WO2021135495A1 - 一种用于检测金黄色葡萄球菌的引物组合和试剂盒 - Google Patents

一种用于检测金黄色葡萄球菌的引物组合和试剂盒 Download PDF

Info

Publication number
WO2021135495A1
WO2021135495A1 PCT/CN2020/120616 CN2020120616W WO2021135495A1 WO 2021135495 A1 WO2021135495 A1 WO 2021135495A1 CN 2020120616 W CN2020120616 W CN 2020120616W WO 2021135495 A1 WO2021135495 A1 WO 2021135495A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
seq
nucleotide sequence
upstream
downstream
Prior art date
Application number
PCT/CN2020/120616
Other languages
English (en)
French (fr)
Inventor
蒋原
杨捷琳
隋国栋
郑世华
申进玲
赵丽娜
Original Assignee
上海海关动植物与食品检验检疫技术中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海关动植物与食品检验检疫技术中心 filed Critical 上海海关动植物与食品检验检疫技术中心
Publication of WO2021135495A1 publication Critical patent/WO2021135495A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Definitions

  • the invention belongs to the technical field of molecular biotechnology detection, and in particular relates to a primer combination and a kit for detecting Staphylococcus aureus.
  • Staphylococcus aureus is a very important pathogenic microorganism that causes upper respiratory tract infections and pneumonia. It belongs to the Staphylococcus genus and is a Gram-positive bacteria that can cause very serious infections, or even worse. Cause death. Staphylococcus aureus can be transmitted through a variety of media, not only through the air, but also through water, food, etc., which can cause infection in many ways.
  • Staphylococcus aureus through food is a very common way of transmission, but the traditional food microbiological detection methods currently used are time-consuming and laborious. It mainly includes pre-enrichment, selective enrichment, isolation, biochemical identification and serotype identification procedures. For some atypical suspicious positive strains, it takes longer (up to about 5 days).
  • Countries in the world have strengthened food safety-related work, and detection technology is increasingly becoming high-tech, serialized, quick-tested, and portable.
  • the detection of Staphylococcus aureus in my country is far from meeting the time-sensitive requirements, and international research trends must be followed to develop high-throughput food safety detection technologies.
  • Loop-mediated isothermal amplification is a new nucleic acid amplification technology disclosed by Japanese scholar Notomi. This method has a series of significant advantages: higher sensitivity than traditional PCR; reaction The required time is short (30 to 60 minutes can be completed); clinical use does not require special equipment (compared with PCR machines and fluorescent quantitative PCR machines, cost-saving and easy to implement); simple operation, etc. (Pooria Gill.et.al .AS-LAMP: A New and Alternative Method for Genotyping. Avicenna J Med Biotechnol. 2020 Jan-Mar; 12(1): 2-8.). Therefore, it is extremely suitable for the detection of Staphylococcus aureus.
  • the Staphylococcus aureus LAMP primers designed in the prior art have relatively high sensitivity, for example, the detection limit of the primer of publication number CN104328173B is 5.8fg/reaction (8.1 copy number/reaction), but in practical applications, the detection limit is relatively high. Compared with clinical, food sample matrix is more complicated, the content of target pathogenic Staphylococcus aureus is usually lower, and the detection method is more difficult than clinically. Therefore, there is an urgent need for a primer with higher sensitivity and good specificity.
  • the present invention provides a primer combination and kit for detecting Staphylococcus aureus, Compared with the prior art, the primer combination and the kit have higher sensitivity or specificity for the detection of Staphylococcus aureus, and the combination of the isothermal amplification method can shorten the detection time.
  • one of the technical solutions of the present invention is to provide a primer combination for detecting Staphylococcus aureus, the primer combination comprising an internal primer set and an external primer set:
  • the internal primer set includes an upstream internal primer and a downstream internal primer.
  • the nucleotide sequence of the upstream internal primer is as shown in SEQ ID No: 3, 7, 12 or 17, and the nucleotide sequence of the downstream internal primer is as SEQ ID No: 4, 8, 13 or 18;
  • the external primer set includes an upstream external primer and a downstream external primer.
  • the nucleotide sequence of the upstream external primer is shown in SEQ ID No: 1, 5, 10 or 15, and the nucleotide sequence of the downstream external primer is SEQ ID No: 2, 6, 11 or 16.
  • the primer combination is composed of an upstream internal primer, a downstream internal primer, an upstream external primer, and a downstream external primer.
  • the nucleotide sequence of the upstream internal primer is shown in SEQ ID NO: 3, and the downstream internal primer
  • the nucleotide sequence of the external primer is shown in SEQ ID NO: 4
  • the nucleotide sequence of the upstream external primer is shown in SEQ ID NO: 1
  • the nucleotide sequence of the downstream external primer is shown in SEQ ID NO: 2. Show.
  • the primer combination further includes a loop primer
  • the loop primer includes an upstream loop primer and/or a downstream loop primer
  • the nucleotide sequence of the upstream loop primer is as shown in SEQ ID No: 9 or As shown in 19, the nucleotide sequence of the downstream loop primer is as shown in SEQ ID No: 14 or 20,
  • the primer combination is selected from the following group:
  • the primer combination consists of an upstream internal primer, a downstream internal primer, an upstream external primer, a downstream external primer, and an upstream loop primer.
  • the nucleotide sequence of the upstream internal primer is shown in SEQ ID NO: 7.
  • the nucleotide sequence of the downstream internal primer is shown in SEQ ID NO: 8
  • the nucleotide sequence of the upstream external primer is shown in SEQ ID NO: 5
  • the nucleotide sequence of the downstream external primer is shown in SEQ ID NO: 6 and the nucleotide sequence of the upstream loop primer are shown in SEQ ID NO: 9; or,
  • the primer combination consists of an upstream internal primer, a downstream internal primer, an upstream external primer, a downstream external primer and a downstream loop primer.
  • the nucleotide sequence of the upstream internal primer is shown in SEQ ID NO: 12.
  • the nucleotide sequence of the downstream internal primer is shown in SEQ ID NO: 13
  • the nucleotide sequence of the upstream external primer is shown in SEQ ID NO: 10
  • the nucleotide sequence of the downstream external primer is shown in SEQ ID NO: 11 and the nucleotide sequence of the downstream loop primer are shown in SEQ ID NO: 14; or,
  • the primer combination consists of an upstream internal primer, a downstream internal primer, an upstream external primer, a downstream external primer, an upstream loop primer, and a downstream loop primer.
  • the nucleotide sequence of the upstream internal primer is as shown in SEQ ID NO: 17.
  • the nucleotide sequence of the downstream internal primer is shown in SEQ ID NO: 18
  • the nucleotide sequence of the upstream external primer is shown in SEQ ID NO: 15
  • the nucleotide sequence of the downstream external primer As shown in SEQ ID NO: 16
  • the nucleotide sequence of the upstream loop primer is shown in SEQ ID NO: 19
  • the nucleotide sequence of the downstream loop primer is shown in SEQ ID NO: 20.
  • the second technical solution of the present invention is to provide a kit, which includes the primer combination described in the above technical solution, nucleic acid amplification reaction enzyme, nucleic acid amplification buffer and amplification color reagent .
  • the nucleic acid amplification reaction enzyme includes Bst DNA polymerase, Bst 2.0 DNA polymerase, Bst 2.0 hot-start DNA polymerase, or Bst 3.0 DNA polymerase.
  • the nucleic acid amplification reaction enzyme is Bst DNA polymerase.
  • the enzyme activity of the Bst DNA polymerase is 5U-15U, preferably 8U.
