and when the corresponding pressure detection rod 22 is extended, this means that the corresponding telescopic rod 23 needs to be contracted.
  • the upper end of each telescopic rod 23 is a spherical sliding body that can keep moving without jamming.
  • the position plate 24 is arranged in a divergent shape and limits the telescopic rod 23 to prevent the telescopic rod 23 from protruding out of the limit plate 24.
  • the invention has simple structure and relatively centralized parts, fewer types of overall parts, and each assembly is not seen as parts of the same specification, does not need to replace the production process, is conducive to mass industrial production, is convenient to assemble and can be recycled multiple times, and Each part can be replaced with each other, which is more convenient for damage repair.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)

Abstract

本发明提供的校园智能引导机器人,解决现有引导机器人在其中一个轮子陷入凹陷时不会对整体平衡造成影响,同时能够及时的调整因地面倾斜导致的机器人倾斜的问题,使得机器人在斜坡上能进行正常移动,同时还对机器人的行走装置进行减震化处理,使得机器人在行走过程中更加平稳其解决的技术方案是,包括承载板,承载板上竖向滑动连接有多个支撑杆,各个支撑杆下端均转动连接有电动轮,各个支撑杆上端与承载板上端之间套设有多组支撑弹簧,承载板上端还固定连接有矫正装置,矫正装置控制外部壳体不会产生重心偏移,避免机器人倾倒。

