WO2021139082A1 - 一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法 - Google Patents

一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法 Download PDF

Info

Publication number
WO2021139082A1
WO2021139082A1 PCT/CN2020/094412 CN2020094412W WO2021139082A1 WO 2021139082 A1 WO2021139082 A1 WO 2021139082A1 CN 2020094412 W CN2020094412 W CN 2020094412W WO 2021139082 A1 WO2021139082 A1 WO 2021139082A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermetallic compound
filter material
powder
gradient composite
matrix
Prior art date
Application number
PCT/CN2020/094412
Other languages
English (en)
French (fr)
Inventor
顾虎
杨军军
王凡
刘冠颖
张玉
戴颖
杨烜
王琨
林士玉
Original Assignee
安泰环境工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安泰环境工程技术有限公司 filed Critical 安泰环境工程技术有限公司
Priority to US17/791,493 priority Critical patent/US20230044409A1/en
Publication of WO2021139082A1 publication Critical patent/WO2021139082A1/zh

Links

Images

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • B01D39/12Filter screens essentially made of metal of wire gauze; of knitted wire; of expanded metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2031Metallic material the material being particulate
    • B01D39/2034Metallic material the material being particulate sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2041Metallic material the material being filamentary or fibrous
    • B01D39/2044Metallic material the material being filamentary or fibrous sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0058Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0654Support layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/10Specific pressure applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • B01D2323/2185Polyethylene glycol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to the field of powder metallurgy preparation, in particular to a graded composite iron-aluminum-based (Fe-Al) intermetallic compound microporous filter material and its preparation field, and in particular to a method used in high temperature, high pressure and corrosive environments Gradient composite Fe-Al intermetallic compound microporous filter material and its preparation field under the conditions of precise filtration and gas-solid separation.
  • Fe-Al iron-aluminum-based
  • High temperature gas dust removal technology involves many industrial fields such as coal chemical industry, petrochemical industry, electric power, metallurgy, energy and so on.
  • One of its key technologies is the development and research of new high temperature dust removal media materials.
  • the research of high-temperature gas dust removal filter materials will promote the development of clean coal combustion cycle power generation technology and other industrial technologies, and at the same time promote the progress of environmental protection and realize the strategy of sustainable development.
  • the commonly used high-temperature gas dust removal filter materials mainly include ceramic materials and metal materials.
  • Ceramic filter material has excellent high temperature performance and chemical stability, but it has poor thermal shock resistance, low toughness and poor reliability.
  • metal filter materials have excellent thermal shock resistance, good comprehensive mechanical properties and higher reliability.
  • metal filter materials have low pressure drop, high filtration efficiency, and weldability, which can effectively reduce the filter size. The size of the system. Therefore, from the general development trend, the use of high-temperature-resistant and corrosion-resistant metal microporous filter elements is a requirement for the development of high-temperature dust-containing gas purification technology.
  • metal materials compared with ceramic materials, metal materials also have their own shortcomings, and their corrosion resistance and heat resistance are relatively poor. Because high-temperature gas components usually include CO, H 2 , N 2 , CO 2 , H 2 O, CH 4 , NH 3 Cl, H 2 S and other gases, some of them are extremely corrosive in high-temperature and humid environments Sex. Therefore, when selecting metal filter materials, the high temperature corrosion resistance of the material must be considered. Research at home and abroad is also mainly focused on high temperature and corrosion resistant alloys.
  • Fe-Al alloy has attracted the attention of researchers. Fe-Al alloy has good high temperature oxidation resistance and sulfur corrosion resistance, and has better mechanical properties than ceramic materials, and has obvious cost advantages compared with other high temperature alloys.
  • Fe-Al metal powder filter material has high precision, high flux, high strength, good regeneration performance, high temperature resistance, corrosion resistance, impact resistance and wear resistance due to its special metal compound material and special pore structure. And many other excellent properties, especially suitable for precision filtration and gas-solid separation under high temperature, high pressure and corrosive environment.
  • the purpose of the present invention is to provide a gradient composite Fe-Al intermetallic compound microporous filter material with high precision, large flux, low resistance drop, good blowback regeneration characteristics, high strength, high temperature resistance, and corrosion resistance, and the same Preparation.
  • the present invention provides a gradient composite Fe-Al intermetallic compound microporous filter material, characterized in that the gradient composite Fe-Al intermetallic compound microporous filter material includes a matrix framework and a matrix The surface filtration membrane outside the framework, wherein: the matrix framework is pre-alloyed Fe-Al intermetallic powder powder that has been pressed and sintered, and the surface filtration membrane is coated on the outer surface of the matrix framework for a second time A mixture of sintered binder, water and pre-alloyed Fe-Al intermetallic powder.
  • the present invention also provides a method for preparing a gradient composite Fe-Al intermetallic compound microporous filter material, which is characterized in that it comprises the following steps: isostatically pressing the pre-alloyed Fe-Al intermetallic compound powder; The green body formed by static pressing is subjected to vacuum sintering to prepare the filter material matrix; the surface of the filter material matrix is coated with a surface filter membrane, wherein the coating is formed by mixing the binder, water and pre-alloyed Fe-Al intermetallic compound powder The slurry covering the surface filter membrane; and the second vacuum sintering of the filter material matrix coated with the surface filter membrane to form a gradient composite Fe-Al intermetallic compound microporous filter material.
  • the invention adopts a powder metallurgy process to prepare a gradient composite Fe-Al powder microporous filter material.
  • the high-performance Fe-Al microporous filter material is prepared, which is a large-scale Fe-Al filter material.
  • Industrial promotion provides theoretical and practical basis, and strongly promotes the development of high-performance filter materials and equipment in China.
  • the Fe-Al metal powder filter material developed by the present invention is a microporous element made of pre-alloyed Fe-Al powder as a raw material, which realizes complete uniform alloying.
  • the material does not contain elemental Fe or elemental Al or severe component segregation, so it has better corrosion resistance and high temperature mechanical properties; compared with similar foreign ceramic filter products, Fe-Al metal powder filter material has higher strength , Toughness and thermal shock resistance, with higher stability and reliability in field application.
  • the cross-sectional microstructure of the gradient composite Fe-Al filter material prepared by the invention adopts a gradient composite structure of "matrix skeleton + surface filter membrane".
  • the substrate has a large thickness, high strength, large pore size, and good air permeability, which can increase fluid throughput;
  • the surface filter membrane has a thinner thickness (100 ⁇ 500 ⁇ m) and a small pore size, which can improve filtration when filtering from the outside to the inside.
  • the powder particles of the filter material from the inside to the outside are from coarse to fine, and the cross-sectional microstructure is generally inverted, which is helpful to improve the dust removal effect when blowing back from the inside to the outside.