  • the nucleic acid amplification buffer comprises 20mM Tris-HCl, 10mM(NH 4 ) 2 SO 4 , 50mM KCl, 24mM MgSO 4 , 0.1% Tween 20, 1mM dNTP, and the pH of the nucleic acid amplification buffer The value is 8.8.
  • the amplification chromogenic agent includes SYBR Green I.
  • the kit further includes a positive control, a negative control and a chip.
  • the positive control includes a positive plasmid infected with Staphylococcus aureus.
  • the negative control includes deionized water without ribonuclease and/or deoxyribonuclease.
  • the third technical solution of the present invention is to provide the application of the above-mentioned primer combination or the above-mentioned kit in preparing reagents for detecting Staphylococcus aureus.
  • the fourth technical solution of the present invention is to provide a non-diagnostic detection method of Staphylococcus aureus, which includes the following steps:
  • the sample is collected from air, food or water samples.
  • the final concentration of the external primer is independently 0.1-0.5 ⁇ M, preferably 0.1-0.4 ⁇ M, more preferably 0.2 ⁇ M; the final concentration of the internal primer Independently 1 to 2 ⁇ M, preferably 1.5 ⁇ M; the final concentration of the loop primer is independently 0.5 to 2.5 ⁇ M, preferably 0.7 to 2.2 ⁇ M, and/or,
  • step (2) the reaction temperature of the isothermal amplification is 63° C., and the reaction time is 45 min.
  • the positive and progressive effect of the present invention is that the present invention provides a primer combination and kit for detecting Staphylococcus aureus.
  • the primer combination is 4, the detection sensitivity for Staphylococcus aureus reaches 20 fg/ ⁇ l (6.5 Copies/ ⁇ l), the detection peak time is 20 minutes; when the primer combination is 5, the detection sensitivity for Staphylococcus aureus reaches 8fg/ ⁇ l (2.6 copies/ ⁇ l), and the detection peak time is 15 minutes
  • the primer combination is 6
  • the detection sensitivity of Staphylococcus aureus reaches 4fg/ ⁇ l (1.3 copies/ ⁇ l), and the detection peak time is 12 minutes.
  • the detection sensitivity of the present invention is significantly improved.
  • the primer combination and kit provided by the present invention have a high degree of specificity for Staphylococcus aureus, and the combination of isothermal amplification method can shorten the detection time, and the detection result can be obtained within 45 minutes.
  • Figure 1 shows the sensitivity of four primers (SEQ ID NO: 1-4) to amplify and detect nucleic acid in actual samples;
  • Figure 2 shows the sensitivity of the first set of five primers (SEQ ID NO: 5-9) to amplify and detect nucleic acids in actual samples;
  • Figure 3 shows the sensitivity of the second set of five primers (SEQ ID NO: 10-14) to amplify and detect the actual sample nucleic acid;
  • Figure 4 shows the sensitivity of six primers (SEQ ID NO: 15-20) to amplify and detect nucleic acids in actual samples;
  • Figure 5 shows the specificity verification of six primers (SEQ ID NO: 15-20) and cross-validation with common food-borne bacteria.
  • the present invention provides a primer combination for detecting Staphylococcus aureus, and the primer is designed for the nuc gene of Staphylococcus aureus.
  • the primer set of the present invention includes an internal primer set and an external primer set; the internal primer set includes an upstream internal primer and a downstream internal primer, and the nucleotide sequence of the upstream internal primer is as SEQ ID No: 3, 7, 12 or As shown in 17, the nucleotide sequence of the downstream internal primer is shown in SEQ ID No: 4, 8, 13 or 18; the external primer set includes an upstream external primer and a downstream external primer.
  • the nucleotide sequence of the nucleotide sequence is shown in SEQ ID No: 1, 5, 10, or 15, and the nucleotide sequence of the downstream external primer is shown in SEQ ID No: 2, 6, 11, or 16.
  • the upstream internal primer is composed of the F2 region and the F1c region.
  • the F2 region is complementary to the F2c region at the 3'end of the Staphylococcus aureus specific sequence
  • the F1c region is at the 5'end of the Staphylococcus aureus specific sequence.
  • the sequence of the Flc region is the same;
  • the downstream internal primer is composed of B1c and B2 regions, the B2 region is complementary to the B2c region at the 3'end of the Staphylococcus aureus specific sequence, and the B1c region is the Blc at the 5'end of the Staphylococcus aureus specific sequence.
  • the region sequence is the same.
  • SEQ ID No:1 5’-gcgacattaattaaagcgattg-3’;
  • SEQ ID No: 10 5’-aacagtatatagtgcaacttcaa-3’;
  • SEQ ID No: 16 5'-gcttgaacgatataatccatgt-3'.
  • the primer combination also preferably includes a loop primer
  • the loop primer includes an upstream loop primer and/or a downstream loop primer
  • the nucleotide sequence of the upstream loop primer is shown in SEQ ID No: 9 or 19.
  • the nucleotide sequence of the downstream loop primer is shown in SEQ ID No: 14 or 20.
  • the loop primer set can speed up the amplification reaction, thereby greatly increasing the reaction rate.
  • SEQ ID No: 9 5’-aaaaattacataaagaacctgcg-3’;
  • SEQ ID No: 14 5’-ggtgtagagaaatatggtcctgaag-3’;
  • SEQ ID No: 20 5'-gctatatcaactttagactttga-3'.
  • the present invention also provides a kit, which includes the primer combination described in the above technical scheme, a nucleic acid amplification reaction enzyme, a nucleic acid amplification buffer and an amplification color reagent.
  • the nucleic acid amplification reaction enzyme is Bst DNA polymerase, and the enzyme activity of the Bst DNA polymerase is 8 U.
  • the present invention does not specifically limit the source of the Bst DNA polymerase, and conventional commercial products can be used.
  • the nucleic acid amplification buffer includes 20 mM Tris-HCl, 10 mM (NH 4 ) 2 SO 4 , 50 mM KCl, 24 mM MgSO 4 , 0.1% Tween 20, 1 mM dNTP, and the nucleic acid amplification buffer The pH is 8.8.
  • the amplification chromogenic reagent is SYBR Green I.
  • the kit also includes a positive control, a negative control and a chip.
  • the positive control includes a positive plasmid infected with Staphylococcus aureus; the negative control preferably includes deionized water without ribonuclease and/or deoxyribonuclease; the chip reacts against the above-mentioned series of reagents. Microfluidic control chip That's it.
  • the four primers are the upstream internal primer (SEQ ID No: 3), the downstream internal primer (SEQ ID No: 4), and the upstream external primer (SEQ ID No: 1) And the downstream external primer (SEQ ID No: 2).
  • Each 25 ⁇ l of the reaction system contains 4 ⁇ l of nucleic acid amplification reaction enzyme, 8 ⁇ l of primer combination, 4 ⁇ l of nucleic acid amplification buffer, 0.5 ⁇ l of amplification color reagent, 6.5 ⁇ l of deionized water, and 2 ⁇ l of sample genomic DNA.
  • the final concentration of the upstream external primer and the downstream external primer is independently 0.1-0.5 ⁇ M, preferably 0.1-0.4 ⁇ M, more preferably 0.2 ⁇ M.
  • the final concentration of the downstream internal primer and the upstream internal primer is independently 1-2 ⁇ M, preferably 1.5 ⁇ M.
  • the 5 primers are the upstream internal primer (SEQ ID No: 7), the downstream internal primer (SEQ ID No: 8), and the upstream external primer (SEQ ID No. :5), downstream external primer (SEQ ID No: 6) and upstream loop primer (SEQ ID No: 9), or 5 primers are upstream internal primer (SEQ ID No: 12), downstream internal primer (SEQ ID No: 13) Upstream external primer (SEQ ID No: 10), downstream external primer (SEQ ID No: 11) and upstream loop primer (SEQ ID No: 14).
  • each 25 ⁇ l of the reaction system contains 4 ⁇ l of nucleic acid amplification reaction enzyme, 10 ⁇ l of primer combination, 4 ⁇ l of nucleic acid amplification buffer, 0.5 ⁇ l of amplification color reagent, 4.5 ⁇ l of deionized water, and 2 ⁇ l of sample genomic DNA.
  • the final concentration of the upstream external primer and the downstream external primer is independently preferably 0.1-0.5 ⁇ M, preferably 0.1-0.4 ⁇ M, more preferably 0.2 ⁇ M.
  • the final concentration of the downstream internal primer and the upstream internal primer are independently preferably 1 to 2 ⁇ M, more preferably 1.5 ⁇ M.