Description

校园智能引导机器人 技术领域
本发明涉及一种服务机器人,特别是一种校园智能引导机器人。
背景技术
随着人工智能相关政策的不断出台、技术的不断创新优化,以及人们生活方式的改变与需求的提高,人工智能产品在人们生活中的普及率越来越深,逐渐覆盖了医疗、教育、安保、物业等人们工作生活的各个场景,但是校园中出现的服务机器人多为固定为止不动方便人查询资料使用,但是第一次来学校探望的人员经常由于学校面积较大而迷失方向或找不到指定地方,而让机器人在学校中进行引导使用会面临路面道路不平整的问题,同时在路面常有排水板,机器人的轮子容易卡在低洼以及凹陷处,一旦机器人轮子卡在低洼处则会导致机器人失去平衡而导致倾倒,同时校园中经常会见到带有坡度的路面,若仿人机器人不能及时进行平衡动作则会导致机器人的倾倒。
技术问题
针对上述情况,为克服现有技术之缺陷,解决现有引导机器人在其中一个轮子陷入凹陷时不会对整体平衡造成影响,同时能够及时的调整因地面倾斜导致的机器人倾斜的问题,使得机器人在斜坡上能进行正常移动,同时还对机器人的行走装置进行减震化处理,使得机器人在行走过程中更加平稳。
技术解决方案
其解决的技术方案是,包括承载板,承载板上竖向滑动连接有多个支撑杆,各个支撑杆下端均转动连接有电动轮,各个支撑杆上端与承载板上端之间套设有上支撑弹簧,各个支撑杆下端与承载板上端面之间套设有下支撑弹簧,各个支撑杆上端均同轴固定连接有多边形棱柱,各个多边形棱柱上均竖向滑动连接有拨动杆,各个拨动杆伸出端均固定连接有竖向布置的档杆,各个档杆均通过转动连接在承载板上端的拨动盘进行驱动,拨动盘下端面上同轴固定连接有环形内齿圈,承载板上端面上固定连接有驱动电机,驱动电机用于驱动拨动盘且驱动电机转轴与内齿圈之间齿轮配合,承载板上端面上设有矫正装置。
作为优选,所述支撑杆个数为三的倍数,且支撑杆的数量大于等于六。
作为优选,所述支撑杆的数量与多边形棱柱的边数保持一致。
作为优选,所述拨动盘上固定连接有多个呈发散状且均匀间隔布置的驱动组,驱动组的数量与支撑杆的数量相同,各个驱动组包括上驱动板与下驱动板,上驱动板与下驱动板之间间隔宽度与拨动杆直径相同,各个上驱动板与下驱动板上均开设有竖向贯通的贯通槽,各个相对应的档杆滑动并转动连接在相对应的贯通槽内。
作为优选,所述矫正装置包括固定连接在承载板上端的支撑盘,支撑盘上端面上固定连接有转动台,转动台上球铰接有矫正杆,矫正杆上端固定连接有矫正板,矫正板上固定连接有矫正支架,矫正支架上固定连接有外壳,矫正板上端面上固定连接有矫正框,矫正框上端向下伸出有重力杆,重力杆上端与矫正框之间球铰接,重力杆上端固定连接有矫正环,矫正环上球铰接有四个呈发散状分布且均匀间隔布置的压力检测杆。
作为优选,所述矫正板下端面与支撑盘上端面之间设有四个固定连接在支撑盘上的伸缩杆,各个伸缩杆位置均与压力监测杆位置相对应。
作为优选,所述矫正板下端面上与各个伸缩杆位置相对应处分别固定连接有用于对伸缩杆进行限位的限位板,限位板呈发散状布置且分别与相对应的伸缩杆上端之间滑动配合。
作为优选,所述各个伸缩杆上端均固定连接有球状滑动体。
作为优选,所述重力杆下端固定连接有配重球,配重球在重力作用下始终保持竖直状态。
作为优选,所述外壳内固定连接有显示屏、语音系统、无限传输模块、动力模块、人机交互模块、感应模块。
有益效果
1.机器人在行走过程中能避免路面的部分不平对整体的平衡性进行影响。
2.采用整体转向能使得转向时所有的轮子同步转向。
3.矫正装置始终检测壳体是否处于竖直状态。
4.在行走到带有坡度的地面上时,矫正装置控制壳体的重力始终保持竖直,防止进行倾斜。
5.在其中一个轮子悬空时不会对整体平衡造成影响。
6.解决了多组支撑轮同步的转向问题。
附图说明
图1为本发明整体示意图。
图2为本发明内部结构示意图。
图3为本发明内部结构剖视图。
图4为本发明内部结构示意图第二视角。
图5为本发明内部结构示意图第二视角局部视图。
图6为本发明局部剖视图。
图7为本发明矫正装置局部示意图。
本发明的最佳实施方式
该实施例在使用时,在需要使用引导机器人的场景中需要先规划使用路径,如引导机器人在校门口内,在进入校门后需要引导机器人进行引导到图书馆、教学楼、办公室等位置时,先对机器人路径进行规划,通过语音交互模块或操作面板来对目的地进行导航,而机器人对行走路径进行引导,在引导过程中及时提醒或回到被引导人员的问题,同时还能对参观人员的引导工作,通过控制面板输入或语音交互来进行问答或查询,如果需要引导陪同到目标地点,先进行确定,然后引导机器人对来人进行到目的地的引导,通过感应模块感应待引导人员不离开引导机器人一定范围,在引导过程中可以对路径附近进行介绍,中途若不需引导则可以指令机器人自行返回原位。
在引导过程中按照指定路线进行行走,行走时若路面存在凹陷,若有电动轮3向下凹陷时,由于支撑杆2数量为三的倍数,且各个支撑杆2之间均匀间隔布置,所以无论哪个电动轮3处于低洼处而不能对整体提供支撑力时,其余电动轮3始终有一组利用三角形的稳定性来对整体进行支撑,而由于电动轮3在较多时转向较难,同时需要多个支撑杆2同时转向且转向角度相同,在行走过程中电动轮3被上支撑弹簧4与下支撑弹簧5进行支撑,使得承载板1始终处于被弹簧支撑的状态,在遇到颠簸时通过弹簧的缓冲力进行分散,从而达到减轻震动的目的,在需要进行转向时通过控制驱动电机11进行转动,驱动电机11在转动过程中会通过齿轮齿条的配合使得拨动盘9进行转动,拨动盘9在进行转动过程中控制各个相配合的档杆8进行动作,各个档杆8在进行转动过程中同步的控制相应的多边形棱柱6进行转动,各个多边形棱柱6在随着相应的支撑杆2进行升降过程中,拨动杆7高度始终保持不变,而各个多边形棱柱6与相应的拨动杆7之间保持竖向滑动连接,在行走到倾斜路面过程中会通过矫正装置进行矫正,防止重心进行偏移而导致侧翻。
本发明的实施方式
支撑杆2的数量始终保持三的倍数使得无论哪个电动轮3暂未起到支撑作用时,始终有三角形排列的电动轮3组进行支撑,从而始终保证引导机器人的平衡,而多边形棱柱6的边数始终与支撑杆2数量相同,这样不仅保证了生产时只需生产一种支撑杆2和一种拨动杆7,不需额外调整角度,使得一种支撑杆2与一种拨动杆7可以组装出相应的支撑体系,同时方便更换,在多边形棱柱6的边数与支撑杆2数量相同时,由于各个拨动杆7伸出端伸出方向在初始时均朝向承载板1中心,此时只需先调整拨动杆7下端的电动杆轮方向,使得电动轮3方向一致即可将相应的拨动杆7伸出端朝向承载板1中心布置,然后将相应的拨动杆7安装在相应的多边形棱柱6上即可。
支撑杆2伸出端伸入到相对应的上驱动板12与下驱动板13之间,通过上驱动板12与下驱动板13来对拨动杆7来进行高度的限位,然后拨动杆7伸出端端部的竖向布置的档杆8转动并滑动连接在相应的贯通槽内,在拨动盘9进行转动过程中会控制所有的档杆8进行移动,在档杆8进行移动过程中会带动相应的拨动杆7转动相应的角度,由于所有的档杆8在初始位置时均朝向拨动盘9中心部位伸出且各个支撑杆2下端的电动轮3方向一致,所以在拨动杆7在进行运动的过程中会同步驱动所有的支撑杆2进行转动。
在引导机器人行走到倾斜路面上时,矫正杆16由于上端球铰接在矫正框19上,矫正杆16下端会在重力作用下始终保持竖直,在行走到倾斜路面上时承载板1会进行倾斜,承载板1在倾斜过程中矫正杆16始终保持竖直,此时位于矫正杆16上端固定连接的压力检测杆22会被矫正杆16压缩相应的角度,而压缩量与承载盘倾斜角度有关,各个压力检测杆22会同步的将压力信号回传给相对应的伸缩杆23上,各个伸缩杆23伸出相应的长度来进行动作,在各个伸缩杆23伸出时会控制对称布置的另一侧的伸缩杆23进行收缩,而相应的压力检测杆22伸长时这代表相对应的伸缩杆23需要进行收缩,各个伸缩杆23上端均为球状滑动体能保持动作时不会卡顿,各个限位板24呈发散状布置且对伸缩杆23进行限位,防止伸缩杆23伸出到限位板24外。
工业实用性
本发明结构简单并且零件较为集中化,总体零部件种类较少,且各个组装不见为相同规格的部件,不需更换制作流程,利于批量化工业生产,同时组装方便并可多次循环使用,且各个零件之间可相互替换,损坏维修时较为方便。