  • the powder particle size of the outer surface film is finer.
  • the technical problem to be solved by the present invention is to provide a gradient composite Fe-Al intermetallic compound microporous filter with high precision, large flux, low resistance drop, good blowback regeneration characteristics, high strength, high temperature resistance, and corrosion resistance.
  • Materials to meet the harsh working conditions of different industries such as coal chemical industry, petrochemical industry, energy and environmental protection.
  • the second technical problem to be solved by the present invention is also to provide a method for preparing a gradient composite Fe-Al intermetallic compound microporous filter material.
  • the invention adopts powder cold isostatic pressing, high temperature vacuum constrained sintering and other technology to prepare Fe-Al sintered metal microporous material with bright and straight surface, controllable dimensional accuracy, stable pore characteristics and structural strength, and its length can reach 2000mm , The diameter range can be adjusted between 40-100mm, the pore hydraulic radius and permeability, porosity, tensile strength, crushing strength, etc., are superior to the performance level of similar ceramic filter products; innovative coating method is adopted (Such as wet powder spraying, dip coating, etc.) and secondary high-temperature vacuum sintering and other advanced technology, the Fe-Al composite membrane microporous filter material was successfully prepared.
  • FIG. 1 is a cross-sectional structure diagram of a gradient composite Fe-Al intermetallic compound microporous filter material according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for preparing a gradient composite Fe-Al intermetallic compound microporous filter material according to an embodiment of the present invention
  • the present invention uses pre-alloyed Fe-Al intermetallic compound (pre-alloyed Fe-Al intermetallic compound powder preparation method, see the patent "Preparation method and use of iron-aluminum-based intermetallic compound microporous filter element",
  • the patent number ZL 200610057538.1 is the material
  • the Fe-Al filter material is prepared by isostatic pressing, high-temperature vacuum sintering and other technology, and the coating method (such as wet spraying, dip coating, etc.) and the secondary vacuum high-temperature sintering process are used to prepare the Fe-Al filter material.
  • Gradient composite Fe-Al intermetallic compound microporous filter material is used.
  • the gradient composite Fe-Al intermetallic compound microporous filter material of the present invention has excellent characteristics such as high precision, large flux, and good blowback regeneration performance, which can better meet the requirements of coal chemical industry and petrochemical industry. , Energy, environmental protection and other industries’ high-end filtration requirements.
  • the matrix of the gradient composite Fe-Al intermetallic compound microporous filter material is prepared by the traditional powder metallurgy process, and the main process is forming and sintering.
  • Commonly used forming methods include compression molding, rolling, cold isostatic pressing, etc., among them, compression molding is suitable for forming small-sized powder components; rolling is to first roll the powder into a thin plate-shaped green body through a two-roll mill, and then sinter it. Then, the filter element is made through the process of pipe rolling, longitudinal seam welding, and circumferential seam welding.
  • the cold isostatic pressing method can make the powder in the mold uniformly stressed, the density and pores of the compact are relatively uniform, it is easy to realize the production of large-size special-shaped workpieces, and the product wall thickness can be adjusted in a larger range.
  • Vacuum sintering mainly conducts heat through radiation, and the rapid heating rate at high temperature will cause the inner and outer walls of the powder tube to form a larger temperature gradient, and thermal stress on the tube wall will cause the powder to deform.
  • the holding time has a greater influence on the toughness of the sintered powder body.
  • the longer the holding time the higher the toughness of the sintered body.
  • factors such as sintering temperature, heating rate and holding time, it is determined to adopt a slow heating and staged heat preservation method for sintering.
  • Commonly used methods for powder coating of microporous substrate surface filtration membranes include slurry dipping, centrifugal deposition, secondary compaction of surface fine powder, dry powder spraying, and surface coating methods.
  • the surface coating method is determined to be adopted, and the wet spraying process is preferably used to achieve uniform coating of the Fe-Al surface film powder.
  • the surface filter membrane of Fe-Al filter material is prepared by surface coating method and secondary vacuum high temperature sintering.
  • the raw material of the surface filter membrane powder is -500 mesh gas atomized or water atomized powder, which is formulated into a powder suspension with a certain proportion of water, organic binder, curing agent, etc., by optimizing the spraying pressure, spraying speed and other process parameters , So that the powder is evenly coated on the outer surface of the filter element.
  • the thickness of the coating has a great influence on the pore characteristics of the filter element. As the thickness of the coating increases, the pore size of the filter element decreases, but the permeability decreases more significantly.
  • the secondary vacuum high-temperature sintering is also carried out by means of "slow temperature increase and staged insulation".
  • suitable flexible restraints are filled to prevent deformation of the filter element and ensure that the surface filter film powder and restraints do not bond.
  • the organic binder is volatilized after the second vacuum sintering, and there is basically no residual C, and the effect on the mechanical properties of the filter material is negligible.
  • Figure 1 is a cross-sectional structure diagram of a gradient composite Fe-Al intermetallic compound microporous filter material according to an embodiment of the present invention.
  • the gradient composite Fe-Al intermetallic compound microporous filter material includes a matrix framework 1 and a surface
  • the filter membrane (ie, the working layer) 2 the matrix framework 1 is a pre-alloyed Fe-Al intermetallic compound powder that has been pressed and sintered, and the surface filter membrane 2 is coated on the outer surface of the matrix framework 1.
  • the matrix framework 1 has a larger thickness, higher strength, larger pore size, and good air permeability, which can increase fluid throughput;
  • the surface filter membrane 2 has a thinner thickness and smaller pore size (the ring shape shown in the figure is only For the purpose of example, the present invention can also be implemented in various other shapes), and the filtering accuracy can be improved when filtering from the outside to the inside.
  • the above-mentioned binder may be at least one of polyethylene glycol, methyl cellulose, and polyvinyl alcohol.
  • the specific steps of the preparation method of the present invention include the following:
  • the Fe-Al powder prepared from the pre-alloyed Fe-Al intermetallic compound powder is filled in a mold and vibrated uniformly on a vibrating platform, and then the mold is placed in a cold isostatic press for compression molding.
  • the Fe-Al powder sieving particle size range is -50+150 mesh
  • the vibration loading time is 30-60s (preferably 60s)
  • the molding pressure is 150-250MPa (preferably 200MPa)
  • the holding time is 3-15min (preferably 5min) ).
  • the press-formed green body which is a tube blank in this embodiment, is loaded into a firing boat.
  • the tube blank is vertically placed in the firing boat and a flexible restraint is buried around it for vacuum high-temperature restraint. Sintering, where the vacuum degree is generally controlled at 10 -2 to 10 -3 Pa.
  • the sintering process is 1 ⁇ 2h-500 ⁇ 600°C, heat preservation 0.5-1h, 1 ⁇ 2h-800 ⁇ 900°C, heat preservation 0.5 ⁇ 1h, 2 ⁇ 4h-1100 ⁇ 1300°C, heat preservation 1 ⁇ 5h, then stop heating, After the furnace is cooled to 500-600°C, the furnace is filled with N 2 to increase the cooling rate until it is cooled to below 50°C.
  • the surface coating method can be used.