  • the final concentration of the loop primer is independently preferably 0.5-2.5 ⁇ M, more preferably 0.7-2.2 ⁇ M.
  • the 6 primers are the upstream internal primer (SEQ ID No: 17), the downstream internal primer (SEQ ID No: 18), and the upstream external primer (SEQ ID No: 15), downstream external primer (SEQ ID No: 16), upstream loop primer (SEQ ID No: 19), and downstream loop primer (SEQ ID No: 20).
  • Each 25 ⁇ l of the reaction system contains 4 ⁇ l of nucleic acid amplification reaction enzyme, 12 ⁇ l of primer combination, 4 ⁇ l of nucleic acid amplification buffer, 0.5 ⁇ l of amplification color reagent, 2.5 ⁇ l of deionized water, and 2 ⁇ l of sample genomic DNA.
  • the final concentration of the upstream external primer and the downstream external primer independently is preferably 0.1 to 0.4 ⁇ M, more preferably 0.2 ⁇ M.
  • the final concentration of the downstream internal primer and the upstream internal primer are independently preferably 1 to 2 ⁇ M, more preferably 1.5 ⁇ M.
  • the final concentration of the loop primer is independently preferably 0.5-2.5 ⁇ M, more preferably 0.7-2.2 ⁇ M.
  • Example 1 Rapid detection of Staphylococcus aureus by 4 primers (SEQ ID No: 1 to 4)
  • lysis buffer (0.5%w/v SDS, 0.5%w/v sodium lauroyl sarcosinate, TE buffer, pH 7.5
  • lysis buffer 0.5%w/v SDS, 0.5%w/v sodium lauroyl sarcosinate, TE buffer, pH 7.5
  • the nucleic acid amplification reaction enzyme is Bst DNA polymerase, the enzyme activity is 8U/ ⁇ l; the nucleic acid amplification buffer is 20mM Tris-HCl, 10mM(NH4)2SO4, 50mM KCl, 24mM MgSO4, 0.1% Tween 20, 1mM dNTP, The pH value of the nucleic acid amplification buffer is 8.8; the amplification color reagent is SYBR Green I, the internal amplification primers SEQ ID Nos: 3 and 4, the use concentration, that is, the final concentration is 1.5 ⁇ M, and the external amplification primer SEQ ID No: 1 and 2, the final concentration is 0.2 ⁇ M.
  • the nucleic acid of the initial sample was detected by spectrophotometry to be 2ng/ ⁇ l, as shown in Figure 1, by diluting the sample 10 times, 100 times, 1000 times, 10000 times, 100,000 times, 250,000 times, 500,000 times and 1,000,000 times fluorescence.
  • the curve shows that the detection limit of the sample can be diluted 100,000 times, and the sensitivity of the primer set and constant temperature amplification method reaches 20fg/ ⁇ l.
  • Example 2 5 primers (SEQ ID No: 5-9) for rapid detection of Staphylococcus aureus
  • the nucleic acid amplification reaction enzyme and nucleic acid amplification buffer are the same as in Example 1; the amplification color reagent is SYBR Green I, the internal amplification primer SEQ ID No: 7 and 8 use concentration, that is, the final concentration is 1.5 ⁇ M, and the external amplification
  • the primers SEQ ID No: 5 and 6, the use concentration, that is, the final concentration, are 0.2 ⁇ M, and the loop primer SEQ ID No: 9, the use concentration, that is, the final concentration, is 0.7 to 2.2 ⁇ M.
  • Amplification primers (5 pieces) 10 ⁇ L DNA polymerase 4 ⁇ L Nucleic acid amplification buffer 4 ⁇ L Amplification reagent 0.5 ⁇ L Deionized water 4.5 ⁇ L Sample to be tested 2 ⁇ L To The total volume is 25 ⁇ L
  • the nucleic acid of the initial sample was detected by spectrophotometry to be 2ng/ ⁇ l, as shown in Figure 2, by diluting the sample 10 times, 100 times, 1000 times, 10000 times, 100,000 times, 250,000 times, 500,000 times and 1,000,000 times fluorescence.
  • the curve shows that the detection limit can be diluted 250,000 times, and the sensitivity of the primer set and constant temperature amplification method can reach 8fg/ ⁇ l.
  • Example 3 Rapid detection of Staphylococcus aureus by 5 primers (SEQ ID No: 10-14)
  • lysis buffer (0.5%w/v SDS, 0.5%w/v sodium lauroyl sarcosinate, TE buffer, pH 7.5
  • the solution was lysed at room temperature for half an hour, extracted with phenol chloroform (1:1), and the nucleic acid was precipitated with ethanol.
  • the detection chip Place the detection chip in ABI 7500, 63°C for 45 minutes, and detect fluorescence every 30s.
  • the fluorescence channel is the FAM channel. In the detection instrument for 45 minutes, observe the change in fluorescence intensity during the isothermal amplification process after the reaction, and determine the test result by judging the rate of change in fluorescence intensity after the reaction.
  • the nucleic acid amplification reaction enzyme and nucleic acid amplification buffer are the same as in Example 1; the amplification color reagent is SYBR Green I, the internal amplification primers are SEQ ID Nos: 12 and 13, the use concentration is the final concentration of 1.5 ⁇ M, and the external amplification
  • the primers SEQ ID No: 10 and 11, the use concentration, that is, the final concentration, are 0.2 ⁇ M, and the loop primer SEQ ID No: 14, the use concentration, that is, the final concentration, is 0.7 ⁇ 2.2 ⁇ M.
  • Amplification primers (5 pieces) 10 ⁇ L DNA polymerase 4 ⁇ L Nucleic acid amplification buffer 4 ⁇ L Amplification reagent 0.5 ⁇ L Deionized water 4.5 ⁇ L Sample to be tested 2 ⁇ L To The total volume is 25 ⁇ L
  • the nucleic acid of the initial sample was detected by spectrophotometry to be 2ng/ ⁇ l.
  • the fluorescence curve of the sample was obtained by diluting the sample 10 times, 100 times, 1000 times, 10000 times, 100000 times, 250,000 times and 1000000 times.
  • the detection limit can be diluted 250,000 times, and the sensitivity of the primer set and constant temperature amplification method can reach 8fg/ ⁇ l.
  • Example 4 6 primers (SEQ ID No: 15-20) for rapid detection of Staphylococcus aureus
  • lysis buffer (0.5%w/v SDS, 0.5%w/v sodium lauroyl sarcosinate, TE buffer, pH 7.5
  • the solution was lysed at room temperature for half an hour, extracted with phenol chloroform (1:1), and the nucleic acid was precipitated with ethanol.
  • the nucleic acid amplification reaction enzyme and nucleic acid amplification buffer are the same as in Example 1; the amplification color reagent is SYBR Green I, the internal amplification primers are SEQ ID Nos: 17 and 18, the use concentration is the final concentration of 1.5 ⁇ M, and the external amplification
  • the primers SEQ ID Nos: 15 and 16, the use concentration, that is, the final concentration, are 0.2 ⁇ M, and the loop primers SEQ ID Nos: 19 and 20, the use concentration, that is, the final concentration, is 0.7 to 2.2 ⁇ M.
  • Amplification primers (6) 12 ⁇ L DNA polymerase 4 ⁇ L Nucleic acid amplification buffer 4 ⁇ L Amplification reagent 0.5 ⁇ L Deionized water 2.5 ⁇ L Sample to be tested 2 ⁇ L To The total volume is 25 ⁇ L
  • the nucleic acid of the initial sample was detected by spectrophotometry to be 2ng/ ⁇ l, as shown in Figure 4, by diluting the sample 10 times, 100 times, 1000 times, 10000 times, 100,000 times, 250,000 times, 500,000 times and 1,000,000 times fluorescence.
  • the curve shows that the detection limit can be diluted 500,000 times, and the sensitivity of the primer set and constant temperature amplification method reaches 4fg/ ⁇ l.
  • the specificity of the kit for rapid detection of Staphylococcus aureus (6 primers, (SEQ ID No: 15-20)) was verified by isothermal amplification technology.
  • the primer set and other standard strains were subjected to isothermal amplification, the amplification system and The conditions were the same as in Example 4, and the specificity was tested.
  • the cross-screened strains include Vibrio parahaemolyticus aureus, Salmonella, Shiga dysentery, Escherichia coli, Listeria monocytogenes, Bacillus cereus, S.
  • Sa Staphylococcus aureus
  • Vp Vibrio parahaemolyticus
  • Sal Salmonella
  • Shc Shiga dysentery
  • Eco Escherichia coli
  • Lm Listeria monocytogenes
  • Bc Bacillus cereus
  • Bs Sakanobacterium
  • Vc Vibrio cholerae
  • Cj Campylobacter jejuni.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种用于检测金黄色葡萄球菌的引物组合和试剂盒及其在制备检测金黄色葡萄球菌的试剂中的应用,以及提供了一种金黄色葡萄球菌的非诊断目的检测方法,属于生物检测技术领域。所述引物组合包括内部引物组和外部引物组;内部引物组包括上游内部引物和下游内部引物,上游内部引物的核苷酸序列如SEQ ID No:3、7、12或17所示,下游内部引物的核苷酸序列如SEQ ID No:4、8、13或18所述;外部引物组包括上游外部引物和下游外部引物,上游外部引物的核苷酸序列如SEQ ID No:1、5、10或15所示,下游外部引物的核苷酸序列如SEQ ID No:2、6、11或16所示。

