WO2021139306A1 - 一种磁性纤维材料及其制备方法和应用 - Google Patents

一种磁性纤维材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021139306A1
WO2021139306A1 PCT/CN2020/122097 CN2020122097W WO2021139306A1 WO 2021139306 A1 WO2021139306 A1 WO 2021139306A1 CN 2020122097 W CN2020122097 W CN 2020122097W WO 2021139306 A1 WO2021139306 A1 WO 2021139306A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
coagulation bath
fiber
materials
solution
Prior art date
Application number
PCT/CN2020/122097
Other languages
English (en)
French (fr)
Inventor
王林格
贾毅凡
于倩倩
吴恙
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to JP2021548600A priority Critical patent/JP7253849B2/ja
Priority to US17/784,968 priority patent/US20230011363A1/en
Publication of WO2021139306A1 publication Critical patent/WO2021139306A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0046Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by coagulation, i.e. wet electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers

Definitions

  • the invention belongs to the field of functional fiber materials, and specifically relates to a magnetic fiber material and a preparation method and application thereof.
  • the substance After the substance is subjected to the external magnetic field, it can induce a magnetic field related to the external magnetic field.
  • the direction of the induced magnetic field is parallel to the external magnetic field. Its strength is called the magnetic field strength M, and the strength of the external magnetic field is called the magnetization strength H.
  • M The strength of the induced magnetic field
  • H the strength of the external magnetic field
  • substances can be roughly divided into diamagnetic materials, paramagnetic materials, ferromagnetic materials, antiferromagnetic materials, ferrimagnetic materials, and superparamagnetic materials.
  • Magnetic material paramagnetic materials and superparamagnetic materials have been applied to microwave amplifiers, nuclear magnetic resonance imaging technology, electronic paramagnetic resonance imaging technology, biological oxygen test (oxygen meter), etc. due to their unique properties.
  • excellent magnetic materials must be prepared with metal elements. Therefore, the magnetic properties of the materials can only be imparted by inorganic substances or organic-inorganic compounds.
  • Fibers often exhibit excellent flexibility due to their extremely large aspect ratio. Electrospinning technology can continuously produce polymer fibers with a diameter of submicron or even nanometer level. The fiber diameter is controllable, has a large specific surface area, and exhibits good functional characteristics. And because of its simple experimental device, low The advantages of cost, higher output and easy control have been extensively studied for many years. Compared with the traditional spinning method, since it does not need to go through a spinneret filter and other structures, this technology allows the addition of insoluble or poorly soluble components to the spinning raw materials, and is an excellent method for preparing organic/inorganic flexible composite materials.
  • the electrospun fiber is still in a wet state (that is, there is residual solvent).
  • residual solvent can still enable the fiber material and the fiber load to obtain sufficient movement ability to cause small-sized particles to agglomerate, so that smaller-scale magnetic materials cannot be obtained. Therefore, when magnetic fiber materials are processed by electrospinning technology, how to obtain smaller magnetic material size (nano, sub-nano, molecular, atomic) to improve the magnetic properties of the material is the technical problem to be solved by the present invention. .
  • the primary purpose of the present invention is to provide a method for preparing magnetic fiber materials.
  • the invention provides a method for in-situ synthesis of magnetic materials by electrospinning, so that the magnetic materials can be dispersed at the single-molecule (or single-atom) level in fibers obtained by electrospinning to obtain better magnetic properties.
  • the flexibility, high porosity, and high specific surface area of the material brought by the fiber are maintained.
  • Another object of the present invention is to provide a magnetic fiber material prepared by the above method.
  • Another object of the present invention is to provide the application of the above-mentioned magnetic fiber materials in magnetic resonance imaging materials, magnetic recording materials, magnetic refrigeration materials, magnetostrictive materials or magnetoluminescent materials.
  • a preparation method of magnetic fiber material includes the following preparation steps:
  • Configure spinning solution dissolve the polymer and magnetic support materials in the solvent to form a uniform spinning solution
  • step (1) The spinning solution of step (1) is electrospinned, and the fiber is collected with the reactive coagulation bath solution of step (2), so that the magnetic support material in the fiber is combined with the solute in the reactive coagulation bath solution. Position reaction to obtain magnetic fiber material.
  • the polymer in step (1) is polylactic acid, polycaprolactone, polyglycolide, polylactide, polyglycolic acid, hyaluronic acid, fibrin, silk protein, polyethylene glycol, shell Glycan, collagen, gelatin, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polymethyl methacrylate, polyamide, polycarbonate, polyoxymethylene, polybutylene terephthalate, polyester Ethylene phthalate, cellulose acetate, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, cyanoethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl Starch, carboxymethyl starch, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylonitrile, polyethylene glycol-polylactic acid block copolymer, polyethylene glycol-polycaprolactone block copolymer, polyethylene glycol,
  • the raw materials of the magnetic support material in step (1) are simple substances, alloys and compounds.
  • the elementary substance is at least one of the elemental substances of iron, nickel, manganese, copper, and lanthanide series metals;
  • the alloy is ferrosilicon, iron-nickel alloy, iron-silicon aluminum alloy, aluminum-nickel-cobalt alloy, iron-chromium-cobalt alloy At least one of ferrite, manganese-zinc alloy, nickel-zinc alloy, neodymium-iron-boron alloy, iron lanthanide series metal alloy;
  • the compound is iron, nickel, aluminum, manganese, copper, chloride of lanthanide series metal , At least one of oxides, nitrates, and sulfates; the added amount of the magnetic support material is 0.001% to 10% of the mass of the polymer.
  • the solvent described in step (1) is water, dichloromethane, chloroform, dichloroethane, tetrachloroethane, methyl acrylate, tetrahydrofuran, methyltetrahydrofuran, N,N-dimethyl Formamide, N,N-dimethylacetamide, dimethyl sulfoxide, ether, petroleum ether, acetone, formic acid, acetic acid, trifluoroacetic acid, carbon tetrachloride, xylene, toluene, phenol, chlorobenzene, nitrobenzene Benzene, pentane, n-hexane, methylcyclohexane, N-methylpyrrolidone, anisole, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, pentane One or a mixture of two or more of alcohol, N-methylmorpholine-N-oxide, chlorin
  • the coagulation bath solvent in step (2) is water, dichloromethane, chloroform, dichloroethane, tetrachloroethane, methyl acrylate, tetrahydrofuran, methyltetrahydrofuran, N,N-dimethyl Methyl formamide, N,N-dimethylacetamide, dimethyl sulfoxide, ether, petroleum ether, acetone, formic acid, acetic acid, trifluoroacetic acid, carbon tetrachloride, xylene, toluene, phenol, chlorobenzene, Nitrobenzene, pentane, n-hexane, methylcyclohexane, N-methylpyrrolidone, anisole, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, One or a mixture of two or more of pentanol, N-methylmorpholine-N-oxide,
  • the coagulation bath solvent in step (2) can be N,N-dimethylformamide, N,N-dimethylacetamide, di One or a mixture of two or more of methyl sulfoxide, diethyl ether, petroleum ether, and acetone; when the solvent in step (1) is dichloromethane, chloroform, dichloroethane, and tetrachloroethane
  • the coagulation bath solvent in step (2) can be water, xylene, toluene, phenol, chlorobenzene, nitrobenzene, pentane, n-hexane, methylcyclohexane One or a mixture of two or more of alkane, N-methylpyrrolidone and anisole; when the solvent in step (1) is methyl acrylate, tetrahydrofuran, methyltetrahydrofuran, N,N-dimethylformamide
  • solute component in step (2) is at least one of lithium, sodium, magnesium, aluminum, potassium, and calcium hydroxides; or at least one of lithium, sodium, potassium, and ammonium carbonates. Species; or at least one of lithium, sodium, magnesium, potassium, and ammonium phosphates.
