WO2021135387A1 - 一种基于非晶态合金用于超临界co2加氢的工艺 - Google Patents

一种基于非晶态合金用于超临界co2加氢的工艺 Download PDF

Info

Publication number
WO2021135387A1
WO2021135387A1 PCT/CN2020/115063 CN2020115063W WO2021135387A1 WO 2021135387 A1 WO2021135387 A1 WO 2021135387A1 CN 2020115063 W CN2020115063 W CN 2020115063W WO 2021135387 A1 WO2021135387 A1 WO 2021135387A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
supercritical
amorphous alloy
hydrogenation
solvent
Prior art date
Application number
PCT/CN2020/115063
Other languages
English (en)
French (fr)
Inventor
李和兴
朱建
何结红
秦联胜
焦文琛
陈伟
Original Assignee
上海师范大学
新加坡国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海师范大学, 新加坡国立大学 filed Critical 上海师范大学
Publication of WO2021135387A1 publication Critical patent/WO2021135387A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to the technical field of hydrogenation reactions, in particular to a process for supercritical CO 2 hydrogenation based on amorphous alloys.
  • CO 2 not only causes many environmental problems such as melting of glaciers, rising sea levels, and desertification of land, but also, as the final oxidation product of carbon resources, its increase means the reduction of other carbon resources.
  • the transformation of CO 2 into relatively high value-added organics and direct reduction into simple carbon-containing products through different catalytic methods have become scientific research directions for CO 2 utilization.
  • CO 2 hydrogenation has shown new vitality in recent years.
  • CO 2 is usually hydrogenated, and different reaction products can be synthesized by controlling the hydrogen-carbon ratio, reaction temperature and pressure of the reaction.
  • CO 2 hydrogenation methanation reverse water gas shift reaction
  • CO 2 hydrogenation to synthesize methanol formaldehyde
  • CO 2 hydrogenation to synthesize formic acid CO 2 hydrogenation to synthesize low-carbon alkanes, etc.
  • the hydrogenation of CO 2 to form formic acid is the most atom-economical type of reaction, requiring only one molecule of H 2 and one molecule of CO 2 to be generated.
  • this reaction Since this reaction is a thermodynamically unfavorable reaction and a reaction with a reduced volume, it usually needs to be pressurized to achieve an increase in the conversion rate through a higher hydrogen to carbon ratio.
  • the activation temperature of the metal In the traditional thermal catalytic hydrogenation reaction, the activation temperature of the metal is usually increased to promote H 2 to achieve hydrogen overflow on its surface to react with CO 2 molecules. Higher hydrogen to carbon ratio and temperature are very easy to cause waste of resources. Therefore, how to achieve CO 2 hydrogenation at a lower hydrogen-to-carbon ratio and under mild conditions is a direction of our diligent research.
  • the purpose of the present invention is to overcome the problems of higher hydrogen-carbon ratio and higher temperature required in the conventional metal-catalyzed CO 2 hydrogenation reaction in the prior art, and to provide a lower hydrogen-carbon ratio and under mild conditions.
  • CO 2 achieved based amorphous alloy hydrogenation process for the hydrogenation of supercritical CO 2.
  • a process based on amorphous alloys for supercritical CO 2 hydrogenation In a reactor, a solvent and organic amine are mixed to form a solution. The amorphous alloy is selected as a catalyst, and H 2 and CO 2 are added at low temperature. The temperature is increased until the partial pressure of CO 2 reaches a supercritical state, and the reaction is carried out in this state to obtain the product formic acid and alkane compound.
  • the alkane compound is an alkane compound such as methane.
  • H 2 is generally difficult to dissolve in solvents, but can be completely miscible with H 2 in supercritical CO 2 , which is also conducive to the occurrence of hydrogenation reactions.
  • the higher hydrogen solubility improves the reaction contact surface of CO 2 and H 2 to improve the reaction activity.
  • traditional metals have lower surface energy at lower temperatures and often fail to get good activation.
  • the amorphous alloy can still maintain a higher surface energy at a lower temperature, which is caused by its own unsaturation. Therefore, we propose to realize the catalytic supercritical CO 2 hydrogenation of amorphous alloys at a lower hydrogen-carbon ratio and a lower temperature.
  • the solvent is at least one of DMF, cyclohexane, acetonitrile, ethanol and water; further preferably, the solvent is DMF.
  • the amount of the solvent is 2-40% of the volume of the reaction vessel; further preferably, the amount of the solvent is 20% of the volume of the reaction vessel.
  • the organic amine is triethylamine or triethanolamine; further preferably, the organic amine is triethylamine.
  • the volume ratio of the organic amine to the solvent is 0.1-0.5:1.0; further preferably, the volume ratio of the organic amine to the solvent is 0.25:1.0.
  • the amorphous alloy is an amorphous alloy formed by a group VIII metal element and B or P; further preferably, the amorphous alloy is a Ni-B amorphous alloy.
  • the mass-volume ratio of the amorphous alloy to the solution is 0.01-1.0 g/mL; further preferably, the mass-volume ratio of the amorphous alloy to the solution is 0.08 g/mL.
  • the hydrogen-carbon ratio is 0.1-6:1.0, and the total pressure is 0.1-10 MPa; more preferably, after adding H 2 and CO 2 , the hydrogen-carbon ratio is 0.1-0.3 :1.0, the total pressure is 0.1-9MPa.
  • the low temperature added to H 2 and CO 2 at low temperature means lower than the reaction temperature, preferably the low temperature is less than 20°C, more preferably the low temperature is 0-10°C, and even more preferably The low temperature is 10°C.
  • the temperature of increasing temperature is 20-100°C; further preferably, the temperature of increasing temperature is 40°C.
  • the reaction time is 1-10h; further preferably, the reaction time is 4h.