  • a wet spraying process is used, which mainly includes the preparation of surface filter membrane powder and binder, powder suspension slurry preparation, slurry spraying, drying and other processes.
  • the surface filter membrane powder is selected from -500 mesh Fe-Al gas atomized powder or water atomized powder, and its chemical composition and phase composition are exactly the same as the filter material matrix, which is beneficial Improve the bonding strength of the filter material matrix and the surface filter membrane; add the pre-alloyed Fe-Al gas atomized spherical powder or water atomized powder, and the binder material in a certain proportion to a certain amount of water, through ultrasonic vibration, motor Stir and mix uniformly to form a powder suspension slurry.
  • the self-made powder automatic spraying machine is used for spraying, and the coating thickness is adjusted by adjusting the spraying pressure, spraying speed and spraying times.
  • the selected binder is at least one of polyethylene glycol, methyl cellulose, and polyvinyl alcohol.
  • the sintering process is 1 ⁇ 2h-450 ⁇ 550°C, heat preservation for 1 ⁇ 2h, 2 ⁇ 3h-1100 ⁇ 1200°C, heat preservation for 2 ⁇ 4h, and cooling with the furnace to obtain a gradient composite Fe-Al intermetallic compound microporous filter material.
  • the gradient composite Fe-Al intermetallic compound microporous filter material and the preparation method thereof of the present invention have the following characteristics:
  • the prepared Fe-Al intermetallic compound microporous filter material is a microporous element made of pre-alloyed Fe-Al intermetallic compound powder as a raw material to achieve complete uniform alloying, and the material does not contain elemental Fe or elemental Al or severe component segregation, so it has better corrosion resistance and high temperature mechanical properties;
  • the gradient composite Fe-Al intermetallic compound microporous filter material adopts the matrix framework 1 and the surface filter membrane 2 to form a gradient composite structure with a uniform alloying structure.
  • the matrix framework 1 has coarser powder, larger pore size, and thicker thickness. The strength is higher, and it mainly plays a supporting role; the surface filter membrane 2 has finer powder, smaller pore size, and thinner thickness, and it mainly plays a filtering role.
  • the length of the gradient composite Fe-Al intermetallic compound microporous filter material is 500 ⁇ 2500mm, the wall thickness is 4 ⁇ 6mm, the porosity of the filter element matrix is 40 ⁇ 50%, the average pore diameter is 10 ⁇ 20 ⁇ m, and the permeability is (3 ⁇ 5) ⁇ 10 -4 L/cm 2 .Pa.min, crushing strength> 50 MPa, room temperature resistance to external pressure strength ⁇ 4 MPa, the coating and the substrate have a strong metallurgical bond, and the tensile bonding strength of the two can reach 25-35 MPa.
  • the highest normal use temperature reaches 700°C; under normal working conditions, the continuous service life exceeds 1 year, and the filter element can be reused many times after being cleaned and regenerated offline.
  • the thickness of the Fe 3 Al gradient composite filter element matrix is 5mm and the thickness of the surface filtration membrane is 100-200 ⁇ m, the best match between pore size and permeability can be obtained.
  • the wall thickness is basically the same as the average pore size, the permeability of the gradient composite filter material is about 2.5 times that of the homogeneous filter material.
  • the press-formed tube filter element is loaded into the firing boat.
  • the tube is vertically placed in the firing boat and the flexible restraints are filled around for vacuum high-temperature restraint sintering.
  • the sintering process is 1h-600°C (that is, heating from room temperature to 600°C in 1h), holding for 0.5h, 1.5h-900°C (that is, heating up to 900°C in 1.5h afterwards), holding for 0.5h, 3h -1260°C (that is, continue to heat up to 1260°C within 3h), and keep it for 3h.
  • the press-formed tube filter element is loaded into the firing boat.
  • the tube In order to prevent the tube from longitudinal bending and deformation, the tube is vertically placed in the firing boat and the flexible restraints are filled around for vacuum high-temperature restraint sintering.
  • the sintering process is 2h-500°C, holding 0.5h, 1h-800°C, holding 1h, 3h-1300°C, holding 1h. After being cooled to 600°C with the furnace, air-cooled to room temperature to prepare the filter element matrix.
  • the press-formed tube filter element is loaded into the firing boat.
  • the tube In order to prevent the tube from longitudinal bending and deformation, the tube is vertically placed in the firing boat and the flexible restraints are filled around for vacuum high-temperature restraint sintering.
  • the sintering process is 1h-600°C, holding 0.5h, 1.5h-900°C, holding 0.5h, 3h-1260°C, holding 3h. After being cooled to 500°C with the furnace, air-cooled to room temperature to prepare the filter element matrix.
  • Vacuum constrained sintering The press-formed tube filter element is loaded into the firing boat. In order to prevent longitudinal bending and deformation of the tube, the tube is vertically placed in the firing boat and the flexible restraints are filled around for vacuum high-temperature constrained sintering.
  • the sintering process is 1h-550°C, holding 1h, 1h-850°C, holding 1h, 4h-1240°C, holding 4h. After being cooled to 500°C with the furnace, air-cooled to room temperature to prepare the filter element matrix.
  • Coating surface filter membrane Select -500 mesh pre-alloyed gas atomized Fe 3 Al powder as the raw material of the surface filter membrane.
  • the slurry ratio is: 4g polyethylene glycol + 100ml water + 300g powder, and sprayed with a self-made powder automatic spraying machine. Adjust the spraying pressure, spraying speed and spraying times to adjust the coating thickness. The thickness of the film is controlled at 500-600 ⁇ m.
  • This comparative example is used to prepare a homogeneous Fe 3 Al intermetallic compound filter element, the size of the filter element is ⁇ 60*2000*5mm, and the specific preparation method includes the following steps:
  • Blank using vacuum sintering process, the temperature is increased from room temperature to 600°C within 1h and kept for 0.5h; then the temperature is continued to rise to 900°C within 1.5h and kept for 0.5h; then the temperature is continued to rise to 1100°C within 1.5h, and Hold for 0.5h, then continue to heat up to 1200°C within 1h, and hold for 0.5h; then continue to heat up to 1260°C within 0.5h, and hold for 3h; after the furnace is cooled to 500°C, air-cooled to room temperature to obtain homogeneity Fe 3 Al intermetallic compound filter element.
  • the gradient composite Fe 3 Al filter element prepared in Example 1 has a pore size of about 1/4 of that of the matrix, but the permeability is nearly 1/2 of that of the matrix. It can be seen that the gradient composite filter element is While significantly reducing the pore size, relatively high permeability performance can still be obtained. It can be seen from Example 1, Example 4 and Example 5 that as the thickness of the surface filtration membrane increases, the porosity of the sample does not change much, but the pore size and permeability gradually decrease, especially the permeability decline is very obvious.
  • the gradient composite Fe 3 Al filter element prepared by the invention has good pore size and permeability matching. Comparing the pore characteristics of the gradient composite Fe 3 Al filter element and the isostatic pressure homogeneous filter element (Example 1 and Comparative Example 1), it can be seen that the permeability of the gradient Fe 3 Al composite filter element is approximately when the wall thickness and the average pore size are basically the same About 2.5 times of the homogeneous filter element, and the crushing strength of the two is basically the same as the resistance to external pressure.
  • the press-formed tube filter element is loaded into the firing boat.
  • the tube In order to prevent the tube from longitudinal bending and deformation, the tube is vertically placed in the firing boat and the flexible restraints are filled around for vacuum high-temperature restraint sintering.
  • the sintering process is 1h-600°C, holding 0.5h, 1.5h-900°C, holding 0.5h, 3h-1220°C, holding 3h. After being cooled to 500°C with the furnace, air-cooled to room temperature to prepare the filter element matrix.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)
  • Filtering Materials (AREA)