Claims (10)

  1. 校园智能引导机器人,包括承载板(1),承载板(1)上竖向滑动连接有多个支撑杆(2),各个支撑杆(2)下端均转动连接有电动轮(3),各个支撑杆(2)上端与承载板(1)上端之间套设有上支撑弹簧(4),各个支撑杆(2)下端与承载板(1)上端面之间套设有下支撑弹簧(5),各个支撑杆(2)上端均同轴固定连接有多边形棱柱(6),各个多边形棱柱(6)上均竖向滑动连接有拨动杆(7),各个拨动杆(7)伸出端均固定连接有竖向布置的档杆(8),各个档杆(8)均通过转动连接在承载板(1)上端的拨动盘(9)进行驱动,拨动盘(9)下端面上同轴固定连接有环形内齿圈(10),承载板(1)上端面上固定连接有驱动电机(11),驱动电机(11)用于驱动拨动盘(9)且驱动电机(11)转轴与内齿圈之间齿轮配合,承载板(1)上端面上设有矫正装置。
  2. 根据权利要求1所述一种校园智能引导机器人,其特征在于,所述支撑杆(2)个数为三的倍数,且支撑杆(2)的数量大于等于六。
  3. 根据权利要求2所述一种校园智能引导机器人,其特征在于,所述支撑杆(2)的数量与多边形棱柱(6)的边数保持一致。
  4. 根据权利要求1所述一种校园智能引导机器人,其特征在于,所述拨动盘(9)上固定连接有多个呈发散状且均匀间隔布置的驱动组,驱动组的数量与支撑杆(2)的数量相同,各个驱动组包括上驱动板(12)与下驱动板(13),上驱动板(12)与下驱动板(13)之间间隔宽度与拨动杆(7)直径相同,各个上驱动板(12)与下驱动板(13)上均开设有竖向贯通的贯通槽,各个相对应的档杆(8)滑动并转动连接在相对应的贯通槽内。
  5. 根据权利要求1所述一种校园智能引导机器人,其特征在于,所述矫正装置包括固定连接在承载板(1)上端的支撑盘(14),支撑盘(14)上端面上固定连接有转动台(15),转动台(15)上球铰接有矫正杆(16),矫正杆(16)上端固定连接有矫正板(17),矫正板(17)上固定连接有矫正支架(18),矫正支架(18)上固定连接有外壳(25),矫正板(17)上端面上固定连接有矫正框(19),矫正框(19)上端向下伸出有重力杆(20),重力杆(20)上端与矫正框(19)之间球铰接,重力杆(20)上端固定连接有矫正环(21),矫正环(21)上球铰接有四个呈发散状分布且均匀间隔布置的压力检测杆(22)。
  6. 根据权利要求5所述一种校园智能引导机器人,其特征在于,所述矫正板(17)下端面与支撑盘(14)上端面之间设有四个固定连接在支撑盘(14)上的伸缩杆(23),各个伸缩杆(23)位置均与压力监测杆位置相对应。
  7. 根据权利要求6所述一种校园智能引导机器人,其特征在于,所述矫正板(17)下端面上与各个伸缩杆(23)位置相对应处分别固定连接有用于对伸缩杆(23)进行限位的限位板(24),限位板(24)呈发散状布置且分别与相对应的伸缩杆(23)上端之间滑动配合。
  8. 根据权利要求7所述一种校园智能引导机器人,其特征在于,所述各个伸缩杆(23)上端均固定连接有球状滑动体。
  9. 根据权利要求5所述一种校园智能引导机器人,其特征在于,所述重力杆(20)下端固定连接有配重球,配重球在重力作用下始终保持竖直状态。
  10. 根据权利要求5所述一种校园智能引导机器人,其特征在于,所述外壳(25)内固定连接有显示屏、语音系统、无限传输模块、动力模块、人机交互模块、感应模块。
PCT/CN2021/089475 2021-04-25 2021-04-25 校园智能引导机器人 WO2021139841A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/089475 WO2021139841A2 (zh) 2021-04-25 2021-04-25 校园智能引导机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/089475 WO2021139841A2 (zh) 2021-04-25 2021-04-25 校园智能引导机器人

