WO2021135461A1 - 检测机构、射频消融导管及射频消融系统 - Google Patents

检测机构、射频消融导管及射频消融系统 Download PDF

Info

Publication number
WO2021135461A1
WO2021135461A1 PCT/CN2020/118646 CN2020118646W WO2021135461A1 WO 2021135461 A1 WO2021135461 A1 WO 2021135461A1 CN 2020118646 W CN2020118646 W CN 2020118646W WO 2021135461 A1 WO2021135461 A1 WO 2021135461A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ablation catheter
claw
sleeve
radiofrequency ablation
Prior art date
Application number
PCT/CN2020/118646
Other languages
English (en)
French (fr)
Inventor
王礼明
徐宏
周华珍
Original Assignee
杭州堃博生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州堃博生物科技有限公司 filed Critical 杭州堃博生物科技有限公司
Priority to US17/756,975 priority Critical patent/US20230144706A1/en
Priority to EP20909204.8A priority patent/EP4085858A4/en
Priority to KR1020227026507A priority patent/KR20220156519A/ko
Priority to JP2022540624A priority patent/JP7416959B2/ja
Publication of WO2021135461A1 publication Critical patent/WO2021135461A1/zh
Priority to US17/658,941 priority patent/US20220241001A1/en
Priority to US17/853,474 priority patent/US20220323149A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/00336Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means with a protective sleeve, e.g. retractable or slidable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00101Thermal conductivity low, i.e. thermally insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/0016Energy applicators arranged in a two- or three dimensional array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00815Temperature measured by a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1422Hook
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/143Needle multiple needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/144Wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1475Electrodes retractable in or deployable from a housing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation

Definitions

  • the embodiment of the present invention relates to the field of medical equipment, and in particular to a detection mechanism, a radio frequency ablation catheter, and a radio frequency ablation system.
  • Radio frequency ablation technology is widely used in lung surgery. Radio frequency refers to radio frequency, but it does not belong to the division of bands in radio communications. The main effect on living organisms is thermal effect. When the frequency of the radio frequency current reaches a certain value (>100kHz), it causes the movement of charged ions in the tissue, that is, friction and heat generation (60°C ⁇ 100°C). The commonly used frequency of radiofrequency ablation equipment is 200 ⁇ 500kHz, and the output power is 100 ⁇ 400kHz.
  • the ablation electrode is the core component of the radiofrequency ablation system, because it directly affects the size and shape of coagulation necrosis. The ideal solidification zone shape should be spherical or oblate.
  • the multi-needle electrode Under the guidance of B-ultrasound or CT, the multi-needle electrode is directly pierced into the diseased tissue mass.
  • the radio frequency electrode needle can make the temperature in the tissue exceed 60 °C, cell death, and produce necrotic areas; if the local tissue temperature exceeds 100 °C, the tumor tissue Coagulation and necrosis occur in the surrounding organs.
  • a large spherical coagulation necrosis area can be produced. Outside the coagulation necrosis area, there is also a 43-60 °C hyperthermia area. In this area, cancer cells can be killed. The normal cells can be restored.
  • the radio frequency electrode In the treatment process, the radio frequency electrode is extended into the human tissue, and the current is introduced into the lesion through the radio frequency electrode, and a large amount of heat is generated at the radio frequency electrode. For example, when the temperature of the lesion reaches 40 °C -60 °C and maintained After a period of time, the ablation operation of the lesion is completed.
  • the radio frequency ablation system in the prior art cannot determine the working status information of the radio frequency electrode, for example, it cannot determine the temperature near the radio frequency electrode. Therefore, the operation process can only rely on the doctor's experience to judge the progress of the ablation operation and perform adjustment operations, which increases the number of operations. Difficulty and precision. Therefore, how to provide a radio frequency ablation system so that it can accurately determine whether the ablation is completed is an urgent problem in this field.
  • the purpose of the present invention is to provide a detection mechanism, a radio frequency ablation catheter and a radio frequency ablation system.
  • the opening and contraction of the claw electrode can be controlled by pushing the handle slide button back and forth, which not only realizes the position of the electrode body To assist in positioning, the situation around the electrode body is also obtained through the claw-shaped electrode.
  • the embodiment of the present invention provides a detection mechanism, which is applied to a radio frequency ablation catheter, and includes: a fixed seat, a pull wire, a connecting seat and a plurality of claw electrodes;
  • the fixing seat is used to be slidably installed in the radio frequency ablation catheter
  • the fixing base is provided with a plurality of mounting holes, and each of the claw-shaped electrodes passes through the mounting holes and is fixedly connected to the fixing base;
  • the distal end of the pulling wire is fixedly installed on the fixing seat, and the proximal end of the pulling wire is used for fixing on the sliding button of the radiofrequency ablation catheter;
  • the connecting seat is used to be fixedly installed in the radio frequency ablation catheter
  • the connecting seat is provided with a plurality of guide holes, the openings of the adjacent guide holes extend in the same direction, each of the claw electrodes passes through the guide holes, and the guide holes are used to disperse the claw electrodes Extend the connecting seat in a manner;
  • Each claw electrode includes: a first section, a second section, and a third section.
  • the angle between the second section and the first section is an obtuse angle
  • the third section and the second section The included angle is an obtuse angle, so that when the claw-shaped electrodes extend out of the connecting seat in a dispersed manner, they are in an open distribution, and the distal ends of the claw-shaped electrodes are located at the same latitude.
  • the detection mechanism further includes: a fixing ring, the distal end of the fixing ring is fixedly arranged on the claw-shaped electrode, and the wire and the claw-shaped electrode are electrically connected.
  • the distance between adjacent guide holes of the detection mechanism is the same.
  • the distance between the opposite guide holes of the detection mechanism is different.
  • An embodiment of the present invention provides a radio frequency ablation catheter, which includes a handle portion, a needle tube portion, a center electrode, and the detection mechanism described in any one of the above;
  • the needle tube part includes: a first tube sleeve and a second tube sleeve;
  • the connecting seat is specifically installed between the first tube sleeve and the second tube sleeve, the fixing seat is specifically slidably installed in the first tube sleeve, and the fixing ring and the plurality of claws
  • the shaped electrodes are all located in the first sleeve;
  • the handle part includes: a sleeve and a sliding button
  • the sliding button is slidably mounted on the sleeve
  • the proximal end of the pulling wire is fixedly installed on the sliding button
  • the center electrode includes: an electrode body, an electrode lead, and an electrode joint;
  • the electrode body is arranged at the distal end of the second sleeve, the distal end of the electrode wire is electrically connected to the electrode body, and the electrode wire passes through the sleeve and the first sleeve And the second sleeve, the proximal end of the electrode lead is electrically connected to the electrode connector, and the electrode connector is located outside the sleeve.
  • the radiofrequency ablation catheter further includes: a liquid injection joint and a liquid injection tube; the liquid injection tube passes through the sleeve, the fixing seat and the connecting seat, and the electrode body is provided with There is a liquid inlet, and the distal end of the liquid injection tube is in communication with the liquid inlet;
  • the liquid injection joint is arranged at the proximal end of the liquid injection tube and is located outside the sleeve.
  • the electrode body of the radiofrequency ablation catheter is provided with a sprinkler channel, the sprinkler channel is in communication with the liquid inlet, and the sprinkler channel is used to connect the liquid inlet The liquid at the place is sent out in a dispersed manner.
  • the electrode body of the radiofrequency ablation catheter is provided with an infiltration cover outside the body, and the infiltration cover includes a plurality of infiltration holes distributed in a rectangular array, and the aperture of each row of infiltration holes is from the proximal end to the distal end. The ends shrink in turn.
  • the infiltration hole and the sprinkling hole channel of the radiofrequency ablation catheter are arranged in a staggered manner.
  • the electrode body of the radiofrequency ablation catheter includes a cylindrical portion and a tapered portion, and the tapered portion is located at the distal end of the cylindrical portion, and the infiltration mask is sleeved on the Cylindrical part.
  • the electrode body of the radiofrequency ablation catheter is provided with a temperature sensor and a signal catheter;
  • the electrode body is provided with a wiring hole, the temperature sensor is located in the tapered portion, the signal conduit passes through the wiring hole, an insulating layer is provided outside the signal conduit, and the distal end of the signal conduit It is electrically connected to the temperature sensor, and the proximal end of the signal conduit is electrically connected to the electrode connector.
  • the electrode body of the radiofrequency ablation catheter is provided with a clamping groove, and the distal end of the second sleeve is clamped on the clamping groove.
  • the infiltration cover of the radiofrequency ablation catheter is made of an insulating and high-temperature resistant material.
  • the electrode body of the radiofrequency ablation catheter is made of fiber material.
  • the second tube sleeve of the radiofrequency ablation catheter is provided with internal threads
  • the connecting seat is provided with external threads
  • the second tube sleeve and the connecting seat are threadedly connected.
  • the first tube sleeve of the radiofrequency ablation catheter is provided with a countersunk hole
  • the proximal end of the connecting seat is provided with a threaded hole
  • the first tube sleeve and the connecting seat pass Bolt fixed.
  • the connecting seat includes: a liquid injection hole, the liquid injection hole is located on the center line of the connecting seat, the liquid injection hole is used for the liquid injection pipe to pass through, so
  • the guide holes are symmetrically distributed with the liquid injection hole as a center, and the guide holes include a straight section and an arc section, and the arc section is located at the distal end of the straight section.
  • the inner wall of the straight section of the guide hole of the radiofrequency ablation catheter is provided with anti-skid patterns.
  • the inner wall of each arc section of the radiofrequency ablation catheter is provided with an anti-wear cushion layer, and the anti-wear cushion layer is made of rubber.
  • the connecting seat of the radiofrequency ablation catheter is made of glass fiber material.
  • the proximal end of the connecting seat of the radiofrequency ablation catheter is provided with a mounting post, and the mounting post is provided with a spring, so that when the fixing seat moves to the connecting seat, the spring The distal end is held against the connecting post, and the proximal end of the spring is held against the fixing seat.
  • the plurality of claw electrodes of the radiofrequency ablation catheter are hollow tubes.
  • the outer side of the first section of each of the claw electrodes of the radiofrequency ablation catheter is sheathed with an insulating layer.
  • the second section of each claw electrode of the radiofrequency ablation catheter is sheathed with an insulating layer.
  • the first segment and the second segment of the radiofrequency ablation catheter are both straight segments, and the third segment is an arc segment.
  • the radio frequency ablation catheter is provided with first grooves on both sides of the fixing seat, the distal end of the pulling wire is provided with a blocking block, and the blocking block is embedded in the first concave.
  • the groove is used for fixedly connecting the pulling wire with the fixing seat.
  • the fixing seat of the radiofrequency ablation catheter is made of electrical ceramics.
  • the radio frequency ablation catheter and the fixing ring and the fixing seat have an interference fit to limit the protruding length of the claw electrode.
  • the fixing ring of the radiofrequency ablation catheter is made of silicone rubber.
  • the fixing ring of the radiofrequency ablation catheter is a hollow cylinder, and the fixing ring is provided with a slit.
  • buffer pads are provided at both ends of the fixing ring of the radiofrequency ablation catheter.
  • the buffer pad of the radiofrequency ablation catheter is made of elastic rubber material.
  • the fixing seat of the radiofrequency ablation catheter includes: a female fixing ring and a male fixing ring that are spliced with each other.
  • the female fixing ring and the male fixing ring of the radiofrequency ablation catheter are hinged by a hinge shaft.
  • An embodiment of the present invention also provides a radio frequency ablation system, including the radio frequency ablation catheter described in any one of the above feasible solutions.
  • the detection mechanism, the radio frequency ablation catheter and the radio frequency ablation system of the present invention include: a handle portion, a needle tube portion, a center electrode, and a detection mechanism.
  • the needle tube portion includes: a first tube sleeve and a second tube sleeve
  • the handle includes: a barrel sleeve and a sliding button
  • the center electrode includes: an electrode body, an electrode lead, and an electrode connector
  • the detection mechanism includes: a fixed ring, a fixed seat, and a traction Wire, connecting seat and multiple claw-shaped electrodes.
  • the detection mechanism, radio frequency ablation catheter and radio frequency ablation system of the present invention are based on the user, and the end close to the user is the proximal end, and the end far away from the user is the distal end.
  • the connecting seat is installed between the first tube sleeve and the second tube sleeve, the fixing seat is located at the proximal end of the connecting seat, the fixing seat, the fixing ring and the multiple claw-shaped electrodes are all arranged in the first tube sleeve, and the fixing seat can be
  • the first tube sleeve slides inside, the fixing ring is installed at the proximal end of the fixing seat, the fixing ring is fixed on the claw electrode, and the claw electrode is inserted in the fixing seat.
  • the claw-shaped electrodes can slide in the connecting seat, and when the claw-shaped electrodes extend out of the connecting seat, the claw-shaped electrodes are distributed in an open pattern and are located on the same latitude.
  • the sliding button can slide on the surface of the sleeve, the proximal end of the pulling wire is fixed on the sliding button, and the distal end of the pulling wire is fixed on the fixing seat.
  • the electrode body is located at the distal end of the second sleeve, the distal end of the electrode lead is fixed in the electrode body and is electrically connected, the proximal end of the electrode lead is electrically connected with the electrode connector, and the electrode connector is located outside the sleeve.
  • claw-shaped electrodes can be pushed and pushed out on the needle tube part through the connecting seat, fixing seat and pulling wire.
  • the sliding button can be pushed to the far end, and the sliding button drives the traction The wire thus drives the fixing seat to be pushed to the distal end.