Description

一种用于检测金黄色葡萄球菌的引物组合和试剂盒
本申请要求申请日为2020/1/3的中国专利申请202010005496.7的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于分子生物技术检测技术领域,尤其涉及一种用于检测金黄色葡萄球菌的引物组合和试剂盒。
背景技术
金黄色葡萄球菌是导致上呼吸道感染和肺炎等疾病的一种非常重要的致病微生物,隶属于葡萄球菌属,是一种革兰氏阳性菌,能够引起非常严重的感染,更甚者则可能导致死亡。金黄色葡萄球菌可通过多种媒介传播,既可通过空气传播,又可以通过水、食物等方式传播,因而可以导致多种方式的感染。
金黄色葡萄球菌通过食品方式传播是一类非常常见的传播途径,但目前采用的传统食品微生物检测方法费时、费力。主要包括前增菌、选择性增菌、分离、生化鉴定和血清型鉴定等程序,对于一些非典型的可疑阳性菌株,需要更长的时间(长达5天左右)。世界各国均加强了食品安全相关工作,检测技术日益趋向高技术化、系列化、速测化、便携化。我国对金黄色葡萄球菌的检测远不能达到时效需求,必须跟进国际研究趋势,发展高通量食品安全检测技术。
环介导等温扩增技术(loop-mediated isothermal amplification,LAMP)是由日本学者Notomi公开的一种新型核酸扩增技术,该方法具有一系列显著的优点:相比于传统PCR灵敏度更高;反应所需时间短(30~60分钟就能完成);临床使用不需要特殊的仪器(相比于PCR仪和荧光定量PCR仪,节省成本,便于实施);操作简单等(Pooria Gill.et.al.AS-LAMP:A New and  Alternative Method for Genotyping.Avicenna J Med Biotechnol.2020 Jan-Mar;12(1):2–8.)。因此极为适用于对金黄色葡萄球菌的检测。
目前现有技术中所设计的金黄色葡萄球菌LAMP引物,其中具有相对较高灵敏度的例如公开号CN104328173B的引物检测限为5.8fg/反应(8.1拷贝数/反应),但在实际应用中,相比于临床,食品样品基质更为复杂,目标致病金黄色葡萄球菌的含量通常更低,在检测方法上相比于临床难度更高,因此急需一种更高灵敏度且特异性好的引物。
发明内容
为解决现有技术中缺乏针对食品样品中的金黄色葡萄球菌具有高灵敏度和高特异性的检测技术的技术问题,本发明提供了一种用于检测金黄色葡萄球菌的引物组合和试剂盒,该引物组合和试剂盒比现有技术对金黄色葡萄球菌检测具有更高的灵敏度或特异性,结合等温扩增方法能够缩短检测的时间。
为了解决上述技术问题,本发明的技术方案之一为:提供了一种用于检测金黄色葡萄球菌的引物组合,所述引物组合包括内部引物组和外部引物组:
所述内部引物组包括上游内部引物和下游内部引物,所述上游内部引物的核苷酸序列如SEQ ID No:3、7、12或17所示,所述下游内部引物的核苷酸序列如SEQ ID No:4、8、13或18所示;
所述外部引物组包括上游外部引物和下游外部引物,所述上游外部引物的核苷酸序列如SEQ ID No:1、5、10或15所示,所述下游外部引物的核苷酸序列如SEQ ID No:2、6、11或16所示。
较佳地,所述引物组合由上游内部引物、下游内部引物、上游外部引物和下游外部引物组成,所述上游内部引物的核苷酸序列如SEQ ID NO:3所示,所述下游内部引物的核苷酸序列如SEQ ID NO:4所示,所述上游外部引物的核苷酸序列如SEQ ID NO:1所示,所述下游外部引物的核苷酸序列 如SEQ ID NO:2所示。
在一优选的具体实施例中,所述引物组合还包括环引物,所述环引物包括上游环引物和/或下游环引物,所述上游环引物的核苷酸序列如SEQ ID No:9或19所示,所述下游环引物的核苷酸序列如SEQ ID No:14或20所示,
较佳地,所述引物组合选自以下组:
(1)所述引物组合由上游内部引物、下游内部引物、上游外部引物、下游外部引物和上游环引物组成,所述上游内部引物的核苷酸序列如SEQ ID NO:7所示,所述下游内部引物的核苷酸序列如SEQ ID NO:8所示,所述上游外部引物的核苷酸序列如SEQ ID NO:5所示,所述下游外部引物的核苷酸序列如SEQ ID NO:6所示和所述上游环引物的核苷酸序列如SEQ ID NO:9所示;或,
(2)所述引物组合由上游内部引物、下游内部引物、上游外部引物、下游外部引物和下游环引物组成,所述上游内部引物的核苷酸序列如SEQ ID NO:12所示,所述下游内部引物的核苷酸序列如SEQ ID NO:13所示,所述上游外部引物的核苷酸序列如SEQ ID NO:10所示序列,所述下游外部引物的核苷酸序列如SEQ ID NO:11所示和所述下游环引物的核苷酸序列如SEQ ID NO:14所示;或,
(3)所述引物组合由上游内部引物、下游内部引物、上游外部引物、下游外部引物、上游环引物和下游环引物组成,所述上游内部引物的核苷酸序列如SEQ ID NO:17所示,所述下游内部引物的核苷酸序列如SEQ ID NO:18所示,所述上游外部引物的核苷酸序列如SEQ ID NO:15所示,所述下游外部引物的核苷酸序列如SEQ ID NO:16所示,所述上游环引物的核苷酸序列如SEQ ID NO:19所示和所述下游环引物的核苷酸序列如SEQ ID NO:20所示。
为了解决上述技术问题,本发明的技术方案之二为:提供了一种试剂盒,其包括上述技术方案所述的引物组合、核酸扩增反应酶、核酸扩增缓冲液和 扩增显色剂。
较佳地,所述核酸扩增反应酶包括Bst DNA聚合酶、Bst 2.0DNA聚合酶、Bst 2.0热启动DNA聚合酶、或Bst 3.0DNA聚合酶。
优选地,所述核酸扩增反应酶为Bst DNA聚合酶。
更优选地,所述Bst DNA聚合酶的酶活为5U~15U,优选为8U。
较佳地,所述核酸扩增缓冲液包括20mM Tris-HCl、10mM(NH 4) 2SO 4、50mM KCl、24mM MgSO 4、0.1%Tween 20、1mM dNTP,所述核酸扩增缓冲液的pH值为8.8。
优选地,所述扩增显色剂包括SYBR Green I。
在一优选实施例中,所述试剂盒还包括阳性对照、阴性对照和芯片。
优选地,所述阳性对照包括感染金黄色葡萄球菌的阳性质粒。
优选地,所述阴性对照包括无核糖核酸酶和/或无脱氧核糖核酸酶的去离子水。
为了解决上述技术问题,本发明的技术方案之三为:提供了上述引物组合或上述试剂盒在制备检测金黄色葡萄球菌的试剂中的应用。
为了解决上述技术问题,本发明的技术方案之四为:提供了一种金黄色葡萄球菌的非诊断目的的检测方法,其包含以下步骤:
(1)提取样品基因组DNA,使之与上述引物组合或上述试剂盒的组分混合,得到反应体系;
(2)将所述反应体系加入芯片,封装后进行等温扩增;
(3)根据扩增结果判断是否含有金黄色葡萄球菌;
优选地,所述样品采集自空气、食品或水样。
较佳地,其中,步骤(1)所述反应体系中,所述外部引物的终浓度独立地为0.1~0.5μM,优选0.1~0.4μM,更优选为0.2μM;所述内部引物的终浓度独立地为1~2μM,优选为1.5μM;所述环引物的终浓度独立地为0.5~2.5μM,优选为0.7~2.2μM,和/或,
步骤(2)中,所述等温扩增的反应温度为63℃,反应时间为45min。
本发明积极进步效果在于:本发明提供了一种用于检测金黄色葡萄球菌的引物组合和试剂盒,所述引物组合为4条时,对金黄色葡萄球菌的检测灵敏度达到20fg/μl(6.5拷贝数/μl),检测出峰时间为20分钟;所述引物组合为5条时,对金黄色葡萄球菌的检测灵敏度达到8fg/μl(2.6拷贝数/μl),检测出峰时间为15分钟;所述引物组合为6条时,对金黄色葡萄球菌的检测灵敏度达到4fg/μl(1.3拷贝数/μl),检测出峰时间为12分钟。相比于现有技术,本发明的检测灵敏度具有明显提升。