  • the magnetic support material in step (1) is one of iron, nickel, copper, and lanthanide metal element, and iron, nickel, copper, chloride, sulfate, and nitrate of lanthanide metal
  • the solute in step (2) is one or a mixture of two or more of lithium, sodium, and potassium hydroxides and carbonates;
  • the raw materials of the load are ferrosilicon alloy, iron-nickel alloy, iron-silicon aluminum alloy, aluminum nickel cobalt alloy, iron chromium cobalt alloy and iron, nickel, copper, lanthanide metal chloride, sulfate, and nitrate.
  • the solute in step (2) is one or a mixture of two or more of lithium, sodium, magnesium, aluminum, potassium, and calcium chlorides and hydroxides;
  • the electrospinning conditions in step (3) are: spinneret voltage 0.5-50kV (positive or negative), coagulation bath voltage 0-50kV (positive or negative, opposite to the spinneret potential, Or grounding); the distance between the spinneret and the coagulation bath is 5-50cm, the spinning solution supply speed is 0.1-30mL/h; the spinning environment temperature is 5-60°C, and the relative humidity is 25%-95%.
  • step (3) needs to continuously supplement the coagulation bath to ensure a stable proportion of its components.
  • a magnetic fiber material prepared by the above method is a magnetic fiber material prepared by the above method.
  • the above-mentioned magnetic fiber materials are used in magnetic resonance imaging materials, magnetic recording materials, magnetic refrigeration materials, magnetostrictive materials or magnetoluminescent materials.
  • the principle of the technical solution provided by the present invention is to first use the high viscosity of the polymer solution and the solution’s ability to dissolve the magnetic support material to maintain the dispersion state of the support material in the solution to prevent its agglomeration;
  • the rapid volatilization of the solvent allows the polymer and magnetic support materials to quickly precipitate out of the solvent and deposit in situ;
  • the coagulation bath is used to swell the fiber to further remove the solvent, and make the solute components of the coagulation bath and the magnetic support in the fiber
  • an in-situ reaction occurs to generate a single molecule (or single atom) dispersed magnetic material.
  • the first function of the reactive coagulation bath is: the composition of the coagulation bath can extract the residual solvent in the polymer fiber from the fiber, accelerate the curing of the fiber, and at the same time solidify the magnetic support material to prevent its agglomeration; its second function is: the coagulation bath
  • the solute component can react with the raw material of the magnetic load, and with the high specific surface area of the fiber, the magnetic material can be quickly generated in situ by the reaction. In this way, the problem of agglomeration of magnetic materials in the spinning solution and electrostatic spinning process is solved.
  • the preparation method of the magnetic fiber material provided by the present invention does not need to add a nano-material dispersant, and can react in-situ in the fiber to generate a magnetic material, and the spinning process and the magnetic material synthesis process are completed simultaneously.
  • the electrospinning equipment used in the method of the present invention is simple, and the resulting fiber material has a complete morphology. Compared with the fiber prepared by the published technology, it has no significant defects. The morphology, the diameter can be controlled, and the magnetic properties can be prepared according to actual needs. Controlled fiber material.
  • the method for preparing magnetic fiber materials provided by the present invention can effectively avoid the agglomeration of magnetic materials, and prepare flexible magnetic fibers with single molecule (or single atom) dispersion that cannot be achieved by the published technology. Good magnetic properties.
  • Figure 1 is a schematic diagram of a reactive coagulation bath electrospinning device used in an embodiment of the present invention.
  • Figure 2 is a scanning electron microscope image of the magnetic fiber prepared in Example 1 of the present invention.
  • Figure 3 is a transmission electron microscope image of the magnetic fibers prepared in Example 1 (a, c in the figure) and comparative examples (b and d in the figure) of the present invention. The results show that in the magnetic fiber prepared by the present invention, the magnetic particles are monomolecularly dispersed.
  • FIG. 4 is a graph showing the test results of the magnetic resonance relaxation efficiency of the paramagnetic fibers prepared in Examples 1 to 4 of the present invention and the comparative example under different loading concentrations of magnetic material raw materials. The results show that fibers made of the T 1 of the present invention a magnetic resonance relaxation was significantly higher than the comparative art solutions, has better magnetic resonance contrast effect.
  • step (3) Pass the spinning solution of step (1) through electrospinning, and collect fibers with the reactive coagulation bath solution of step (2).
  • the schematic diagram of the device used is shown in FIG. 1. Connect +18kV to the spinneret and -1kV to the coagulation bath. The distance between the spinneret and the coagulation bath is 15 cm, and the spinning solution supply speed is 2 mL/h.
  • the spinning environment has a temperature of 25°C and a relative humidity of 65%.
  • the coagulation bath is constantly added to ensure the stability of its composition. After spinning, the reaction is continued in the coagulation bath, and the fiber is taken out to obtain the final product after the reaction is completed.
  • the scanning electron micrograph of the magnetic fiber prepared in this embodiment is shown in FIG. 2, and the fiber diameter is about 900 nanometers.
  • Figure 2 is a scanning electron micrograph of the magnetic fiber prepared in this embodiment, and the fiber diameter is about 900 nanometers.
  • Figure 3 (a, c) are transmission electron micrographs of the magnetic fiber prepared in this embodiment to characterize the state of the magnetic material in the fiber.
  • Figure a shows that the magnetic material is not agglomerated in the fiber (the particle spacing is about 0.5 nanometers), and the Fourier transform result (Figure c) is a number of dispersed rings, indicating that the magnetic material is monodisperse (the atomic radius of gadolinium atoms is 0.254 nm, See “Rare Earth Elements and Analytical Chemistry", Li Mei et al., Chemical Industry Press, 2009), the magnetic material is in an amorphous form.
  • step (3) Pass the spinning solution of step (1) through electrospinning, and collect fibers with the reactive coagulation bath solution of step (2).
  • the schematic diagram of the device used is shown in FIG. 1. Connect +17kV to the spinneret and -2kV to the coagulation bath. The distance between the spinneret and the coagulation bath is 15 cm, and the spinning solution supply speed is 3 mL/h.
  • the spinning environment has a temperature of 25°C and a relative humidity of 65%.
  • the coagulation bath is constantly added to ensure the stability of its composition. After spinning, the reaction is continued in the coagulation bath, and the fiber is taken out to obtain the final product after the reaction is completed.
  • step (3) Pass the spinning solution of step (1) through electrospinning, and collect fibers with the reactive coagulation bath solution of step (2).
  • the schematic diagram of the device used is shown in FIG. 1.
  • the spinneret is connected to +16kV voltage, and the coagulation bath is connected to -3kV voltage.
  • the distance between the spinneret and the coagulation bath is 15 cm, and the spinning solution supply speed is 3 mL/h.
  • the spinning environment has a temperature of 25°C and a relative humidity of 65%.
  • the coagulation bath is constantly added to ensure the stability of its composition. After spinning, the reaction is continued in the coagulation bath, and the fiber is taken out to obtain the final product after the reaction is completed.
  • step (3) Pass the spinning solution of step (1) through electrospinning, and collect fibers with the reactive coagulation bath solution of step (2).
  • the schematic diagram of the device used is shown in FIG. 1. Connect +15kV to the spinneret and -2kV to the coagulation bath. The distance between the spinneret and the coagulation bath is 15 cm, and the spinning solution supply speed is 3.5 mL/h.
  • the spinning environment has a temperature of 25°C and a relative humidity of 65%.
  • the coagulation bath is constantly added to ensure the stability of its composition. After spinning, the reaction is continued in the coagulation bath, and the fiber is taken out to obtain the final product after the reaction is completed.
