CN113737533A - 一种混合式可控磁流变弹性体减震元件及其制备方法 - Google Patents

一种混合式可控磁流变弹性体减震元件及其制备方法 Download PDF

Info

Publication number
CN113737533A
CN113737533A CN202111049610.7A CN202111049610A CN113737533A CN 113737533 A CN113737533 A CN 113737533A CN 202111049610 A CN202111049610 A CN 202111049610A CN 113737533 A CN113737533 A CN 113737533A
Authority
CN
China
Prior art keywords
magnetorheological
elastomer
damping element
solution
magnetorheological elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111049610.7A
Other languages
English (en)
Other versions
CN113737533B (zh
Inventor
周彦粉
李乐乐
刘梦思
袁洪武
江亮
陈韶娟
马建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202111049610.7A priority Critical patent/CN113737533B/zh
Publication of CN113737533A publication Critical patent/CN113737533A/zh
Application granted granted Critical
Publication of CN113737533B publication Critical patent/CN113737533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及软体驱动技术领域,特别涉及一种混合式可控磁流变弹性体减震元件,其中磁流变弹性体减震元件是利用湿法纺丝技术以弹性体与磁性填料的混合液为皮层纺丝液,以磁流变液为芯层纺丝液制备的皮芯结构的磁流变弹性纤维,然后将磁流变弹性纤维制成螺旋状弹簧结构,最后将磁流变弹性体复合溶液包覆于螺旋状弹簧结构的纤维表面。本发明还提供一种混合式可控磁流变弹性体减震元件的制备方法,该制备方法不仅制备方法简单,且通过本发明的制备方法得到的磁流变弹性体,有效提高了磁流变弹性元件的刚度特性,可保证有较高的磁致效应,同时有效防止磁流体中磁性颗粒的沉降,且制备方法简单,制备成本低。