且本发明提供的引物组合和试剂盒对金黄色葡萄球菌具有高度的特异性,结合等温扩增方法能够缩短检测的时间,45min以内就能够得出检测结果。
附图说明
图1为四条引物(SEQ ID NO:1-4)扩增检测实际样本核酸灵敏度;
图2为第一组五条引物(SEQ ID NO:5-9)扩增检测实际样本核酸灵敏度;
图3为第二组五条引物(SEQ ID NO:10-14)扩增检测实际样本核酸灵敏度;
图4为六条引物(SEQ ID NO:15-20)扩增检测实际样本核酸灵敏度;
图5为六条引物(SEQ ID NO:15-20)的特异性验证,和常见的食源性细菌进行交叉验证。
具体实施方式
本发明提供了一种用于检测金黄色葡萄球菌的引物组合,所述引物是针对金黄色葡萄球菌nuc基因进行设计。本发明所述引物组合包括内部引物组和外部引物组;所述内部引物组包括上游内部引物和下游内部引物,所述上游内部引物的核苷酸序列如SEQ ID No:3、7、12或17所示,所述下游内部 引物的核苷酸序列如SEQ ID No:4、8、13或18所示;所述外部引物组包括上游外部引物和下游外部引物,所述上游外部引物的核苷酸序列如SEQ ID No:1、5、10或15所示,所述下游外部引物的核苷酸序列如SEQ ID No:2、6、11或16所示。
SEQ ID No:3:
5’-gctttgtttcaggtgtatcaaccaaattaatgtacaaaggtcaaccaatg-3’;
SEQ ID No:7:
5’-cgccgttacctgtttgtgatactttagttgtagcttcaagtc-3’;
SEQ ID No:12:
5’-atgtcattggttgacctttgtacatttttaaattacataaagaacctgcga-3’;
SEQ ID No:17:
5’-agggactatctttaccatgaacctttaagtggtgttacaaatactgaa-3’;
SEQ ID No:4:
5’-aaggtgtagagaaatatggtcctgattctttgcattttctaccatct-3’;
SEQ ID No:8:
5’-agatccaacagtatacagtgcaactcgtatcaccatcaatcgctt-3’;
SEQ ID No:13:
5’-gttgatacacctgaaacaaagcatcttttatctttttcgtaaatgcacttg-3’;
SEQ ID No:18:
5’-attggccaaagttcgataaaaaacattgagttagctgatgacgaatt-3’。
在本发明中,所述上游内部引物由F2区和F1c区域组成,F2区与金黄色葡萄球菌的特异性序列3’端的F2c区域互补,F1c区与金黄色葡萄球菌的特异性序列5'端的Flc区域序列相同;所述下游内部引物由B1c和B2区域组成,B2区与金黄色葡萄球菌的特异性序列3'端的B2c区域互补,B1c区域与金黄色葡萄球菌的特异性序列5'端的Blc区域序列相同。
SEQ ID No:1:5’-gcgacattaattaaagcgattg-3’;
SEQ ID No:5:5’-cgctactagttgcttagtgtt-3’;
SEQ ID No:10:5’-aacagtatatagtgcaacttcaa-3’;
SEQ ID No:15:5’-aaggaacttggattcatttcc-3’;
SEQ ID No:2:5’-ctttgtcaaactcgacttcaa-3’;
SEQ ID No:6:5’-tgtcattgtttgacctttgt-3’;
SEQ ID No:11:5’-ctttgtcaaactcgacttcaa-3’;
SEQ ID No:16:5’-gcttgaacgatataatccatgt-3’。
在本发明中,所述引物组合还优选包括环引物,所述环引物包括上游环引物和/或下游环引物,所述上游环引物的核苷酸序列如SEQ ID No:9或19所示,所述下游环引物的核苷酸序列如SEQ ID No:14或20所示。在本发明中,所述环引物组可以加快扩增反应的进行,从而使得反应速率大幅提升。
SEQ ID No:9:5’-aaaaattacataaagaacctgcg-3’;
SEQ ID No:19:5’-aggtagttctattggagtaggtaattt-3’;
SEQ ID No:14:5’-ggtgtagagaaatatggtcctgaag-3’;
SEQ ID No:20:5’-gctatatcaactttagactttga-3’。
本发明还提供了一种试剂盒,包括上述技术方案所述的引物组合、核酸扩增反应酶、核酸扩增缓冲液和扩增显色剂。
在本实施例中,所述核酸扩增反应酶为Bst DNA聚合酶,所述Bst DNA聚合酶的酶活为8U。本发明对所述Bst DNA聚合酶的来源没有特殊限定,采用常规市售产品即可。
在本实施例中,所述核酸扩增缓冲液包括20mM Tris-HCl、10mM(NH 4) 2SO 4、50mM KCl、24mM MgSO 4、0.1%Tween 20、1mM dNTP,所述核酸扩增缓冲液的pH值为8.8。
在本实施例中,所述扩增显色剂为SYBR Green I。
在本实施例中,所述试剂盒还包括阳性对照、阴性对照和芯片。所述阳性对照包括感染金黄色葡萄球菌的阳性质粒;所述阴性对照优选包括无核糖 核酸酶和/或无脱氧核糖核酸酶的去离子水;所述芯片针对上述系列试剂进行反应微流体控制芯片即可。
在本实施例中,当所述引物组合含有4条引物时,四条引物为上游内部引物(SEQ ID No:3)、下游内部引物(SEQ ID No:4)、上游外部引物(SEQ ID No:1)和下游外部引物(SEQ ID No:2)。反应体系每25μl中含有核酸扩增反应酶4μl,引物组合8μl,核酸扩增缓冲液4μl,扩增显色剂0.5μl,去离子水6.5μl,样品基因组DNA 2μl。所述上游外部引物和下游外部引物的终浓度独立地为0.1~0.5μM,优选0.1~0.4μM,更优选为0.2μM。所述下游内部引物和上游内部引物的终浓度独立地为1~2μM,优选为1.5μM。
在本实施例中,当所述引物组合为5条引物时,5条引物为上游内部引物(SEQ ID No:7)、下游内部引物(SEQ ID No:8)、上游外部引物(SEQ ID No:5)、下游外部引物(SEQ ID No:6)和上游环引物(SEQ ID No:9),或5条引物为上游内部引物(SEQ ID No:12)、下游内部引物(SEQ ID No:13)、上游外部引物(SEQ ID No:10)、下游外部引物(SEQ ID No:11)和上游环引物(SEQ ID No:14)。在本实施例中,反应体系每25μl中含有核酸扩增反应酶4μl,引物组合10μl,核酸扩增缓冲液4μl,扩增显色剂0.5μl,去离子水4.5μl,样品基因组DNA 2μl。所述上游外部引物和下游外部引物的终浓度独立地优选为0.1~0.5μM,优选0.1~0.4μM,更优选为0.2μM。所述下游内部引物和上游内部引物的终浓度独立地优选为1~2μM,更优选为1.5μM。所述环引物的终浓度独立地优选为0.5~2.5μM,更优选为0.7~2.2μM。
在本实施例中,当所述引物组合优选为6条引物时,6条引物为上游内部引物(SEQ ID No:17)、下游内部引物(SEQ ID No:18)、上游外部引物(SEQ ID No:15)、下游外部引物(SEQ ID No:16)、上游环引物(SEQ ID No:19)和下游环引物(SEQ ID No:20)。所述反应体系每25μl中含有核酸扩增反应酶4μl,引物组合12μl,核酸扩增缓冲液4μl,扩增显色剂0.5μl,去离子水2.5μl,样品基因组DNA 2μl。上游外部引物和下游外部引物的终浓 度独立的优选为0.1~0.4μM,更优选为0.2μM。所述下游内部引物和上游内部引物的终浓度独立地优选为1~2μM,更优选为1.5μM。所述环引物的终浓度独立地优选为0.5~2.5μM,更优选为0.7~2.2μM。