  • the claw-shaped electrode fixed on the fixing seat travels to the far end due to the fixed seat, so the claw-shaped electrode is also pushed to the distal end as well, so that the originally received in the connecting seat is pushed forward.
  • the claw electrode is pushed out of the needle tube.
  • the slide button drives the pulling wire, and the pulling wire pulls the holder to pull back the claw electrode on the holder, which was originally located in the needle tube.
  • the claw-shaped electrode on the outside will be retracted inside the connector.
  • the sliding button drives the traction wire and the fixed seat, and finally the push-out and withdrawal of the claw-shaped electrode are realized, which facilitates the user's control of the claw-shaped electrode during the operation.
  • the claw electrode In the process of radiofrequency ablation, the claw electrode can be pushed forward and backward to control the opening and contraction of the claw-shaped electrode, which not only realizes the auxiliary positioning of the electrode body, but also obtains the situation around the electrode body through the claw-shaped electrode, and then judges the ablation progress .
  • FIG. 1 is a schematic diagram of the overall structure of a radiofrequency ablation catheter in Embodiment 1 of the present invention
  • FIG. 2 is a partial enlarged view of the needle tube portion of the radiofrequency ablation catheter in Embodiment 1 of the present invention
  • Fig. 3 is a connection diagram of the fixing base and the fixing ring of the radiofrequency ablation catheter in the first embodiment of the present invention
  • FIG. 4 is a schematic diagram of the structure of the fixing seat of the radiofrequency ablation catheter in the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the position of the connecting seat and the spring of the radiofrequency ablation catheter in Embodiment 1 of the present invention.
  • FIG. 6 is a first cross-sectional view of the connecting seat of the radiofrequency ablation catheter in the first embodiment of the present invention
  • FIG. 7 is a second cross-sectional view of the connecting seat of the radiofrequency ablation catheter in Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of the overall structure of the infiltration cover of the radiofrequency ablation catheter in Embodiment 1 of the present invention.
  • FIG. 9 is a cross-sectional view of the infiltration cover of the radiofrequency ablation catheter in the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the connection between the second sleeve of the radiofrequency ablation catheter and the infiltration cover in the first embodiment of the present invention
  • Fig. 11 is a left side view of the fixing seat of the radiofrequency ablation catheter in the first embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the structure of the claw electrode of the radiofrequency ablation catheter in Embodiment 1 of the present invention.
  • Needle tube part 11. First tube sleeve; 111, Countersunk hole; 12, Second tube sleeve; 121, Internal thread; 2. Handle part; 21, Tube sleeve; 22, Slide button; 23, Electrode connector; 24. Liquid injection connector; 25. Liquid injection tube; 26. Electrode lead; 3. Center electrode; 31. Electrode body; 311. Liquid inlet; 312. Sprinkler channel; 32. Infiltration cover; 321. Infiltration hole; 33 , Temperature sensor; 34, wiring hole; 35, card slot; 4. fixing ring; 41, crack; 42, cushion; 5.
  • fixing seat 51, mounting hole; 52, through hole; 53, first recess Groove; 54, clamp block; 55, male fixing ring; 551, bump; 56, female fixing ring; 561, second groove; 57, hinge shaft; 6, connecting seat; 61, guide hole; 611, straight section 6111, anti-skid pattern; 612, arc section; 6121, anti-wear cushion; 62, injection hole; 63, external thread; 64, threaded hole; 65, mounting post; 7, claw electrode; 71, first Section; 72, the second section; 73, the third section; 8, the spring; 9, the insulating layer.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. It can also be integrated; it can be a mechanical connection, an electrical connection, or a communication connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a connection between two components or two components
  • the interaction relationship unless otherwise clearly defined.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the technical solutions of the present invention will be described in detail below with specific embodiments. The following specific embodiments can be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments.
  • Fig. 1 is a schematic diagram of the overall structure of the radiofrequency ablation catheter in the first embodiment of the invention
  • Fig. 2 is a partial enlarged view of the needle part of the radiofrequency ablation catheter in the first embodiment of the invention
  • Fig. 3 is the radiofrequency ablation catheter in the first embodiment of the invention
  • Figure 4 is a schematic diagram of the fixed seat structure of the radiofrequency ablation catheter in Embodiment 1 of the present invention
  • Figure 5 is a schematic diagram of the position of the connection seat and spring of the radiofrequency ablation catheter in Embodiment 1 of the present invention
  • 6 is a first cross-sectional view of the connection base of the radiofrequency ablation catheter in Embodiment 1 of the present invention
  • FIG. 1 is a schematic diagram of the overall structure of the radiofrequency ablation catheter in the first embodiment of the invention
  • Fig. 2 is a partial enlarged view of the needle part of the radiofrequency ablation catheter in the first embodiment of the invention
  • Fig. 3 is the radiofrequency ablation catheter in the first embodiment of
  • FIG. 7 is a second cross-sectional view of the connection base of the radiofrequency ablation catheter in Embodiment 1 of the present invention
  • FIG. 8 is an implementation of the present invention
  • Fig. 9 is a cross-sectional view of the infiltration cover of the radiofrequency ablation catheter in Example 1 of the present invention
  • Fig. 10 is the second part of the radiofrequency ablation catheter in Example 1 of the present invention
  • Fig. 11 is a left view of the fixing seat of the radiofrequency ablation catheter in the first embodiment of the present invention
  • Fig. 12 is a schematic diagram of the claw electrode structure of the radiofrequency ablation catheter in the first embodiment of the present invention.
  • the radiofrequency ablation catheter in this embodiment includes: a handle portion 2, a needle tube portion 1, a center electrode 3, and a detection mechanism.
  • the needle tube portion 1 includes: a first tube sleeve 11 and a second tube sleeve 12
  • the handle portion 2 includes a barrel sleeve 21 and a sliding button 22
  • the center electrode 3 includes: an electrode body 31, an electrode lead 26 and an electrode connector 23, a detection mechanism Including: a fixed ring 4, a fixed seat 5, a pulling wire (not shown in the figure), a connecting seat 6 and a plurality of claw-shaped electrodes 7. Based on the user, the end close to the user is the proximal end, and the end far away from the user is the distal end.
  • the radiofrequency ablation catheter is, in order from proximal to distal, a sleeve 21, a first sleeve 11, a fixing ring 4, a fixing seat 5, a connecting seat 6, a second sleeve 12 and a center electrode 3.
  • the barrel sleeve 21 is located at the proximal end of the needle tube portion 1
  • the first barrel sleeve 11 is sleeved at the distal end of the barrel sleeve
  • the electrode connector 23 is located at the proximal end of the barrel sleeve 21
  • the proximal end of the electrode lead 26 is electrically connected to the electrode connector 23.
  • the distal end of the electrode lead 26 is inserted into the electrode body 31 and is electrically connected to the electrode body 31.
  • the electrode body 31 is located at the distal end of the needle tube portion 1 and fixed at the distal end of the second sleeve 12.
  • the electrode body 31 is made of fiber material.
  • the electrode lead 26 passes through the sleeve 21, the first sleeve 11, the fixing seat 5, the connecting seat 6, the second sleeve 12 and the electrode body 31, respectively.
  • the claw electrode 7 includes a first section 71, a second section 72 and a third section 73.
  • the first section 71 is the proximal end
  • the second section 72 is the middle
  • the third section 73 is the distal end
  • the first section 71 and the second section 72 are obtuse angles
  • the second section 72 and the third section 73 are obtuse angles.
  • the claw-shaped electrode can obtain the impedance value of the contact position, or the claw-shaped electrode itself is made of a heat-sensitive material to obtain the highest temperature around the claw-shaped electrode.
  • the detection device can detect the temperature or impedance at the claw-shaped electrode to determine the progress of ablation.
  • the fixing seat 5 is located in the first pipe sleeve 11, and the fixing seat 5 can slide in the first pipe sleeve 11.
  • the claw-shaped electrode 7 is fixed in the mounting hole 51 by means of glue, that is, the claw-shaped electrode 7 is fixedly arranged in the mounting hole 51 by an adhesive.
  • the claw electrode 7 is fixed in the mounting hole 51 by welding, that is, the claw electrode 7 is welded to the mounting hole 51.
  • a through hole 52 is provided on the center line of the fixing base 5, and the four mounting holes 51 are symmetrically distributed with the through hole 52 as the center.
  • the through hole 52 is used for the signal conduit and the liquid injection tube 25.
  • the pulling wire (not shown in the figure) is fixed at the distal end of the fixing base 5.
  • the fixing ring 4 is located in the first sleeve 11, the fixing ring 4 is located at the proximal end of the fixing seat 5, the distal end of the fixing ring 4 is fixed on the claw electrode 7, and the proximal end of the fixing ring 4 is used for fixing Externally connected wires, and electrically connect the wires and the claw-shaped electrodes.
  • the external wire passes through the sleeve 21 and the first sleeve 11, the proximal end of the external wire is fixed on the electrode connector 23, the distal end of the external wire is fixed on the fixing ring 4, the first section 71 of the claw electrode 7 is removed from the fixing seat Pass through 5 and enter the inside of the fixed ring 4, and the distal end of the external wire enters the inside of the fixed ring 4 from the proximal end of the fixed ring 4.
  • the first section 71 of the claw electrode 7 is in contact with the distal end of the external wire to form an electrical connection.
  • the electrode connector 23 is connected to the radio frequency ablation system, and the current is transmitted to the claw electrode 7 through the external wire, and then the current is released into the human tissue through the claw electrode 7.
  • a sliding button 22 is installed on the surface of the sleeve 21, and the sliding button 22 can slide on the surface of the sleeve 21.
  • the distal end of the pulling wire (not shown in the figure) is fixed on the fixing base 5, and the proximal end of the pulling wire (not shown in the figure) is fixed on the sliding button 22. Pushing the sliding button 22 forwards and backwards to drive the traction wire forward or backward.
  • the traction wire (not shown in the figure) will drive the fixing seat 5 in the first sleeve 11 slide.
  • the claw-shaped electrode 7 is fixed in the fixing base 5. As the fixing base 5 slides forward or backward, the claw-shaped electrode 7 fixed in the fixing base 5 will also move forward or backward along with the fixing base 5.
  • the claw-shaped electrode 7 is fixedly connected to the fixing base 5 by an adhesive, and becomes a moving unit.
  • the connecting seat 6 is located between the first sleeve 11 and the second sleeve 12, and the first sleeve 11 and the second sleeve 12 are respectively fixed at the proximal end and the distal end of the connecting seat 6.
  • the four guide holes 61 are respectively located in the four directions of the connecting seat 6.
  • the four guide holes 61 are distributed in a circumferential array with the central axis of the connecting seat 6 as the center. Therefore, in the four guide holes 61, every two adjacent guide holes The distance between 61 is the same. The distance between the two pairs of opposite guide holes 61 is different.
  • the claw-shaped electrodes 7 slide through the guide holes 61 in the connecting seat 6, and these guide holes 61 allow the claw-shaped electrodes 7 to extend out of the connecting seat 6 in a distributed manner.
  • the four claw electrodes 7 are independent of each other and do not interfere with each other. Since the claw electrode 7 is divided into a first section 71, a second section 72 and a third section 73, when the claw electrode 7 extends out of the connecting seat 6, the first section 71 is still located inside the guide hole 61, and the second section 72 and the third section 73 are pushed out of the guide hole 61 of the connecting seat 6 by the thrust of the fixing seat 5.
  • the claw-shaped electrode 7 When extending out of the connecting seat 6, they are distributed in an open manner, and their lengths when extending out of the needle tube portion 1 are the same, because the positions of the four guide holes 61 in the connecting seat 6 will correspond, and the guide holes The position of the distal end opening of 61 is the same with respect to the connecting seat 6, so when the claw electrode 7 extends out of the guide hole 61, the distal end of the claw electrode 7 is located at the same latitude.
  • the radio frequency ablation catheter is used in a radio frequency ablation system.
  • the radio frequency ablation system includes a radio frequency generator (ablation instrument).
  • the radio frequency generator (ablation instrument) is used to connect to the radio frequency ablation catheter and provide electricity to the electrode joints of the radio frequency ablation catheter. Signal, so that the center electrode and claw electrode work.
  • the radiofrequency ablation catheter of the present invention includes: a handle portion 2, a needle tube portion 1, a center electrode 3, and a detection mechanism.
  • the needle tube portion 1 includes: a first tube sleeve 11 and a second tube sleeve 12
  • the handle portion 2 includes: a barrel sleeve 21 and a sliding button 22
  • the center electrode 3 includes: an electrode body 31, an electrode lead 26, and an electrode connector 23.
  • the mechanism includes: a fixed ring 4, a fixed seat 5, a pulling wire, a connecting seat 6 and a plurality of claw-shaped electrodes 7.