  • the magnetic resonance relaxation rate test results of the magnetic fibers prepared in Examples 1 to 4 are shown in Figure 4 (technical solution of the present invention, solid line square). Compared with the technical solution of the comparative example, the magnetic fiber has a higher relaxation rate and exhibits a higher relaxation rate. Good MRI effect.
  • step (3) Pass the spinning solution of step (1) through electrospinning, and collect fibers with the reactive coagulation bath solution of step (2).
  • the schematic diagram of the device used is shown in FIG. 1.
  • the spinneret is connected to a voltage of +30kV, and the coagulation bath is grounded.
  • the distance between the spinneret and the coagulation bath is 25 cm, and the spinning solution supply speed is 5 mL/h.
  • the spinning environment temperature is 30°C, and the relative humidity is 50%.
  • the coagulation bath is constantly added to ensure the stability of its composition. After spinning, the reaction is continued in the coagulation bath, and the fiber is taken out to obtain the final product after the reaction is completed.
  • step (3) Pass the spinning solution of step (1) through electrospinning, and collect fibers with the reactive coagulation bath solution of step (2).
  • the schematic diagram of the device used is shown in FIG. 1. Connect +30kV to the spinneret and -20kV to the coagulation bath. The distance between the spinneret and the coagulation bath is 10 cm, and the spinning solution supply speed is 20 mL/h. The spinning environment temperature is 10°C, and the relative humidity is 30%. During the spinning process, the coagulation bath is constantly added to ensure the stability of its composition. After spinning, the reaction is continued in the coagulation bath, and the fiber is taken out to obtain the final product after the reaction is completed.
  • Potassium carbonate is added to the mixed solution of water and methanol (mass ratio 3:1), the mass concentration is 5%, and the mixture is uniformly mixed and then added to the coagulation bath container to obtain a reactive coagulation bath solution.
  • step (3) Pass the spinning solution of step (1) through electrospinning, and collect fibers with the reactive coagulation bath solution of step (2).
  • the schematic diagram of the device used is shown in FIG. 1. Connect +15kV to the spinneret and -40kV to the coagulation bath. The distance between the spinneret and the coagulation bath is 15 cm, and the spinning solution supply speed is 15 mL/h.
  • the spinning environment has a temperature of 10°C and a relative humidity of 80%.
  • the coagulation bath is constantly added to ensure the stability of its composition. After spinning, the reaction is continued in the coagulation bath, and the fiber is taken out to obtain the final product after the reaction is completed.
  • Potassium carbonate is added to the water with a mass concentration of 5%, mixed evenly, and then added to the coagulation bath container to obtain a reactive coagulation bath solution.
  • step (3) Pass the spinning solution of step (1) through electrospinning, and collect fibers with the reactive coagulation bath solution of step (2).
  • the schematic diagram of the device used is shown in FIG. 1.
  • the spinneret is connected to +50kV voltage, and the coagulation bath is connected to -5kV.
  • the distance between the spinneret and the coagulation bath is 10 cm, and the spinning solution supply speed is 2.5 mL/h.
  • the spinning environment temperature is 50°C, and the relative humidity is 25%.
  • the coagulation bath is constantly added to ensure the stability of its composition. After spinning, the reaction is continued in the coagulation bath, and the fiber is taken out to obtain the final product after the reaction is completed.
  • the technical scheme of the present invention can be summarized as: after the spinning solution is configured, the magnetic fiber is obtained in one step through the electrostatic spinning method and the reactive coagulation bath is used as the fiber receiving device, which is referred to as "one-step method" for short.
  • the comparative technical solution can be summarized as after the spinning solution is configured, the fibers are collected by a traditional fiber receiving device (such as a grounded flat plate), and then the fibers are transferred to the reaction solution to react to generate magnetic fibers, referred to as "two-step method".
  • step (2) Electrospin the spinning solution of step (1) to obtain a fiber membrane loaded with a magnetic material raw material.
  • the spinneret is connected to +18kV voltage, the distance between the spinneret and the fiber receiver is 15cm, and the spinning solution supply speed is 3mL/h.
  • the spinning environment has a temperature of 25°C and a relative humidity of 65%.
  • step (3) The fiber membrane obtained in step (2) is fully immersed in the sodium hydroxide solution that reacts with it.
  • the pH values of the sodium hydroxide solution are 9, 9.2, 9.5, and 9.7, respectively, so that the The aqueous solution swells the fiber, and uses the network composed of polymer in the fiber as a microreactor to generate magnetic particles in situ in the fiber.
  • the fiber is taken out of the sodium hydroxide solution, rinsed with deionized water to neutrality, and dried in the air.
  • FIG. 3 The transmission electron micrographs of the magnetic fiber prepared by the above scheme ("two-step method") are shown in Figure 3 (b, d).
  • Figure b shows that the aggregate size of the magnetic material in the fiber is about 10 nanometers, and its Fourier There are bright spots in the transformation result (figure d), indicating that the magnetic material has a regular structure in the fiber and is in agglomerated state.
  • the internal magnetic material shown in Figures 3a and c
  • the present invention adopts the "one-step method", which reacts in one step during the fiber preparation process, reduces the process and reduces the probability of agglomeration, and directly generates monomolecular dispersed magnetic particles.
  • the comparative technique (“two-step method") first prepares polymer fibers and then reacts the fibers in a reaction solution. The magnetic materials are agglomerated, and monomolecular dispersed magnetic particles cannot be generated.
  • the magnetic resonance relaxation rate test result is shown in Figure 4 (dotted circle).
  • the ordinate in the figure is the relaxation rate (spin-lattice relaxation).
  • the inverse ratio of the relaxation time T 1, T 1 Relaxation rate, R 1 for short) varies with the abscissa-the concentration of the particle in the unit weight of the polymer, and has a linear relationship.
  • the relaxation rate R 1 is proportional to the strength of the magnetic resonance imaging signal of the material. The larger the value, the better the contrast effect.
  • the measurement results in the figure show that when the particle content is increased, the particles prepared by the technology of the present invention (“one-step method”) have better dispersibility, and the resulting contrast effect is getting better and better, showing a very obvious advantage.
  • the relaxation rate of the material prepared by the present invention is more than 7 times that of the fiber obtained by the comparative technology (“two-step method”). This also shows that for the electrospinning technology, the innovative "one-step” technical solution using a reactive coagulation bath can prepare new magnetic fibers with better magnetic properties.
  • the coupling of paramagnetic materials and water molecules can significantly reduce the relaxation time of water molecules and increase the relaxation rate. It is used to prepare high-efficiency magnetic resonance contrast agents.
  • SBM theory Solomon-Bloembergen-Morgan, see ACS Appl.Mater.Interfaces,2014,6(16):13730
  • the effective coupling of water molecules and paramagnetic materials requires that the distance between the nuclei of water molecules and magnetic materials be sufficiently small. That is to say, for agglomerated magnetic materials, the magnetic materials inside the particles that cannot be in direct contact with the external environment will not be able to couple with water molecules, resulting in their core particles not being able to effectively exhibit the relaxation effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本发明属于功能纤维材料领域,公开了一种磁性纤维材料及其制备方法和应用。将高分子与磁性负载物原料溶解于溶剂中,得到纺丝溶液;在凝固浴溶剂中加入与磁性负载物原料反应的溶质成分,得到反应性凝固浴溶液;将纺丝溶液通过静电纺丝,并以反应性凝固浴溶液收集纤维,使纤维中的磁性负载物原料与反应性凝固浴溶液中的溶质原位反应,得到磁性纤维材料。本发明方法不需要额外添加纳米材料分散剂,可在纤维内原位反应生成磁性材料,纺丝过程与磁性材料合成过程同步完成,可以有效避免磁性材料的团聚,制备得到已公开技术无法实现的单分子(或单原子)分散的柔性磁性纤维,单分子分散的磁性材料具有更佳的磁性能。