Description

一种混合式可控磁流变弹性体减震元件及其制备方法
技术领域
本发明涉及软体驱动技术领域,特别涉及一种混合式可控磁流变弹性体减震元件及其制备方法。
背景技术
目前主流的减振技术分为被动减振和主动减振。被动减振技术有缓冲油缸、正反力腔、弹簧、弹性垫片等,这些技术存在被动减振且不易控制,控制精度差等缺点。主动减振技术主要是通过液压系统或伺服系统控制冲头冲压时的运动,包括位移、速度和加速度,从而实现工件和模具内部弹性变形能的有效释放。但这类技术存在控制过程复杂,灵敏度不高等缺点。针对这一问题,一些研究人员想到利用磁流变弹性体(MRE)来作为减震、隔震件。
众所周知,磁流变弹性体是一种将微米级磁性颗粒分散到聚合物弹性体中制备而成的磁控智能材料,具有优异的磁控力学特性,因而磁流变弹性体是一种新型的智能材料。在外加磁场的作用下,其力学、电学、磁学性能将会发生改变,并且这种变化是可控的,且响应速度快。因此,磁流变弹性体在近年引起了广泛的关注,在工程应用方面有着巨大的潜力。磁流变弹性体克服了磁流变液易沉降、稳定性差、需要密封装置等缺点,模量等机械性能可由外加磁场快速可逆控制,在减振降震、智能感应等领域具有广阔的应用前景。磁流变弹性体的磁致形变和磁致模量主要源自于磁性颗粒,颗粒在磁场下形成的磁相互作用力能够在磁流变弹性体内部形成不均匀的磁力矩,从而驱使磁流变弹性体发生一定的形变和模量变化。
磁流变液是最早发展起来的一类磁敏智能软材料,一般是由微米级的铁磁性粒子掺入到非磁性液体中制备而成的颗粒悬浮体系,施加磁场后,磁流变液会迅速地从类似于牛顿流体的液态转变成类固态,表观黏度在磁场的调控下可以发生几个数量级的变化,表现出显著的磁致效应。但是由于铁磁性粒子与基体之间存在较大的密度差,磁流变液在使用过程中存在颗粒沉降的问题。但是,现有的磁流变弹性体由于受弹性体材料的影响,相较于磁流变液来说,其磁致效应相对是较低的,同时由于磁流变弹性体通常的形态为块状或者薄膜状,很难满足很多实际应用的要求。那么,如何将磁流变弹性体、磁流变液与磁流变弹性液各自优势相结合制备得到一种弹性模量大、刚度大、减震降震效果优异的磁流变弹性体减震元件,是现在所要研究的方向。
专利CN 205173330 U公开了一种基于磁流变弹性体和磁流变液的隔振器,其具体包括螺杆、螺钉、筒盖、铁芯、磁流变液、导线、筒壁、线圈、磁流变弹性体、螺母。铁芯外部绕有线圈,下磁流变弹性体内部开有圆柱形盲孔,圆柱孔内充满磁流变液,上铁芯、上磁流变弹性体、下磁流变弹性体和下铁芯通过硫化粘结。线圈通电后,上铁芯、上磁流变弹性体、磁流变液、下磁流变弹性和下铁芯之间形成封闭磁路。整个装置外部安装有筒盖和筒壁,起到减少漏磁的作用。隔振器工作时,由螺杆与被隔振器件连接,筒壁底座螺纹孔通过螺栓与振动源连接,起到隔振的作用。可达到磁流变弹性体弹性模量变化量的数倍以上,可满足大振幅振动源条件下使用,具有更好的减振效果,隔振器工作稳定性好,使用寿命长,可满足大振幅振动源条件下使用。
上述专利虽然也采用了磁流变弹性体和磁流变液混合模式,但是还存在以下缺点:首先,关于磁流变液,该专利直接将磁流变液装满在圆柱孔中,众所周知,磁流变液是极易沉降的,磁流变液的沉降会导致设备整体减震效果稳定性差等问题。其次,其将传统的磁流变弹性体设置在磁流变液的下方,传统的磁流变弹性体,相较于磁流变液来说,其磁致效应相对较低,同时由于磁流变弹性体通常的形态为块状或者薄膜状,很难满足很多实际应用的要求。也就是说,该专利仅仅是将磁流变弹性体与磁流变液简单的叠加,相对来说,磁致效应相对较低,减震效果较差。
所以现在急需研制一种新型的可控磁流变弹性体减震隔震元件,可改变磁流变弹性元件的刚度特性,有效地检测和减轻振动事件。
发明内容
针对现有技术存在的不足,本发明所要解决的技术问题是,提供一种有效提高磁流变弹性元件的刚度特性,可保证有较高的磁致效应,同时有效防止磁流体中磁性颗粒的沉降,且制备方法简单,制备成本低的混合式可控磁流变弹性体减震元件及其制备方法。