  • the detection mechanism, radio frequency ablation catheter and radio frequency ablation system of the present invention are based on the user, and the end close to the user is the proximal end, and the end far away from the user is the distal end.
  • the connecting seat 6 is installed between the first tube sleeve 11 and the second tube sleeve 12, the fixing seat 5 is located at the proximal end of the connecting seat 6, the fixing seat 5, the fixing ring 4 and the plurality of claw electrodes 7 are all arranged in the first tube In the sleeve 11, and the fixed seat 5 can slide in the first sleeve 11, the fixed ring 4 is installed at the proximal end of the fixed seat 5, the fixed ring 4 is fixed on the claw electrode 7, and the claw electrode 7 is inserted in the fixed Block 5.
  • the claw-shaped electrodes 7 can slide in the connecting seat 6, and when the claw-shaped electrodes 7 extend out of the connecting seat 6, the claw-shaped electrodes 7 are distributed in an open pattern and are located on the same latitude.
  • the sliding button 22 can slide on the surface of the sleeve 21, the proximal end of the pulling wire is fixed on the sliding button 22, and the distal end of the pulling wire is fixed on the fixing seat 5.
  • the electrode body 31 is located at the distal end of the second sleeve 12, the distal end of the electrode lead 26 is fixed in the electrode body 31 and is electrically connected, the proximal end of the electrode lead 26 is electrically connected to the electrode connector 23, and the electrode connector 23 is located The outside of the sleeve 21.
  • a plurality of claw-shaped electrodes 7 can be pushed and pushed out on the needle tube portion 1 through the connecting seat 6, the fixed seat 5 and the pulling wire.
  • the sliding button 22 can be moved farther. Pushing the end, the sliding button 22 drives the traction line to drive the fixing base 5 to the distal end. At this time, the claw electrode 7 fixed on the fixing base 5 travels to the distal end, so the claw electrode 7 also moves towards the distal end. The distal end pushes, thereby pushing the claw electrode 7 originally contained in the connecting seat 6 out of the needle tube portion 1.
  • the sliding button 22 drives the pulling wire, and the pulling wire pulls the fixing base 5 to pull the claw electrode 7 on the fixing base 5 back.
  • the claw-shaped electrode 7 originally located outside the needle tube portion 1 will be retracted inside the connector 6 again.
  • the pulling wire and the fixing seat 5 are driven, and finally the pushing out and retracting of the claw electrode 7 is realized, which is convenient for the user to control the claw electrode 7 during the operation.
  • the detection device is used for surgery, the needle tube is extended into the human body, such as into the human trachea.
  • the claw electrode When the claw electrode is opened by the slide button, the claw electrode can be supported on the inner wall of the human trachea, which stabilizes the central electrode At the same time, the claw electrode can also obtain the temperature or impedance data of the human trachea, so as to obtain the operation condition at the center electrode. Therefore, the detection device not only realizes the auxiliary positioning of the electrode body position, but also detects the claw electrode through the claw electrode The temperature or impedance at the location, and then judge the progress of ablation.
  • the radiofrequency ablation catheter further includes: a liquid injection joint 24 and a liquid injection tube 25.
  • the liquid injection connector 24 is located at the proximal end of the sleeve 21, and the liquid injection connector 24 is used to connect a liquid injector.
  • the proximal end of the liquid injection tube 25 is connected to the liquid injection joint 24, and the distal end of the liquid injection tube 25 is inserted into the electrode body 31.
  • the liquid injection tube 25 passes through the sleeve 21, the first sleeve 11 and the second sleeve 12, and the liquid injection tube 25 passes through the sleeve 21, the fixing seat 5 and the connecting seat 6 respectively.
  • the electrode body 31 is provided with a liquid inlet 311, the liquid inlet 311 is located in the middle of the electrode body 31, and the liquid inlet 311 is connected to the distal end of the liquid injection tube 25.
  • the saline propelled from the liquid injector passes through the liquid injection joint 24, the liquid injection tube 25 and the liquid inlet 311, and finally enters the inside of the electrode body 31.
  • the electrode body 31 includes a cylindrical portion and a tapered portion.
  • the tapered part is located at the distal end of the cylindrical part.
  • a wetting cover 32 is also provided outside the electrode body 31.
  • the wetting cover 32 is made of high temperature resistant insulating material.
  • the wetting cover 32 is sleeved on the cylindrical part of the electrode body 31.
  • the brine flowing through the liquid injection pipe 25 is dispersed into the sprinkler channel 312 through the brine concentrated in the liquid inlet 311.
  • the infiltration mask 32 On the surface of the infiltration mask 32, there are a plurality of infiltration holes 321 distributed in a rectangular shape, and the diameter of each row of infiltration holes 321 is reduced from the proximal end to the distal end.
  • the multiple infiltration holes 321 communicate with the sprinkler channel 312 and are arranged in a staggered manner with the sprinkler channel 312. There is a certain gap between the surface of the infiltration cover 32 and the electrode body 31.
  • the salt water in the sprinkler channel 312 will flow through the infiltration cover 32 through the gap. Since the surface of the infiltration cover 32 has multiple infiltration holes 321, the salt water passes through the infiltration holes. 321 flows out, thus dispersing inside the body tissues.
  • a temperature sensor 33 and a signal conduit are also provided in the electrode body 31.
  • the electrode body 31 has a wiring hole 34, the wiring hole 34 is located at one side of the liquid inlet hole 311, and the signal conduit is inserted into the wiring hole 34.
  • the temperature sensor 33 is located on the surface of the tapered part of the electrode body 31.
  • the temperature sensor 33 is electrically connected to the distal end of the signal catheter, and the proximal end of the signal catheter is fixed on the electrode connector 23 and is electrically connected to the electrode connector 23.
  • a rubber insulating layer 9 is provided outside the signal conduit.
  • the temperature sensor 33 may be a thermistor. The thermistor is sensitive to temperature and exhibits different resistance values at different temperatures. The higher the temperature, the lower the resistance value.
  • the ablation process begins.
  • the temperature of the ablation area will also continue to change.
  • the resistance of the thermistor in a local area will decrease as the temperature increases, and the thermistor and the signal conduit are electrically connected.
  • the resistance change is transmitted to the radiofrequency ablation system through a signal catheter (not shown in the figure).
  • the distal end of the signal catheter is connected to the thermistor, and the proximal end of the signal catheter is fixed at The electrode connector 23 is on.
  • the local temperature change range of the resistance can be calculated, so that the temperature can be controlled by the size of the saline flow, and the inside of the human tissue can be seen directly on the radiofrequency ablation system The temperature changes.
  • FIG. 8 there is a slot 35 at the proximal end of the electrode body 31, and the outer wall of the second tube sleeve 12 is inserted into the slot 35, so that the electrode body 31 and the second tube The set of 12 phases is fixed.
  • An internal thread 121 is provided on the proximal end of the second tube sleeve 12, and an external thread 63 is provided on the distal end of the connecting seat 6, and the connecting seat 6 and the second tube sleeve 12 are connected by threads.
  • a threaded hole 64 is provided at the proximal end of the connecting seat 6, and a counterbore 111 is provided on the distal end of the first sleeve 11, and a bolt is inserted into the counterbore 111 and the threaded hole.
  • the connecting seat 6 and the first pipe sleeve 11 are fixed.
  • the connecting seat 6 and the first pipe sleeve 11 are tightened.
  • the surface of the bolt is parallel to the surface of the connecting seat 6, and the bolt is hidden in the counterbore 111.
  • a liquid injection hole 62 is provided on the center line of the connecting seat 6.
  • the liquid injection pipe 25 and the signal conduit are inserted through the liquid injection hole 62.
  • the four guide holes 61 on the connecting seat 6 are symmetrically distributed with the injection hole 62 as the center.
  • the liquid injection hole 62 is used to fix the position of the liquid injection tube 25 so that the sliding path of the liquid injection tube 25 does not deviate.
  • the guide hole 61 includes a straight section 611 and an arc section 612, and the straight section 611 is located at the proximal end of the arc section 612.
  • the connection of the straight section 611 and the arc section 612 of the guide hole 61 can help the claw electrode 7 to slide.
  • the arc-shaped section 612 facilitates the claw-shaped electrode 7 to expand and contract smoothly, and increases the supporting force and the expansion range of the claw-shaped electrode 7.
  • An anti-slip pattern 6111 is provided on the inner side wall of the straight section 611 of the guide hole 61. When the claw-shaped electrode 7 extends out of the needle tube portion 1, the anti-skid pattern 6111 in the straight section 611 can help the claw-shaped electrode 7 to fix the position and keep it still.
  • An anti-wear cushion layer 6121 made of silica gel is provided on the inner side wall of each arc-shaped section 612, and the wear-resistant cushion layer 6121 is located between the arc section 612 and the claw electrode 7.
  • the claw electrode 7 When the claw electrode 7 is pushed out or pulled into the connecting seat 6, the claw electrode 7 will generate friction with the surface of the arc section 612, which will damage the surface of the claw electrode 7. After adding the anti-wear cushion layer 6121, Reduce the wear on the surface of the claw electrode 7.
  • a mounting post 65 is provided at the proximal end of the connecting seat 6, and a spring 8 is sleeved on the mounting post 65.
  • the fixing seat 5 will move toward the connecting seat 6.
  • the distal end of the spring 8 resists the proximal end of the connecting seat 6.
  • the proximal end of the spring 8 resists the fixing seat 5. Adding the spring 8 can increase the buffer force when the claw electrode 7 extends out of the connecting seat 6 and keep the claw electrode 7 still. As shown in Fig.
  • the claw electrode 7 is hollow, and the surface of the first section 71 and the second section 72 of the claw electrode 7 is provided with an insulating layer 9 made of rubber material.
  • the transmission of the conductive tube to the claw electrode 7 will cause signal interference.
  • a layer of rubber is placed on the surface of the claw electrode 7 to reduce signal interference and signal shielding.
  • the first section 71 and the second section 72 of the claw electrode 7 are both straight section 611, and the third section 73 is an arc section.
  • two first grooves 53 are provided on the surface of the fixing base 5, and a blocking block 54 is provided at the distal end of the pulling wire.
  • the first groove 53 is used to fix the pulling wire.
  • the block 54 on the pulling wire can be directly pushed into the first groove 53, so that the block 54 on the pulling wire just snaps into the first groove.
  • the traction wire is fixed on the fixing seat 5 through the cooperation of the clamping block 54 and the first groove 53.
  • the fixing base 5 includes: a male fixing ring 554 and a female fixing ring 564.
  • the fixing seat 5 is divided into a front fixing ring 4 and a rear fixing ring 4.
  • the male fixing ring 554 and the female fixing ring 564 are closed to form a complete fixing seat 5.
  • One end of the male fixing ring 554 and the female fixing ring 564 is hinged by a hinge shaft 57, the other end of the female fixing ring 564 is provided with a second groove 561, and the other end of the male fixing ring 554 is provided with a protrusion 551, the male fixing The other end of the ring 554 and the female fixing ring 564 is inserted into the second groove 561 through the protrusion 551 to perform a clamping connection.
  • the second embodiment is an alternative to the first embodiment, and the difference is that the connecting seat 6 is made of glass fiber. Glass fiber has good insulation, strong heat resistance, corrosion resistance and high mechanical strength.
  • the third embodiment is an alternative to the first embodiment.
  • the difference is that the fixing base 5 is made of electrical ceramics.
  • Electrical ceramics is a kind of porcelain insulating material with good insulation and mechanical strength, good mechanical properties, good electrical properties, and environmental resistance.
  • the fourth embodiment is an alternative to the first embodiment.
  • the difference is that the fixing ring 4 is made of silicone rubber. Silicone rubber has high temperature stability and can still maintain a certain degree of flexibility and elasticity in high temperature environments.
  • the first feature "on" or “under” the second feature may be in direct contact with the first feature and the second feature, or the first feature and the second feature may pass through between the first feature and the second feature. Indirect media contact.
  • “above”, “above” and “above” the second feature of the first feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “beneath” the first feature of the second feature may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is lower than the second feature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Plasma & Fusion (AREA)
  • Molecular Biology (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Surgical Instruments (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种检测机构、射频消融导管及射频消融系统,包括:手柄部(2)、针管部(1)、中心电极(3)和检测机构。其中,针管部(1)包括:第一管套(11)和第二管套(12),手柄部(2)包括:筒套(21)和滑钮(22),中心电极(3)包括:电极本体(31)、电极导线(26)和电极接头(23),检测机构包括:固定座(5)、牵引线、连接座(6)和多个爪形电极(7)。牵引线的远端固定在固定座(5)上,牵引线的近端固定在滑钮(22)上,爪形电极(7)固定在固定座(5)上,且可以滑动穿设在连接座(6)中。最终实现了通过滑钮(22)拉动牵引线从而带动固定座(5)帮助爪形电极(7)在连接座(6)内推进和推出,方便了使用者在手术的过程中对爪形电极(7)的控制,以检测爪形电极(7)处的温度或阻抗,进而判断消融进展。