Description

一种磁性纤维材料及其制备方法和应用 技术领域
本发明属于功能纤维材料领域,具体涉及一种磁性纤维材料及其制备方法和应用。
背景技术
随着磁性材料的发展与进步,其已经成为国民经济和人类社会重要的基础材料。物质在受到外磁场的作用后,可以感生出与外磁场相关的磁场,感生磁场的方向与外磁场平行,其强度被称为磁场强度M,外磁场的强度被称为磁化强度H。通常采用
Figure PCTCN2020122097-appb-000001
来衡量该种物质的磁性能。
根据χ的数值大小与正负关系,及其在不同H下的变化情况,物质可大致被分为抗磁材料、顺磁性材料、铁磁性材料、反铁磁性材料、亚铁磁性材料、超顺磁性材料。其中顺磁性材料与超顺磁性材料由于其独特的性能已经被应用于微波放大器、核磁共振成像技术、电子顺磁共振成像技术、生物学氧测试(测氧仪)等。然而由于原理的限制,优秀的磁性材料都必须以金属元素来制备,因此一直以来,材料的磁性能都仅能够通过无机物或有机无机化合物赋予。
随着磁性材料的广泛使用,具有柔性的磁性材料渐渐为实际生产生活所需要。通过柔性的材料来负载具有磁性能的无机材料制备复合材料,是赋予磁性材料柔性的可行手段。然而这一负载过程中,无机材料的形貌与其在柔性材料中的分布情况是影响复合材料性能与应用范围的重要参数。特别是顺磁性与超顺磁性材料,它们的性能在材料尺寸缩小至纳米尺度时会发生巨大变化,微小的尺寸与形貌改变将会极大地影响磁性能。
纤维由于具有极大的长径比,常常能表现出优良的柔性。静电纺丝技术能够连续生产直径在亚微米甚至纳米级的高分子纤维,纤维直径可控,具有较大的比表面积,显现出很好的功能特性,并且由于其简单的实验装置、较低的成本、较高的产量和易于控制等优点,多年来受到了广泛地研究。其相较于传统纺丝方法,由于不需要经过喷丝滤头等结构,因此该技术允许在纺丝原料中加入不溶或难溶的组分,是制备有机/无机柔性复合材料的绝佳手段。然而由于三个原因的存在:(1)绝大多数的磁性粒子难于溶解在有机物(高分子)的溶液当中;(2)小尺寸(如纳米级)的颗粒由于具有较高的表面能,在纺丝过程中容易团聚为大的颗粒;(3)磁性材料之间互相吸引、容易团聚。导致静电纺丝后,原先在溶液中分散好的磁性材料团聚。特别是顺磁性与超顺磁性材料对材料尺寸更为敏感,微小的尺寸变化,会带来巨大的磁性能变化。对于当前技术而言,静电纺丝的过程中,溶剂快速从溶液中挥发以实现纤维的固化。然而在纺丝结束后,电纺纤维仍然处于湿润的状态(即有残余溶剂)。虽然此时纤维材料已经从溶液中析出,但残余溶剂的存在仍然可以使得纤维材料以及纤维负载物获得足够的运动能力而使得小尺寸粒子发生团聚,从而不能获得更小尺度的磁性材料。因此,磁性纤维类材料通过静电纺丝技术加工时,如何获得更小的磁性材料尺寸(纳米、亚纳米、分子级、原子级),以提高材料的磁性能,是本发明拟解决的技术问题。
发明内容
针对以上已公开技术存在的缺点和不足之处,本发明的首要目的在于提供一种磁性纤维材料的制备方法。本发明提供了一种静电纺丝原位合成磁性材料的方法,使得磁性材料在静电纺得到的纤维中实现单分子(或单原子)级别的分散,以获得更佳的磁性能。同时保持纤维所带来的材料的柔性、高孔隙率、高比表面积等性能。
本发明的另一目的在于提供一种通过上述方法制备得到的磁性纤维材料。
本发明的再一目的在于提供上述磁性纤维材料在磁共振成像材料、磁记录材料、磁致冷材料、磁致伸缩材料或磁致发光材料中的应用。
本发明目的通过以下技术方案实现:
一种磁性纤维材料的制备方法,包括如下制备步骤:
(1)配置纺丝溶液:将高分子与磁性负载物原料溶解于溶剂中,形成均一的纺丝溶液;
(2)配制反应性凝固浴溶液:在凝固浴溶剂中加入与磁性负载物原料反应的溶质成份,形成均一的反应性凝固浴溶液;
(3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,使纤维中的磁性负载物原料与反应性凝固浴溶液中的溶质原位反应,得到磁性纤维材料。
进一步地,步骤(1)中所述高分子为聚乳酸、聚己内酯、聚乙交酯、聚丙交酯、聚羟基乙酸、透明质酸、纤维蛋白、丝蛋白、聚乙二醇、壳聚糖、胶原蛋白、明胶、聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚酰胺、聚碳酸酯、聚甲醛、聚对苯二甲酸丁二酯、聚对苯二甲酸乙二酯、醋酸纤维素、甲基纤维素、乙基纤维素、羟乙基纤维素、氰乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、羟乙基淀粉、羧甲基淀粉、聚乙烯吡咯烷酮、聚乙烯醇、聚丙烯腈、聚乙二醇-聚乳酸嵌段共聚物、聚乙二醇-聚己内酯嵌段共聚物、聚乙二醇-聚乙烯吡咯烷酮嵌段共聚物、聚苯乙烯-聚丁二烯嵌段共聚物、苯乙烯-丁二烯-苯乙烯三嵌段共聚物、聚苯乙烯-聚(乙烯-丁烯)-聚苯乙烯嵌段共聚物、苯乙烯-异戊二烯/丁二烯-苯乙烯嵌段共聚物、聚苯乙烯-聚丁二烯-聚苯乙烯嵌段共聚物中的至少一种。所述高分子在纺丝溶液中的质量分数为1%~40%。
进一步地,步骤(1)中所述磁性负载物原料为单质、合金和化合物。所述的单质为铁、镍、锰、铜、镧系金属的单质中的至少一种;所述的合金为硅铁合金、铁镍合金、铁硅铝合金、铝镍钴合金、铁铬钴合金、铁氧体、锰锌合金、镍锌合金、钕铁硼合金、铁镧系金属合金中的至少一种;所述的化合物为铁、 镍、铝、锰、铜、镧系金属的氯化物、氧化物、硝酸盐、硫酸盐中的至少一种;所述磁性负载物原料的加入量为高分子质量的0.001%~10%。
进一步地,步骤(1)中所述的溶剂为水、二氯甲烷、三氯甲烷、二氯乙烷、四氯乙烷、丙烯酸甲酯、四氢呋喃、甲基四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、乙醚、石油醚、丙酮、甲酸、乙酸、三氟乙酸、四氯化碳、二甲苯、甲苯、苯酚、氯苯、硝基苯、戊烷、正己烷、甲基环己烷、N-甲基吡咯烷酮、苯甲醚、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、N-甲基吗啉-N-氧化物、氯化甲基咪唑盐和甲酚中的一种或两种以上的混合。
进一步地,步骤(2)中所述凝固浴溶剂为水、二氯甲烷、三氯甲烷、二氯乙烷、四氯乙烷、丙烯酸甲酯、四氢呋喃、甲基四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、乙醚、石油醚、丙酮、甲酸、乙酸、三氟乙酸、四氯化碳、二甲苯、甲苯、苯酚、氯苯、硝基苯、戊烷、正己烷、甲基环己烷、N-甲基吡咯烷酮、苯甲醚、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、N-甲基吗啉-N-氧化物、氯化甲基咪唑盐和甲酚中的一种或两种以上的混合。