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1:4条引物(SEQ ID No:1~4)对金黄色葡萄球菌的快速检测
1)样本采集
采集食源性细菌样本,样本置于采样管中保存。
2)采用检测试剂盒的样本提取核酸
取100μL培养物置于1.5ml离心管中,加入100μL裂解液(0.5%w/v SDS,0.5%w/v月桂酰肌氨酸钠,TE缓冲液,pH 7.5),混匀待检测样本和裂解液。室温裂解半小时,用酚氯仿(1:1)进行抽提,乙醇沉淀核酸。
3)核酸扩增反应检测
将核酸扩增反应酶、扩增引物、核酸扩增缓冲液、扩增显色剂和去离子水以及混合好的待测样本加入检测芯片中。将检测芯片置于相应检测仪器ABI 7500中63℃45min,每30s检测一次荧光,荧光通道为FAM通道,反应结束后观察等温扩增过程的荧光强度变化,在反应后通过判定荧光强度变化率,判定检验结果,结果如图1。其中核酸扩增反应酶为Bst DNA聚合酶,酶活为8U/μl;核酸扩增缓冲液为20mM Tris-HCl、10mM(NH4)2SO4、50mM KCl、24mM MgSO4、0.1%Tween 20、1mM dNTP,所述核酸扩增缓冲液的pH值为8.8;扩增显色剂为SYBR Green I,内部扩增引物SEQ ID No:3和4,使用浓度即终浓度为1.5μM,外部扩增引物SEQ ID No:1和2,使用浓度即终浓度为0.2μM。
表1反应体系
扩增引物(4条) 8μL
DNA聚合酶 4μL
核酸扩增缓冲液 4μL
扩增显色剂 0.5μL
去离子水 6.5μL
待测样本 2μL
  总体积为25μL
初始样本的核酸经分光光度法检测为2ng/μl,如图1所示,通过分别稀释该样本10倍,100倍,1000倍,10000倍,100000倍,250000倍,500000倍和1000000倍的荧光曲线得出,该样本的检测限为可以稀释100000倍,该引物组和恒温扩增方法灵敏度达到20fg/μl。
实施例2:5条引物(SEQ ID No:5~9)对金黄色葡萄球菌的快速检测
1)样本采集
采集食源性致病菌样本,样本置于采样管中保存。
2)采用检测试剂盒的样本提取核酸
取100μL培养物置于1.5ml离心管中,加入100μL裂解液(同实施例1),混匀待检测样本和裂解液。
3)核酸扩增反应检测
将核酸扩增反应酶、扩增引物、核酸扩增缓冲液、扩增显色剂和去离子水以及混合好的待测样本加入检测芯片中。将检测芯片置于相应检测仪器(同实施例1)中45分钟,反应结束后观察等温扩增过程的荧光强度变化,在反应后通过判定荧光强度变化率,判定检验结果,结果如图2。其中核酸扩增反应酶和核酸扩增缓冲液同实施例1;扩增显色剂为SYBR Green I,内部扩增引物SEQ ID No:7和8使用浓度即终浓度为1.5μM,外部扩增引物SEQ ID No:5和6,使用浓度即终浓度为0.2μM,环引物SEQ ID No:9,使用浓度即终浓度为0.7~2.2μM。
表2反应体系
扩增引物(5条) 10μL
DNA聚合酶 4μL
核酸扩增缓冲液 4μL
扩增显色剂 0.5μL
去离子水 4.5μL
待测样本 2μL
  总体积为25μL
初始样本的核酸经分光光度法检测为2ng/μl,如图2所示,通过分别稀释该样本10倍,100倍,1000倍,10000倍,100000倍,250000倍,500000倍和1000000倍的荧光曲线得出,检测限为可以稀释250000倍,该引物组和恒温扩增方法灵敏度达到8fg/μl。
实施例3:5条引物(SEQ ID No:10~14)对金黄色葡萄球菌的快速检测
1)样本采集
采集食源性致病菌样本,样本置于采样管中保存。
2)采用检测试剂盒的样本提取核酸
取100μL培养物置于1.5ml离心管中,加入100μL裂解液(0.5%w/v SDS,0.5%w/v月桂酰肌氨酸钠,TE缓冲液,pH 7.5),混匀待检测样本和裂解液,室温裂解半小时,用酚氯仿(1:1)进行抽提,乙醇沉淀核酸。
3)核酸扩增反应检测
将核酸扩增反应酶、扩增引物、核酸扩增缓冲液、扩增显色剂和去离子水以及混合好的待测样本加入检测芯片中。将检测芯片置于ABI 7500,63℃45min,每30s检测一次荧光,荧光通道为FAM通道。检测仪器中45min,反应结束后观察等温扩增过程的荧光强度变化,在反应后通过判定荧光强度变化率,判定检验结果,结果如图3。其中核酸扩增反应酶和核酸扩增缓冲 液同实施例1;扩增显色剂为SYBR Green I,内部扩增引物SEQ ID No:12和13,使用浓度即终浓度为1.5μM,外部扩增引物SEQ ID No:10和11,使用浓度即终浓度为0.2μM,环引物SEQ ID No:14,使用浓度即终浓度为0.7~2.2μM。
表4反应体系
扩增引物(5条) 10μL
DNA聚合酶 4μL
核酸扩增缓冲液 4μL
扩增显色剂 0.5μL
去离子水 4.5μL
待测样本 2μL
  总体积为25μL
初始样本的核酸经分光光度法检测为2ng/μl,如图3所示,通过分别稀释该样本10倍,100倍,1000倍,10000倍,100000倍,250000倍和1000000倍的荧光曲线得出,检测限为可以稀释250000倍,该引物组和恒温扩增方法灵敏度达到8fg/μl。
实施例4:6条引物(SEQ ID No:15~20)对金黄色葡萄球菌的快速检测
1)样本采集
采集食源性致病菌样本,样本置于采样管中保存。
2)采用检测试剂盒的样本提取核酸
取100μL培养物置于1.5ml离心管中,加入100μL裂解液(0.5%w/v SDS,0.5%w/v月桂酰肌氨酸钠,TE缓冲液,pH 7.5),混匀待检测样本和裂解液,室温裂解半小时,用酚氯仿(1:1)进行抽提,乙醇沉淀核酸。
3)核酸扩增反应检测
将核酸扩增反应酶、扩增引物、核酸扩增缓冲液、扩增显色剂和去离子 水以及混合好的待测样本加入检测芯片中。将检测芯片置于相应检测仪器(同实施例1)中45分钟,反应结束后观察等温扩增过程的荧光强度变化,在反应后通过判定荧光强度变化率,判定检验结果,结果如图4。其中核酸扩增反应酶和核酸扩增缓冲液同实施例1;扩增显色剂为SYBR Green I,内部扩增引物SEQ ID No:17和18,使用浓度即终浓度为1.5μM,外部扩增引物SEQ ID No:15和16,使用浓度即终浓度为0.2μM,环引物SEQ ID No:19和20,使用浓度即终浓度为0.7~2.2μM。
表3反应体系
扩增引物(6条) 12μL
DNA聚合酶 4μL
核酸扩增缓冲液 4μL
扩增显色剂 0.5μL
去离子水 2.5μL
待测样本 2μL
  总体积为25μL
初始样本的核酸经分光光度法检测为2ng/μl,如图4所示,通过分别稀释该样本10倍,100倍,1000倍,10000倍,100000倍,250000倍,500000倍和1000000倍的荧光曲线得出,检测限为可以稀释500000倍,该引物组和恒温扩增方法灵敏度达到4fg/μl。
实施例5:特异性验证
采用等温扩增技术对金黄色葡萄球菌快速检测的试剂盒(6条引物,(SEQ ID No:15~20)特异性进行验证。将引物组和其他标准菌株进行等温扩增,扩增体系及条件同实施例4,检测其特异性。交叉筛选的菌株有金副溶血弧菌,沙门氏菌,痢疾志贺,大肠杆菌,单增李斯特菌,蜡样芽孢杆菌,阪岐杆菌,霍乱弧菌和空肠弯曲杆菌,结果如图5所示,显示该引物只在金 黄色葡萄球菌中扩增出荧光峰,无其他交叉反应,说明该引物组合对金黄色葡萄球菌具有高特异性。其中对应关系为:
Sa:金黄色葡萄球菌;Vp:副溶血弧菌;Sal:沙门氏菌;Shc:痢疾志贺;Eco:大肠杆菌;Lm:单增李斯特菌;Bc:蜡样芽孢杆菌;Bs:阪岐杆菌;Vc:霍乱弧菌;Cj:空肠弯曲杆菌。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围