本发明为实现上述目的采用的技术方案是:一种混合式可控磁流变弹性体减震元件,所述磁流变弹性体减震元件是利用湿法纺丝技术以弹性体与磁性填料的混合液为皮层纺丝液,以磁流变液为芯层纺丝液制备的皮芯结构的磁流变弹性纤维,然后将磁流变弹性纤维制成螺旋状弹簧结构,最后将磁流变弹性体复合溶液包覆于螺旋状弹簧结构的纤维表面而制得。
上述的混合式可控磁流变弹性体减震元件,所述弹性体包括苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS),热塑性聚氨酯(TPU),苯乙烯-丁烯-苯乙烯嵌段共聚物(SBS),硅橡胶(SR)、天然橡胶(NR)、丁苯橡胶(SBR)、顺丁橡胶(BR)中的一种或几种。
上述的混合式可控磁流变弹性体减震元件,所述磁流变液中铁含量为30-80wt%;在所述皮层纺丝液中,弹性体质量分数为10-60%,磁性填料质量分数为8-15%。
一种制备混合式可控磁流变弹性体减震元件的方法,包括如下步骤:
(1)配制弹性体与磁性填料的混合液、磁流变液,机械搅拌至混合均匀,备用;
(2)利用湿法纺丝技术,以弹性体与磁性填料的混合液为皮层纺丝液,磁流变液为芯层纺丝液,95%的乙醇为凝固浴浴液进行纺丝,其中,控制皮层纺丝速度为15-25mm/min,芯层纺丝速度为8-12mm/min;
(3)然后将步骤(2)纺制好的皮芯结构纤维,在60-80℃条件下干燥,直至皮层结构完全凝固,备用;
(4)然后将步骤(3)干燥好的纤维均匀的缠绕至圆柱体上,得到螺旋状弹簧结构的纤维,然后将配制好的磁流变弹性体复合溶液包覆于螺旋状弹簧结构的纤维表面;
(5)最后将步骤(4)得到的弹性体减震元件坯件置入固化电磁铁中进行固化处理,脱离圆柱体,即制备得到混合式可控磁流变弹性体减震元件。
上述的混合式可控磁流变弹性体减震元件的制备方法,在步骤(1)中,所述弹性体与磁性填料的混合液中,弹性体质量分数为10-60%,磁性填料质量分数为8-15%;所述磁流变液中铁含量为30-80wt%。
上述的混合式可控磁流变弹性体减震元件的制备方法,所述磁流变弹性体复合溶液的包覆方式包括浸渍,喷涂。
上述的混合式可控磁流变弹性体减震元件的制备方法,在步骤(4)中,所述磁流变弹性体复合溶液中,弹性体的质量分数为10-60%,磁性填料的质量分数为60-80%。
上述的混合式可控磁流变弹性体减震元件的制备方法,在步骤(5)中,将纤维置入0.2-1.0T的磁场中进行固化处理。
上述的混合式可控磁流变弹性体减震元件的制备方法,在步骤(4)中,具体的,将均匀缠绕有纤维的圆柱体浸渍于磁流变弹性体复合溶液中,在80-120℃下加热固化2-12h;在纤维缠绕至圆柱体之前,先在圆柱体上涂覆硅油。
本发明混合式可控磁流变弹性体减震元件的有益效果是:本发明与常规固体磁流变弹性体不同。首先,本发明选用磁流变弹性体、磁流变液与磁流变弹性液相结合的方式,并采用螺旋状弹簧结构,不仅克服材料的缺陷,同时也增加了磁流变弹性体元件的弹性模量和刚度。具体通过采用同轴湿法纺丝的方法制备出皮芯结构的纤维,纤维芯层使用磁流变液,皮芯结构的纤维在磁场的作用下弹性模量变化较大。然后通过将纤维制成螺旋状弹簧结构,解决了现有的使用磁流变液时,在长期使用的过程中易出现沉降的技术问题,达到了不仅增加元件弹性模量,同时克服了磁流变液易沉降、稳定性差的技术效果。
本发明混合式可控磁流变弹性体减震元件的制备方法,不仅制备方法简单,且通过本发明的制备方法得到的磁流变弹性体,解决了现有的磁流变弹性体弹性模量和刚度差的技术问题,同时克服了磁流变液易沉降和整体磁流变弹性体磁致效应差的技术问题,可用于减震、隔振等装置中。
附图说明
图1为本发明磁流变弹性体减震元件制备过程的原理示意图。
具体实施方式
下面结合附图及具体实施例对本发明做进一步详细说明;
实施例1