进一步地,当步骤(1)中的溶剂为水时,优选地,步骤(2)中的凝固浴溶剂可以为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、乙醚、石油醚、丙酮中的一种或两种以上的混合;当步骤(1)中的溶剂为二氯甲烷、三氯甲烷、二氯乙烷、四氯乙烷中的一种或两种以上的混合时,优选地,步骤(2)中的凝固浴溶剂可以为水、二甲苯、甲苯、苯酚、氯苯、硝基苯、戊烷、正己烷、甲基环己烷、N-甲基吡咯烷酮、苯甲醚中的一种或两种以上的混合;当步骤(1)中的溶剂为丙烯酸甲酯、四氢呋喃、甲基四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、乙醚、石油醚、丙酮中的一种或两种以上的混合时,优选地,步骤(2)中的凝固浴溶剂可以为水、甲酸、乙酸、三氟乙酸、四氯化碳、N-甲基吡咯烷酮、苯甲醚、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、N-甲基吗啉-N-氧化物、氯化甲基咪唑盐和甲酚中的一种或两种 以上的混合;当步骤(1)中的溶剂为甲酸、乙酸、三氟乙酸、四氯化碳、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、N-甲基吗啉-N-氧化物、氯化甲基咪唑盐和甲酚中的一种或两种以上的混合时,优选地,步骤(2)中的凝固浴溶剂可以为水、四氢呋喃、甲基四氢呋喃中的一种或两种以上的混合;当步骤(1)中的溶剂为二甲苯、甲苯、苯酚、氯苯、硝基苯、戊烷、正己烷、甲基环己烷、N-甲基吡咯烷酮、苯甲醚中的一种或两种以上的混合时,优选地,步骤(2)中的凝固浴溶剂可以为水、二氯甲烷、三氯甲烷、二氯乙烷、四氯乙烷、丙烯酸甲酯、四氢呋喃、甲基四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、乙醚、石油醚、丙酮中的一种或两种以上的混合。
进一步地,步骤(2)中所述溶质成分为锂、钠、镁、铝、钾、钙的氢氧化物中的至少一种;或锂、钠、钾、铵的碳酸盐中的至少一种;或锂、钠、镁、钾、铵的磷酸盐中的至少一种。
进一步地,当步骤(1)中的磁性负载物原料为铁、镍、铜、镧系金属单质中的一种与铁、镍、铜、镧系金属的氯化物、硫酸盐、硝酸盐中的一种形成的混合物时,优选地,步骤(2)中的溶质为锂、钠、钾的氢氧化物、碳酸盐中的一种或两种以上的混合;当步骤(1)中的磁性负载物原料为硅铁合金、铁镍合金、铁硅铝合金、铝镍钴合金、铁铬钴合金中的一种和铁、镍、铜、镧系金属的氯化物、硫酸盐、硝酸盐中的一种形成的混合物时,优选地,步骤(2)中的溶质为锂、钠、镁、铝、钾、钙的氯化物、氢氧化物中的一种或两种以上的混合物;当步骤(1)中的磁性负载物原料为铁氧体、锌锰合金、钕铁硼合金、铁镧系金属合金中的一种或两种以上的混合时,优选地,步骤(2)中的溶质为锂、钠、铵的碳酸盐、氢氧化物中的一种或它们的混合物;当步骤(1)中的磁性负载物原料为铁、锰、铜、镧系金属的氯化物、硫酸盐中的一种或它们的混合物时,优选地,步骤(2)中的溶质为锂、钠、镁、钾、钙的氢氧化物、碳酸盐、中的一种或它们的混合物。
进一步地,步骤(3)中所述静电纺丝的条件为:喷丝头电压0.5~50kV(可 正可负),凝固浴电压0~50kV(可正可负,与喷丝头电势相反,或接地);喷丝头与凝固浴距离5~50cm,纺丝溶液供给速度0.1~30mL/h;纺丝环境温度5~60℃,相对湿度25%~95%。
进一步地,步骤(3)中所述静电纺丝的过程需要不断补充凝固浴以保证其成分比例稳定。
一种磁性纤维材料,通过上述方法制备得到。
上述磁性纤维材料在磁共振成像材料、磁记录材料、磁致冷材料、磁致伸缩材料或磁致发光材料中的应用。
本发明所提供的技术方案原理在于,首先利用高分子溶液的高粘性与溶液对磁性负载物原料的溶解能力,在溶液中维持负载物原料的分散状态,阻止其团聚;后在静电纺丝的过程中,利用溶剂的快速挥发,使得高分子与磁性负载物原料从溶剂中快速析出原位沉积;最后利用凝固浴溶胀纤维,进一步除去溶剂,并使得凝固浴溶质成份与纤维中的磁性负载物原料接触,发生原位反应,生成单分子(或单原子)分散的磁性材料。反应性凝固浴,其功能一为:凝固浴成份可以将高分子纤维中的残余溶剂从纤维中萃取出来,加速纤维固化,同时固化磁性负载物原料,防止其团聚;其功能二为:凝固浴溶质成份可以与磁性负载物原料反应,借助纤维的高比表面积,快速原位反应生成磁性材料。以此解决磁性材料在纺丝溶液与静电纺丝过程中团聚的问题。
本发明的制备方法及所得到的产物具有如下优点及有益效果:
(1)本发明提供的磁性纤维材料的制备方法,不需要额外添加纳米材料分散剂,可在纤维内原位反应生成磁性材料,纺丝过程与磁性材料合成过程同步完成。
(2)本发明方法采用的静电纺丝设备简单,所得纤维材料形貌完整,相较于已公开技术制备的纤维没有显著缺陷,可根据实际需要制备出形貌、直径可控,磁性能可控的纤维材料。
(3)本发明提供的磁性纤维材料的制备方法可以有效避免磁性材料的团 聚,制备得到已公开技术无法实现的单分子(或单原子)分散的柔性磁性纤维,单分子分散的磁性材料具有更佳的磁性能。
附图说明
图1为本发明实施例中所使用的反应性凝固浴静电纺丝装置示意图。
图2为本发明实施例1中制备的磁性纤维的扫描电子显微镜图。
图3为本发明实施例1(图中a、c)与对比例(图中b、d)制备的磁性纤维的透射电子显微镜图。结果表明通过本发明制备的磁性纤维,磁性粒子呈单分子分散。
图4为本发明实施例1~4与对比例制备的顺磁性纤维,在不同磁性材料原料负载浓度下的磁共振弛豫效率测试结果图。结果表明本发明制备的纤维的T 1磁共振弛豫率显著高于对比技术方案,有更好的磁共振造影效果。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)将聚对苯二甲酸乙二酯与六水合氯化钆溶解在二氯甲烷和三氟乙酸(质量比1:2)的混合溶剂中,形成质量分数为15%的高分子溶液,其中六水合氯化钆的加入量为聚对苯二甲酸乙二酯质量的0.1%,得到纺丝溶液。
(2)在水中加入氢氧化钠,调节pH值为9,混合均匀后加入凝固浴容器中,得到反应性凝固浴溶液。
(3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,所使用的装置示意图如图1所示。喷丝头处接+18kV电压,凝固浴接-1kV电压。喷丝头与凝固浴距离15cm,纺丝溶液供给速度为2mL/h。 纺丝环境温度25℃,相对湿度65%。纺丝的过程中不断补充凝固浴以保证其成份稳定。纺丝结束后在凝固浴中继续反应,反应完成取出纤维得到最终产品。
本实施例制备的磁性纤维的扫描电子显微镜照片图如图2所示,纤维直径约900纳米。
图2为本实施例制备的磁性纤维的扫描电子显微镜照片图,纤维直径约900纳米。图3(a、c)为本实施例制备的磁性纤维的透射电子显微镜照片,以表征纤维中磁性材料的状态。其中a图表明磁性材料在纤维中并未团聚(粒子间距约为0.5纳米),其傅立叶变换结果(c图)为若干弥散环,表明磁性材料为单分散(钆原子的原子半径为0.254nm,参见《稀土元素及其分析化学》,李梅等,化学工业出版社,2009年),磁性材料处于无定形态。
实施例2
(1)将聚对苯二甲酸乙二酯与六水合氯化钆溶解在二氯甲烷和三氟乙酸(质量比1:2)的混合溶剂中,形成质量分数为15%的高分子溶液,其中六水合氯化钆的加入量为聚对苯二甲酸乙二酯质量的0.2%,得到纺丝溶液。
(2)在水中加入氢氧化钠,调节pH值为9.2,混合均匀后加入凝固浴容器中,得到反应性凝固浴溶液。
(3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,所使用的装置示意图如图1所示。喷丝头处接+17kV电压,凝固浴接-2kV电压。喷丝头与凝固浴距离15cm,纺丝溶液供给速度为3mL/h。纺丝环境温度25℃,相对湿度65%。纺丝的过程中不断补充凝固浴以保证其成份稳定。纺丝结束后在凝固浴中继续反应,反应完成取出纤维得到最终产品。
实施例3