Description

检测机构、射频消融导管及射频消融系统 技术领域
本发明实施例涉及医疗器械领域,尤其涉及一种检测机构、射频消融导管及射频消融系统。
背景技术
射频消融技术被广泛应用于肺部治疗手术中。射频是指无线电频率,但它不属于无线电通信中波段的划分。面对生物体的作用主要是热效应。当射频的电流频率高到一定值时(>100kHz),引起组织内带电荷的离子运动即摩擦生热(60℃~100℃)。射频消融设备常用的频率为200~500kHz,输出功率100~400kHz。消融电极是射频消融系统的核心部件,因为它直接影响凝固坏死的大小和形状。理想的凝固区形状应为球形或扁球形。在B超或CT的引导下将多针电极直接刺人病变组织肿块内,射频电极针可使组织内温度超过60℃,细胞死亡,产生坏死区域;如局部的组织温度超过100℃,肿瘤组织和围绕器官的实质发生凝固坏死,治疗时可产生一个很大的球形凝固坏死区,凝固坏死区之外还有43-60℃的热疗区,在此区域内,癌细胞可被杀死,而正常细胞可恢复。
在治疗过程中,将射频电极伸入人体组织内,通过射频电极将电流进入到病灶处,在射频电极处产生大量的热,举例来说,当病灶处的温度达到40℃-60℃并维持一段时间后,即完成对该病灶处的消融手术。但现有技术中的射频消融系统无法判断射频电极的工作状态信息,例如无法判断射频电极附近的温度,因此造成手术过程只能凭借医生的经验判断消融手术的进展并进行调整操作,增加了手术难度和精度。所以如何提供一种射频消融系统,使其能准确判断是否完成消融是本领域亟待解决的问题。
技术问题
本发明的目的在于提供一种检测机构、射频消融导管及射频消融系统,在射频消融的过程中,可通过手柄滑钮前后推送控制爪形电极张开与收缩,不仅实现了对电极本体位置的辅助定位,还通过爪形电极获取电极本体周围的情况。
技术解决方案
本发明实施例提供一种检测机构,应用于射频消融导管,包括:固定座、牵引线、连接座和多个爪形电极;
所述固定座用于滑动安装在所述射频消融导管内;
所述固定座设有多个安装孔,各所述爪形电极分别穿过所述安装孔且与所述固定座固定连接;
所述牵引线的远端固定安装在所述固定座上,所述牵引线的近端用于固定在射频消融导管的滑钮上;
所述连接座用于固定安装在所述射频消融导管中;
所述连接座设有多个导向孔,相邻的导向孔的开口延伸方向相同,各所述爪形电极分别穿过所述导向孔,且所述导向孔用于使所述爪形电极分散式地伸出所述连接座;
各所述爪形电极包括:第一段、第二段和第三段,所述第二段和所述第一段之间的夹角为钝角,所述第三段与所述第二段之间的夹角为钝角,使所述爪形电极分散式地伸出所述连接座时,呈张开式分布,且各所述爪形电极的远端位于同一纬度。
在一种可行的方案中,该检测机构还包括:固定环,所述固定环的远端固定设置在所述爪形电极上,并使所述导线和所述爪形电极电性连接。
在一种可行的方案中,该检测机构的相邻的所述导向孔之间的间距相同。
在一种可行的方案中,该检测机构的相对的所述导向孔之间的间距不同。
本发明实施例提供一种射频消融导管,该射频消融导管包括:手柄部、针管部、中心电极和以上任意一项所述的检测机构;
所述针管部包括:第一管套和第二管套;
所述连接座具体安装在所述第一管套和所述第二管套之间,所述固定座具体滑动安装在所述第一管套内,且所述固定环、所述多个爪形电极均位于所述第一管套内;
所述手柄部包括:筒套和滑钮;
所述滑钮滑动地安装在所述筒套上;
所述牵引线的近端固定安装在所述滑钮上;
所述中心电极包括:电极本体、电极导线和电极接头;
所述电极本体设置在所述第二管套的远端,所述电极导线的远端与所述电极本体电性导通,所述电极导线穿过所述筒套、所述第一管套和所述第二管套,所述电极导线的近端与所述电极接头电性导通,所述电极接头位于所述筒套外。
在一种可行的方案中,该射频消融导管还包括:注液接头和注液管;所述注液管穿过所述筒套、所述固定座和所述连接座,所述电极本体设有进液孔,所述注液管的远端与所述进液孔连通;
所述注液接头设置在所述注液管的近端,且位于所述筒套外。
在一种可行的方案中,该射频消融导管的所述电极本体内设有洒孔通道,所述洒孔通道与所述进液孔连通,所述洒孔通道用于将所述进液孔处的液体分散式送出。
在一种可行的方案中,该射频消融导管的所述电极本体外设有浸润罩,所述浸润罩包括多个呈矩形阵列分布的浸润孔,且每列浸润孔的孔径从近端向远端依次缩小。
在一种可行的方案中,该射频消融导管的所述浸润孔与所述洒孔通道错位布置。
在一种可行的方案中,该射频消融导管的所述电极本体包括:圆柱部和锥形部,且所述锥形部位于所述圆柱部的远端,所述浸润罩套设在所述圆柱部。
在一种可行的方案中,该射频消融导管的所述电极本体内设有温度传感器和信号导管;
所述电极本体设有走线孔,所述温度传感器位于所述锥形部内,所述信号导管穿过所述走线孔,所述信号导管外设有绝缘层,所述信号导管的远端与所述温度传感器电性导通,所述信号导管的近端与所述电极接头电性导通。
在一种可行的方案中,该射频消融导管的所述电极本体上设有卡槽,所述第二管套的远端卡接在所述卡槽上。
在一种可行的方案中,该射频消融导管的所述浸润罩由绝缘耐高温材料制成。
在一种可行的方案中,该射频消融导管的电极本体的材料纤维材质。
在一种可行的方案中,该射频消融导管的所述第二管套上设有内螺纹,所述连接座上设有外螺纹,所述第二管套和所述连接座螺纹连接。
在一种可行的方案中,该射频消融导管的所述第一管套上设有沉头孔,所述连接座的近端设有螺纹孔,所述第一管套和所述连接座通过螺栓固定。
在一种可行的方案中,所述连接座包括:注液孔,所述注液孔位于所述连接座的中心线上,所述注液孔用于供所述注液管穿过,所述导向孔以所述注液孔为中心对称分布,所述导向孔包括:直线段和弧形段,所述弧形段位于所述直线段的远端。
在一种可行的方案中,该射频消融导管的所述导向孔的直线段的内侧壁设有防滑纹。
在一种可行的方案中,该射频消融导管的各所述弧形段内侧壁设有防磨垫层,所述防磨垫层为橡胶材质。
在一种可行的方案中,该射频消融导管的所述连接座由玻璃纤维材料制成。
在一种可行的方案中,该射频消融导管的所述连接座的近端设有安装柱,所述安装柱设有弹簧,使所述固定座向所述连接座移动时,所述弹簧的远端和所述连接柱抵持,所述弹簧的近端和所述固定座抵持。
在一种可行的方案中,该射频消融导管的所述多个爪形电极为中空管材。
在一种可行的方案中,该射频消融导管的各所述爪形电极的第一段的外侧套设有绝缘层。
在一种可行的方案中,该射频消融导管的各所述爪形电极的第二段的外侧套设有绝缘层。
在一种可行的方案中,该射频消融导管的所述第一段和所述第二段均为直线段,所述第三段为弧线段。
在一种可行的方案中,该射频消融导管的所述固定座的两侧设有第一凹槽,所述牵引线的远端设有卡块,所述卡块嵌入在所述第一凹槽内,用于使所述牵引线与所述固定座固定连接。
在一种可行的方案中,该射频消融导管的所述固定座为电工陶瓷材质。
在一种可行的方案中,该射频消融导管的且所述固定环与所述固定座过盈配合,用以限制所述爪形电极的伸出长度。
在一种可行的方案中,该射频消融导管的所述固定环为硅橡胶材质。
在一种可行的方案中,该射频消融导管的所述固定环呈中空的圆柱体,且所述固定环设有裂口。
在一种可行的方案中,该射频消融导管的所述固定环的两端设有缓冲垫。
在一种可行的方案中,该射频消融导管的所述缓冲垫由弹性橡胶材料制成。
在一种可行的方案中,该射频消融导管的所述固定座包括:相互拼接的母固定环和公固定环。
在一种可行的方案中,该射频消融导管的所述母固定环和所述公固定环通过绞接轴铰接。
本发明实施例还提供一种射频消融系统,包括上述任意一种可行方案中所述的射频消融导管。
有益效果
基于上述方案可知,本发明的检测机构、射频消融导管及射频消融系统,包括:手柄部、针管部、中心电极和检测机构。其中,针管部包括:第一管套和第二管套,手柄部包括:筒套和滑钮,中心电极包括:电极本体、电极导线和电极接头,检测机构包括:固定环、固定座、牵引线、连接座和多个爪形电极。本发明的检测机构、射频消融导管及射频消融系统,以使用者为准,靠近使用者的一端为近端,远离使用者的一端为远端。连接座安装在第一管套和第二管套之间,固定座位于连接座的近端,固定座、固定环和多个爪形电极均设置在第一管套内,且固定座可在第一管套内滑动,固定环安装在固定座的近端,固定环固定在爪形电极上,且爪形电极穿设在固定座中。爪形电极可在连接座中滑动,且当爪形电极伸出连接座时,爪形电极呈张开式分布,且位于同一纬度上。滑钮可在筒套表面滑动,牵引线的近端固定在滑钮上,牵引线的远端固定在固定座上。电极本体位于第二管套的远端,电极导线的远端固定在电极本体内且电性导通,电极导线的近端与电极接头电性导通,电极接头位于筒套的外侧。多个爪形电极通过连接座、固定座和牵引线可在针管部进行推进和推出运动,当需要将爪形电极推出针管部进行检测时,可将滑钮往远端推送,滑钮带动牵引线从而带动固定座往远端推送,这时,固定在固定座上的爪形电极由于固定座往远端行驶,所以爪形电极也同样往远端推送,从而将原本收在连接座中的爪形电极推出了针管部。当不需要使用爪形电极进行检测时,只需要将滑钮往近端收回,滑钮带动牵引线,牵引线拉动固定座从而将固定座上的爪形电极拉回,这时原本位于针管部外侧的爪形电极会被重新收回在连接座内部。通过滑钮的带动,从而带动牵引线和固定座,最终实现了爪形电极的推出和收回,方便了使用者在手术的过程中对爪形电极的控制。在射频消融的过程中,可通过手柄滑钮前后推送控制爪形电极张开与收缩,不仅实现了对电极本体位置的辅助定位,还通过爪形电极获取电极本体周围的情况,进而判断消融进展。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一中的射频消融导管整体结构示意图;
图2为本发明实施例一中的射频消融导管针管部的局部放大图;
图3为本发明实施例一中的射频消融导管的固定座与固定环连接图;
图4为本发明实施例一中的射频消融导管的固定座结构示意图;
图5为本发明实施例一中的射频消融导管的连接座与弹簧的位置示意图;
图6为本发明实施例一中的射频消融导管的连接座的第一剖面图;
图7为本发明实施例一中的射频消融导管的连接座的第二剖面图;
图8为本发明实施例一中的射频消融导管的浸润罩整体结构示意图;
图9为本发明实施例一中的射频消融导管的浸润罩的剖面图;
图10为本发明实施例一中的射频消融导管的第二管套与浸润罩的连接示意图;
图11为本发明实施例一中的射频消融导管的固定座左视图;
图12为本发明实施例一中的射频消融导管的爪形电极结构示意图。
图中标号:
1、针管部;11、第一管套;111、沉头孔;12、第二管套;121、内螺纹;2、手柄部;21、筒套;22、滑钮;23、电极接头;24、注液接头;25、注液管;26、电极导线;3、中心电极;31、电极本体;311、进液孔;312、洒孔通道;32、浸润罩;321、浸润孔;33、温度传感器;34、走线孔;35、卡槽;4、固定环;41、裂口;42、缓冲垫;5、固定座;51、安装孔;52、穿过孔;53、第一凹槽;54、卡块;55、公固定环;551、凸 块;56、母固定环;561、第二凹槽;57、铰接轴;6、连接座;61、导向孔;611、直线段;6111、防滑纹;612、弧形段;6121、防磨垫层;62、注液孔;63、外螺纹;64、螺纹孔;65、安装柱;7、爪形电极;71、第一段;72、第二段;73、第三段;8、弹簧;9、绝缘层。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,也可以是成一体;可以是机械连接,也可以是电连接,也可以是通讯连接;可以是直接连接,也可以通过中间媒介的间接连接,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明实施例一中的射频消融导管整体结构示意图;图2为本发明实施例一中的射频消融导管针管部的局部放大图;图3为本发明实施例一中的射频消融导管的固定座与固定环连接图;图4为本发明实施例一中的射频消融导管的固定座结构示意图;图5为本发明实施例一中的射频消融导管的连接座与弹簧的位置示意图;图6为本发明实施例一中的射频消融导管的连接座的第一剖面图;图7为本发明实施例一中的射频消融导管的连接座的第二剖面图;图8为本发明实施例一中的射频消融导管的浸润罩整体结构示意图;图9为本发明实施例一中的射频消融导管的浸润罩的剖面图;图10为本发明实施例一中的射频消融导管的第二管套与浸润罩的连接示意图;图11为本发明实施例一中的射频消融导管的固定座左视图;图12为本发明实施例一中的射频消融导管的爪形电极结构示意图。
如图1所示的本实施例中的射频消融导管,包括:手柄部2、针管部1、中心电极3和检测机构。其中,针管部1包括:第一管套11和第二管套12,手柄部2包括筒套21和滑钮22,中心电极3包括:电极本体31、电极导线26和电极接头23,检测机构包括:固定环4、固定座5、牵引线(图中未示)、连接座6和多个爪形电极7。以使用者为准,靠近使用者的一端为近端,远离使用者的一端为远端。射频消融导管由近及远依次为,筒套21、第一管套11、固定环4、固定座5、连接座6、第二管套12和中心电极3。筒套21位于针管部1的近端,第一管套11套接在筒套21的远端处,电极接头23位于筒套21的近端处,电极导线26的近端与电极接头23电性连接,电极导线26的远端插入在电极本体31内,且与电极本体31电性连接。电极本体31位于针管部1的远端,且固定在第二管套12的远端处。电极本体31为纤维材质。电极导线26分别穿过筒套21、第一管套11、固定座5、连接座6、第二管套12和电极本体31。
如图12所示,爪形电极7包括:第一段71、第二段72和第三段73。第一段71为近端,其次第二段72为中间,第三段73为远端,第一段71和第二段72呈钝角,第二段72和第三段73呈钝角。爪形电极可以获取接触位置的阻抗值,或者,爪形电极本身由热敏材料制成,用于获取爪形电极周围的最高温度。也就是说,通过爪形电极,该检测装置可以检测爪形电极处的温度或阻抗,进而判断消融进展。
如图4,固定座5位于第一管套11内,固定座5可在第一管套11内滑动。在固定座5上有四个安装孔51,四个安装孔51用来固定爪形电极7。可选的,通过点胶的方式,将爪形电极7固定在安装孔51内,即爪形电极7通过粘结剂固定设置在安装孔51内。或者,通过焊接的方式,将爪形电极7固定在安装孔51内,即爪形电极7焊接在安装孔51上。在固定座5的中心线上设有穿过孔52,四个安装孔51以穿过孔52为中心对称分布。穿过孔52用于信号导管和注液管25。牵引线(图中未示)固定在固定座5的远端。
如图3,固定环4位于第一管套11内,固定环4位于固定座5的近端处,固定环4的远端固定在爪形电极7上,固定环4的近端用来固定外接的导线,并使所述导线和所述爪形电极电性连接。外接导线穿过筒套21和第一管套11,外接导线的近端固定在电极接头23上,外接导线的远端固定在固定环4上,爪形电极7的第一段71从固定座5中穿出,进入到固定环4内部,外接导线的远端从固定环4的近端进入到固定环4的内部。在固定环4中,爪形电极7的第一段71与外接导线的远端接触,形成电性连接。电极接头23外接射频消融系统,电流通过外接导线传递到爪形电极7上,再通过爪形电极7将电流释放到人体组织中去。在筒套21的表面安装有滑钮22,滑钮22可在筒套21的表面滑动。牵引线(图中未示)的远端固定在固定座5上,牵引线(图中未示)的近端固定在滑钮22上。通过滑钮22的前后推动,带动牵引线往前或往后,由于牵引线的一端固定在固定座5上,从而牵引线(图中未示)会带动固定座5在第一管套11内滑动。爪形电极7固定在固定座5内,由于固定座5往前或往后滑动,所以固定在固定座5内的爪形电极7也会随着固定座5进行往前或往后的运动。可选的,爪形电极7通过粘结剂与固定座5固定连接,并成为一个运动整体。
如图7,连接座6位于在第一管套11和第二管套12之间,且第一管套11和第二管套12分别固定在连接座6的近端和远端。在连接座6上有四个导向孔61,且每相邻的两个导向孔61的开口延伸方向相同。四个导向孔61分别位于连接座6的四个方向,四个导向孔61以连接座6的中轴线为中心圆周阵列分布,所以这四个导向孔61中,每相邻的两个导向孔61之间的距离是相同的。两对相对的导向孔61之间的距离是不同的。爪形电极7滑动的穿过连接座6中的导向孔61,这些导向孔61可使爪形电极7分散式地朝四周伸出连接座6。四个爪形电极7相互独立互不干扰。由于爪形电极7被分为了第一段71、第二段72和第三段73,所以爪形电极7在伸出连接座6时,第一段71仍然位于导向孔61内部,第二段72和第三段73通过固定座5的推力,从而伸出连接座6的导向孔61,且由于第一段71、第二段72和第三段73之间分别呈钝角,所以爪形电极7在伸出连接座6时呈张开式分布,且它们再伸出针管部1时的长度是一致的,由于四个导向孔61在连接座6中的位置会相对应的,且导向孔61远端开口的位置相对于连接座6时相同的,所以在爪形电极7伸出导向孔61时,爪形电极7的远端位于同一纬度上。
射频消融导管应用在一个射频消融系统中,射频消融系统包括射频发生器(消融仪),其中,射频发生器(消融仪)用于与射频消融导管连接,并为射频消融导管的电极接头提供电信号,从而使中心电极和爪形电极工作。
通过上述内容不难发现,本发明的射频消融导管,包括:手柄部2、针管部1、中心电极3和检测机构。其中,针管部1包括:第一管套11和第二管套12,手柄部2包括:筒套21和滑钮22,中心电极3包括:电极本体31、电极导线26和电极接头23,检测机构包括:固定环4、固定座5、牵引线、连接座6和多个爪形电极7。本发明的检测机构、射频消融导管及射频消融系统,以使用者为准,靠近使用者的一端为近端,远离使用者的一端为远端。连接座6安装在第一管套11和第二管套12之间,固定座5位于连接座6的近端,固定座5、固定环4和多个爪形电极7均设置在第一管套11内,且固定座5可在第一管套11内滑动,固定环4安装在固定座5的近端,固定环4固定在爪形电极7上,且爪形电极7穿设在固定座5中。爪形电极7可在连接座6中滑动,且当爪形电极7伸出连接座6时,爪形电极7呈张开式分布,且位于同一纬度上。滑钮22可在筒套21表面滑动,牵引线的近端固定在滑钮22上,牵引线的远端固定在固定座5上。电极本体31位于第二管套12的远端,电极导线26的远端固定在电极本体31内且电性导通,电极导线26的近端与电极接头23电性导通,电极接头23位于筒套21的外侧。多个爪形电极7通过连接座6、固定座5和牵引线可在针管部1进行推进和推出运动,当需要将爪形电极7推出针管部1进行检测时,可将滑钮22往远端推送,滑钮22带动牵引线从而带动固定座5往远端推送,这时,固定在固定座5上的爪形电极7由于固定座5往远端行驶,所以爪形电极7也同样往远端推送,从而将原本收在连接座6中的爪形电极7推出了针管部1。当不需要使用爪形电极7进行检测时,只需要将滑钮22往近端收回,滑钮22带动牵引线,牵引线拉动固定座5从而将固定座5上的爪形电极7拉回,这时原本位于针管部1外侧的爪形电极7会被重新收回在连接座6内部。通过滑钮22的带动,从而带动牵引线和固定座5,最终实现了爪形电极7的推出和收回,方便了使用者在手术的过程中对爪形电极7的控制。利用该检测装置进行手术时,将针管部伸入人体内,例如伸入人体气管,通过滑钮将爪形电极张开时,爪形电极可支撑在人体气管的内壁上,对中心电极起到了稳定作用,同时爪形电极还可获取人体气管的温度或阻抗数据,从而得到中心电极处的手术情况,因此,该检测装置不仅实现了对电极本体位置的辅助定位,还通过爪形电极检测爪形电极处的温度或阻抗,进而判断消融进展。
可选地,本实施例中,射频消融导管还包括:注液接头24和注液管25。注液接头24位于筒套21的近端处,注液接头24用于外接注液器。注液管25的近端接在注液接头24上,注液管25的远端插入在电极本体31上。注液管25穿设在筒套21、第一管套11和第二管套12内,注液管25分别经过筒套21、固定座5和连接座6。在电极本体31上设有进液孔311,进液孔311位于电极本体31的中间位置,进液孔311和注液管25的远端相连。从注液器中推进的盐水,通过注液接头24、注液管25和进液孔311,最终进入到电极本体31内部。
如图9,可选地,在本实施例中,电极本体31包括:圆柱部和锥形部。锥形部位于圆柱部的远端。在电极本体31外部还设有浸润罩32。浸润罩32为耐高温绝缘材料制成。浸润罩32套接在电极本体31的圆柱部上。在电极本体31的内部有洒孔通道312,两组洒孔通道312呈十字形分布,两组洒孔组与进液孔311相连通。从注液管25中流过的盐水,通过集中在进液孔311中的盐水分散到洒孔通道312中去。在浸润罩32的表面,有多个呈矩形分布的浸润孔321,且每列浸润孔321的孔径从近端向远端依次缩小。多个浸润孔321与洒孔通道312连通,且与洒孔通道312错位布置。浸润罩32和电极本体31的表面有一定的缝隙,在洒孔通道312内的盐水,通过缝隙会流经带浸润罩32,由于浸润罩32表面有多个浸润孔321,所以盐水通过浸润孔321流出,从而弥散在人体组织内部。
可选地,在本实施例中,电极本体31内还设有温度传感器33和信号导管。在电极本体31上有走线孔34,走线孔34位于进液孔311的一侧,信号导管插入到走线孔34内。温度传感器33位于电极本体31的锥形部的表面,温度传感器33与信号导管的远端电性连接,信号导管的近端固定在电极接头23上,且与电极接头23电性连接。在信号导管外设有橡胶绝缘层9。温度传感器33可为热敏电阻,热敏电阻对温度敏感,不同的温度下表现出不同的电阻值,温度越高时电阻值越低。浸润孔321将盐水渗入到人体组织内后,开始消融过程,随着消融盐水的不断增多消融面积不断增大,消融区域的温度也会不断变化。当温度越来越高时,在局部范围内的热敏电阻的阻值便会随着温度的增高而降低,热敏电阻和信号导管电性导通。在热敏电阻的阻值发生变化时,通过信号导管(图中未示)将阻值的变化传送至射频消融系统上,信号导管的远端与热敏电阻相连,信号导管的近端固定在电极接头23上。根据射频消融系统上阻值的变化来推算出阻值的局部温度的变化范围,从而进一步可通过盐水流量的大小来达到控制温度的作用,并且可以在射频消融系统上直观的看到人体组织内部的温度变化。
如图8,可选地,在本实施例中,在电极本体31的近端处有卡槽35,第二管套12的外壁插入在卡槽35内,可使电极本体31和第二管套12相固定。在第二管套12的近端上有内螺纹121,在连接座6的远端有外螺纹63,连接座6与第二管套12通过螺纹连接。
可选地,在本实施例中,在连接座6的近端设有一个螺纹孔64,在第一管套11的远端上设有沉头孔111,螺栓插入沉头孔111和螺纹孔64中将连接座6与第一管套11相固定,在螺栓不断的旋紧的过程中,对连接座6和第一管套11进行紧固,当螺栓完全旋进螺纹孔64中时,螺栓的表面与连接座6的表面平行,螺栓藏入沉头孔111中。
可选地,在本实施例中,在连接座6的中心线上设有注液孔62。注液管25和信号导管穿设在注液孔62中。连接座6上的四个导向孔61以注液孔62为中心对称分布。注液孔62用以固定注液管25的位置,使注液管25的滑动路径不发生偏移。导向孔61包括:直线段611和弧形段612,直线段611位于弧形段612的近端处。由于爪形电极7的第一段71、第二段72和第三段73分别相连呈钝角,所以导向孔61的直线段611和弧形段612的连接处可帮助爪形电极7滑动。弧形段612方便爪形电极7能够单独顺畅的张开和收缩,增加爪形电极7的支撑力和张开范围。在导向孔61的直线段611的内侧壁上设有防滑纹6111。当爪形电极7伸出针管部1时,直线段611内的防滑纹6111可帮助爪形电极7固定位置,保持不动。在每个弧形段612的内侧壁上设有硅胶材质的防磨垫层6121,防磨垫层6121位于弧形段612和爪形电极7之间。在爪形电极7推出或拉近连接座6内时,爪形电极7会与弧形段612的表面产生摩擦力,从而会损坏爪形电极7的表面,增加防磨垫层6121后,可减轻爪形电极7表面的磨损。
如图5,可选地,在本实施例中,连接座6的近端设有安装柱65,在安装柱65上套设有弹簧8。在爪形电极7伸出针管部1时,固定座5会往连接座6方向移动,在固定座5往连接座6方向移动时,弹簧8的远端与连接座6的近端相抵持,弹簧8的近端与固定座5相抵持。增加弹簧8,可以增大爪形电极7字伸出连接座6时的缓冲力,并使爪形电极7保持不动。如图12,可选地,在本实施例中,爪形电极7内部中空,在爪形电极7的第一段71和第二段72的表面均设有橡皮材料的绝缘层9,电流通过导电管传送到爪形电极7上,会引起信号干扰,在爪形电极7的表面设置一层橡皮,可以减少信号干扰,进行信号屏蔽。爪形电极7的第一段71和第二段72均为直线段611,第三段73为弧线段。
如图4,可选地,在本实施例中,所示的在固定座5的表面设有两个第一凹槽53,在牵引线的远端设有卡块54。第一凹槽53用于固定牵引线。当牵引线需要卡入第一凹槽53内时,可将牵引线上的卡块54直接推入进第一凹槽53中,使牵引线上的卡块54处刚好卡接在第一凹槽53上,通过卡块54和第一凹槽53的配合,使牵引线固定在固定座5上。
如图11,可选地,在本实施例中,固定座5包括:公固定环554和母固定环564。固定座5被分为了前固定环4和后固定环4,公固定环554和母固定环564闭合后形成一个完整的固定座5。公固定环554和母固定环564的一端通过铰接轴57铰接,在母固定环564的另一端上设有第二凹槽561,在公固定环554的另一端设有凸块551,公固定环554和母固定环564的另一端通过凸块551插入第二凹槽561内,进行卡紧连接。
实施例二为本实施例一的替换方案,其区别之处在于,连接座6为玻璃纤维材质。玻璃纤维绝缘性好,耐热性强,具有抗腐蚀的功能且机械强度高。
实施例三为本实施例一的替换方案,其区别之处在于,固定座5为电工陶瓷材质。电工陶瓷为一种瓷质的绝缘材料,具有良好的绝缘性和机械强度,其机械性能好,电气性能好,耐环境性能。
实施例四为本实施例一的替换方案,其区别之处在于,固定环4为硅橡胶材质。硅橡胶具有高温稳定性能,在高温环境下仍能保持一定的柔韧性和弹性。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一特征和第二特征直接接触,或第一特征和第二特征通过中间媒介间接接触。
而且,第一特征在第二特征“之上”、“上方”和“上面”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度低于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述,意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任意一个或者多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (34)

  1. 一种检测机构,应用于射频消融导管,其特征在于,包括:固定座、牵引线、连接座和多个爪形电极;
    所述固定座设有多个安装孔,各所述爪形电极分别穿过所述安装孔且与所述固定座固定连接;
    所述牵引线的远端固定安装在所述固定座上;
    所述连接座设有多个导向孔,相邻的导向孔的开口延伸方向相同,各所述爪形电极分别穿过所述导向孔,且所述导向孔用于使所述爪形电极分散式地伸出所述连接座;
    各所述爪形电极包括:第一段、第二段和第三段,所述第二段和所述第一段之间的夹角为钝角,所述第三段与所述第二段之间的夹角为钝角,使所述爪形电极分散式地伸出所述连接座时,呈张开式分布,且各所述爪形电极的远端位于同一纬度。
  2. 如权利要求1所述的检测机构,其特征在于,还包括:固定环,所述固定环的远端固定设置在所述爪形电极上,所述固定环的近端用于外接导线,并使所述导线和所述爪形电极电性连接。
  3. 如权利要求1所述的检测机构,其特征在于,相邻的所述导向孔之间的间距相同。
  4. 如权利要求1所述的检测机构,其特征在于,相对的所述导向孔之间的间距不同。
  5. 一种射频消融导管,其特征在于,包括:手柄部、针管部、中心电极和权利要求1至4中任意一项所述的检测机构;
    所述针管部包括:第一管套和第二管套;
    所述连接座具体安装在所述第一管套和所述第二管套之间,所述固定座具体滑动安装在所述第一管套内,且所述固定环、所述多个爪形电极均位于所述第一管套内;
    所述手柄部包括:筒套和滑钮;
    所述滑钮滑动地安装在所述筒套上;
    所述牵引线的近端固定安装在所述滑钮上;
    所述中心电极包括:电极本体、电极导线和电极接头;
    所述电极本体设置在所述第二管套的远端,所述电极导线的远端与所述电极本体电性导通,所述电极导线穿过所述筒套、所述第一管套和所述第二管套,所述电极导线的近端与所述电极接头电性导通,所述电极接头位于所述筒套外。
  6. 如权利要求5所述的射频消融导管,其特征在于,还包括:注液接头和注液管;
    所述注液管穿过所述筒套、所述固定座和所述连接座,所述电极本体设有进液孔,所述注液管的远端与所述进液孔连通;
    所述注液接头设置在所述注液管的近端,且位于所述筒套外。
  7. 如权利要求6所述的射频消融导管,其特征在于,所述电极本体内设有洒孔通道,所述洒孔通道与所述进液孔连通,所述洒孔通道用于将所述进液孔处的液体分散式送出。
  8. 如权利要求7所述的射频消融导管,其特征在于,所述电极本体外设有浸润罩,所述浸润罩包括多个呈矩形阵列分布的浸润孔,且每列浸润孔的孔径从近端向远端依次缩小。
  9. 如权利要求8所述的射频消融导管,其特征在于,所述浸润孔与所述洒孔通道错位布置。
  10. 如权利要求8所述的射频消融导管,其特征在于,所述电极本体包括:圆柱部和锥形部,且所述锥形部位于所述圆柱部的远端,所述浸润罩套设在所述圆柱部。
  11. 如权利要求10所述的射频消融导管,其特征在于,所述电极本体内设有温度传感器和信号导管;
    所述电极本体设有走线孔,所述温度传感器位于所述锥形部内,所述信号导管穿过所述走线孔,所述信号导管外设有绝缘层,所述信号导管的远端与所述温度传感器电性导通,所述信号导管的近端与所述电极接头电性导通。
  12. 如权利要求10所述的射频消融导管,其特征在于,所述电极本体上设有卡槽,所述第二管套的远端卡接在所述卡槽上。
  13. 如权利要求8至12中任意一项所述的射频消融导管,其特征在于,所述浸润罩由绝缘耐高温材料制成。
  14. 如权利要求5所述的射频消融导管,其特征在于,所述第二管套上设有内螺纹,所述连接座上设有外螺纹,所述第二管套和所述连接座螺纹连接。
  15. 如权利要求5所述的射频消融导管,其特征在于,所述第一管套上设有沉头孔,所述连接座的近端设有螺纹孔,所述第一管套和所述连接座通过螺栓固定。
  16. 如权利要求5所述的射频消融导管,其特征在于,所述连接座包括:注液孔,所述注液孔位于所述连接座的中心线上,所述注液孔用于供所述注液管穿过,所述导向孔以所述注液孔为中心对称分布,所述导向孔包括:直线段和弧形段,所述弧形段位于所述直线段的远端。
  17. 如权利要求16所述的射频消融导管,其特征在于,所述导向孔的直线段的内侧壁设有防滑纹。
  18. 如权利要求16所述的射频消融导管,其特征在于,各所述弧形段内侧壁设有防磨垫层,所述防磨垫层为橡胶材质。
  19. 如权利要求16所述的射频消融导管,其特征在于,所述连接座由玻璃纤维材料制成。
  20. 如权利要求16所述的射频消融导管,其特征在于,所述连接座的近端设有安装柱,所述安装柱设有弹簧,使所述固定座向所述连接座移动时,所述弹簧的远端和所述连接柱抵持,所述弹簧的近端和所述固定座抵持。
  21. 如权利要求5所述的射频消融导管,其特征在于,所述多个爪形电极为中空管材。
  22. 如权利要求5所述的射频消融导管,其特征在于,各所述爪形电极的第一段的外侧套设有绝缘层。
  23. 如权利要求5所述的射频消融导管,其特征在于,各所述爪形电极的第二段的外侧套设有绝缘层。
  24. 如权利要求5所述的射频消融导管,其特征在于,所述第一段和所述第二段均为直线段,所述第三段为弧线段。
  25. 如权利要求5所述的射频消融导管,其特征在于,所述固定座的两侧设有第一凹槽,所述牵引线的远端设有卡块,所述卡块嵌入在所述第一凹槽内,用于使所述牵引线与所述固定座固定连接。
  26. 如权利要求5所示的射频消融导管,其特征在于,所述固定座为电工陶瓷材质。
  27. 如权利要求5所述的射频消融导管,其特征在于,且所述固定环与所述固定座过盈配合,用以限制所述爪形电极的伸出长度。
  28. 如权利要求5所述的射频消融导管,其特征在于,所述固定环为硅橡胶材质。
  29. 如权利要求28所述的射频消融导管,其特征在于,所述固定环呈中空的圆柱体,且所述固定环设有裂口。
  30. 如权利要求5所述的射频消融导管,其特征在于,所述固定环的两端设有缓冲垫。
  31. 如权利要求30所述的射频消融导管,其特征在于,所述缓冲垫由弹性橡胶材料制成。
  32. 如权利要求5所述的射频消融导管,其特征在于,所述固定座包括:相互拼接的母固定环和公固定环。
  33. 如权利要求32所述的射频消融导管,其特征在于,所述母固定环和所述公固定环通过绞接轴铰接。
  34. 一种射频消融系统,其特征在于,包括权利要求5至33中所述的射频消融导管。
     
PCT/CN2020/118646 2019-12-31 2020-09-29 检测机构、射频消融导管及射频消融系统 WO2021135461A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/756,975 US20230144706A1 (en) 2019-12-31 2020-09-29 Detection mechanism, radio-frequency ablation catheter, and radio-frequency ablation system
EP20909204.8A EP4085858A4 (en) 2019-12-31 2020-09-29 DETECTION MECHANISM, HIGH FREQUENCY ABLATION CATHETER AND HIGH FREQUENCY ABLATION SYSTEM
KR1020227026507A KR20220156519A (ko) 2019-12-31 2020-09-29 검출 기구, 무선 주파수 절제 카테터 및 무선 주파수 절제 시스템
JP2022540624A JP7416959B2 (ja) 2019-12-31 2020-09-29 検出機構、ラジオ波焼灼カテーテルおよびラジオ波焼灼システム
US17/658,941 US20220241001A1 (en) 2019-12-31 2022-04-12 Lung tumor ablation method
US17/853,474 US20220323149A1 (en) 2019-12-31 2022-06-29 Detection mechanism, radio-frequency ablation catheter and radio-frequency ablation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911403441.5A CN110960314B (zh) 2019-12-31 2019-12-31 检测机构、射频消融导管及射频消融系统
CN201911403441.5 2019-12-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/118645 Continuation-In-Part WO2021135460A1 (zh) 2019-12-31 2020-09-29 射频消融导管及射频消融系统
US17/853,474 Continuation US20220323149A1 (en) 2019-12-31 2022-06-29 Detection mechanism, radio-frequency ablation catheter and radio-frequency ablation system

Publications (1)

Publication Number Publication Date
WO2021135461A1 true WO2021135461A1 (zh) 2021-07-08

Family

ID=70037466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118646 WO2021135461A1 (zh) 2019-12-31 2020-09-29 检测机构、射频消融导管及射频消融系统

Country Status (6)

Country Link
US (2) US20230144706A1 (zh)
EP (1) EP4085858A4 (zh)
JP (1) JP7416959B2 (zh)
KR (1) KR20220156519A (zh)
CN (1) CN110960314B (zh)
WO (1) WO2021135461A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052895A (zh) * 2021-11-19 2022-02-18 武汉拓扑转化医学研究中心有限公司 一种脉冲房颤消融系统及导管
CN114627712A (zh) * 2022-03-26 2022-06-14 大连大铁通益科技有限公司 一种地铁受电弓模拟培训装置
CN115363736A (zh) * 2022-08-05 2022-11-22 上海玮启医疗器械有限公司 脉冲消融导管
CN115414108A (zh) * 2022-08-12 2022-12-02 洲瓴(上海)医疗器械有限公司 直线型脉冲消融装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110960314B (zh) * 2019-12-31 2021-06-15 杭州堃博生物科技有限公司 检测机构、射频消融导管及射频消融系统
CN112741683A (zh) * 2020-12-31 2021-05-04 杭州堃博生物科技有限公司 射频消融导管及射频消融系统
CN113729928B (zh) * 2020-05-29 2023-03-07 先健科技(深圳)有限公司 消融装置
EP4272670A1 (en) * 2020-12-31 2023-11-08 Hangzhou Broncus Medical Co., Ltd. Radio-frequency ablation catheter and radio-frequency ablation system
CN114404031B (zh) * 2022-02-15 2024-05-03 珠海市司迈科技有限公司 电切镜组件及其密封结构
CN115153811B (zh) * 2022-09-07 2022-12-27 杭州德诺电生理医疗科技有限公司 消融导管及消融系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147964A (zh) * 1995-10-17 1997-04-23 郭伟 组合电极导管
CN2855351Y (zh) * 2005-12-15 2007-01-10 迈德医疗科技(上海)有限公司 用于射频消融治疗的爪形电极装置
US20110202053A1 (en) * 2010-02-16 2011-08-18 Angiodynamics, Inc. Ablation Device with Guide Sleeves
CN105935314A (zh) * 2016-06-17 2016-09-14 赵学 一种具有多点标测功能的射频消融导管
CN110074860A (zh) * 2018-09-14 2019-08-02 杭州堃博生物科技有限公司 利于换热介质分配的射频消融导管、肺部射频消融系统、以及控制方法和控制装置
CN110960314A (zh) * 2019-12-31 2020-04-07 杭州堃博生物科技有限公司 检测机构、射频消融导管及射频消融系统
CN110974406A (zh) * 2019-12-31 2020-04-10 杭州堃博生物科技有限公司 检测机构、射频消融导管及射频消融系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051803A1 (en) * 1991-07-05 2001-12-13 Desai Jawahar M. Device and method for multi-phase radio-frequency ablation
DE19713797A1 (de) * 1996-04-04 1997-10-09 Valleylab Inc Elektrochirurgisches Instrument zur Herbeiführung einer Myomnekrose
ITBS20020042A1 (it) * 2002-04-23 2003-10-23 Fogazzi Di Venturelli A E C S Ago-elettrodo perfezionato per un trattamento di tumori mediante ipertermia indotta da radiofrequenza
US7416549B2 (en) 2003-10-10 2008-08-26 Boston Scientific Scimed, Inc. Multi-zone bipolar ablation probe assembly
US8512333B2 (en) * 2005-07-01 2013-08-20 Halt Medical Inc. Anchored RF ablation device for the destruction of tissue masses
US20070213703A1 (en) * 2006-03-13 2007-09-13 Jang Hyun Naam Electrode for radio frequency tissue ablation
WO2008034103A2 (en) * 2006-09-14 2008-03-20 Lazure Technologies, Llc Device and method for destruction of cancer cells
US9474565B2 (en) * 2009-09-22 2016-10-25 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
BR112012029263B8 (pt) * 2010-05-21 2022-08-02 Nimbus Concepts Llc Agulha de neurotomia por radiofrequência
CN205286523U (zh) * 2015-12-02 2016-06-08 堃博生物科技(上海)有限公司 一种微波消融装置
CN105434040B (zh) 2016-01-11 2018-06-29 王洪奎 内窥镜用伞形射频消融电极针
US10492858B2 (en) * 2016-01-21 2019-12-03 Boaz Avitall Assessment of tissue contact in tissue ablation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147964A (zh) * 1995-10-17 1997-04-23 郭伟 组合电极导管
CN2855351Y (zh) * 2005-12-15 2007-01-10 迈德医疗科技(上海)有限公司 用于射频消融治疗的爪形电极装置
US20110202053A1 (en) * 2010-02-16 2011-08-18 Angiodynamics, Inc. Ablation Device with Guide Sleeves
CN105935314A (zh) * 2016-06-17 2016-09-14 赵学 一种具有多点标测功能的射频消融导管
CN110074860A (zh) * 2018-09-14 2019-08-02 杭州堃博生物科技有限公司 利于换热介质分配的射频消融导管、肺部射频消融系统、以及控制方法和控制装置
CN110960314A (zh) * 2019-12-31 2020-04-07 杭州堃博生物科技有限公司 检测机构、射频消融导管及射频消融系统
CN110974406A (zh) * 2019-12-31 2020-04-10 杭州堃博生物科技有限公司 检测机构、射频消融导管及射频消融系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4085858A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052895A (zh) * 2021-11-19 2022-02-18 武汉拓扑转化医学研究中心有限公司 一种脉冲房颤消融系统及导管
CN114052895B (zh) * 2021-11-19 2024-02-27 武汉拓扑转化医学研究中心有限公司 一种脉冲房颤消融系统及导管
CN114627712A (zh) * 2022-03-26 2022-06-14 大连大铁通益科技有限公司 一种地铁受电弓模拟培训装置
CN114627712B (zh) * 2022-03-26 2024-02-23 大连大铁通益科技有限公司 一种地铁受电弓模拟培训装置
CN115363736A (zh) * 2022-08-05 2022-11-22 上海玮启医疗器械有限公司 脉冲消融导管
CN115414108A (zh) * 2022-08-12 2022-12-02 洲瓴(上海)医疗器械有限公司 直线型脉冲消融装置

Also Published As

Publication number Publication date
CN110960314A (zh) 2020-04-07
US20220323149A1 (en) 2022-10-13
CN110960314B (zh) 2021-06-15
JP2023509660A (ja) 2023-03-09
KR20220156519A (ko) 2022-11-25
EP4085858A1 (en) 2022-11-09
JP7416959B2 (ja) 2024-01-17
EP4085858A4 (en) 2024-02-21
US20230144706A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2021135461A1 (zh) 检测机构、射频消融导管及射频消融系统
CN210673431U (zh) 可多点监控温度的射频消融导管
CN101711705B (zh) 微波消融针及其微波消融治疗仪
US11510732B2 (en) Microwave antenna probes
CN201642316U (zh) 微波消融针及其微波消融治疗仪
US20180168713A1 (en) Medical system and method of use
JP6140783B2 (ja) ゲージが細く、高強度のチョークでかつ湿式先端のマイクロ波焼灼アンテナ
CN110974406A (zh) 检测机构、射频消融导管及射频消融系统
CN211723408U (zh) 一种带有浸润罩的射频消融导管及系统
US20140000098A1 (en) Microwave antenna probes and methods of manufacturing microwave antenna probes
US8480665B2 (en) Cool tip junction
JP2011067633A (ja) 円錐プローブを使用するマイクロ波表面熱灼
CN103565516A (zh) 可调节长度和/或裸露的电极
CN103202728A (zh) 一种单针多作用位点微波治疗针
CN105919668A (zh) 一种多极微波消融针
KR20210014645A (ko) 전기 외과 기구
CN212547152U (zh) 一种检测机构、射频消融导管及射频消融系统
CN212547150U (zh) 一种固定座、检测机构、射频消融导管及射频消融系统
CN212165886U (zh) 一种设有爪形检测装置的射频消融导管
CN212547153U (zh) 一种检测机构、射频消融导管及射频消融系统
KR20190122627A (ko) 비가역적 전기천공법 장치
CN212521990U (zh) 一种检测机构、射频消融导管及系统
CN212547151U (zh) 一种检测机构、射频消融导管及系统
WO2021223288A1 (zh) 内镜手术电极组件
CN208926591U (zh) 一种激光射频混合电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020909204

Country of ref document: EP

Effective date: 20220801