Abstract

一种梯度复合Fe-Al金属间化合物微孔滤材,包括基体骨架(1)和在基体骨架外面的表面过滤膜(2)。一种梯度复合Fe-Al金属间化合物微孔滤材的制备方法,将预合金化的Fe-Al金属间化合物粉末进行等静压成型;将等静压压制成型的生坯进行真空烧结以制备滤材基体;在滤材基体表面涂覆表面过滤膜,其中,通过混合粘结剂、水和预合金化的Fe-Al金属间化合物粉末形成涂覆所述表面过滤膜的浆料;以及对涂覆有表面过滤膜的滤材基体进行二次真空烧结以形成梯度复合Fe-Al金属间化合物微孔滤材。由此实现高精度、大通量、低阻降、良好的反吹再生特性、高强度、耐高温腐蚀的梯度复合Fe-Al金属间化合物微孔滤材。

Description

一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法 技术领域
本发明涉及粉末冶金制备领域,特别涉及一种梯度复合铁铝基(下文简称Fe-Al)金属间化合物微孔滤材及其制备领域,尤其具体涉及一种应用于高温、高压及腐蚀环境下的精密过滤与气固分离工况条件下的梯度复合Fe-Al金属间化合物微孔滤材及其制备领域。
背景技术
高温气体除尘技术涉及到煤化工、石油化工、电力、冶金、能源等许多工业领域,其关键技术之一是新型高温除尘介质材料的开发与研制。高温气体除尘过滤材料的研究将推动煤的洁净煤燃烧循环发电技术以及其它工业技术的发展,同时促进环境保护事业的进步,实现可持续发展战略。
目前常用的高温气体除尘过滤材料主要包括陶瓷材料和金属材料。陶瓷滤材具有优异的高温性能与化学稳定性,但它的抗热震性差、韧性低与可靠性差。与陶瓷滤材相比,金属滤材具有优异的抗热震性能、良好的综合力学性能和更高的可靠性,同时金属滤材的压降小、过滤效率高、可焊接,可以有效缩小过滤系统的尺寸。因此,从总的发展趋势来说,使用耐高温、抗腐蚀的金属微孔过滤元件是高温含尘气体净化技术发展的要求。
但是,与陶瓷材料相比,金属材料也有自身缺点,它的耐蚀性与耐热性能相对较差。由于高温气体组分通常包括CO、H 2、N 2、CO 2、H 2O、CH 4、NH 3Cl、H 2S等多种气体,其中部分气体在高温湿环境中具有极强的腐蚀性。因此在选择金属滤材时,必须考虑材料的耐高温腐蚀性能,国内外的研究也主要围绕耐高温抗腐蚀的合金而展开。
自上世纪九十年代开始,国内外开展了Haynes合金、Hastelloy合金、Inconel合金、Fe-Al合金、310S等高性能金属滤材的研制,其中尤以Fe-Al合金受到研究者的关注。Fe-Al合金具有良好的抗高温氧化及耐硫腐蚀性能和较陶瓷材料优异的力学性能,而且与其它高温合金相比具有明显的成本优势。
目前国内对Fe-Al滤材的研究大多集中在生产成本较低的反应合成法、高 能球磨低温烧结法等方法上面,由于工艺自身的局限性,这些方法很难实现Fe-Al滤材的完全合金化,更难以形成单一的Fe-Al相结构,这样就不可避免地降低了Fe-Al滤材的耐高温腐蚀性能,对它的工业应用带来不利影响。
发明内容
本发明人意识到Fe-Al金属粉末滤材由于其特殊金属化合物材质与特殊的孔隙结构而具有精度高,通量大、强度高、再生性能好、耐高温、抗腐蚀、耐冲击与抗磨损等诸多优异性能,特别适用于用于高温、高压及腐蚀环境下的精密过滤与气固分离等。在涉及含尘气体在高温下直接净化除尘和应用的领域,如能源工业中的整体气化联合循环发电(IGCC工艺)的高温煤气、煤化工中粉煤气化技术(Shell、U-gas、E-gas工艺等)与褐煤提质工艺中的高温合成气、冶金工业高炉与转炉高温煤气,均可使用Fe-Al滤材。
本发明的目的在于提供一种高精度、大通量、低阻降、良好的反吹再生特性、高强度、耐高温、耐腐蚀的的梯度复合Fe-Al金属间化合物微孔滤材及其制备方法。
为了实现上述目的,本发明提供一种一种梯度复合Fe-Al金属间化合物微孔滤材,其特征在于,该梯度复合Fe-Al金属间化合物微孔滤材包括基体骨架和在所述基体骨架外面的表面过滤膜,其中:所述基体骨架是经压制烧结过的预合金化的Fe-Al金属间化合物粉末,所述表面过滤膜是经在所述基体骨架外表面涂覆后二次烧结过的粘结剂、水和预合金化的Fe-Al金属间化合物粉末的混合物。
本发明还提供一种梯度复合Fe-Al金属间化合物微孔滤材的制备方法,其特征在于,包括以下步骤:将预合金化的Fe-Al金属间化合物粉末进行等静压成型;将等静压压制成型的生坯进行真空烧结以制备滤材基体;在滤材基体表面涂覆表面过滤膜,其中,通过混合粘结剂、水和预合金化的Fe-Al金属间化合物粉末形成涂覆所述表面过滤膜的浆料;以及对涂覆有表面过滤膜的滤材基体进行二次真空烧结以形成梯度复合Fe-Al金属间化合物微孔滤材。
本发明采用粉末冶金工艺制备梯度复合Fe-Al粉末微孔过滤材料。通过对Fe-Al合金粉末的制备工艺与滤材的成型、烧结、表面涂敷工艺及其综合性能的研究,制备出高性能Fe-Al微孔滤材,为Fe-Al滤材的大规模工业推广提供理论与实践依据,有力推动我国高性能过滤材料与装备的发展。
因此,与国内同类金属滤材产品相比,本发明所研制的Fe-Al金属粉末滤材是以预合金化Fe-Al粉末为原料制成的微孔元件,实现了完全的均匀合金化,材料中不含单质Fe或单质Al或严重的成分偏析,因此具有更好的耐腐蚀性能与高温力学性能;与国外同类陶瓷滤材产品相比,Fe-Al金属粉末滤材具有更高的强度、韧性及抗热冲击性能,现场应用时具有更高的稳定性与可靠性。
目前有关Fe-Al微孔材料的研究一般着重于均质滤材,对于梯度复合Fe-Al滤材研究较少。本发明所制备的梯度复合Fe-Al滤材的断面微观结构采用“基体骨架+表面过滤膜”的梯度复合结构。基体的厚度较大、强度较高、孔径较大、透气性好,可以提高流体通过量;表面过滤膜的厚度较薄(100~500μm)、孔径较小,由外往内过滤时可以提高过滤精度。滤材由内向外的粉末颗粒由粗到细,断面微观结构总体上呈倒置的喇叭口状,这有助于提高由内向外反吹时的清灰效果;同时外表面膜的粉末粒度较细,使滤芯外表面较为光洁,降低了滤芯表面对灰尘的吸附能力,可进一步促使灰尘的有效脱落。因此,梯度复合滤芯不仅精度高、通量大,还具有良好的反吹再生效果。
本发明要解决的技术问题在于提供一种高精度、大通量、低阻降、良好的反吹再生特性、高强度、耐高温、耐腐蚀的的梯度复合Fe-Al金属间化合物微孔滤材,以满足煤化工、石油化工、能源及环保等不同行业苛刻工况条件的使用需要。
本发明所要解决的第二个技术问题还在于提供梯度复合Fe-Al金属间化合物微孔滤材的制备方法。本发明采用粉末冷等静压、高温真空约束烧结等工艺技术,制备出表面光亮平直、尺寸精度可控、孔隙特性和结构强度稳定的Fe-Al烧结金属微孔材料,其长度可达2000mm,直径范围可在40~100mm之间调节,孔隙水力学半径及渗透性、孔隙率、拉伸强度、压溃强度等,均 优于同类陶瓷滤芯产品的性能水平;创新性地采用涂覆法(例如湿法粉末喷涂、浸涂等)和二次高温真空烧结等先进工艺技术,成功制备出Fe-Al复合膜微孔过滤材料,在壁厚与平均孔径基本相同的情况下,这种梯度复合滤材的渗透率为均质滤芯的2.5倍左右。迄今本本专利产品已在煤化工装置飞灰过滤器进行了广泛应用,过滤效果满足用户要求,使用寿命达到了3年以上,显示了很高的工艺水平与稳定性及可靠性。