(1)将聚对苯二甲酸乙二酯与六水合氯化钆溶解在二氯甲烷和三氟乙酸 (质量比1:2)的混合溶剂中,形成质量分数为15%的高分子溶液,其中六水合氯化钆的加入量为聚对苯二甲酸乙二酯质量的0.3%,得到纺丝溶液。
(2)在水中加入氢氧化钠,调节pH值为9.5,混合均匀后加入凝固浴容器中,得到反应性凝固浴溶液。
(3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,所使用的装置示意图如图1所示。喷丝头处接+16kV电压,凝固浴接-3kV电压。喷丝头与凝固浴距离15cm,纺丝溶液供给速度为3mL/h。纺丝环境温度25℃,相对湿度65%。纺丝的过程中不断补充凝固浴以保证其成份稳定。纺丝结束后在凝固浴中继续反应,反应完成取出纤维得到最终产品。
实施例4
(1)将聚对苯二甲酸乙二酯与六水合氯化钆溶解在二氯甲烷和三氟乙酸(质量比1:2)的混合溶剂中,形成质量分数为15%的高分子溶液,其中六水合氯化钆的加入量为聚对苯二甲酸乙二酯质量的0.5%,得到纺丝溶液。
(2)在水中加入氢氧化钠,调节pH值为9.7,混合均匀后加入凝固浴容器中,得到反应性凝固浴溶液。
(3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,所使用的装置示意图如图1所示。喷丝头处接+15kV电压,凝固浴接-2kV电压。喷丝头与凝固浴距离15cm,纺丝溶液供给速度为3.5mL/h。纺丝环境温度25℃,相对湿度65%。纺丝的过程中不断补充凝固浴以保证其成份稳定。纺丝结束后在凝固浴中继续反应,反应完成取出纤维得到最终产品。
实施例1~4所制备的磁性纤维的磁共振弛率测试结果如图4(本发明技术方案,实线方形)所示,相对于对比例技术方案有高更的弛豫率,呈现出更好的磁共振造影效果。
实施例5
(1)将聚乙二醇(分子量50万)与铝镍钴合金(Al 8Ni 16Co 24Cu 3Fe 39)、氯化铁纳米颗粒(质量比3:1)溶解在四氢呋喃中,形成质量分数为1%的高分子溶液,其中铝镍钴合金与氯化铁纳米颗粒的加入量为聚乙二醇质量的0.0015%,得到纺丝溶液。
(2)在甲醇中加入氢氧化钠,质量浓度为2%,混合均匀后加入凝固浴容器中,得到反应性凝固浴溶液。
(3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,所使用的装置示意图如图1所示。喷丝头处接+30kV电压,凝固浴接地。喷丝头与凝固浴距离25cm,纺丝溶液供给速度为5mL/h。纺丝环境温度30℃,相对湿度50%。纺丝的过程中不断补充凝固浴以保证其成份稳定。纺丝结束后在凝固浴中继续反应,反应完成取出纤维得到最终产品。
实施例6
(1)将聚苯乙烯与铝镍钴合金(Al 8Ni 16Co 24Cu 3Fe 39)、氯化铁纳米颗粒(质量比3:1)溶解在四氢呋喃中,形成质量分数为1%的高分子溶液,其中铝镍钴合金与氯化铁纳米颗粒的加入量为聚苯乙烯质量的0.005%,得到纺丝溶液。
(2)在甲醇中加入氢氧化钠,质量浓度为1%,混合均匀后加入凝固浴容器中,得到反应性凝固浴溶液。
(3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,所使用的装置示意图如图1所示。喷丝头处接+30kV电压,凝固浴接-20kV。喷丝头与凝固浴距离10cm,纺丝溶液供给速度为20mL/h。纺丝环境温度10℃,相对湿度30%。纺丝的过程中不断补充凝固浴以保证其成份稳定。纺丝结束后在凝固浴中继续反应,反应完成取出纤维得到最终产品。
实施例7
(1)将聚乙烯醇与硝酸镍、硝酸铁、硝酸钆(质量比1:1:2)溶解在三氟乙酸和丙醇(质量比1:1)的混合溶剂中,形成质量分数为8%的高分子溶液,其中硝酸镍、硝酸铁和硝酸钆的加入量为聚乙烯醇质量的5%,得到纺丝溶液。
(2)在水和甲醇的混合溶液中(质量比3:1)加入碳酸钾,质量浓度为5%,混合均匀后加入凝固浴容器中,得到反应性凝固浴溶液。
(3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,所使用的装置示意图如图1所示。喷丝头处接+15kV电压,凝固浴接-40kV。喷丝头与凝固浴距离15cm,纺丝溶液供给速度为15mL/h。纺丝环境温度10℃,相对湿度80%。纺丝的过程中不断补充凝固浴以保证其成份稳定。纺丝结束后在凝固浴中继续反应,反应完成取出纤维得到最终产品。
实施例8
(1)将聚苯乙烯-聚丁二烯-聚苯乙烯嵌段共聚物与氯化钴、硝酸铕(质量比1:4)溶解在四氢呋喃和N,N-二甲基甲酰胺(质量比1:1)的混合溶剂中,形成质量分数为12%的高分子溶液,其中氯化钴和硝酸铕的加入量为聚苯乙烯-聚丁二烯-聚苯乙烯嵌段共聚物质量的0.5%,得到纺丝溶液。
(2)在水中加入碳酸钾,质量浓度为5%,混合均匀后加入凝固浴容器中,得到反应性凝固浴溶液。
(3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,所使用的装置示意图如图1所示。喷丝头处接+50kV电压,凝固浴接-5kV。喷丝头与凝固浴距离10cm,纺丝溶液供给速度为2.5mL/h。纺丝环境温度50℃,相对湿度25%。纺丝的过程中不断补充凝固浴以保证其成份稳定。纺丝结束后在凝固浴中继续反应,反应完成取出纤维得到最终产品。
对比例
为说明本发明技术所得磁性纤维在性能上的优势,我们在采用本发明技术 制备新型磁性纤维的同时,也采用了另一种技术方案(对比技术方案)制备了磁性纤维,并将两种方法制备的纤维性能进行了测试与比较。
本发明的技术方案可以概括为配置纺丝溶液后,通过静电纺丝法,以反应性凝固浴为纤维接收装置,一步得到磁性纤维,简称“一步法”。对比技术方案可以概括为配置纺丝溶液后,以传统纤维接收装置(如接地平板)收集纤维,之后再将纤维转移至反应溶液中反应,生成磁性纤维,简称“两步法”。
“两步法”具体实施方案如下:
(1)将聚对苯二甲酸乙二酯与六水合氯化钆溶解在二氯甲烷和三氟乙酸(质量比1:2)的混合溶剂中,形成质量分数为15%的高分子溶液,其中六水合氯化钆的加入量分别为聚对苯二甲酸乙二酯质量的0.1%、0.2%、0.3%、0.5%,得到纺丝溶液。
(2)将步骤(1)的纺丝溶液进行静电纺丝,得到负载有磁性材料原料的纤维膜。喷丝头处接+18kV电压,喷丝头与纤维接收器距离15cm,纺丝溶液供给速度为3mL/h。纺丝环境温度25℃,相对湿度65%。
(3)将步骤(2)中得到的纤维膜充分浸入与之反应的氢氧化钠溶液中,氢氧化钠溶液的pH值分别为9、9.2、9.5、9.7,使得携带有氢氧根离子的水溶液溶胀纤维,利用纤维中高分子构成的网络作为微反应器,在纤维中原位生成磁性粒子。
(4)反应完成后,将纤维从氢氧化钠溶液中取出,用去离子水冲洗至中性,在空气中干燥。
以上述方案(“两步法”)制备的磁性纤维,其透射电子显微镜照片如图3(b、d所示),b图显示磁性材料在纤维中的聚集体尺寸约为10纳米,其傅立叶变换结果(d图)中有亮斑,表明磁性材料在纤维内具有规整结构,处于团聚状态。而实施例1制备的磁性纤维,其内部磁性材料(图3a、c所示)完全处于无定形态。
由以上结果说明本发明采用“一步法”,在纤维的制备过程中一步反应,减少过程、降低团聚概率,直接生成单分子分散磁性粒子。而对比例技术(“两步法”)先制备高分子纤维,然后将纤维在反应溶液中反应,磁性材料存在团聚现象,无法生成单分子分散磁性粒子。