如图1所示,一种混合式可控磁流变弹性体减震元件,该磁流变弹性体减震元件是利用湿法纺丝技术以弹性体与磁性填料的混合液为皮层纺丝液,以磁流变液为芯层纺丝液制备的皮芯结构的磁流变弹性纤维,然后将磁流变弹性纤维制成螺旋状弹簧结构,最后将磁流变弹性体复合溶液包覆于螺旋状弹簧结构的纤维表面。其中,弹性体包括热塑性弹性体,热固性弹性体,在本实施例中弹性体采用SEBS,磁性填料采用软磁性羰基铁粉(CI),皮层纺丝液采用SEBS和CI的混合溶液,具体的SEBS弹性体质量分数为20%,磁性填料CI质量分数为8%;磁流变液中铁含量为30wt%。在磁流变弹性体复合溶液中SEBS的质量分数为45%、CI的质量分数为60%,机械搅拌至混合均匀,并采用浸渍的方式将磁流变弹性体复合溶液包覆于纤维表面。
一种制备混合式可控磁流变弹性体减震元件的方法,包括如下步骤:
(1)配制弹性体与磁性填料的混合液、磁流溶液,机械搅拌至混合均匀,备用;其中,在弹性体与磁性填料CI的混合液中,弹性体质量分数为20%,磁性填料CI质量分数为8%;磁流变液中铁含量为30wt%。
(2)利用湿法纺丝技术,以弹性体与磁性填料的混合液为皮层纺丝液,磁流变液为芯层纺丝液,95%的乙醇为凝固浴浴液进行纺丝,其中,控制皮层纺丝速度为15mm/min,芯层纺丝速度为8mm/min。
(3)然后将步骤(2)纺制好的皮芯结构纤维,在80℃条件下干燥,直至皮层结构完全凝固,备用。
(4)然后将步骤(3)干燥好的纤维均匀的缠绕至圆柱体上,然后将圆柱体浸渍于磁流变硅橡胶溶液中,在80℃下加热固化12h,即得到螺旋状弹簧结构纤维表面包覆有一层弹性体层的弹性体减震元件坯件。具体的,缠绕时要保证卷绕角度均匀一致。在本实施例中,按照此方法制备10个螺旋状弹簧结构,其中,制备个数可根据需要而定,尽量缩短制备时间。磁流变硅橡胶复合溶液中,硅橡胶的质量分数为20%,磁性填料CI的质量分数为60%;具体的,在进行螺旋状弹簧结构的纤维包覆时,可以先将制备好的螺旋状弹簧结构均匀的摆放在长方体的模具中,然后将硅橡胶基磁流变弹性体复合溶液倒入模具中进行浸渍包覆。
(5)最后将步骤(4)得到的弹性体减震元件坯件置入固化电磁铁中,并在0.8T的磁场中进行固化,以使铁颗粒定向排布,脱离圆柱体,即制备得到混合式可控磁流变弹性体减震元件,或者说是磁流变弹性体减震器。
综上,本发明选用SEBS为基体、CI为磁性填料、70wt%铁含量的磁流变液,首先通过湿法纺丝技术制备皮芯结构的纤维,然后采用溶液法制备出SEBS基磁流变弹性体复合溶液用于包覆固定螺旋状弹簧结构。通过将纤维设置为螺旋状弹簧结构可以带来如下有点:a.柔软性能好,即变形的范围相对较宽;b.结构均匀紧凑,避免磁性颗粒沉降不均匀的现象;c.精密的调节性能,即作用力与位移的关系非常灵敏;d.能量利率高。
本发明与常规固体磁流变弹性体不同,选用磁流变弹性体、磁流变液与磁流变弹性液相混合的方式,并采用特殊的内部结构,克服材料缺陷的同时也增加了元件的弹性模量。采用同轴湿法纺丝的方法制备出皮芯结构的纤维,纤维芯层使用磁流变液,皮芯结构的纤维在磁场的作用下弹性模量变化较大;现有的使用磁流变液的研究中,面临着磁流变液在长期使用的过程中出现沉降的问题,本研究将纤维制成螺旋状弹簧结构,在增加元件弹性模量的同时克服了磁流变液易沉降、稳定性差的问题。
目前大多数研究中,由于弹性基体本身弹性模量小,制成的磁流变弹性体元件在磁场的作用下弹性模量变化较小,减震降震效果差。而以往磁流变弹性液,在使用的过程中会出现磁性颗粒沉降的问题,导致设备元件的刚度不匀。在本发明中,选用氢化苯乙烯弹性体聚(苯乙烯-b-乙烯-b-丁烯-b-苯乙烯)(SEBS)为基体、软磁性羰基铁粉(CI)为磁性填料,通过湿法纺丝技术制备皮芯结构的纤维,SEBS/CI为皮层,磁流变液为芯层,然后将纤维制成螺旋状弹簧结构,用SEBS基磁流变弹性体复合溶液包覆表面固定结构,制备出新型螺旋结构的可控磁流变弹性体(MRE)减震隔震元件,克服了磁流变液易沉降、稳定性差、需要密封装置等缺点,同时由于基体材料与元件结构的特殊性,该原件的弹性模量大,减震降震效果好,在减振降噪、智能感应等领域具有广阔的应用前景。
实施例2