  • the process includes the following steps:
  • Pre-reaction treatment Add 2-40% solvent of the reactor volume to the reactor, and at the same time add a certain amount of organic amine to mix to form a solution, an amorphous alloy with a certain mass to volume ratio (relative to the volume of the solution)
  • the catalyst is added with stirring magnetic beads and stirred to prepare a raw material liquid;
  • Heating The reactor is heated by a heater, the constant temperature is 20-100°C, and the heating time is 0.2-1.5h;
  • the steps for product testing and verification include:
  • step (9) preferably, the TCD detector is connected to a TDX-01 packed column, and the FID detector is connected to an HP-PLOT-Q capillary column.
  • the inert atmosphere in step (10) is preferably a nitrogen atmosphere or an argon atmosphere, and the inert atmosphere in the further preselected step (10) is preferably a nitrogen atmosphere.
  • the present invention has the following beneficial effects:
  • the present invention realizes the CO 2 hydrogenation reaction through the amorphous alloy, which provides a new direction for the hydrogenation reaction of the amorphous alloy.
  • reaction products of the present invention such as formic acid and CH 4 and other alkane compounds are reaction products with chemical industry value generated from CO 2 as a carbon source.
  • the present invention realizes the CO 2 hydrogenation reaction in a state where the H 2 /CO 2 ratio is low. Compared with the traditional hydrogenation reaction, it reduces the amount of hydrogen required for the reaction and reduces energy consumption.
  • the present invention realizes the CO 2 hydrogenation reaction at a lower temperature, which saves heating cost compared with the traditional hydrogenation reaction.
  • the present invention is carried out in a self-assembled supercritical CO 2 hydrogenation reaction device, which can effectively simulate the evaluation of the hydrogenation reaction in the supercritical CO 2 state, is intelligent, has stable temperature control and strong reaction stability The advantages.
  • Figure 1 is a schematic diagram of the flow path of the reaction device of the process of the present invention.
  • Figure 2 is a schematic diagram of the reaction device model of the present invention.
  • FIG. 3 shows the activity of hydrogenation reaction products under different reaction pressures in Example 2.
  • Figure 4 shows the activity of the reaction hydrogenation reaction products CH 4 (a) and HCOOH (b) under different hydrogen-carbon ratios in Example 3;
  • Figure 5 shows the activity of the reaction hydrogenation reaction products CH 4 (a) and HCOOH (b) under different reaction solvents in Example 4.
  • a process based on amorphous alloys for supercritical CO 2 hydrogenation In a reactor, a solvent and organic amine are mixed to form a solution. The amorphous alloy is selected as a catalyst, and H 2 and CO 2 are added at low temperature. The temperature is increased until the partial pressure of CO 2 reaches a supercritical state, and the reaction is carried out in this state to obtain the product formic acid and alkane compound.
  • the alkane compound is an alkane compound such as methane.
  • H 2 is generally difficult to dissolve in solvents, but can be completely miscible with H 2 in supercritical CO 2 , which is also conducive to the occurrence of hydrogenation reactions.
  • the higher hydrogen solubility improves the reaction contact surface of CO 2 and H 2 to improve the reaction activity.
  • traditional metals have lower surface energy at lower temperatures and often fail to get good activation.
  • the amorphous alloy can still maintain a higher surface energy at a lower temperature, which is caused by its own unsaturation. Therefore, we propose to realize the catalytic supercritical CO 2 hydrogenation of amorphous alloys at a lower hydrogen-carbon ratio and a lower temperature.
  • the solvent is at least one of DMF, cyclohexane, acetonitrile, ethanol and water; further preferably, the solvent is DMF.
  • the amount of the solvent is 2-40% of the volume of the reaction vessel; further preferably, the amount of the solvent is 20% of the volume of the reaction vessel.
  • the organic amine is triethylamine or triethanolamine; further preferably, the organic amine is triethylamine.
  • the volume ratio of the organic amine to the solvent is 0.1-0.5:1.0; further preferably, the volume ratio of the organic amine to the solvent is 0.25:1.0.
  • the amorphous alloy is an amorphous alloy formed by a group VIII metal element and B or P; further preferably, the amorphous alloy is a Ni-B amorphous alloy.
  • the mass-volume ratio of the amorphous alloy to the solution is 0.01-1.0 g/mL; further preferably, the mass-volume ratio of the amorphous alloy to the solution is 0.08 g/mL.
  • the hydrogen-carbon ratio is 0.1-6:1.0, and the total pressure is 0.1-10 MPa; more preferably, after adding H 2 and CO 2 , the hydrogen-carbon ratio is 0.1-0.3 :1.0, the total pressure is 0.1-9MPa.
  • the low temperature added to H 2 and CO 2 at low temperature means lower than the reaction temperature, preferably the low temperature is less than 20°C, more preferably the low temperature is 0-10°C, and even more preferably The low temperature is 10°C.
  • the temperature of increasing temperature is 20-100°C; further preferably, the temperature of increasing temperature is 40°C.
  • the reaction time is 1-10h; further preferably, the reaction time is 4h.
  • Reaction system 10mL DMF as the reaction solvent, add 2.5mL organic amine compound (as organic base, the same below), specifically triethylamine, the purpose of adding organic amine compound is to promote the formation of formate and move the reaction to the right .
  • organic amine compound as organic base, the same below
  • 100mg NiB amorphous alloy is added as a catalyst.
  • the above system is mixed and added to the reaction kettle, and then emptied and filled with gas. The specific implementation steps are detailed in the reaction implementation process.
  • Reaction temperature Stabilize the reaction temperature to 40°C by the temperature control unit.
  • the reaction is carried out in a set of high-pressure catalytic reactors designed and constructed by our.
  • the reaction device is composed of a gas circuit control unit, a pressurization system unit, a high-pressure reactor unit, a temperature control unit, a gas post-processing unit and a gas chromatography detection part.
  • the reactant gas enters through two paths respectively.
  • the first one passes through the gas path control unit, and the pressure entering the system is adjusted through the pressure divider valve.
  • Each gas path is equipped with a high-pressure mass flow meter to control the reactant gas. Flow and total inflow.
  • the reaction gas passes through the booster pump, the reaction gas pressure is fed into the reactor through a certain booster ratio.