以上述方案(“两步法”)制备的磁性纤维,其磁共振弛豫率测试结果如图4(虚线圆形)所示,图中纵坐标——弛豫率(自旋-晶格弛豫时间T 1的反比,T 1Relaxation rate,简称R 1),随横坐标——粒子在单位量高分子中的浓度而变化,且呈线性关系。弛豫率R 1正比于材料的磁共振成像信号强度,值越大、造影效果越好。图中测量结果显示,在粒子含量增加的情况下,由于本发明技术(“一步法”)制备的粒子分散性更好,产生的造影效果越来越好,体现出非常明显的优势。在粒子单位浓度值约为0.032mmol·g -1时,本发明(“一步法”)制备材料的弛豫率是对比技术(“两步法”)所得纤维的7倍多。这也表明,对于静电纺丝技术而言,创新地采用反应性凝固浴的“一步法”技术方案可以制备具备更好磁性能的新型磁性纤维。
“一步法”可以制备更高弛豫率磁性纤维的原因在于,对于磁共振来说,顺磁性材料与水分子的耦合可以显著减小水分子的弛豫时间,增加弛豫率,这一性质被用于制备高效磁共振造影剂。根据SBM理论(Solomon-Bloembergen-Morgan,参见ACS Appl.Mater.Interfaces,2014,6(16):13730),水分子与顺磁性材料的有效耦合要求水分子与磁性材料的原子核距离要足够小。也就是说,对于团聚的磁性材料,粒子内部不能与外界环境直接接触的磁性材料将无法与水分子耦合,导致其芯层粒子不能有效表现出弛豫效果。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种磁性纤维材料的制备方法,其特征在于包括如下制备步骤:
    (1)配置纺丝溶液:将高分子与磁性负载物原料溶解于溶剂中,形成均一的纺丝溶液;
    (2)配制反应性凝固浴溶液:在凝固浴溶剂中加入与磁性负载物原料反应的溶质成分,形成均一的反应性凝固浴溶液;
    (3)将步骤(1)的纺丝溶液通过静电纺丝,并以步骤(2)的反应性凝固浴溶液收集纤维,使纤维中的磁性负载物原料与反应性凝固浴溶液中的溶质原位反应,得到磁性纤维材料。
  2. 根据权利要求1所述的一种磁性纤维材料的制备方法,其特征在于:步骤(1)中所述高分子为聚乳酸、聚己内酯、聚乙交酯、聚丙交酯、聚羟基乙酸、透明质酸、纤维蛋白、丝蛋白、聚乙二醇、壳聚糖、胶原蛋白、明胶、聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚酰胺、聚碳酸酯、聚甲醛、聚对苯二甲酸丁二酯、聚对苯二甲酸乙二酯、醋酸纤维素、甲基纤维素、乙基纤维素、羟乙基纤维素、氰乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、羟乙基淀粉、羧甲基淀粉、聚乙烯吡咯烷酮、聚乙烯醇、聚丙烯腈、聚乙二醇-聚乳酸嵌段共聚物、聚乙二醇-聚己内酯嵌段共聚物、聚乙二醇-聚乙烯吡咯烷酮嵌段共聚物、聚苯乙烯-聚丁二烯嵌段共聚物、苯乙烯-丁二烯-苯乙烯三嵌段共聚物、聚苯乙烯-聚(乙烯-丁烯)-聚苯乙烯嵌段共聚物、苯乙烯-异戊二烯/丁二烯-苯乙烯嵌段共聚物、聚苯乙烯-聚丁二烯-聚苯乙烯嵌段共聚物中的至少一种;所述高分子在纺丝溶液中的质量分数为1%~40%。
  3. 根据权利要求1所述的一种磁性纤维材料的制备方法,其特征在于:步骤(1)中所述磁性负载物原料为单质、合金和化合物;所述的单质为铁、镍、锰、铜、镧系金属的单质中的至少一种;所述的合金为硅铁合金、铁镍合金、铁硅铝合金、铝镍钴合金、铁铬钴合金、铁氧体、锰锌合金、镍锌合金、钕铁 硼合金、铁镧系金属合金中的至少一种;所述的化合物为铁、镍、铝、锰、铜、镧系金属的氯化物、氧化物、硝酸盐、硫酸盐中的至少一种;所述磁性负载物原料的加入量为高分子质量的0.001%~10%。
  4. 根据权利要求1所述的一种磁性纤维材料的制备方法,其特征在于:步骤(1)中所述的溶剂为水、二氯甲烷、三氯甲烷、二氯乙烷、四氯乙烷、丙烯酸甲酯、四氢呋喃、甲基四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、乙醚、石油醚、丙酮、甲酸、乙酸、三氟乙酸、四氯化碳、二甲苯、甲苯、苯酚、氯苯、硝基苯、戊烷、正己烷、甲基环己烷、N-甲基吡咯烷酮、苯甲醚、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、N-甲基吗啉-N-氧化物、氯化甲基咪唑盐和甲酚中的一种或两种以上的混合。
  5. 根据权利要求1所述的一种磁性纤维材料的制备方法,其特征在于:步骤(2)中所述凝固浴溶剂为水、二氯甲烷、三氯甲烷、二氯乙烷、四氯乙烷、丙烯酸甲酯、四氢呋喃、甲基四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、乙醚、石油醚、丙酮、甲酸、乙酸、三氟乙酸、四氯化碳、二甲苯、甲苯、苯酚、氯苯、硝基苯、戊烷、正己烷、甲基环己烷、N-甲基吡咯烷酮、苯甲醚、甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、N-甲基吗啉-N-氧化物、氯化甲基咪唑盐和甲酚中的一种或两种以上的混合。
  6. 根据权利要求1所述的一种磁性纤维材料的制备方法,其特征在于:步骤(2)中所述溶质成分为锂、钠、镁、铝、钾、钙的氢氧化物中的至少一种;或锂、钠、钾、铵的碳酸盐中的至少一种;或锂、钠、镁、钾、铵的磷酸盐中的至少一种。
  7. 根据权利要求1所述的一种磁性纤维材料的制备方法,其特征在于步骤(3)中所述静电纺丝的条件为:喷丝头电压0.5~50kV,凝固浴电压0~50kV;喷丝头与凝固浴距离5~50cm,纺丝溶液供给速度0.1~30mL/h;纺丝环境温度5~60℃,相对湿度25%~95%。
  8. 根据权利要求1所述的一种磁性纤维材料的制备方法,其特征在于:步 骤(3)中所述静电纺丝的过程需要不断补充凝固浴以保证其成分比例稳定。
  9. 一种磁性纤维材料,其特征在于:通过权利要求1~8任一项所述的方法制备得到。
  10. 权利要求9所述的一种磁性纤维材料在磁共振成像材料、磁记录材料、磁致冷材料、磁致伸缩材料或磁致发光材料中的应用。
PCT/CN2020/122097 2020-01-10 2020-10-20 一种磁性纤维材料及其制备方法和应用 WO2021139306A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021548600A JP7253849B2 (ja) 2020-01-10 2020-10-20 磁性繊維材料の製造方法
US17/784,968 US20230011363A1 (en) 2020-01-10 2020-10-20 Magnetic fiber material, preparation method for same, and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010025304.9 2020-01-10
CN202010025304.9A CN111155197B (zh) 2020-01-10 2020-01-10 一种磁性纤维材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021139306A1 true WO2021139306A1 (zh) 2021-07-15