一种混合式可控磁流变弹性体减震元件,该磁流变弹性体减震元件是利用湿法纺丝技术以弹性体与磁性填料的混合液为皮层纺丝液,以磁流变液为芯层纺丝液制备的皮芯结构的磁流变弹性纤维,然后将磁流变弹性纤维制成螺旋状弹簧结构,最后将磁流变弹性体复合溶液包覆于螺旋状弹簧结构的纤维表面。其中,弹性体包括热塑性弹性体,热固性弹性体,在本实施例中弹性体采用SEBS,磁性填料采用软磁性羰基铁粉(CI),皮层纺丝液采用SEBS和CI的混合溶液,具体的SEBS弹性体质量分数为45%,磁性填料质量CI分数为10%;磁流变液中铁含量为70wt%。在磁流变弹性体复合溶液中SEBS的质量分数为45%、CI的质量分数为70%,机械搅拌至混合均匀,并采用浸渍的方式将磁流变弹性体复合溶液包覆于纤维表面。
一种制备混合式可控磁流变弹性体减震元件的方法,包括如下步骤:
(1)配制弹性体与磁性填料的混合液、磁流变液,机械搅拌至混合均匀,备用;其中,在弹性体与磁性填料CI的混合液中,SEBS弹性体质量分数为45%,磁性填料CI质量分数为10%;磁流变液中铁含量为70wt%。
(2)利用湿法纺丝技术,以弹性体与磁性填料的混合液为皮层纺丝液,磁流变液为芯层纺丝液,95%的乙醇为凝固浴浴液进行纺丝,其中,控制皮层纺丝速度为20mm/min,芯层纺丝速度为10mm/min;在在湿法纺丝之前,先将皮层纺丝液放入磁场中进行前处理。
(3)然后将步骤(2)纺制好的皮芯结构纤维,在80℃条件下干燥,直至皮层结构完全凝固,备用。
(4)然后将步骤(3)干燥好的纤维均匀的缠绕至圆柱体上,然后将圆柱体浸渍于磁流变弹性体SEBS溶液中,在120℃下加热固化2h,即得到螺旋状弹簧结构纤维表面包覆有一层弹性体层的弹性体减震元件坯件。具体的,缠绕时要保证卷绕角度均匀一致。在本实施例中,按照此方法制备8个螺旋状弹簧结构,其中,制备个数可根据需要而定,尽量缩短制备时间。磁流变弹性体SEBS复合溶液中,弹性体SEBS的质量分数为45%,磁性填料CI的质量分数为70%;具体的,在进行螺旋状弹簧结构的纤维包覆时,可以先将制备好的螺旋状弹簧结构均匀的摆放在长方体的模具中,然后将硅橡胶基磁流变弹性体复合溶液倒入模具中进行浸渍包覆。
(5)最后将步骤(4)得到的弹性体减震元件坯件置入固化电磁铁中,并在0.6T的磁场中进行固化,以使铁颗粒定向排布,然后脱离圆柱体,即制备得到混合式可控磁流变弹性体减震元件,或者说是磁流变弹性体减震器。
众所周知,弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料的杨氏模量值会有5%或者更大的波动。但是总体来说,金属材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以一般工程应用中都把弹性模量作为常数。
刚度,受外力作用的材料、构件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来量度。各向同性材料的刚度取决于它的弹性模量E和剪切模量G(见胡克定律)。结构的刚度除取决于组成材料的弹性模量外,还同其几何形状、边界条件等因素以及外力的作用形式有关。刚度是指零件在载荷作用下抵抗弹性变形的能力。零件的刚度(或称刚性)常用单位变形所需的力或力矩来表示,刚度的大小取决于零件的几何形状和材料种类(即材料的弹性模量)。刚度要求对于某些弹性变形量超过一定数值后,会影响机器工作质量的零件尤为重要,如机床的主轴、导轨、丝杠等。
弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在-定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
在本发明中,通过在芯层中填充有磁流变液,然后控制磁流变液中铁含量为30-80wt%,控制皮层纺丝液中,磁性填料质量分数为8-15%,以及控制磁流变弹性体复合溶液中,磁性填料的质量分数为60-80%,大大提高了纤维中整体磁性粒子含量,从而大大提高了纤维的整体弹性模量。然后通过将纤维设置成螺旋状弹簧结构,控制芯层磁流变液中磁性粒子不会集中聚集在纤维的下部,而是根据纤维设置成螺旋圈的圈数被分隔成与圈数相等的份数,也就是说,类似于微积分原理,将整段纤维通过螺旋结构,将磁流变液分解成每一小段纤维的磁流变液,从整体上解决了磁流变弹性体沉降的技术问题,综上,通过将纤维设置成螺旋状弹簧节与上述的大弹性模量相结合来提高纤维的刚度、减震降震。且通过采用磁流变液来代替传统的即将微米级磁性颗粒分散到聚合物弹性体中的磁流变弹性体,可大大提高磁致效应性能。