Publications (2)

Publication Number Publication Date
WO2021139841A2 true WO2021139841A2 (zh) 2021-07-15
WO2021139841A3 WO2021139841A3 (zh) 2022-02-03

Family

ID=76788892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089475 WO2021139841A2 (zh) 2021-04-25 2021-04-25 校园智能引导机器人

Country Status (1)

Country Link
WO (1) WO2021139841A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114102625A (zh) * 2021-11-28 2022-03-01 刘俊岗 一种实时网络在线教育用的智能机器人及其使用方法
WO2024042382A1 (en) * 2022-08-24 2024-02-29 Reiwa S.R.L. Device for handling and support of machinery and equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487839B1 (ko) * 2014-05-27 2015-01-30 성균관대학교산학협력단 보행 로봇의 기어 체결, 관절의 구동력 전달 및, 2자유도 구현 메커니즘과, 이를 적용한 생체모방형 사족 보행 로봇
JP6872754B2 (ja) * 2017-10-24 2021-05-19 カワダロボティクス株式会社 関節構造およびその関節構造を股関節部に備える二足歩行ロボット
CN110103240A (zh) * 2019-06-05 2019-08-09 合肥禾成信息科技有限公司 用于银行服务的机器人
CN112388607A (zh) * 2019-08-12 2021-02-23 张井泉 智能机器人
CN111216143B (zh) * 2020-02-24 2023-08-18 陕西科技大学 一种自平衡配送机器人
CN212314718U (zh) * 2020-02-24 2021-01-08 陕西科技大学 一种防倾倒配送机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114102625A (zh) * 2021-11-28 2022-03-01 刘俊岗 一种实时网络在线教育用的智能机器人及其使用方法
WO2024042382A1 (en) * 2022-08-24 2024-02-29 Reiwa S.R.L. Device for handling and support of machinery and equipment

Also Published As

Publication number Publication date
WO2021139841A3 (zh) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2021139841A2 (zh) 校园智能引导机器人
US8269447B2 (en) Magnetic spherical balancing robot drive
KR101012454B1 (ko) 조립식 교육용 로봇
CN109591913B (zh) 机器人底盘和机器人
CN105857116A (zh) 自动导引式搬运装置的驱动机构
CN105598940A (zh) 一种巡逻机器人
CN107757751B (zh) 一种轮式自主移动机器人
JP7273990B2 (ja) 倉庫ロボット
CN209336405U (zh) 一种全地形高度主动升降式全向驱动轮机构
CN205768620U (zh) 自动导引式搬运装置
CN109733505A (zh) 一种全地形高度主动升降式全向驱动轮机构的工作方法
CN101382230A (zh) 一种计算机或显示设备用的可运动负载装置
CN110497761A (zh) 机器人以及机器人的行走控制方法
CN205768758U (zh) 自动导引式搬运装置的驱动机构
JP2746389B2 (ja) クローラ型壁面走行機構
CN102991600A (zh) 球式自平衡机器人
CN101403464A (zh) 可移动的笔记本电脑托架装置
LU500303B1 (en) Campus Intelligent Guide Robot
CN110304169A (zh) 一种双支撑腿组行走平台及其控制方法
CN102563317B (zh) 适用于交通调查的数码影像设备自动升降机构
CN204915891U (zh) 轮式升降型双足轮式运动机构及机器人
CN212208627U (zh) 一种农业专用无人车的驾驶模拟设备
CN207966281U (zh) 多种类工业机器人技术应用实训系统
CN211130117U (zh) 一种远程多媒体控制系统
CN113413008A (zh) 用于机考的计算机分隔装置及其控制系统、方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738113

Country of ref document: EP

Kind code of ref document: A2