Claims (15)

  1. 一种用于检测金黄色葡萄球菌的引物组合,其特征在于,所述引物组合包括内部引物组和外部引物组:
    所述内部引物组包括上游内部引物和下游内部引物,所述上游内部引物的核苷酸序列如SEQ ID No:3、7、12或17所示,所述下游内部引物的核苷酸序列如SEQ ID No:4、8、13或18所示;
    所述外部引物组包括上游外部引物和下游外部引物,所述上游外部引物的核苷酸序列如SEQ ID No:1、5、10或15所示,所述下游外部引物的核苷酸序列如SEQ ID No:2、6、11或16所示。
  2. 根据权利要求1所述的引物组合,其特征在于,所述引物组合由上游内部引物、下游内部引物、上游外部引物和下游外部引物组成,所述上游内部引物的核苷酸序列如SEQ ID NO:3所示,所述下游内部引物的核苷酸序列如SEQ ID NO:4所示,所述上游外部引物的核苷酸序列如SEQ ID NO:1所示,所述下游外部引物的核苷酸序列如SEQ ID NO:2所示。
  3. 根据权利要求1所述的引物组合,其特征在于,所述引物组合还包括环引物,所述环引物包括上游环引物和/或下游环引物,所述上游环引物的核苷酸序列如SEQ ID No:9或19所示,所述下游环引物的核苷酸序列如SEQ ID No:14或20所示。
  4. 根据权利要求3所述的引物组合,其特征在于,所述引物组合选自以下组:
    (1)所述引物组合由上游内部引物、下游内部引物、上游外部引物、下游外部引物和上游环引物组成,所述上游内部引物的核苷酸序列如SEQ ID NO:7所示,所述下游内部引物的核苷酸序列如SEQ ID NO:8所示,所述上游外部引物的核苷酸序列如SEQ ID NO:5所示,所述下游外部引物的核苷酸序列如SEQ ID NO:6所示和所述上游环引物的核苷酸序列如SEQ ID NO:9所示;或,
    (2)所述引物组合由上游内部引物、下游内部引物、上游外部引物、下游外部引物和下游环引物组成,所述上游内部引物的核苷酸序列如SEQ ID NO:12所示,所述下游内部引物的核苷酸序列如SEQ ID NO:13所示,所述上游外部引物的核苷酸序列如SEQ ID NO:10所示,所述下游外部引物的核苷酸序列如SEQ ID NO:11所示和所述下游环引物的核苷酸序列如SEQ ID NO:14所示;或,
    (3)所述引物组合由上游内部引物、下游内部引物、上游外部引物、下游外部引物、上游环引物和下游环引物组成,所述上游内部引物的核苷酸序列如SEQ ID NO:17所示,所述下游内部引物的核苷酸序列如SEQ ID NO:18所示,所述上游外部引物的核苷酸序列如SEQ ID NO:15所示,所述下游外部引物的核苷酸序列如SEQ ID NO:16所示,所述上游环引物的核苷酸序列如SEQ ID NO:19所示和所述下游环引物的核苷酸序列如SEQ ID NO:20所示。
  5. 一种试剂盒,其特征在于,包括权利要求1-4任一项所述的引物组合、核酸扩增反应酶、核酸扩增缓冲液和扩增显色剂。
  6. 根据权利要求5所述的试剂盒,其特征在于,所述核酸扩增反应酶包括Bst DNA聚合酶、Bst 2.0 DNA聚合酶、Bst 2.0热启动DNA聚合酶、或Bst 3.0 DNA聚合酶,优选为Bst DNA聚合酶。
  7. 根据权利要求6所述的试剂盒,其特征在于,所述Bst DNA聚合酶的酶活为5U~15U,优选为8U。
  8. 根据权利要求5所述的试剂盒,其特征在于,所述核酸扩增缓冲液包括20mM Tris-HCl、10mM(NH 4) 2SO 4、50mM KCl、24mM MgSO 4、0.1%Tween 20、1mM dNTP,所述核酸扩增缓冲液的pH值为8.8。
  9. 根据权利要求5所述的试剂盒,其特征在于,所述扩增显色剂包括SYBR Green I。
  10. 根据权利要求5~9任一项所述的试剂盒,其特征在于,还包括阳性 对照、阴性对照和芯片。
  11. 根据权利要求10所述的试剂盒,其特征在于,所述阳性对照包括感染金黄色葡萄球菌的阳性质粒。
  12. 根据权利要求10所述的试剂盒,其特征在于,所述阴性对照包括无核糖核酸酶和/或无脱氧核糖核酸酶的去离子水。
  13. 根据权利要求1~4任一项所述的引物组合或权利要求5~12任一项所述的试剂盒在制备检测金黄色葡萄球菌的试剂中的应用。
  14. 一种金黄色葡萄球菌的非诊断目的检测方法,其包含以下步骤:
    (1)提取样品的基因组DNA,使之与权利要求1~4任一项所述的引物组合或权利要求5~12任一项所述的试剂盒的组分混合,得到反应体系;
    (2)将所述反应体系加入芯片,封装后进行等温扩增;
    (3)根据扩增结果判断是否含有金黄色葡萄球菌;
    优选地,所述样品采集自空气、食品或水样。
  15. 根据权利要求14所述的检测方法,
    其中,步骤(1)所述反应体系中,所述外部引物的终浓度为0.1~0.5μM,优选0.1~0.4μM,更优选为0.2μM;所述内部引物的终浓度为1~2μM,优选为1.5μM;所述环引物的终浓度为0.5~2.5μM,优选为0.7~2.2μM,和/或,
    步骤(2)中,所述等温扩增的反应温度为63℃,反应时间为45min。
PCT/CN2020/120616 2020-01-03 2020-10-13 一种用于检测金黄色葡萄球菌的引物组合和试剂盒 WO2021135495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010005496.7A CN111004855A (zh) 2020-01-03 2020-01-03 一种用于检测金黄色葡萄球菌的引物组合和试剂盒
CN202010005496.7 2020-01-03