实施例3
一种混合式可控磁流变弹性体减震元件,该磁流变弹性体减震元件是利用湿法纺丝技术以弹性体与磁性填料的混合液为皮层纺丝液,以磁流变液为芯层纺丝液制备的皮芯结构的磁流变弹性纤维,然后将磁流变弹性纤维制成螺旋状弹簧结构,最后将磁流变弹性体复合溶液包覆于螺旋状弹簧结构的纤维表面。其中,弹性体包括热塑性弹性体,热固性弹性体,在本实施例中弹性体采用TPU,磁性填料采用软磁性羰基铁粉(CI),皮层纺丝液采用TPU和CI的混合溶液,具体的TPU弹性体质量分数为45%,磁性填料质量CI分数为10%;磁流变液中铁含量为70wt%。
在磁流变弹性体复合溶液中TPU的质量分数为45%、CI的质量分数为70%,机械搅拌至混合均匀,并采用浸渍的方式将磁流变弹性体复合溶液包覆于纤维表面。
一种制备混合式可控磁流变弹性体减震元件的方法,包括如下步骤:
(1)配制弹性体与磁性填料的混合液、磁流变液,机械搅拌至混合均匀,备用;其中,在弹性体与磁性填料CI的混合液中,TPU弹性体质量分数为45%,磁性填料CI质量分数为10%;磁流变液中铁含量为70wt%。
(2)利用湿法纺丝技术,以弹性体与磁性填料的混合液为皮层纺丝液,磁流变液为芯层纺丝液,95%的乙醇为凝固浴浴液进行纺丝,其中,控制皮层纺丝速度为20mm/min,芯层纺丝速度为10mm/min。
(3)然后将步骤(2)纺制好的皮芯结构纤维,在80℃条件下干燥,直至皮层结构完全凝固,备用。
(4)然后将步骤(3)干燥好的纤维均匀的缠绕至圆柱体上,然后将圆柱体浸渍于SEBS基磁流变弹性体复合中,在100℃下加热固化6h,即得到螺旋状弹簧结构纤维表面包覆有一层弹性体层的弹性体减震元件坯件。具体的,缠绕时要保证卷绕角度均匀一致。在本实施例中,按照此方法制备12个螺旋状弹簧结构,其中,制备个数可根据需要而定,尽量缩短制备时间。磁流变弹性体复合溶液中,弹性体SEBS的质量分数为45%,磁性填料CI的质量分数为70%;具体的,在进行螺旋状弹簧结构的纤维包覆时,可以先将制备好的螺旋状弹簧结构均匀的摆放在长方体的模具中,然后将SEBS基磁流变弹性体复合溶液倒入模具中进行浸渍包覆。
(5)最后将步骤(4)得到的弹性体减震元件坯件置入固化电磁铁中,并在0.73T的磁场中进行固化,以使铁颗粒定向排布,然后脱离圆柱体,即制备得到混合式可控磁流变弹性体减震元件,或者说是磁流变弹性体减震器。
实施例4
与实施例1、2、3相同之处不再赘述,不同之处在于,在本实施例中,一种制备混合式可控磁流变弹性体减震元件的方法,包括如下步骤:
(1)配制弹性体与磁性填料的混合液、磁流溶液,机械搅拌至混合均匀,备用;其中,在弹性体与磁性填料CI的混合液中,弹性体质量分数为20%,磁性填料CI质量分数为8%;磁流变液中铁含量为30wt%;
(2)利用湿法纺丝技术,以弹性体与磁性填料的混合液为皮层纺丝液,磁流变液为芯层纺丝液,95%的乙醇为凝固浴浴液进行纺丝,其中,控制皮层纺丝速度为20mm/min,芯层纺丝速度为10mm/min;
(3)然后将步骤(2)纺制好的皮芯结构纤维,在80℃条件下干燥,直至皮层结构完全凝固,备用;
(4)然后将步骤(3)干燥好的纤维均匀的缠绕至圆柱体上,然后将圆柱体浸渍于硅橡胶溶液中,在80℃下加热固化12h,即得到弹性体减震元件。
具体的,缠绕时要保证卷绕角度均匀一致。在本实施例中,按照此方法制备8个螺旋状弹簧结构,其中,制备个数可根据需要而定,尽量缩短制备时间。在进行螺旋状弹簧结构的纤维包覆时,可以先将制备好的螺旋状弹簧结构均匀的摆放在长方体的模具中,然后将硅橡胶基弹性体溶液倒入模具中进行浸渍包覆。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修改,都应涵盖在本发明的保护范围内。