附图说明
图1为根据本发明一个实施例的梯度复合Fe-Al金属间化合物微孔滤材的断面结构图;
图2为根据本发明一个实施例的梯度复合Fe-Al金属间化合物微孔滤材的制备方法的流程图;
具体实施方式
本发明以预合金化的Fe-Al金属间化合物(预合金化的Fe-Al金属间化合物粉末制备方法详见专利“一种铁铝基金属间化合物微孔过滤元件的制备方法及用途”,专利号ZL 200610057538.1)为材质,采用等静压成型、高温真空烧结等工艺技术制备Fe-Al滤材,采用涂覆法(例如湿法喷涂、浸涂等)与二次真空高温烧结工艺,制备梯度复合Fe-Al金属间化合物微孔滤材。与均质滤材相比,本发明的梯度复合Fe-Al金属间化合物微孔滤材具有精度高、通量大,反吹再生性能好等优异特性,能更好地满足煤化工、石油化工、能源、环保等行业的高端过滤要求。
梯度复合Fe-Al金属间化合物微孔滤材基体采用传统的粉末冶金工艺制备,主要工序为成型与烧结。常用的成型方式包括模压、轧制、冷等静压等几种,其中模压适合尺寸较小的粉末元件成型;轧制是先通过双辊式轧机将粉末轧制成薄板状生坯,烧结之后再经卷管、纵缝焊接、环缝焊接等工序制成过滤元件。本发明人鉴于Fe-Al滤材是尺寸较大的异型管状元件,且其焊接性能较差难以卷管焊接,因此确定采用冷等静压成型方式。冷等静压方法可以使模具中的粉末四周均匀受力,压坯的密度和孔隙较为均匀,易于实现大 尺寸异型工件的生产,并可在较大范围内调整产品壁厚。真空烧结主要通过辐射方式传导热量,高温下升温速度过快将使得粉末管坯的内外壁形成较大的温度梯度,管壁产生热应力而导致粉末体变形。而保温时间对烧结粉末体韧性的影响较大,保温时间愈长,烧结体的韧性愈高。综合考虑到烧结温度、升温速度与保温时间等因素的影响,确定采取缓慢升温、分阶段保温的方式进行烧结。
常用的微孔基体表面过滤膜粉末涂敷方法有浆料浸渍、离心沉积、表面细粉二次压制成形、干喷上粉、表面涂覆法等方法,通过多次研究及对比实验,本发明确定采用表面涂覆法,并优选使用湿法喷涂工艺来实现Fe-Al表面膜粉末的均匀涂敷。
Fe-Al滤材的表面过滤膜采用表面涂覆法与二次真空高温烧结制备。表面过滤膜粉末原料为-500目的气雾化或水雾化粉末,将其与一定比例的水、有机粘结剂、固化剂等配制成粉末悬浮液,通过优化喷涂压力、喷涂速度等工艺参数,使粉末均匀涂敷在滤芯基体外表面。涂层厚度对滤芯的孔隙特性影响很大,随着涂层厚度的增大,滤芯的孔径有所下降,但渗透率降低幅度更明显。二次真空高温烧结也采用“缓慢升温、分阶段保温”的方式进行,烧结时填埋合适的柔性约束物以防止滤芯变形,并确保表面过滤膜粉末与约束物发生不发生粘结。有机粘结剂在二次真空烧结后挥发殆尽,基本没有C残留,对滤材力学性能影响可以忽略不计。
现参考附图来详细描述本发明。其中:1-基体骨架;2-表面过滤膜.
图1是根据本发明一个实施例的梯度复合Fe-Al金属间化合物微孔滤材的断面结构图,如图1所示梯度复合Fe-Al金属间化合物微孔滤材包括基体骨架1和表面过滤膜(即,工作层)2,基体骨架1是经压制烧结过的预合金化的Fe-Al金属间化合物粉末,所述表面过滤膜2是经在基体骨架1的外表面涂覆后二次烧结过的粘结剂、水和预合金化的Fe-Al金属间化合物粉末的混合物。
在上述本发明及后续描述中,关于预合金化的Fe-Al金属间化合物粉末的制备方法详见专利“一种铁铝基金属间化合物微孔过滤元件的制备方法及用途”,专利号ZL 200610057538.1。
此外,基体骨架1的厚度较大、强度较高、孔径较大、透气性好,可以提高流体通过量;表面过滤膜2的厚度较薄、孔径较小(图中示出圆环形状 仅为示例目的,本发明也可以以其他各种形状实施),由外往内过滤时可以提高过滤精度。
上述粘结剂可以是聚乙二醇、甲基纤维素、聚乙烯醇中的至少一种,粘结剂、水和Fe-Al金属间化合物粉末的混合物重量比为粘结剂:水:Fe-Al金属间化合物粉末=1~10:100:200~300,表面过滤膜2的厚度优选为100~200微米。
参考图2的流程图来描述本发明的梯度复合Fe-Al金属间化合物微孔滤材的制备方法,本发明制备方法的具体步骤包括如下:
S1.将预合金化的Fe-Al金属间化合物粉末进行等静压成型
将预合金化的Fe-Al金属间化合物粉末制备的Fe-Al粉末装填于模具中并在振动平台上振动均匀,然后将模具置于冷等静压机中进行压制成型。其中,Fe-Al粉末筛分粒度范围为-50+150目,振动装粉时间为30~60s(优选60s)、成型压力为150~250MPa(优选200MPa)、保压时间3~15min(优选5min)。
S2.将等静压压制成型的生坯进行真空烧结以制备滤材基体
装炉。将压制成形的生坯,在本实施例中为管坯,装入烧舟,为了防止管坯纵向弯曲变形,将管坯垂直立于烧舟中并在四周填埋柔性约束物进行真空高温约束烧结,其中,真空度一般控制在10 -2~10 -3Pa。烧结工艺为1~2h-500~600℃,保温0.5-1h,1~2h-800~900℃,保温0.5~1h,2~4h-1100~1300℃,保温1~5h,然后停止加热,随炉冷却到500~600℃后,再往炉内充入N 2以加快冷却速度直至冷却到50℃以下。
S3.在滤材基体表面涂覆表面膜
可以使用表面涂覆法,在本实施例中使用湿法喷涂工艺,其主要包括表面过滤膜粉末与粘结剂准备、粉末悬浮液浆料配制、浆料喷涂、烘干等工序。为了满足高精度、大通量的过滤要求,表面过滤膜粉末选用-500目的Fe-Al气雾化粉末或水雾化粉末,其化学成分、物相组成与滤材基体完全相同,这有利于提高滤材基体与表面过滤膜的结合强度;将预合金化的Fe-Al气雾化球形粉末或水雾化粉末、粘结剂物料按一定比例添加到一定量的水中,通过超声波振动、电机搅拌等方式混合均匀,制成粉末悬浮液浆料。采用自制的粉末自动喷涂机进行喷涂,通过调整喷涂压力、喷涂速度和喷涂次数来调整涂 层厚度。
所选择粘结剂为聚乙二醇、甲基纤维素、聚乙烯醇中的至少一种。粉末悬浮液浆料重量比为粘结剂:水:粉末=1~10:100:200~300。
S4.对涂覆有表面过滤膜的滤材基体进行二次真空烧结
烧结时最好分阶段保温,以保证粘结剂在烧结过程中尽可能挥发,防止粘结剂残留以影响滤芯的性能。烧结工艺为1~2h-450~550℃,保温1~2h,2~3h-1100~1200℃,保温2~4h,随炉冷却既得到梯度复合Fe-Al金属间化合物微孔滤材。
也就是说,在本发明的梯度复合Fe-Al金属间化合物微孔滤材及其制备方法具有以下特点:
1)原料创新。制备的Fe-Al金属间化合物微孔滤材是以预合金化的Fe-Al金属间化合物粉末为原料制成的微孔元件,实现了完全的均匀合金化,材料中不含单质Fe或单质Al或严重的成分偏析,因此具有更好的耐腐蚀性能与高温力学性能;
2)金属微孔元件的成形与约束烧结技术。采用粉末冷等静压、高温真空约束烧结等工艺技术,在国内率先制备出表面光亮平直、尺寸精度可控、孔隙特性和结构强度稳定的Fe-Al烧结金属微孔材料无缝管,其长度最长可达2000mm,直径范围可在40-100mm之间调节,孔隙水力学半径及渗透性、孔隙率、拉伸强度、压溃强度等,均优于国外类似进口产品的性能水平;