Family

ID=70562409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122097 WO2021139306A1 (zh) 2020-01-10 2020-10-20 一种磁性纤维材料及其制备方法和应用

Country Status (4)

Country Link
US (1) US20230011363A1 (zh)
JP (1) JP7253849B2 (zh)
CN (1) CN111155197B (zh)
WO (1) WO2021139306A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737533A (zh) * 2021-09-08 2021-12-03 青岛大学 一种混合式可控磁流变弹性体减震元件及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155197B (zh) * 2020-01-10 2021-01-19 华南理工大学 一种磁性纤维材料及其制备方法和应用
CN112626636A (zh) * 2020-12-17 2021-04-09 和也健康科技有限公司 一种磁纤维及其制备工艺
CN113584632B (zh) * 2021-09-08 2023-06-13 青岛大学 基于微流控纺丝技术的磁流变弹性体及其制备方法
CN114796531B (zh) * 2022-03-30 2023-08-18 华南理工大学 一种非金属温度响应性磁共振成像复合材料及其制备方法与应用
CN115012051A (zh) * 2022-05-27 2022-09-06 中钢集团南京新材料研究院有限公司 磁性纺丝自动化制备装置、自动化制备方法及磁性纺丝

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715463A (zh) * 2004-06-30 2006-01-04 东华大学 一种静电纺丝装置及其工业应用
CN102336920A (zh) * 2011-05-28 2012-02-01 东华大学 一种具有双疏性能的磁性细菌纤维素膜及其制备方法
CN102978730A (zh) * 2012-11-23 2013-03-20 东华大学 一种无机/有机磁性脂质体纳米纤维膜的制备方法
CN104032403A (zh) * 2014-06-19 2014-09-10 宜春学院 稀土金属氧化物/聚丙烯腈复合纤维及其制备方法
CN105801901A (zh) * 2016-05-30 2016-07-27 南京工业大学 一种均一磁性纤维素气凝胶材料的制备方法
CN106620894A (zh) * 2016-11-28 2017-05-10 西藏淇华生物科技有限公司 一种可核磁共振显像体内植入材料及其制备方法和应用
CN106637507A (zh) * 2016-10-13 2017-05-10 江苏科技大学 一种磁性合金/介电氧化物复合纳米纤维及制法与采用该纤维制备的吸波涂层
CN106987922A (zh) * 2017-05-26 2017-07-28 四川大学 中空多孔结构的纤维素纳米纤维静电纺丝制备方法
CN107354520A (zh) * 2017-05-22 2017-11-17 如皋市下原科技创业服务有限公司 一种磁性保健纤维的制备方法
KR101909495B1 (ko) * 2017-05-02 2018-10-18 한국세라믹기술원 질화알루미늄 나노섬유의 제조방법
CN109735962A (zh) * 2018-12-26 2019-05-10 昆明冶金高等专科学校 一种原位制备四氧化三铁磁性纳米纤维的方法
CN111155197A (zh) * 2020-01-10 2020-05-15 华南理工大学 一种磁性纤维材料及其制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3362493B2 (ja) * 1993-12-28 2003-01-07 日本エクスラン工業株式会社 磁性繊維およびその製造方法
WO2000009611A1 (fr) 1998-08-10 2000-02-24 Asahi Kasei Kogyo Kabushiki Kaisha Solution de polycetone
US20060019096A1 (en) 2004-06-01 2006-01-26 Hatton T A Field-responsive superparamagnetic composite nanofibers and methods of use thereof
JP4670080B2 (ja) 2005-05-09 2011-04-13 独立行政法人物質・材料研究機構 高分子ファイバーの製造方法
JP2010229563A (ja) 2009-03-25 2010-10-14 Teijin Ltd 粒子−高分子繊維状複合体の製造方法
US20150045454A1 (en) 2012-02-27 2015-02-12 The Penn State Research Foundation Methods and compositions relating to starch fibers
CN102660798B (zh) * 2012-04-28 2014-10-15 东华大学 同轴静电混纺PVP/CS/Fe3O4纳米纤维膜的方法
US20150352209A1 (en) 2013-01-11 2015-12-10 National Institute For Materials Science Nanofiber having self-heating properties and biologically active substance release properties, production method for same, and nonwoven fabric having self-heating properties and biologically active substance release capabilities
JP6289014B2 (ja) 2013-10-11 2018-03-07 ソマール株式会社 ポリイミド繊維および集合体
CN105088419B (zh) * 2015-09-26 2017-12-08 西安科技大学 一种多铁性铁酸钇纳米纤维的制备方法
CN105332092B (zh) * 2015-11-27 2017-11-24 青岛大学 一种具有电磁性能的柔性微纳米纤维绞线及其制备方法
CN105536052A (zh) * 2015-12-28 2016-05-04 北京航空航天大学 一种磁-电双功能纳米纤维膜的制备方法
CN105624833B (zh) * 2016-03-03 2017-11-14 青岛大学 磁性海藻纤维的制备方法
CN106693081A (zh) * 2016-11-28 2017-05-24 西藏淇华生物科技有限公司 一种可核磁共振显像材料的制备方法和应用
CN108721705A (zh) * 2017-04-20 2018-11-02 南京理工大学 基于气动的3d氧化石墨烯掺杂纳米纤维支架的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715463A (zh) * 2004-06-30 2006-01-04 东华大学 一种静电纺丝装置及其工业应用
CN102336920A (zh) * 2011-05-28 2012-02-01 东华大学 一种具有双疏性能的磁性细菌纤维素膜及其制备方法
CN102978730A (zh) * 2012-11-23 2013-03-20 东华大学 一种无机/有机磁性脂质体纳米纤维膜的制备方法
CN104032403A (zh) * 2014-06-19 2014-09-10 宜春学院 稀土金属氧化物/聚丙烯腈复合纤维及其制备方法
CN105801901A (zh) * 2016-05-30 2016-07-27 南京工业大学 一种均一磁性纤维素气凝胶材料的制备方法
CN106637507A (zh) * 2016-10-13 2017-05-10 江苏科技大学 一种磁性合金/介电氧化物复合纳米纤维及制法与采用该纤维制备的吸波涂层
CN106620894A (zh) * 2016-11-28 2017-05-10 西藏淇华生物科技有限公司 一种可核磁共振显像体内植入材料及其制备方法和应用
KR101909495B1 (ko) * 2017-05-02 2018-10-18 한국세라믹기술원 질화알루미늄 나노섬유의 제조방법
CN107354520A (zh) * 2017-05-22 2017-11-17 如皋市下原科技创业服务有限公司 一种磁性保健纤维的制备方法
CN106987922A (zh) * 2017-05-26 2017-07-28 四川大学 中空多孔结构的纤维素纳米纤维静电纺丝制备方法
CN109735962A (zh) * 2018-12-26 2019-05-10 昆明冶金高等专科学校 一种原位制备四氧化三铁磁性纳米纤维的方法
CN111155197A (zh) * 2020-01-10 2020-05-15 华南理工大学 一种磁性纤维材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737533A (zh) * 2021-09-08 2021-12-03 青岛大学 一种混合式可控磁流变弹性体减震元件及其制备方法
CN113737533B (zh) * 2021-09-08 2023-03-21 青岛大学 一种混合式可控磁流变弹性体减震元件及其制备方法

Also Published As

Publication number Publication date
JP2022521221A (ja) 2022-04-06
CN111155197B (zh) 2021-01-19
JP7253849B2 (ja) 2023-04-07
US20230011363A1 (en) 2023-01-12
CN111155197A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021139306A1 (zh) 一种磁性纤维材料及其制备方法和应用
He et al. Electromagnetic wave absorbing cement-based composite using Nano-Fe3O4 magnetic fluid as absorber
Sirivat et al. Facile synthesis of gelatin-coated Fe3O4 nanoparticle: Effect of pH in single-step co-precipitation for cancer drug loading
Wang et al. Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning
Chen et al. Fabrication and characterization of magnetic cobalt ferrite/polyacrylonitrile and cobalt ferrite/carbon nanofibers by electrospinning
JP5382545B2 (ja) 磁性ナノ粒子セルロース材料
Casula et al. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia
Zhao et al. Magnetic and electrochemical properties of CuFe 2 O 4 hollow fibers fabricated by simple electrospinning and direct annealing
Zhou et al. Structure and magnetic properties of regenerated cellulose/Fe3O4 nanocomposite films
CN102826613B (zh) 一种石墨烯基四氧化三铁纳米复合材料的制备方法
Liu et al. In situ synthesis of plate-like Fe 2 O 3 nanoparticles in porous cellulose films with obvious magnetic anisotropy
Zhang et al. Ferrite hollow spheres with tunable magnetic properties
Tian et al. Magnetic Cu 0.5 Co 0.5 Fe 2 O 4 ferrite nanoparticles immobilized in situ on the surfaces of cellulose nanocrystals
Liu et al. Magnetic responsive cellulose nanocomposites and their applications
Wang et al. Magnetic composite nanofibers fabricated by electrospinning of Fe3O4/gelatin aqueous solutions
Zhang et al. Self-assembled core-shell Fe3O4@ SiO2 nanoparticles from electrospun fibers
CN101607742A (zh) 一种水溶性纳米四氧化三铁的制备方法
Ni et al. Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features
Xu et al. Fabrication of water-repellent cellulose fiber coated with magnetic nanoparticles under supercritical carbon dioxide
Gong et al. Facile in situ synthesis of nickel/cellulose nanocomposites: mechanisms, properties and perspectives
Sabzroo et al. Optimization of electrospinning conditions for magnetic poly (acrylonitrile-co-acrylic acid) nanofibers
CN112735799A (zh) 一种新型磁性材料及其制备方法
CN111110870B (zh) 水溶性生物相容性钆掺杂磁性氧化铁纳米团簇及其制备方法和应用
Yang et al. Single Flexible Nanofiber to Simultaneously Realize Electricity-Magnetism Bifunctionality
Zhang et al. Synthesis, characterization and magnetic properties of near monodisperse Fe 3 O 4 sub-microspheres

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021548600

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2022).

122 Ep: pct application non-entry in european phase

Ref document number: 20912947

Country of ref document: EP

Kind code of ref document: A1