Claims (9)

1.一种混合式可控磁流变弹性体减震元件,其特征在于:所述磁流变弹性体减震元件是利用湿法纺丝技术以弹性体与磁性填料的混合液为皮层纺丝液,以磁流变液为芯层纺丝液制备的皮芯结构的磁流变弹性纤维,然后将磁流变弹性纤维制成螺旋状弹簧结构,最后将磁流变弹性体复合溶液包覆于螺旋状弹簧结构的纤维表面而制得。
2.根据权利要求1所述的混合式可控磁流变弹性体减震元件,其特征是:所述弹性体包括苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS),热塑性聚氨酯(TPU),苯乙烯-丁烯-苯乙烯嵌段共聚物(SBS),硅橡胶(SR)、天然橡胶(NR)、丁苯橡胶(SBR)、顺丁橡胶(BR)中的一种或几种。
3.根据权利要求1所述的混合式可控磁流变弹性体减震元件,其特征是:所述磁流变液中铁含量为30-80wt%;在所述皮层纺丝液中,弹性体质量分数为10-60%,磁性填料质量分数为8-15%。
4.一种制备混合式可控磁流变弹性体减震元件的方法,其特征在于,包括如下步骤:
(1)配制弹性体与磁性填料的混合液、磁流变液,机械搅拌至混合均匀,备用;
(2)利用湿法纺丝技术,以弹性体与磁性填料的混合液为皮层纺丝液,磁流变液为芯层纺丝液,95%的乙醇为凝固浴浴液进行纺丝,其中,控制皮层纺丝速度为15-25mm/min,芯层纺丝速度为8-12mm/min;
(3)然后将步骤(2)纺制好的皮芯结构纤维,在60-80℃条件下干燥,直至皮层结构完全凝固,备用;
(4)然后将步骤(3)干燥好的纤维均匀的缠绕至圆柱体上,得到螺旋状弹簧结构的纤维,然后将配制好的磁流变弹性体复合溶液包覆于螺旋状弹簧结构的纤维表面;
(5)最后将步骤(4)得到的弹性体减震元件坯件置入固化电磁铁中进行固化处理,然后脱离圆柱体,即制备得到混合式可控磁流变弹性体减震元件。
5.根据权利要求4所述的混合式可控磁流变弹性体减震元件的制备方法,其特征是:在步骤(1)中,所述弹性体与磁性填料的混合液中,弹性体质量分数为10-60%,磁性填料质量分数为8-15%;所述磁流变液中铁含量为30-80wt%。
6.根据权利要求4所述的混合式可控磁流变弹性体减震元件的制备方法,其特征是:所述磁流变弹性体复合溶液的包覆方式包括浸渍,喷涂。
7.根据权利要求4所述的混合式可控磁流变弹性体减震元件的制备方法,其特征是:在步骤(4)中,所述磁流变弹性体复合溶液中,弹性体的质量分数为10-60%,磁性填料的质量分数为60-80%。
8.根据权利要求4所述的混合式可控磁流变弹性体减震元件的制备方法,其特征是:在步骤(5)中,将纤维置入0.2-1.0T的磁场中进行固化处理。
9.根据权利要求6所述的混合式可控磁流变弹性体减震元件的制备方法,其特征是:在步骤(4)中,具体的,将均匀缠绕有纤维的圆柱体浸渍于磁流变弹性体复合溶液中,在80-120℃下加热固化2-12h。
CN202111049610.7A 2021-09-08 2021-09-08 一种混合式可控磁流变弹性体减震元件及其制备方法 Active CN113737533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111049610.7A CN113737533B (zh) 2021-09-08 2021-09-08 一种混合式可控磁流变弹性体减震元件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111049610.7A CN113737533B (zh) 2021-09-08 2021-09-08 一种混合式可控磁流变弹性体减震元件及其制备方法