3)非对称复合结构的高精度大通量过滤元件的制备技术。创新性地采用湿法粉末喷涂和二次高温真空烧结等先进工艺技术,成功制备出Fe-Al梯度复合微孔过滤管材料,在壁厚与平均孔径基本相同的情况下,这种非对称复合结构滤材的渗透率为均质滤材的2.5倍左右。
梯度复合Fe-Al金属间化合物微孔滤材采用基体骨架1与表面过滤膜2复合以形成具有均匀合金化结构的梯度复合结构,基体骨架1的粉末较粗、孔径较大、厚度较厚、强度较高,主要起支撑作用;表面过滤膜2的粉末较细、孔径较小、厚度较薄,主要起过滤作用。梯度复合Fe-Al金属间化合物微孔滤材长度500~2500mm,壁厚4~6mm,滤芯基体的孔隙度为40~50%,平均孔径10~20μm,渗透率为(3~5)×10 -4L/cm 2.Pa.min,压溃强度>50MPa, 室温抗外压强度≥4MPa,涂层与基体发生了牢固的冶金结合,两者的拉伸结合强度达到25~35MPa。最高正常使用温度达到700℃;正常工况条件下,连续使用寿命超过1年,而且滤芯通过离线清洗再生后可以多次重复使用。Fe 3Al梯度复合滤芯基体厚度为5mm、表面过滤膜厚度为100~200μm时,可以获得孔径与渗透性的最佳匹配。在壁厚与平均孔径基本相同的情况下,梯度复合滤材的渗透率大概为均质滤材的2.5倍左右。
下面,为了进一步更清楚地描述本发明的制备方法,以下给出了分别以Fe 3Al和FeAl金属间化合物滤芯作为本发明梯度复合Fe-Al金属间化合物微孔滤材的各种具体实例,其中也详细列出了制备方法中的具体制备参数及技术效果。
实例1:
1)等静压成形。选择-50+100目的预合金化的水雾化Fe 3Al粉为原材料。为保证装粉均匀,装粉振动60S,放入冷等静压机中180MP保压5min。滤芯基体尺寸φ60*2000*5mm。
2)真空约束烧结。将压制成形的管坯滤芯装入烧舟,为了防止管坯纵向弯曲变形,将管坯垂直立于烧舟中并在四周填埋柔性约束物进行真空高温约束烧结。烧结工艺为1h-600℃(即,在1h内从室温升温至600℃),保温0.5h,1.5h-900℃(即,随后在1.5h内继续升温至900℃),保温0.5h,3h-1260℃(即,随后在3h内继续升温至1260℃),保温3h。随炉冷至500℃后风冷至室温,制备滤芯基体。
3)涂覆表面过滤膜。选择-500目的预合金化的气雾化Fe 3Al粉末作为表面过滤膜原材料,浆料配比为:3g甲基纤维素+100ml水+250g粉末,采用自制的粉末自动喷涂机进行喷涂,通过调整喷涂压力、喷涂速度和喷涂次数来调整涂层厚度。膜层厚度控制在100~200μm。
4)二次真空烧结。烧结时分阶段保温,以保证粘结剂在烧结过程中尽可能挥发,防止粘结剂残留以影响滤芯的性能。烧结工艺为1.5h-450℃,保温1.5h,3h-1120℃,保温4h,随炉冷却。即得到梯度复合Fe 3Al金属间化合物微孔滤材。
实例2:
1)等静压成形。选择-50+100目的预合金化的水雾化Fe 3Al粉为原材料。为保证装粉均匀,装粉振动30S,放入冷等静压机中150MP保压15min。滤芯基体尺寸φ60*2000*5mm。
2)真空约束烧结。将压制成形的管坯滤芯装入烧舟,为了防止管坯纵向弯曲变形,将管坯垂直立于烧舟中并在四周填埋柔性约束物进行真空高温约束烧结。烧结工艺为2h-500℃,保温0.5h,1h-800℃,保温1h,3h-1300℃,保温1h。随炉冷至600℃后风冷至室温,制备滤芯基体。
3)涂覆表面过滤膜。选择-500目的预合金化的气雾化Fe 3Al粉末作为表面过滤膜原材料,浆料配比为:1g甲基纤维素+100ml水+200g粉末,采用自制的粉末自动喷涂机进行喷涂,通过调整喷涂压力、喷涂速度和喷涂次数来调整涂层厚度。膜层厚度控制在100~200μm。
4)二次真空烧结。烧结时分阶段保温,以保证粘结剂在烧结过程中尽可能挥发,防止粘结剂残留以影响滤芯的性能。烧结工艺为2h-550℃,保温1h,3h-1200℃,保温2h,随炉冷却。即得到梯度复合Fe 3Al金属间化合物微孔滤芯。
实例3:
1)等静压成形。选择-50+100目的预合金化的水雾化Fe 3Al粉为原材料。为保证装粉均匀,装粉振动45S,放入冷等静压机中250MP保压3min。滤芯基体尺寸φ60*2000*5mm。
2)真空约束烧结。将压制成形的管坯滤芯装入烧舟,为了防止管坯纵向弯曲变形,将管坯垂直立于烧舟中并在四周填埋柔性约束物进行真空高温约束烧结。烧结工艺为1.5h-550℃,保温1h,2h-850℃,保温0.8h,4h-1100℃,保温5h。随炉冷至550℃后风冷至室温,制备滤芯基体。
3)涂覆表面过滤膜。选择-500目的预合金化的气雾化Fe 3Al粉末作为表面过滤膜原材料,浆料配比为:10g甲基纤维素+100ml水+200g粉末,采用自制的粉末自动喷涂机进行喷涂,通过调整喷涂压力、喷涂速度和喷涂次数 来调整涂层厚度。膜层厚度控制在100~200μm。
4)二次真空烧结。烧结时分阶段保温,以保证粘结剂在烧结过程中尽可能挥发,防止粘结剂残留以影响滤芯的性能。烧结工艺为1h-500℃,保温2h,2h-1100℃,保温2h,随炉冷却。即得到梯度复合Fe 3Al金属间化合物微孔滤芯。
实例4
1)等静压成型。选择-50+100目的预合金化的水雾化Fe 3Al粉为原材料。为保证装粉均匀,装粉振动60S,放入冷等静压机中180MP保压3min。滤芯基体尺寸φ60*2000*5mm。
2)真空约束烧结。将压制成形的管坯滤芯装入烧舟,为了防止管坯纵向弯曲变形,将管坯垂直立于烧舟中并在四周填埋柔性约束物进行真空高温约束烧结。烧结工艺为1h-600℃,保温0.5h,1.5h-900℃,保温0.5h,3h-1260℃,保温3h。随炉冷至500℃后风冷至室温,制备滤芯基体。
3)涂覆表面过滤膜。选择-500目的预合金化的气雾化Fe 3Al粉末作为表面过滤膜原材料,浆料配比为:2g聚乙烯醇+100ml水+250g粉末,采用自制的粉末自动喷涂机进行喷涂,通过调整喷涂压力、喷涂速度和喷涂次数来调整涂层厚度。膜层厚度控制在300~400μm。
4)二次真空烧结。烧结时分阶段保温,以保证粘结剂在烧结过程中尽可能挥发,防止粘结剂残留以影响滤芯的性能。烧结工艺为1.5h-450℃,保温1.5h,3h-1160℃,保温4h,随炉冷却。即得到梯度复合Fe 3Al金属间化合物微孔滤芯。
实例5
1)等静压成形。原材料选择:选择-50+150目的预合金化的水雾化Fe 3Al粉为原材料。为保证装粉均匀,装粉振动50S,放入冷等静压机中200MP保压5min。滤芯基体尺寸φ60*2000*5mm。
2)真空约束烧结。将压制成形的管坯滤芯装入烧舟,为了防止管坯纵向弯曲变形,将管坯垂直立于烧舟中并在四周填埋柔性约束物进行真空高温约 束烧结。烧结工艺为1h-550℃,保温1h,1h-850℃,保温1h,4h-1240℃,保温4h。随炉冷至500℃后风冷至室温,制备滤芯基体。
3)涂覆表面过滤膜。选择-500目的预合金化的气雾化Fe 3Al粉末作为表面过滤膜原材料,浆料配比为:4g聚乙二醇+100ml水+300g粉末,采用自制的粉末自动喷涂机进行喷涂,通过调整喷涂压力、喷涂速度和喷涂次数来调整涂层厚度。膜层厚度控制在500~600μm。
4)二次真空烧结。烧结时分阶段保温,以保证粘结剂在烧结过程中尽可能挥发,防止粘结剂残留以影响滤芯的性能。烧结工艺为2h-500℃,保温1h,3h-1140℃,保温3h,随炉冷却。即得到梯度复合Fe 3Al金属间化合物微孔滤芯。
对比实例1
本对比例用于制备均质Fe 3Al金属间化合物滤芯,滤芯尺寸φ60*2000*5mm,具体制备方法包括如下步骤:
选择-240+320目的预合金化的水雾化Fe 3Al粉为原材料,并将原料粉末放入模具中,通过冷等静压工艺压制成型,控制成型压力200MPa,保压时间5min,得到生坯;采用真空烧结工艺,在1h内从室温升温至600℃,并保温0.5h;随后在1.5h内继续升温至900℃,并保温0.5h;随后在1.5h内继续升温至1100℃,并保温0.5h,随后在1h内继续升温至1200℃,并保温0.5h;随后在0.5h内继续升温至1260℃,并保温3h;随炉冷至500℃后风冷至室温,即得到均质Fe 3Al金属间化合物滤芯。
上述实例1-5及对比实例1所制备的滤芯综合性能测试结果见下表1所示。
表1滤芯综合性能测试结果
Figure PCTCN2020094412-appb-000001
Figure PCTCN2020094412-appb-000002
实例1制备的梯度复合Fe 3Al滤芯与实例1的基体相比,梯度复合滤芯的孔径大约为基体的1/4,但渗透率却将近基体的1/2,由此可见,梯度复合滤芯在明显降低孔径的同时,仍能获得相对较高的渗透性性能。从实例1、实例4与实例5可以看出,随着表面过滤膜厚度的增加,样品的孔隙度变化不大,但孔径与渗透率逐渐降低,特别是渗透性下降非常明显。
本发明制备的梯度复合Fe 3Al滤芯具有良好的孔径与渗透性匹配。比较梯度复合Fe 3Al滤芯与等静压均质滤芯的孔隙特性(实例1和对比实例1),可见在壁厚与平均孔径基本相同的情况下,梯度Fe 3Al复合滤芯的渗透率大概为均质滤芯的2.5倍左右,而两者的压溃强度与耐外压强度基本相当。
实例6
1)等静压成型。选择-50+100目的预合金化的水雾化FeAl粉为原材料。为保证装粉均匀,装粉振动60S,放入冷等静压机中200MP保压3min。滤芯基体尺寸φ60*2000*5mm。
2)真空约束烧结。将压制成形的管坯滤芯装入烧舟,为了防止管坯纵向弯曲变形,将管坯垂直立于烧舟中并在四周填埋柔性约束物进行真空高温约束烧结。烧结工艺为1h-600℃,保温0.5h,1.5h-900℃,保温0.5h,3h-1220℃,保温3h。随炉冷至500℃后风冷至室温,制备滤芯基体。
3)涂覆表面过滤膜。选择-500目的预合金化的气雾化FeAl粉末作为表面过滤膜原材料,浆料配比为:2g甲基纤维素+100ml水+250g粉末,采用自制的粉末自动喷涂机进行喷涂,通过调整喷涂压力、喷涂速度和喷涂次数来调整涂层厚度。膜层厚度控制在100~200μm。
4)二次真空烧结。烧结时分阶段保温,以保证粘结剂在烧结过程中尽可能挥发,防止粘结剂残留以影响滤芯的性能。烧结工艺为1.5h-450℃,保温1.5h,3h-1150℃,保温4h,随炉冷却。即得到梯度复合FeAl金属间化合物微孔滤芯。
需要说明的是,根据对本发明的上述详细描述,本领域普通技术人员完全可以清楚设想出除Fe 3Al和FeAl金属间化合物外的其它Fe-Al金属间化合物的类似实施方式,因此,本发明人在此不一一赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种梯度复合Fe-Al金属间化合物微孔滤材,其特征在于,该梯度复合Fe-Al金属间化合物微孔滤材包括基体骨架(1)和在所述基体骨架(1)外面的表面过滤膜(2),其中:
    所述基体骨架(1)是经压制烧结过的预合金化的Fe-Al金属间化合物粉末,所述表面过滤膜(2)是经在所述基体骨架(1)外表面涂覆后二次烧结过的粘结剂、水和预合金化的Fe-Al金属间化合物粉末的混合物。
  2. 如权利要求1所述的梯度复合Fe-Al金属间化合物微孔滤材,其特征在于,所述粘结剂为聚乙二醇、甲基纤维素、聚乙烯醇中的至少一种。
  3. 如权利要求2所述的梯度复合Fe-Al金属间化合物微孔滤材,其特征在于,所述制备表面过滤膜的混合物重量比为粘结剂:水:Fe-Al金属间化合物粉末=1~10:100:200~300。
  4. 如权利要求2或3所述的梯度复合Fe-Al金属间化合物微孔滤材,其特征在于,所述表面过滤膜(2)的厚度为100~200微米。
  5. 如权利要求1或2所述的梯度复合Fe-Al金属间化合物微孔滤材,其特征在于,所述Fe-Al金属间化合物粉末是Fe 3Al金属间化合物粉末。
  6. 一种梯度复合Fe-Al金属间化合物微孔滤材的制备方法,其特征在于,包括以下步骤:
    将预合金化的Fe-Al金属间化合物粉末进行等静压成型;
    将等静压压制成型的生坯进行真空烧结以制备滤材基体;
    在滤材基体表面涂覆表面过滤膜,其中,通过混合粘结剂、水和预合金化的Fe-Al金属间化合物粉末形成涂覆所述表面过滤膜的浆料;以及
    对涂覆有表面过滤膜的滤材基体进行二次真空烧结以形成梯度复合Fe-Al金属间化合物微孔滤材。
  7. 如权利要求6所述的制备方法,其特征在于,
    使用湿法喷涂工艺在滤材基体表面涂覆表面过滤膜,其中所选择粘结剂为聚乙二醇、甲基纤维素、聚乙烯醇中的至少一种。
  8. 如权利要求6所述的制备方法,其特征在于,按重量比为:粘结剂:水:Fe-Al金属间化合物粉末=1~10:100:200~300形成所述浆料。
  9. 如权利要求7或8所述的制备方法,其特征在于,控制所述表面过滤膜的厚度为100~200微米。
  10. 如权利要求7或8所述的制备方法,其特征在于,所述Fe-Al金属间化合物粉末是Fe 3Al金属间化合物粉末。
PCT/CN2020/094412 2020-01-10 2020-06-04 一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法 WO2021139082A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/791,493 US20230044409A1 (en) 2020-01-10 2020-06-04 Fe-al-based metal porous membrane and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010027202.0A CN111069590A (zh) 2020-01-10 2020-01-10 一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法
CN202010027202.0 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021139082A1 true WO2021139082A1 (zh) 2021-07-15

Family

ID=70322894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094412 WO2021139082A1 (zh) 2020-01-10 2020-06-04 一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法

Country Status (3)

Country Link
US (1) US20230044409A1 (zh)
CN (1) CN111069590A (zh)
WO (1) WO2021139082A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111069590A (zh) * 2020-01-10 2020-04-28 安泰环境工程技术有限公司 一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法
CN111249922B (zh) * 2020-03-21 2024-02-23 安泰环境工程技术有限公司 一种Fe-Al系金属膜及其制备方法
CN112077321B (zh) * 2020-08-24 2022-07-01 向双清 一种元素混合粉反应合成制备FeAl金属间化合物柔性膜的方法
CN114377476B (zh) * 2020-10-16 2024-01-19 安泰科技股份有限公司 一种吸附脱硫装置用高精度滤芯、滤芯组件及制备方法
CN113171690A (zh) * 2021-04-09 2021-07-27 西部宝德科技股份有限公司 一种盘式多孔金属膜的制备方法
CN113714502B (zh) * 2021-09-08 2022-05-20 西北有色金属研究院 一种具有微小渗透通量管状多孔金属元件的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2271781B (en) * 1992-10-21 1996-12-04 Pall Corp Oxidation resistant metal particulates and filter media and methods of forming same.
CN1833750A (zh) * 2006-03-14 2006-09-20 安泰科技股份有限公司 一种铁铝基金属间化合物微孔过滤元件的制备方法及用途
CN102489079A (zh) * 2011-12-30 2012-06-13 安泰科技股份有限公司 非对称金属滤芯及其制备方法
CN103894075A (zh) * 2014-03-07 2014-07-02 中南大学 一种具有梯度孔的非均质复合陶瓷及制备方法
CN105727756A (zh) * 2014-12-09 2016-07-06 中国科学院金属研究所 一种双梯度孔隙结构塞隆结合碳化硅膜管及其制备方法
CN110125392A (zh) * 2019-06-28 2019-08-16 安泰环境工程技术有限公司 一种高通量外光Fe-Al金属间化合物滤芯及其制备方法
CN111069590A (zh) * 2020-01-10 2020-04-28 安泰环境工程技术有限公司 一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101108312A (zh) * 2007-07-20 2008-01-23 中南大学 一种制备孔径梯度FeAl金属间化合物均质过滤膜的方法
CN101524609B (zh) * 2009-04-15 2011-04-13 成都易态科技有限公司 非对称膜FeAl金属间化合物多孔材料过滤元件及应用
CN102443796B (zh) * 2011-12-02 2014-01-22 九江学院 一种多孔Fe-Al金属间化合物涂层及其制备方法
CN103397256B (zh) * 2013-07-31 2015-12-23 成都易态科技有限公司 抗高温氧化的烧结Fe-Al基合金多孔材料及过滤元件
CN103695689B (zh) * 2013-11-01 2016-06-29 西安宝德粉末冶金有限责任公司 一种Fe-Al系金属间化合物多孔膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2271781B (en) * 1992-10-21 1996-12-04 Pall Corp Oxidation resistant metal particulates and filter media and methods of forming same.
CN1833750A (zh) * 2006-03-14 2006-09-20 安泰科技股份有限公司 一种铁铝基金属间化合物微孔过滤元件的制备方法及用途
CN102489079A (zh) * 2011-12-30 2012-06-13 安泰科技股份有限公司 非对称金属滤芯及其制备方法
CN103894075A (zh) * 2014-03-07 2014-07-02 中南大学 一种具有梯度孔的非均质复合陶瓷及制备方法
CN105727756A (zh) * 2014-12-09 2016-07-06 中国科学院金属研究所 一种双梯度孔隙结构塞隆结合碳化硅膜管及其制备方法
CN110125392A (zh) * 2019-06-28 2019-08-16 安泰环境工程技术有限公司 一种高通量外光Fe-Al金属间化合物滤芯及其制备方法
CN111069590A (zh) * 2020-01-10 2020-04-28 安泰环境工程技术有限公司 一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法

Also Published As

Publication number Publication date
CN111069590A (zh) 2020-04-28
US20230044409A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2021139082A1 (zh) 一种梯度复合铁铝基金属间化合物微孔滤材及其制备方法
CN101524609B (zh) 非对称膜FeAl金属间化合物多孔材料过滤元件及应用
CN102633531B (zh) 一种梯度孔隙纯质碳化硅膜管
CN101249389B (zh) 非对称结构的金属过滤膜及其制备方法
CN102659446B (zh) 一种纯质碳化硅膜管支撑体及其制备方法
JP7341582B2 (ja) 高温保護用NiCrBSi-ZrB2サーメット粉末、複合コーティング及びその製造方法
CN110125392B (zh) 一种高通量外光Fe-Al金属间化合物滤芯及其制备方法
CN102718494A (zh) 一种复合碳化硅陶瓷过滤膜材料的制备方法
CN101607158A (zh) 碳化硅多孔陶瓷过滤器及其制造方法
CN109396446B (zh) 一种多级孔复合材料过滤体及其制备方法
CN105727755A (zh) 一种梯度孔隙氮化硅结合碳化硅膜管及其制备方法
CN102659447A (zh) 一种纯质碳化硅过滤膜层及其制备方法
CN101721857A (zh) 多孔复合滤管及其制备方法
CN103264533B (zh) 陶瓷-金属间化合物梯度过滤管及其制备方法和用途
CN113953512B (zh) 一种大长径比深孔薄壁钨合金壳体及其热等静压制备方法
WO2021189662A1 (zh) 一种Fe-Al系金属多孔膜及其制备方法
CN105727756B (zh) 一种双梯度孔隙结构塞隆结合碳化硅膜管及其制备方法
CN109454231B (zh) 一种铁铝铜合金微孔过滤材料的制备方法
WO2019181684A1 (ja) 多孔質チタン系焼結体、その製造方法、及び電極
CN105693276A (zh) 一种碳化硅过滤膜层及其低温制备方法
CN105688684A (zh) 具有三梯度孔隙结构纯质泡沫碳化硅支撑体膜管及制备方法
CN111249922B (zh) 一种Fe-Al系金属膜及其制备方法
US11154930B2 (en) Method for producing a porous shaped body
CN101413070A (zh) 一种制备金属多孔材料的低温动态约束加载烧结方法
CN111230118A (zh) 一种FeAlSi金属间化合物多孔材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911560

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20911560

Country of ref document: EP

Kind code of ref document: A1