Publications (1)

Publication Number Publication Date
WO2021135495A1 true WO2021135495A1 (zh) 2021-07-08

Family

ID=70120377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120616 WO2021135495A1 (zh) 2020-01-03 2020-10-13 一种用于检测金黄色葡萄球菌的引物组合和试剂盒

Country Status (2)

Country Link
CN (1) CN111004855A (zh)
WO (1) WO2021135495A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004855A (zh) * 2020-01-03 2020-04-14 上海海关动植物与食品检验检疫技术中心 一种用于检测金黄色葡萄球菌的引物组合和试剂盒

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864226A (zh) * 2012-09-21 2013-01-09 武汉真福医药科技发展有限公司 快速检测金黄色葡萄球菌的lamp试剂盒
CN103361429A (zh) * 2013-06-28 2013-10-23 厦门银祥集团有限公司 含有内标的金黄色葡萄球菌的lamp检测引物、试剂盒及检测方法
CN111004855A (zh) * 2020-01-03 2020-04-14 上海海关动植物与食品检验检疫技术中心 一种用于检测金黄色葡萄球菌的引物组合和试剂盒

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159533A (ja) * 2005-12-16 2007-06-28 Kirin Brewery Co Ltd ウエルシュ菌検出用プライマーおよび方法
CN101580873A (zh) * 2009-03-20 2009-11-18 曹际娟 食品中金黄色葡萄球菌毒素基因的检测试剂盒及检测方法
CN104388565A (zh) * 2014-11-24 2015-03-04 武汉明曼基因工程有限公司 一种金黄色葡萄球菌的快速检测试剂盒及其应用
CN106434917A (zh) * 2016-09-24 2017-02-22 中华人民共和国广州机场出入境检验检疫局 一种金黄色葡萄球菌的lamp引物组及检测试剂盒与使用方法
CN108866223A (zh) * 2017-05-15 2018-11-23 吉林出入境检验检疫局检验检疫技术中心 一种用于鉴定金黄色葡萄球菌的lamp引物组及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864226A (zh) * 2012-09-21 2013-01-09 武汉真福医药科技发展有限公司 快速检测金黄色葡萄球菌的lamp试剂盒
CN103361429A (zh) * 2013-06-28 2013-10-23 厦门银祥集团有限公司 含有内标的金黄色葡萄球菌的lamp检测引物、试剂盒及检测方法
CN111004855A (zh) * 2020-01-03 2020-04-14 上海海关动植物与食品检验检疫技术中心 一种用于检测金黄色葡萄球菌的引物组合和试剂盒

Also Published As

Publication number Publication date
CN111004855A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
CN107937613B (zh) 呼吸系统常见的七种流感病毒病原体实时荧光多重pcr引物探针及试剂盒
WO2020168950A1 (zh) 大肠杆菌o157:h7的cpa引物及试剂盒和检测方法
JP6466437B2 (ja) 微生物を複雑な試料から単離する方法
JP2013505723A (ja) 粗製のマトリックスにおける核酸の検出
GB2607805A (en) Novel coronavirus detection reagent and detection method
CN111074000A (zh) 一种区分asfv野毒株与双基因缺失株的三重荧光定量pcr检测材料及试剂盒
CN109234456B (zh) 一种可同时检测6种呼吸道病原体的试剂盒及其应用
CN116042902A (zh) 一种同时检测六种念珠菌的实时荧光核酸恒温扩增检测试剂盒及其专用引物和探针
Zeng et al. Uracil-DNA-glycosylase-assisted loop-mediated isothermal amplification for detection of bacteria from urine samples with reduced contamination
WO2021135495A1 (zh) 一种用于检测金黄色葡萄球菌的引物组合和试剂盒
CN115747353A (zh) 一种用于单核细胞增生李斯特菌检测的引物组、试剂、试剂盒及检测方法
EP1851325B1 (en) Method for detecting viable cells in a sample by using a virus
CN105567802A (zh) 肺炎衣原体荧光pcr检测试剂盒
CN112592992A (zh) 一种基于荧光rma法联合检测肺炎支原体和肺炎衣原体的引物探针组、试剂盒
WO2020021010A1 (en) Method for assessing fecal pollution in water
CN114058742B (zh) 一种引物探针组合物、包含其的试剂盒及其检测方法
CN109371150A (zh) 铜绿假单胞菌荧光pcr检测试剂盒
CN105624286A (zh) 嗜肺军团菌荧光pcr检测试剂盒
CN116121413A (zh) B群链球菌的实时荧光核酸恒温扩增检测试剂盒及其专用引物和探针
CN109439780A (zh) 卡他莫拉菌荧光pcr检测试剂盒
US20050064451A1 (en) Methods and compositions for the detection of bacterial species
CN112899385A (zh) 鉴别布鲁氏菌s2疫苗株与野毒株的引物组、探针及其应用
CN109355413A (zh) 金黄色葡萄球菌荧光pcr检测试剂盒
WO2023179794A1 (zh) 检测分枝杆菌dna的引物及检测方法
CN110512013B (zh) 一种应用高分辨率熔解曲线法鉴别三种棒状杆菌的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908577

Country of ref document: EP

Kind code of ref document: A1