  • the temperature is controlled by the cooling and heating machine, and the temperature range can be adjusted by the added circulating liquid.
  • the gas enters the post-processing unit and flows through the gas-liquid separation tank. At this time, the liquid with higher boiling point is separated and flows into the liquid collection tank for sampling.
  • the gas passes through the partial pressure valve, it enters the gas chromatography (GC) for detection.
  • GC gas chromatography
  • the reaction solution was first replaced with ethanol in the amorphous alloy, and placed in a 50 mL stainless steel sealed reactor.
  • Hydrogen and CO 2 are two gas paths respectively, and the reaction flow rate and ratio are controlled by mass flow meters.
  • vent with H 2 first, vent after flushing with H 2 to 2 MPa, repeat 3 times and then vent for 10 min.
  • H 2 of a certain pressure is flushed, and then CO 2 of a certain pressure is charged to determine the ratio of H 2 to CO 2.
  • the temperature was raised to the reaction temperature, at which time the pressure was also rising and the CO 2 partial pressure exceeded the critical point, and the reaction was carried out for 4 hours under these conditions.
  • reaction temperature was first reduced to 25°C and the stirring was stopped. After half an hour, the gas phase products were detected by GC, and the gas chromatography was configured as a packed column of TDX-01 connected to a TCD detector and an FID detector connected to a HP-PLOT-Q capillary column. The liquid was tested for reaction products by liquid chromatography.
  • Reaction system 10mL DMF is used as the reaction solvent, and 2.5mL TEA is added as an organic base. The purpose of adding the organic base is to promote the formation of formate and move the reaction to the right. At the same time, 100mg NiB amorphous alloy is added as a catalyst. The above system is mixed and added to the reaction kettle, and then emptied and filled with gas. The specific implementation steps are detailed in the reaction implementation process.
  • Reaction temperature Stabilize the reaction temperature to 40°C by the temperature control unit.
  • the total reaction pressure is: 0.1 MPa, 1 MPa, 3 MPa, 5 MPa, 7 MPa, 9 MPa.
  • Figure 3 is the activity diagram of the reaction hydrogenation reaction product under different pressures in Example 2. It can be seen from the figure: Under the condition of lower hydrogen to carbon ratio, with the increase of pressure, the yield of formic acid and alkane compounds There is a significant improvement, and the reaction yield reaches the highest when the carbon dioxide is in a supercritical state.
  • Reaction system 10mL DMF is used as the reaction solvent, and 2.5mL TEA is added as an organic base. The purpose of adding the organic base is to promote the formation of formate and move the reaction to the right. At the same time, 100mg NiB amorphous alloy is added as a catalyst. The above system is mixed and added to the reaction kettle, and then emptied and filled with gas. The specific implementation steps are detailed in the reaction implementation process.
  • Reaction temperature Stabilize the reaction temperature to 40°C by the temperature control unit.
  • the total reaction pressure is: 9MPa.
  • the ratio of H 2 to CO 2 in the reaction is: 0.1, 0.2, 0.3, respectively.
  • Figure 4 is the activity diagram of the reaction hydrogenation products CH 4 (a) and HCOOH (b) under different hydrogen-carbon ratios in Example 3. It can be seen from the figure that the conditions are the same pressure and the CO 2 is in a supercritical state Lower hydrogen-carbon ratio and lower temperature can realize the conversion of CO 2 to formic acid and alkane compounds (specifically methane), which is the same as the high temperature and high hydrogen-carbon ratio required in traditional CO 2 hydrogenation reactions. In comparison, energy consumption is lower.
  • Reaction system 10mL reaction solvent, adding 2.5mL TEA as an organic base.
  • the purpose of adding the organic base is to promote the formation of formate and move the reaction to the right.
  • 100mg NiB amorphous alloy is added as a catalyst.
  • the above system is mixed and added to the reaction kettle, and then emptied and filled with gas. The specific implementation steps are detailed in the reaction implementation process.
  • reaction solvents are: DMF, cyclohexane, and ethanol.
  • Reaction temperature Stabilize the reaction temperature to 40°C by the temperature control unit.
  • the total reaction pressure is: 9MPa.
  • the ratio of H 2 to CO 2 in the reaction is 0.2.
  • Figure 5 is the activity diagram of the hydrogenation reaction products CH 4 (a) and HCOOH (b) of different reaction solvents in Example 4. It can be seen from the figure that when the reaction solvent is DMF, compared to other solvents with less polarity , With higher reactivity.
  • Reaction system 10mL DMF is used as the reaction solvent, and 2.5mL TEA is added as an organic base. The purpose of adding the organic base is to promote the formation of formate and move the reaction to the right. At the same time, 100mg NiB amorphous alloy is added as a catalyst. The above system is mixed and added to the reactor, and then emptied and filled with gas. The specific implementation steps are detailed in the reaction implementation process.
  • Reaction temperature Stabilize the reaction temperature to 40°C by the temperature control unit.
  • the total reaction pressure is: 9MPa.
  • the ratio of H 2 to N 2 in the reaction is 0.2 respectively.
  • Example 2 As in Example 1, the specific CO 2 reaction gas was changed to N 2 .
  • Example 2 As in Example 1, the specific CO 2 reaction gas was changed to N 2 .
  • This embodiment is basically the same as Embodiment 1, but the difference is that in this embodiment, a suitable reactor is selected so that the amount of solvent is 2% of the volume of the reactor.
  • This embodiment is basically the same as Embodiment 1, but the difference lies in that, in this embodiment, a suitable reactor is selected so that the amount of solvent is 40% of the volume of the reactor.
  • This embodiment is basically the same as Embodiment 1, except that in this embodiment, the solvent is acetonitrile.
  • This embodiment is basically the same as Embodiment 1, except that in this embodiment, the solvent is water.
  • This embodiment is basically the same as Embodiment 1, except that in this embodiment, the solvent is a mixture of acetonitrile and water.
  • This embodiment is basically the same as embodiment 1, except that in this embodiment, triethanolamine is selected as the organic amine.
  • This embodiment is basically the same as Embodiment 1, except that in this embodiment, the organic amine is added so that the volume ratio of the organic amine to the solvent is 0.1:1.0.
  • This embodiment is basically the same as Embodiment 1, except that in this embodiment, the organic amine is added so that the volume ratio of the organic amine to the solvent is 0.5:1.0.
  • the amorphous alloy is an amorphous alloy formed by any Group VIII metal element and B or P except Ni.
  • This embodiment is basically the same as Embodiment 1, except that in this embodiment, the mass-volume ratio of the amorphous alloy to the solution is 1.0 g/mL.
  • This embodiment is basically the same as Embodiment 1, except that in this embodiment, the mass-volume ratio of the amorphous alloy to the solution is 0.08 g/mL.
  • This embodiment is basically the same as Embodiment 1, except that, in this embodiment, after adding H 2 and CO 2 , the ratio of hydrogen to carbon is 0.1:1.0, and the total pressure is 10 MPa.
  • This embodiment is basically the same as Embodiment 1, except that, in this embodiment, after adding H 2 and CO 2 , the ratio of hydrogen to carbon is 6:1.0.
  • This embodiment is basically the same as Embodiment 1, but the difference is that in this embodiment, H 2 and CO 2 are added at a low temperature of 10°C, and the temperature raised is 100°C.
  • This embodiment is basically the same as Embodiment 1, but the difference is that in this embodiment, H 2 and CO 2 are added at a low temperature of 0°C, and the temperature raised is 20°C.
  • This embodiment is basically the same as Embodiment 1, but the difference is that in this embodiment, H 2 and CO 2 are added at a low temperature of 19° C., and the temperature raised is 60° C.
  • This embodiment is basically the same as Embodiment 1, except that in this embodiment, the reaction time is 1 h.
  • This embodiment is basically the same as Embodiment 1, except that in this embodiment, the reaction time is 10 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种基于非晶态合金用于超临界CO2加氢的工艺,在反应釜中将溶剂和有机胺混合形成溶液,选用非晶态合金作为催化剂,在低温下加入H2与CO2,然后升温至CO2分压达到超临界状态,在该状态下反应,得到产物甲酸和烷烃化合物。与现有技术相比,本发明中,较低的氢碳比和较低的反应温度区别于传统CO2加氢催化反应体系,更加节约H2能耗与温度成本。

Description

一种基于非晶态合金用于超临界CO 2加氢的工艺 技术领域
本发明涉及加氢反应技术领域,尤其是涉及一种基于非晶态合金用于超临界CO 2加氢的工艺。
背景技术
温室效应已经严重影响了人类的生存环境,并伴随着一系列的资源短缺的问题。CO 2作为温室气体的一种,不仅引发了许多类似于冰川融化,海平面上升,土地沙漠化等环境问题,而且,其作为碳资源的最终氧化产物,它的增多意味着其他碳资源的减少。目前,通过不同催化方式将CO 2转变成为附加值比较高的有机物以及直接还原成为简单的含碳产物已经成为CO 2利用的科学研究方向。而CO 2加氢作为一种绿色合成的研究方向在近年研究中展现出新的活力。
在加氢反应过程中,通常将CO 2加氢,通过控制反应的氢碳比,反应温度和压力,实现合成不同的反应产物。通常有:CO 2加氢甲烷化,逆水煤气变换反应,CO 2加氢合成甲醇,甲醛,CO 2加氢合成甲酸,CO 2加氢合成低碳烷烯烃等。而CO 2加氢生成甲酸的反应是最为原子经济化的一类反应,只需要一分子H 2和一分子CO 2即可以生成。由于这个反应是热力学不利的反应而且为体积减小的反应,因此通常需要加压实现,并且通过较高的氢碳比实现转化率的提升。在传统的热催化加氢反应中,通常提高金属活化温度以促进H 2在其表面实现氢溢流从而与CO 2分子发生反应。较高的氢碳比和温度都极易造成资源的浪费。因此,如何实现在较低氢碳比以及在温和的条件下实现CO 2加氢是我们努力研究的一个方向。
发明内容
本发明的目的就是为了克服上述现有技术中传统金属催化CO 2加氢反应中需要较高氢碳比和较高温度的问题,而提供一种在较低氢碳比以及在温和的条件下实现CO 2加氢的基于非晶态合金用于超临界CO 2加氢的工艺。
本发明的目的可以通过以下技术方案来实现:
一种基于非晶态合金用于超临界CO 2加氢的工艺,在反应釜中将溶剂和有机胺混合形成溶液,选用非晶态合金作为催化剂,在低温下加入H 2与CO 2,然后升 温至CO 2分压达到超临界状态,在该状态下反应,得到产物甲酸和烷烃化合物。其中,烷烃化合物为甲烷等烷烃化合物。
H 2一般很难在溶剂中溶解,而在超临界CO 2中能与H 2完全互溶,这也有利于氢化反应的发生。较高的氢气溶解性提高了CO 2与H 2的反应接触面从而提高了反应活性。另一方面,传统金属在较低温度下表面能较低,往往得不到很好的活化。而非晶态合金在较低的温度下仍能保持较高的表面能,这是由于其表现的自身不饱和性所造成。因此我们提出了在较低的氢碳比和较低的温度下实现非晶态合金催化超临界CO 2加氢。
作为本发明优选的技术方案,所述的溶剂为DMF、环己烷、乙腈、乙醇和水中的至少一种;进一步优选所述的溶剂为DMF。
作为本发明优选的技术方案,所述的溶剂的用量为反应釜体积的2-40%;进一步优选所述的溶剂的用量为反应釜体积的20%。
作为本发明优选的技术方案,所述的有机胺为三乙胺或三乙醇胺;进一步优选所述的有机胺为三乙胺。
作为本发明优选的技术方案,所述的有机胺与溶剂的体积比为0.1-0.5:1.0;进一步优选所述的有机胺与溶剂的体积比为0.25:1.0。
作为本发明优选的技术方案,所述的非晶态合金为第Ⅷ族金属元素和B或P形成的非晶态合金;进一步优选所述的非晶态合金为Ni-B非晶态合金。
作为本发明优选的技术方案,非晶态合金与溶液的质量体积比为0.01-1.0g/mL;进一步优选非晶态合金与溶液的质量体积比为0.08g/mL。
作为本发明优选的技术方案,加入H 2与CO 2后,氢碳比为0.1-6:1.0,总压力为0.1-10MPa;进一步优选加入H 2与CO 2后,氢碳比为0.1-0.3:1.0,总压力为0.1-9MPa。
作为优选的技术方案,在低温下加入H 2与CO 2中的低温是指低于反应温度,优选所述的低温为小于20℃,进一步优选所述的低温为0~10℃,更进一步优选所述的低温为10℃。
作为本发明优选的技术方案,所述的升温的温度为20-100℃;进一步优选所述的升温的温度为40℃。
作为本发明优选的技术方案,反应时间为1-10h;进一步优选反应时间为4h。
作为本发明优选的技术方案,该工艺包括以下步骤:
(1)反应前的处理:在反应釜中加入反应釜体积的2-40%的溶剂,同时加入一定量有机胺进行混合形成溶液、一定质量体积比(相对于溶液体积)的非晶态合金催化剂,再加入搅拌磁珠搅拌,制得原料液;
(2)试漏:向反应釜中注入高压CO 2气体,反应压力为3-5MPa,进行试漏;
(3)置换气体:用H 2置换反应釜中的空气3-5次,其压力小于4MPa,然后排空10min
(4)充H 2:向反应釜中充入一定量高压H 2
(5)充CO 2:向反应釜中充入一定量高压CO 2气体,达到一定的总压力与氢碳比;
(6)加热:通过加热器对反应釜进行加热,恒定温度为20~100℃,升温时间为0.2-1.5h;
(7)进行反应:在恒温恒压的条件下开动磁力搅拌,搅拌转速为200~800转/分,设定一段时间,进行反应;
(8)反应结束:反应结束后关闭加热,使反应釜冷却至室温,降温时间为0.5-2h,缓慢放出气体并经过气液分离罐进行分离,打开反应釜,取出反应产物,经离心分离后得到反应后产物。
对产物检测和验证的步骤包括:
(9)产物检测:反应后气体经过减压阀控制流速,进入气相色谱进行检测,通过TCD检测器和FID检测器同时检测气相产物。将液体收集罐里面的液体和反应釜离心分离后的产物归置一块,通过液相色谱检测和离子色谱检测。
(10)产物验证:将CO 2气体换成惰性气氛,重复试验,验证含碳产物来源。
步骤(9)中优选所述TCD检测器连接的是TDX-01填充柱,FID检测器连接的是HP-PLOT-Q毛细柱。
步骤(10)中的惰性气氛优选为氮气气氛或氩气气氛,进一步预选步骤(10)中的惰性气氛优选为氮气气氛。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过非晶态合金实现CO 2加氢反应,为非晶态合金加氢反应提供一个新的方向。
(2)本发明反应后的产物甲酸和CH 4等烷烃化合物,是以CO 2为碳源生成的具备化工产业价值的反应产物。
(3)本发明在H 2/CO 2比例较低的状态下实现CO 2加氢反应,与传统加氢反应相比,降低了反应所需的氢气量,降低能耗。
(4)本发明实现了在较低温度下进行CO 2加氢反应,与传统加氢反应相比,节约加热成本。
(5)本发明是在自组装超临界CO 2加氢反应装置中进行,该装置能有效模拟在超临界CO 2状态下的加氢反应评价,具备智能化,温控稳定,反应稳定性强的优势。
附图说明
图1为本发明的工艺的反应装置流路示意图;
图2为本发明的反应装置模型示意图;
图3为实施例2中不同反应压力下加氢反应产物的活性;
图4为实施例3中不同氢碳比下反应加氢反应产物CH 4(a)和HCOOH(b)的活性;
图5为实施例4中不同反应溶剂下反应加氢反应产物CH 4(a)和HCOOH(b)的活性。
具体实施方式
一种基于非晶态合金用于超临界CO 2加氢的工艺,在反应釜中将溶剂和有机胺混合形成溶液,选用非晶态合金作为催化剂,在低温下加入H 2与CO 2,然后升温至CO 2分压达到超临界状态,在该状态下反应,得到产物甲酸和烷烃化合物。其中,烷烃化合物为甲烷等烷烃化合物。
H 2一般很难在溶剂中溶解,而在超临界CO 2中能与H 2完全互溶,这也有利于氢化反应的发生。较高的氢气溶解性提高了CO 2与H 2的反应接触面从而提高了反应活性。另一方面,传统金属在较低温度下表面能较低,往往得不到很好的活化。而非晶态合金在较低的温度下仍能保持较高的表面能,这是由于其表现的自身不饱和性所造成。因此我们提出了在较低的氢碳比和较低的温度下实现非晶态合金催化超临界CO 2加氢。
作为本发明优选的技术方案,所述的溶剂为DMF、环己烷、乙腈、乙醇和水中的至少一种;进一步优选所述的溶剂为DMF。
作为本发明优选的技术方案,所述的溶剂的用量为反应釜体积的2-40%;进一步优选所述的溶剂的用量为反应釜体积的20%。
作为本发明优选的技术方案,所述的有机胺为三乙胺或三乙醇胺;进一步优选所述的有机胺为三乙胺。
作为本发明优选的技术方案,所述的有机胺与溶剂的体积比为0.1-0.5:1.0;进一步优选所述的有机胺与溶剂的体积比为0.25:1.0。
作为本发明优选的技术方案,所述的非晶态合金为第Ⅷ族金属元素和B或P形成的非晶态合金;进一步优选所述的非晶态合金为Ni-B非晶态合金。
作为本发明优选的技术方案,非晶态合金与溶液的质量体积比为0.01-1.0g/mL;进一步优选非晶态合金与溶液的质量体积比为0.08g/mL。
作为本发明优选的技术方案,加入H 2与CO 2后,氢碳比为0.1-6:1.0,总压力为0.1-10MPa;进一步优选加入H 2与CO 2后,氢碳比为0.1-0.3:1.0,总压力为0.1-9MPa。
作为优选的技术方案,在低温下加入H 2与CO 2中的低温是指低于反应温度,优选所述的低温为小于20℃,进一步优选所述的低温为0~10℃,更进一步优选所述的低温为10℃。作为本发明优选的技术方案,所述的升温的温度为20-100℃;进一步优选所述的升温的温度为40℃。
作为本发明优选的技术方案,反应时间为1-10h;进一步优选反应时间为4h。
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
反应体系:10mL DMF作为反应溶剂,加入2.5mL有机胺化合物(作为有机碱,下同),具体为三乙胺,加入有机胺化合物的目的是为了促进甲酸盐的生成从而使反应向右移动。同时加入100mg NiB非晶态合金作为催化剂。将上述体系混合加入反应釜中,后排空充入气体。具体实施步骤详见反应实施过程。
反应温度:通过温控单元稳定反应温度为40℃。
反应总压力:1MPa。
反应中H 2与CO 2比例:0.2。
反应装置与使用说明:
如图1~2所示,反应在自行设计组建的一套高压催化反应器中进行。反应装置为由气路控制单元、增压系统单元、高压反应釜单元、温度控制单元、气体后处理 单元以及气相色谱检测部分构成。
反应气(CO 2和H 2)分别经两路进入,首先经过的是气路控制单元,通过分压阀调节进入系统的压力,每一路气路中都配有高压质量流量计以控制反应气流量和流入总量。反应气经过增压泵时,通过一定的增压比例,将反应气压入反应釜中。温度由冷热机控制,温度范围可由加入的循环液体调变。反应结束后,气体进入后处理单元流经气液分离罐,此时沸点较高的液体得到分离流入液体收集罐进行取样,气体经过分压阀后进入气相色谱(GC)进行检测。具体流程示意图如图1所示。
反应具体实施过程:
反应开始前,先将反应溶液与非晶态合金中的乙醇置换,并置于50mL不锈钢密封反应釜中。氢气和CO 2分别为两条气路并且均通过质量流量计控制其反应流量和比例。反应前先通H 2进行排空,冲入H 2至2MPa后放空,反复3次后再排空10min。然后在低温下冲入一定压力的H 2,再充入一定压力的CO 2,确定H 2与CO 2的比例。然后升温至反应温度,此时压力也在上升并使得CO 2分压超过临界点,在此条件下反应4小时。反应结束后,先降低反应温度至25℃并且停止搅拌。半小时后通过GC检测气相产物,气相色谱为配置为TDX-01的填充柱连接TCD检测器以及HP-PLOT-Q毛细柱连接的FID检测器。液体通过液相色谱检测反应产物。
实施例2
反应体系:10mL DMF作为反应溶剂,加入2.5mL TEA为有机碱,加入有机碱的目的是为了促进甲酸盐的生成从而使反应向右移动。同时加入100mg NiB非晶态合金作为催化剂。将上述体系混合加入反应釜中,后排空充入气体。具体实施步骤详见反应实施过程。
反应温度:通过温控单元稳定反应温度为40℃。
反应总压力分别为:0.1MPa,1MPa,3MPa,5MPa,7MPa,9MPa。
反应中H 2与CO 2比例:0.2。
反应装置示意与使用说明:
同实施例1。
反应具体实施过程:
同实施例1。
图3为实施例2中不同压力下反应加氢反应产物的活性图,从图中可以看出: 在较低氢碳比的条件下,随着压力的升高,甲酸和烷烃化合物的产率有明显的提升,并且在二氧化碳处于超临界状态下,反应产率达到最高。
实施例3
反应体系:10mL DMF作为反应溶剂,加入2.5mL TEA为有机碱,加入有机碱的目的是为了促进甲酸盐的生成从而使反应向右移动。同时加入100mg NiB非晶态合金作为催化剂。将上述体系混合加入反应釜中,后排空充入气体。具体实施步骤详见反应实施过程。
反应温度:通过温控单元稳定反应温度为40℃。
反应总压力为:9MPa。
反应中H 2与CO 2比例分别为:0.1,0.2,0.3。
反应装置示意与使用说明:
同实施例1。
反应具体实施过程:
同实施例1。
图4为实施例3中不同氢碳比下反应加氢反应产物CH 4(a)和HCOOH(b)的活性图,从图中可以看出:在压力相同并且CO 2处于超临界状态的条件下,较低的氢碳比和较低的温度均能实现CO 2向甲酸和烷烃化合物(具体为甲烷)的转化,这与传统的CO 2加氢反应中所需要的高温和高氢碳比相比,耗能更低。
实施例4
反应体系:10mL反应溶剂,加入2.5mL TEA为有机碱,加入有机碱的目的是为了促进甲酸盐的生成从而使反应向右移动。同时加入100mg NiB非晶态合金作为催化剂。将上述体系混合加入反应釜中,后排空充入气体。具体实施步骤详见反应实施过程。
反应溶剂分别为:DMF,环己烷,乙醇。
反应温度:通过温控单元稳定反应温度为40℃。
反应总压力为:9MPa。
反应中H 2与CO 2比例为:0.2。
反应装置示意与使用说明:
同实施例1。
反应具体实施过程:
同实施例1。
图5为实施例4中不同反应溶剂加氢反应产物CH 4(a)和HCOOH(b)的活性图,从图中可以看出:反应溶剂为DMF时,相对于其他极性较小的溶剂,具备更高的反应活性。
对照例
反应体系:10mL DMF作为反应溶剂,加入2.5mL TEA为有机碱,加入有机碱的目的是为了促进甲酸盐的生成从而使反应向右移动。同时加入100mg NiB非晶态合金作为催化剂。将上述体系混合加入反应釜中,后排空充入气体。具体实施步骤详见反应实施过程。
反应温度:通过温控单元稳定反应温度为40℃。
反应总压力为:9MPa。
反应中H 2与N 2比例分别为:0.2。
反应装置示意与使用说明:
同实施例1,具体CO 2反应气体换成N 2
反应具体实施过程:
同实施例1,具体CO 2反应气体换成N 2
对不同气氛条件下含碳产物的来源验证,实例1-4中在CO 2加氢的反应产物与对照例中,将CO 2气氛换成N 2气氛的反应产物对比如下表1所示:
表1
Figure PCTCN2020115063-appb-000001
从上表可以看出:将反应中CO 2反应气体替换成惰性气氛N 2的时候,不能生产含碳产物,这说明反应含碳产物主要来源于CO 2而非体系中有机溶剂和有机碱。
实施例5
本实施例与实施例1基本相同,不同之处在于,本实施例中,选用合适的反应釜,使溶剂的用量为反应釜体积的2%。
实施例6
本实施例与实施例1基本相同,不同之处在于,本实施例中,选用合适的反应釜,使溶剂的用量为反应釜体积的40%。
实施例7
本实施例与实施例1基本相同,不同之处在于,本实施例中,溶剂为乙腈。
实施例8
本实施例与实施例1基本相同,不同之处在于,本实施例中,溶剂为水。
实施例9
本实施例与实施例1基本相同,不同之处在于,本实施例中,溶剂为乙腈和水的混合物。
实施例10
本实施例与实施例1基本相同,不同之处在于,本实施例中,有机胺选用三乙醇胺。
实施例11
本实施例与实施例1基本相同,不同之处在于,本实施例中,加入的有机胺使有机胺与溶剂的体积比为0.1:1.0。
实施例12
本实施例与实施例1基本相同,不同之处在于,本实施例中,加入的有机胺使有机胺与溶剂的体积比为0.5:1.0。
实施例13
本实施例与实施例1基本相同,不同之处在于,本实施例中,非晶态合金为除Ni之外,其余任一第Ⅷ族金属元素与B或者P形成的非晶态合金。
实施例14
本实施例与实施例1基本相同,不同之处在于,本实施例中,非晶态合金与溶液的质量体积比1.0g/mL。
实施例15
本实施例与实施例1基本相同,不同之处在于,本实施例中,非晶态合金与溶液的质量体积比0.08g/mL。
实施例16
本实施例与实施例1基本相同,不同之处在于,本实施例中,加入H 2与CO 2后,氢碳比为0.1:1.0,总压力为10MPa。
实施例17
本实施例与实施例1基本相同,不同之处在于,本实施例中,加入H 2与CO 2后,氢碳比为6:1.0。
实施例18
本实施例与实施例1基本相同,不同之处在于,本实施例中,在10℃的低温下加入H 2与CO 2,升温的温度为100℃。
实施例19
本实施例与实施例1基本相同,不同之处在于,本实施例中,在0℃的低温下加入H 2与CO 2,升温的温度为20℃。
实施例20
本实施例与实施例1基本相同,不同之处在于,本实施例中,在19℃的低温下加入H 2与CO 2,升温的温度为60℃。
实施例21
本实施例与实施例1基本相同,不同之处在于,本实施例中,反应时间为1h。
实施例22
本实施例与实施例1基本相同,不同之处在于,本实施例中,反应时间为10h。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,在反应釜中将溶剂和有机胺混合形成溶液,选用非晶态合金作为催化剂,在低温下加入H 2与CO 2,然后升温至CO 2分压达到超临界状态,在该状态下反应,得到产物甲酸和烷烃化合物。
  2. 根据权利要求1所述的一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,所述的溶剂为DMF、环己烷、乙腈、乙醇和水中的至少一种;优选所述的溶剂为DMF。
  3. 根据权利要求1所述的一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,所述的溶剂的用量为反应釜体积的2-40%;优选所述的溶剂的用量为反应釜体积的20%。
  4. 根据权利要求1所述的一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,所述的有机胺为三乙胺或三乙醇胺;优选所述的有机胺为三乙胺。
  5. 根据权利要求1~4任一所述的一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,所述的有机胺与溶剂的体积比为0.1-0.5:1.0;优选所述的有机胺与溶剂的体积比为0.25:1.0。
  6. 根据权利要求1所述的一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,所述的非晶态合金为第Ⅷ族金属元素和B或P形成的非晶态合金;优选所述的非晶态合金为Ni-B非晶态合金。
  7. 根据权利要求1或6所述的一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,非晶态合金与溶液的质量体积比为0.01-1.0g/mL;优选非晶态合金与溶液的质量体积比为0.08g/mL。
  8. 根据权利要求1所述的一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,加入H 2与CO 2后,氢碳比为0.1-6:1.0,总压力为0.1-10MPa;优选加入H 2与CO 2后,氢碳比为0.1-0.3:1.0,总压力为0.1-9MPa。
  9. 根据权利要求1所述的一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,所述的升温的温度为20-100℃;优选所述的升温的温度为40℃。
  10. 根据权利要求1所述的一种基于非晶态合金用于超临界CO 2加氢的工艺,其特征在于,反应时间为1-10h;优选反应时间为4h。
PCT/CN2020/115063 2019-12-31 2020-09-14 一种基于非晶态合金用于超临界co2加氢的工艺 WO2021135387A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911422722.5A CN111116346B (zh) 2019-12-31 2019-12-31 一种基于非晶态合金用于超临界co2加氢的工艺
CN201911422722.5 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135387A1 true WO2021135387A1 (zh) 2021-07-08

Family

ID=70507883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115063 WO2021135387A1 (zh) 2019-12-31 2020-09-14 一种基于非晶态合金用于超临界co2加氢的工艺

Country Status (2)

Country Link
CN (1) CN111116346B (zh)
WO (1) WO2021135387A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116346B (zh) * 2019-12-31 2021-10-22 上海师范大学 一种基于非晶态合金用于超临界co2加氢的工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU627649B2 (en) * 1990-02-28 1992-08-27 Koji Hashimoto Amorphous alloy catalysts for conversion of carbon dioxide
JPH0568883A (ja) * 1991-09-12 1993-03-23 Koji Hashimoto 二酸化炭素変換用アモルフアス合金触媒
JPH1043594A (ja) * 1996-08-02 1998-02-17 Koji Hashimoto 二酸化炭素のメタン化用アモルファス合金触媒
JPH10244158A (ja) * 1997-03-06 1998-09-14 Koji Hashimoto 二酸化炭素のメタン化用アモルファス合金触媒
JP2001288137A (ja) * 2000-04-03 2001-10-16 Maruzen Petrochem Co Ltd ギ酸の製造方法
CN101265148A (zh) * 2008-04-28 2008-09-17 同济大学 用金属水热还原co2制备甲酸、甲醇和甲烷的方法
CN104888783A (zh) * 2014-03-03 2015-09-09 中国石油化工股份有限公司 一种甲烷化催化剂及其制备方法和应用
CN111116346A (zh) * 2019-12-31 2020-05-08 上海师范大学 一种基于非晶态合金用于超临界co2加氢的工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU627649B2 (en) * 1990-02-28 1992-08-27 Koji Hashimoto Amorphous alloy catalysts for conversion of carbon dioxide
JPH0568883A (ja) * 1991-09-12 1993-03-23 Koji Hashimoto 二酸化炭素変換用アモルフアス合金触媒
JPH1043594A (ja) * 1996-08-02 1998-02-17 Koji Hashimoto 二酸化炭素のメタン化用アモルファス合金触媒
JPH10244158A (ja) * 1997-03-06 1998-09-14 Koji Hashimoto 二酸化炭素のメタン化用アモルファス合金触媒
JP2001288137A (ja) * 2000-04-03 2001-10-16 Maruzen Petrochem Co Ltd ギ酸の製造方法
CN101265148A (zh) * 2008-04-28 2008-09-17 同济大学 用金属水热还原co2制备甲酸、甲醇和甲烷的方法
CN104888783A (zh) * 2014-03-03 2015-09-09 中国石油化工股份有限公司 一种甲烷化催化剂及其制备方法和应用
CN111116346A (zh) * 2019-12-31 2020-05-08 上海师范大学 一种基于非晶态合金用于超临界co2加氢的工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN YUFAN, HU HANJUN, WANG YUTIAN, GAO JIA, TANG YANG, WAN PINGYU, HU QING, LV JIANJUN, ZHANG TIANSHU, YANG XIAO JIN: "In Situ Hydrogenation of CO 2 by Al/Fe and Zn/Cu Alloy Catalysts under Mild Conditions", CHEMICAL ENGINEERING & TECHNOLOGY, J. WILEY, vol. 42, no. 6, 1 June 2019 (2019-06-01), pages 1223 - 1231, XP055825359, ISSN: 0930-7516, DOI: 10.1002/ceat.201800389 *
WU HAO, PAN ZHIYONG, ZONG BAONING, SHEN SHIKONG: "Study of Low-temperature Methanation on Nickel Based Amorphous Alloy Catalyst", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 24, no. 3, 1 January 2005 (2005-01-01), pages 299 - 302, XP055827852, ISSN: 1000-6613 *

Also Published As

Publication number Publication date
CN111116346B (zh) 2021-10-22
CN111116346A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
Zhao et al. Highly efficient syntheses of 2, 5-bis (hydroxymethyl) furan and 2, 5-dimethylfuran via the hydrogenation of biomass-derived 5-hydroxymethylfurfural over a nickel–cobalt bimetallic catalyst
CN106866365B (zh) 一种氢化双酚a的连续制备方法
Tang et al. Synthesis of jet fuel additive with cyclopentanone
CN106694046B (zh) 一种改性类沸石咪唑骨架材料的制备方法及其在二氧化碳加氢反应中的应用
CN109420486A (zh) 二氧化碳加氢合成甲醇的ZnZrOx固溶体催化剂及制备和应用
WO2021135387A1 (zh) 一种基于非晶态合金用于超临界co2加氢的工艺
CN106807395A (zh) 一种用于合成己二胺的催化剂
CN110981692A (zh) 一种联产异壬醇和碳八烷烃的方法及系统
CN104829824A (zh) 一种微结构反应器中合成聚醚多元醇的方法
CN106187686A (zh) 一种连续催化加氢制备1,2‑丙二醇的工艺方法及反应系统
CN111205192B (zh) 一种n,n,n′-三甲基双(氨基乙基)醚的制备方法
CN109734601A (zh) 一种制备1,3-丙二胺的方法
CN114522740B (zh) 一种由醋酸乙烯酯制备3-乙酰氧基丙醇的方法
MX2007013711A (es) Alcoholes superiores para solventes en la produccion de amina.
CN105148922A (zh) NiB非晶态合金催化剂及其制备方法
CN103254101A (zh) 制备氨基甲酸甲酯的方法及设备
CN106632394A (zh) 一种利用釜式反应装置与微通道反应装置串联反应制备利福平的方法
CN114394937B (zh) 一种基于固定床微反应器一步法连续加氢合成1,3-二甲基-2-咪唑啉酮的方法
CN103086853B (zh) 由氢气、一氧化碳和乙烯制备3-戊酮和丙醛的方法
CN111056531B (zh) 杂环环烷烃储氢材料液相脱氢的方法
WO2023274289A1 (zh) 一种由合成气联产甲醇与乙醇的方法
JP2014080328A (ja) プロセスからco2を排出しない合成ガス及び水素の併産方法
CN107522617A (zh) 一种催化甲醇脱氢制备甲酸甲酯的方法
CN102174034B (zh) 以环丁砜为原料生产四氢噻吩的方法
CN114073967A (zh) 一种含镍催化剂在糠醛制备1,5-戊二醇中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911124

Country of ref document: EP

Kind code of ref document: A1