Publications (2)

Publication Number Publication Date
CN113737533A true CN113737533A (zh) 2021-12-03
CN113737533B CN113737533B (zh) 2023-03-21

Family

ID=78736970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111049610.7A Active CN113737533B (zh) 2021-09-08 2021-09-08 一种混合式可控磁流变弹性体减震元件及其制备方法

Country Status (1)

Country Link
CN (1) CN113737533B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836845A (zh) * 2022-05-20 2022-08-02 武汉纺织大学 柔性导电聚氨酯纤维及其制备方法
CN115012055A (zh) * 2022-05-27 2022-09-06 中钢集团南京新材料研究院有限公司 一种柔性可拉伸磁线的制备方法及柔性可拉伸磁线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1413562A (zh) * 2002-10-14 2003-04-30 重庆工学院 人工肌肉
CN107059154A (zh) * 2017-06-07 2017-08-18 福州大学 一种磁性环氧树脂复合纤维的制备方法
CN108376599A (zh) * 2018-01-10 2018-08-07 同济大学 用于磁流变液的轻质磁性聚合物纳米复合纤维及其制备方法
CN108384243A (zh) * 2018-03-02 2018-08-10 龙岩紫荆创新研究院 一种磁性复合材料及其制备方法
CN110028777A (zh) * 2019-04-24 2019-07-19 重庆邮电大学 一种具有自感知功能的智能磁流变弹性体复合材料及其制备方法
WO2021139306A1 (zh) * 2020-01-10 2021-07-15 华南理工大学 一种磁性纤维材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1413562A (zh) * 2002-10-14 2003-04-30 重庆工学院 人工肌肉
CN107059154A (zh) * 2017-06-07 2017-08-18 福州大学 一种磁性环氧树脂复合纤维的制备方法
CN108376599A (zh) * 2018-01-10 2018-08-07 同济大学 用于磁流变液的轻质磁性聚合物纳米复合纤维及其制备方法
CN108384243A (zh) * 2018-03-02 2018-08-10 龙岩紫荆创新研究院 一种磁性复合材料及其制备方法
CN110028777A (zh) * 2019-04-24 2019-07-19 重庆邮电大学 一种具有自感知功能的智能磁流变弹性体复合材料及其制备方法
WO2021139306A1 (zh) * 2020-01-10 2021-07-15 华南理工大学 一种磁性纤维材料及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836845A (zh) * 2022-05-20 2022-08-02 武汉纺织大学 柔性导电聚氨酯纤维及其制备方法
CN114836845B (zh) * 2022-05-20 2023-08-25 武汉纺织大学 柔性导电聚氨酯纤维及其制备方法
CN115012055A (zh) * 2022-05-27 2022-09-06 中钢集团南京新材料研究院有限公司 一种柔性可拉伸磁线的制备方法及柔性可拉伸磁线

Also Published As

Publication number Publication date
CN113737533B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
CN113737533B (zh) 一种混合式可控磁流变弹性体减震元件及其制备方法
CN105156553A (zh) 旋转等效惯性质量阻尼器
CN100363643C (zh) 多级装配式防沉降磁流变阻尼器
CN104747651B (zh) 一种并联模式半主动隔振器
EP0743471A1 (de) Aktiver Schwingungstilger
CN109210128A (zh) 齿轮齿条传动盘式磁流变液减振器
CN109973580A (zh) 一种适用于高速冲击的磁流变阻尼器
CN207848291U (zh) 一种阻尼力随温度连续可调的磁流变阻尼器
CN108569093A (zh) 一种并联复合式电磁悬挂系统及车辆
CN105003589A (zh) 一种内置磁流变阀进行阻尼性能控制的磁流变阻尼器
DE102018107749B4 (de) Aktives dämpfungssystem für einen antriebsstrang
CN109723750A (zh) 一种带沉降主动分散装置的磁流变阻尼器活塞组件
CN206398000U (zh) 一种变刚度变阻尼减振器
CN203670590U (zh) 一种可调节电磁悬挂系统
CN108933012B (zh) 一种编织骨架磁流变材料及其制备方法
Zhu et al. Experimental research about the application of ER elastomer in the shock absorber
DE202009005509U1 (de) Induktionsstoß-/schwingungsdämpfer
CN208845625U (zh) 一种具有混合流动液流通道的多级盘式磁流变阻尼器
CN113429594B (zh) 一种灌注式定结构化磁流变弹性体的制备方法
CN110093036A (zh) 剪切硬化磁流变胶泥的制备方法
CN113757296B (zh) 一种刚度可调节的磁流变弹性体减震器及其制备工艺
CN113584632B (zh) 基于微流控纺丝技术的磁流变弹性体及其制备方法
CN103697104A (zh) 一种可调节电磁悬挂系统
Zhang et al. A novel dynamic absorber using enhanced magnetorheological elastomers for powertrain vibration control
Priyandoko et al. Development of vibration isolator magnetorheological elastomer based

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant