WO2021134398A1 - 一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥 - Google Patents

一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥 Download PDF

Info

Publication number
WO2021134398A1
WO2021134398A1 PCT/CN2019/130318 CN2019130318W WO2021134398A1 WO 2021134398 A1 WO2021134398 A1 WO 2021134398A1 CN 2019130318 W CN2019130318 W CN 2019130318W WO 2021134398 A1 WO2021134398 A1 WO 2021134398A1
Authority
WO
WIPO (PCT)
Prior art keywords
setting time
calcium
hardening
ions
phosphate
Prior art date
Application number
PCT/CN2019/130318
Other languages
English (en)
French (fr)
Inventor
董良润
刘思羽
Original Assignee
苏州信和隆医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州信和隆医疗器械有限公司 filed Critical 苏州信和隆医疗器械有限公司
Priority to PCT/CN2019/130318 priority Critical patent/WO2021134398A1/zh
Publication of WO2021134398A1 publication Critical patent/WO2021134398A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite

Definitions

  • One kind of initial setting time of the present invention and final setting time can be adjusted independently of the self-setting calcium phosphate bone cement, comprising a hardening liquid system and a solid powder system, said hardening liquid system addition of water (including H +, OH -), calcium , and phosphate ions (including PO 4 3-, HPO 4 2-, H 2 PO 4 -) outside, further comprising at least one or more of the ion M n;
  • the solid powder comprises at least one calcium-containing systems Compounds, calcium dihydrogen phosphate monohydrate (MCPM), calcium dihydrogen phosphate anhydrous (MCPA), calcium hydrogen phosphate anhydrous (DCPA), calcium hydrogen phosphate dihydrate (DCPD), ⁇ -tricalcium phosphate ( ⁇ -TCP) ), ⁇ -Tricalcium Phosphate ( ⁇ -TCP), Amorphous Tricalcium Phosphate (ACP), Calcium Tetraphosphate (TTCP), Calcium Oxide (CaO), Calcium Hydroxide Ca(OH) 2
  • Example 2-CPC powder is the same as Example 1.
  • the slight change in the composition of the CPC hardening fluid greatly shortens the IST and FST, and increases the IST/FST ratio, that is, shortens the hardening time of the CPC, and increases the ratio of the shaping time to the hardening time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,包括固体粉末体系和硬化液体系。其中,硬化液体系除了水(包含H+、OH-)、钙离子、和磷酸根离子(包括PO 4 3-、HPO 4 2-、H 2PO4 -)以外,包括至少另外一种或几种的Mn离子,其中n为+1、+2、+3或-1、-2、-3。具有如下优点:(1)初凝时间(初始硬化时间initial setting time)和终凝时间(完全硬化时间final setting time)的可调控范围更宽;以及(2)酸碱度可调节范围更宽。

Description

一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥 技术领域
本发明涉及骨填充材料,尤其涉及一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥。
背景技术
早期的磷酸钙骨水泥(CPC)技术将骨水泥的快速硬化时间作为最重要的研究因素。然而,从近年的CPC用户(外科医生)的反馈表明,理想的CPC应该具有如下特性:(1)CPC粉末和液体很容易混合形成流动性好的糊状物,并能够容易转移到注射器中;(2)CPC具有良好的可注射性,并能够轻松地通过注射针头套管注入到骨缺损部位;(3),注射到骨缺损部位后,CPC糊剂需要有足够长的“操作”时间(working time),在此期间,CPC糊剂保持良好的可塑形状态,使其能够成形、重塑而不损坏膏体以及凝固后的人工骨的质量和强度;以及(4)“操作”时间过后,CPC骨水泥会立即迅速硬化,以便缝合创伤切口。在整个过程中,CPC骨水泥浆必须稳定并在“湿润”的条件下硬化,而不能分解或被体液冲洗进入体腔。
当前市场上,大多数市售CPC产品使用磷酸钠水溶液作为硬化液组分。这些硬化液通常提供较短的“操作”时间,但硬化时间却较长。例如,史赛克公司的HydroSet产品,医生必须在5 分钟内完成水泥的混合、注射及成型,但是骨水泥的硬化需要额外的15分钟左右。
各种商业磷酸钙骨水泥产品中的磷酸钠水硬化液具有中性的酸碱度pH。
最近,一种新的CPC骨水泥其硬化液使用磷酸钙溶液,而不是过去常用的磷酸钠溶液。这种产品在某些情况下,CPC的硬化时间很短,但“操作”时间却无法调节。在另外的情况下,一些产品达到了足够长的“操作”时间,但却无法控制终凝时间。这些CPC骨水泥的不足之处在于,骨水泥硬化液的酸性过强,即pH值为2.5或更低。但是,在临床需求上,不同部位的应用却要求磷酸钙骨水泥有不同的初凝时间和不同的终凝时间,比如,脊柱用骨水泥由于其操作的复杂性,要求CPC骨水泥有足够长的“操作”时间,但一旦注射到脊柱后,则要快速立即硬化。然而对于牙科用CPC骨水泥则要求不同,由于口腔环境大量唾液的分泌,牙科用骨水泥要求初凝时间和终凝时间都要快速。
由于骨水泥的“操作”时间的测量方法尚无统一标准,因此该变量随测量方法的不同而有很大差异。因此,在本发明中,我们将使用骨水泥初凝时间(initial setting time)作为评价骨水泥“操作”时间的参数。初凝时间这个指标之所以可以接受,是因为初始凝固是评价骨水泥浆体“不再成型”或“不再塑形”的指标。而骨水泥达到足够强度以便缝合伤口,所需的时间为终凝时间。
发明内容
本发明是为了解决上述初凝时间和终凝时间调控上的不足,提供了一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥。
本发明的上述目的通过以下的技术方案来实现:一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,包括硬化液体系和固体粉末体系,所述硬化液体系除了水(包含H +、OH -)、钙离子、和磷酸根离子(包括PO 4 3-、HPO 4 2-、H 2PO 4 -)以外,包括至少另外一种或几种的M n离子;所述固体粉末体系包括以下至少一种含钙的化合物,一水合磷酸二氢钙(MCPM)、无水磷酸二氢钙(MCPA)、无水磷酸氢钙(DCPA)、二水合磷酸氢钙(DCPD)、α-磷酸三钙(α-TCP)、β-磷酸三钙(β-TCP)、无定形磷酸三钙(ACP)、四磷酸钙(TTCP)、氧化钙(CaO)、氢氧化钙Ca(OH) 2、碳酸钙、八磷酸钙(OCP)等。
进一步地,所述硬化液体系中的M n离子可以是一种或几种阴离子或阳离子,其中n为+1、+2、+3或-1、-2、-3。包括Na +、K +、Mg +、Sr +、Zn 2+、Fe 2+、Fe 3+、Mn 2+等。类似地,氯离子也可以被其他阴离子代替,比如F -、NO 3 -、SO 4 2-、HSO 4 -、CO 3 -、HCO 3 -、乙酸根离子、草酸根离子、柠檬酸根离子、乳酸根离子、氨基酸根离子、以及其他有机酸阴离子等。
进一步地,其他有机酸根离子是有机小分子或有机高分子酸的阴离子H(CH 2) x-(P) p-(K) y(x=0、1、2、3、…100000,P为N、 O、P元素,p为0、1、2、3、……、100000,K=COOH、SO 3H、PO 3H 2,y=1、2、3、…、100000)。
进一步地,所述固体粉末体系还包括碳酸根离子源,目的是在CPC骨水泥产品中形成碳酸化的磷灰石,所述碳酸根离子源是碳酸钙、碳酸钠、碳酸氢钠、碳酸镁、碳酸氢镁、碳酸钾、碳酸氢钾、碳酸锶、碳酸氢锶、碳酸亚铁、碳酸锌或其组合。
进一步地,所述碳酸根离子源的用量应足够在CPC固化产物中形成0%至30%的碳酸根含量。
进一步地,所述固体粉末体系还包括柠檬酸、柠檬酸钠或其组合,其用量应该足以在固体和硬化液体系混合时产生0mol/L至5mol/L的柠檬酸盐浓度。
进一步地,所述硬化液体系还包含浓度为0mol/L至5mol/L的柠檬酸根离子。
进一步地,所述硬化液体系还包含0%至10%的液体增稠剂,以改善糊剂的粘结性,所述增稠剂选自黄原胶、瓜尔胶、卡波姆、邹波角叉菜、羟乙基纤维素、羧甲基纤维素、上述增稠剂的盐、或其组合。
进一步地,所述骨水泥还包括如下一种或几种添加剂,如造孔剂、抗生素或其他药物、不透射线填料、增强填料和增强纤维、以及骨诱导添加剂。
本发明与现有技术相比的优点是:本发明具有如下优点:(1)初凝时间(初始硬化时间initial setting time)和终凝时间 (完全硬化时间final setting time)的可调控范围更宽;以及(2)酸碱度可调节范围更宽。
具体实施方式
下面结合实施例对本发明进一步详述。
本发明的一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,包括硬化液体系和固体粉末体系,所述硬化液体系除了水(包含H +、OH -)、钙离子、和磷酸根离子(包括PO 4 3-、HPO 4 2-、H 2PO 4 -)以外,包括至少另外一种或几种的M n离子;所述固体粉末体系包括以下至少一种含钙的化合物,一水合磷酸二氢钙(MCPM)、无水磷酸二氢钙(MCPA)、无水磷酸氢钙(DCPA)、二水合磷酸氢钙(DCPD)、α-磷酸三钙(α-TCP)、β-磷酸三钙(β-TCP)、无定形磷酸三钙(ACP)、四磷酸钙(TTCP)、氧化钙(CaO)、氢氧化钙Ca(OH) 2、碳酸钙、八磷酸钙(OCP)等。
进一步地,所述硬化液体系中的M n离子可以是一种或几种阴离子或阳离子,其中n为+1、+2、+3或-1、-2、-3。包括Na +、K +、Mg +、Sr +、Zn 2+、Fe 2+、Fe 3+、Mn 2+等。类似地,氯离子也可以被其他阴离子代替,比如F -、NO 3 -、SO 4 2-、HSO 4 -、CO 3 -、HCO 3 -、乙酸根离子、草酸根离子、柠檬酸根离子、乳酸根离子、氨基酸根离子、以及其他有机酸阴离子等。
进一步地,其他有机酸根离子是有机小分子或有机高分子酸的阴离子H(CH 2) x-(P) p-(K) y(x=0、1、2、3、…100000,P为N、O、P元素,p为0、1、2、3、……、100000,K=COOH、SO 3H、PO 3H 2, y=1、2、3、…、100000)。
进一步地,所述固体粉末体系还包括碳酸根离子源,目的是在CPC骨水泥产品中形成碳酸化的磷灰石,所述碳酸根离子源是碳酸钙、碳酸钠、碳酸氢钠、碳酸镁、碳酸氢镁、碳酸钾、碳酸氢钾、碳酸锶、碳酸氢锶、碳酸亚铁、碳酸锌或其组合。
进一步地,所述碳酸根离子源的用量应足够在CPC固化产物中形成0%至30%的碳酸根含量。
进一步地,所述固体粉末体系还包括柠檬酸、柠檬酸钠或其组合,其用量应该足以在固体和硬化液体系混合时产生0mol/L至5mol/L的柠檬酸盐浓度。
进一步地,所述硬化液体系还包含浓度为0mol/L至5mol/L的柠檬酸根离子。
进一步地,所述硬化液体系还包含0%至10%的液体增稠剂,以改善糊剂的粘结性,所述增稠剂选自黄原胶、瓜尔胶、卡波姆、邹波角叉菜、羟乙基纤维素、羧甲基纤维素、上述增稠剂的盐、或其组合。
进一步地,所述骨水泥还包括如下一种或几种添加剂,如造孔剂、抗生素或其他药物、不透射线填料、增强填料和增强纤维、以及骨诱导添加剂。
本发明的发明原理:基于临床应用场景,磷酸钙骨水泥CPC的固化反应只能在水溶液环境下进行。早期的发明清楚显示,钙离子和磷酸根离子的浓度以及溶液的pH都会显著影响硬化速 率。当将磷酸钠溶液用作硬化液时(即Na-P-H 2O体系),磷酸根离子的浓度和溶液pH可以灵活调节,但是钙离子的缺乏却限制了对硬化时间的进一步控制。另一方面,当使用磷酸钙溶液作为硬化液时,钙离子和磷酸根离子的浓度可以得到控制,但是溶液的pH值却取决于溶液中钙离子和磷酸根离子的比例。这种局限可以通过将任何比例的氢氧化钙和磷酸溶液溶于水来制备任何的磷酸钙溶液而得到验证。当加入的氢氧化钙的量远大于磷酸的量时,溶液显碱性,相反当加入的氢氧化钠远低于磷酸时溶液则显酸性。因此,在另一个钙-磷-水(即Ca-P-H 2O)的三元体系构成的硬化液中,如果给定钙离子和磷酸根离子的浓度,溶液的pH将无法进一步独立调节。
为了完全、独立地控制钙离子和磷酸根离子的浓度以及溶液的pH,本发明了一个用于磷酸钙骨水泥的四组分硬化液体系钙-磷-M-水(Ca-P-M-H 2O)。其中,硬化液体系除了水(包含H +、OH -)、钙离子、和磷酸根离子(包括PO 4 3-、HPO 4 2-、H 2PO 4 -)以外,包括至少另外一种或几种的M n离子,其中n为±1、±2、±3。使用这种新的硬化液时,可以根据临床需要,独立地控制钙离子浓度、磷酸根离子浓度和溶液的pH。
与任何溶液一样,阳离子的总电荷必须等于阴离子的总电荷。对于这种四组分体系,如果M n离子为阳离子时(即n=+1、+2、+3),电荷平衡可以用公式[1]表示。
2[Ca 2+]+n[M n]+[H +]=[H 2PO 4 -]+2[HPO 4 2-]+3[PO 4 3-]+[OH -]   [1]
例如,如果M为Na +离子时,可以观察到,在给定的pH值下, 钠离子的存在使磷酸根离子浓度高于相同钙离子浓度的三组分系统Ca-P-H 2O,这是因为在四组分体系中,钠离子的正电荷必须通过额外的磷酸根离子来平衡。
如果M n离子为阴离子时(即n=-1、-2、-3),则骨水泥硬化液中含有较高的钙离子浓度和较低的磷酸根离子浓度。相应的电荷平衡由公式[2]表示
2[Ca 2+]+[H +]=n[M n]+[H 2PO 4 -]+2[HPO 4 2-]+3[PO 4 3-]+[OH -]   [2]
在该硬化液体系中,钙离子和磷酸根离子的浓度以及溶液pH可以独立调节,也是由于电荷平衡的原因,钙离子浓度通常高于相应的三组分体系中的钙的浓度。例如,如果M为Cl -离子时,可以观察到,在给定的pH值下,氯离子的存在使磷酸根离子浓度低于相同钙离子浓度的三组分系统Ca-P-H 2O,这是因为在四组分体系中,氯离子的负电荷必须通过额外的钙根离子来平衡。
上述硬化液体系中,M可以是一种或几种非钙、非磷离子,可以同时是一种或几种阳离子或阴离子,也可以是阴、阳离子共存。如果包含有非钙、非磷的阴、阳离子时,硬化液体系可以表示为Ca-P-X x+-Y y--H 2O。这时,硬化液体系的电荷平衡可以用公式[3]表示。
2[Ca 2+]+x[X x+]+[H +]=y[Y y-][H 2PO 4 -]+2[HPO 4 2-]+3[PO 4 3-]+[OH -]   [3]
应用前述多组分体系,可以完全达到独立控制CPC硬化液中钙离子和磷酸根离子的浓度以及pH值的目的,而独立控制上述变量可以达到完全控制CPC骨水泥硬化反应速率的目的,从而根 据临床需求灵活控制CPC的初凝时间和终凝时间。
应该注意的是,如果将氯化钠添加到CPC硬化液中,因为钠离子和氯离子的浓度相同,因此不会产生上述独立控制钙离子和磷酸根离子以及溶液pH的净效应。
此外,为了获得上述效果,只要阳离子不产生毒性或其他不希望的副作用,上述钠离子还可以用任何其他阳离子代替,而与电荷无关,比如Na +、K +、Mg +、Sr +、Zn 2+、Fe 2+、Fe 3+、Mn 2+等。类似地,氯离子也可以被其他阴离子代替,比如F -、NO 3 -、SO 4 2-、HSO 4 -、CO 3 -、HCO 3 -、乙酸根离子、草酸根离子、柠檬酸根离子、以及其他有机酸阴离子等。
通过对钙离子、磷酸根离子、其他对阴离子或对阳离子的完全独立的调节,以及粉末组成的独立调节,初凝时间、终凝时间以及二者的相对比例都可以根据临床的需求独立调节。在临床应用上,脊柱修复由于手术的复杂性,较长的初凝时间更便于医生有足够的时间混合、注射、塑形,而避免CPC在骨髓腔的渗漏,又要求CPC注入脊柱后快速硬化,因而较大的初凝时间/终凝时间的比例(IST/FST比例)的CPC的开发在脊柱修复方面有其突出优势。另一方面,对于口腔牙根种植用CPC则要求不同的硬化特点,因为口腔大量唾液分泌可能影响CPC的硬化,但CPC在口腔使用操作相对更加方便,所以具有快速硬化(即初凝时间和终凝时间都很短)的CPC更加适合口腔需求。
材料制备:
前述CPC硬化液体系按如下方法制备:将指定比例的钙化合物、磷酸或磷酸盐化合物、以及其他离子的化合物(如钠盐、氯化物)溶于水,用酸或碱调节溶液pH值至1-12。
实验方法:
初凝时间和终凝时间的测试:固化时间(初凝时间、终凝时间)以Gillmore双水泥针依ASTM C266-04标准测试,具体方法为:将0.3g粉末样品与0.1mL固化液混合调成糊状,注入厚度3mm、直径6mm的圆孔模具中,37℃水浴锅内保温,测量时分别将Gillmore初凝水泥针(总重113.4g,水泥针末端直径2.12mm)或终凝水泥针(总重453.6g,水泥针末端直径1.06mm)垂直置于样品表面,至肉眼观察表面无明显可见压痕确定起始固化时间(初凝时间)和最终固化时间(终凝时间)。粉末与固化液开始接触瞬间至初凝点、终凝点之间的时间间隔为初凝时间或终凝时间(以分钟计)。此实验共重复三次,计算平均初凝时间、终凝时间。
实例
代表性CPC粉末体系及硬化液体系组成
Figure PCTCN2019130318-appb-000001
Figure PCTCN2019130318-appb-000002
实例1-CPC粉末含有等摩尔的TTCP(四磷酸钙)和DCPA(磷酸氢钙)。硬化液含有钠离子2.39mol/L、磷酸根离子2.06mol/L,溶液pH=6.06。硬化时间测试结果为初凝时间(IST)为9.05±0.15分钟(n=3),终凝时间(FST)为23.7±0.1分钟。该CPC的问题是终凝时间长但初凝时间/终凝时间(即IST/FST)的比值小,为0.38,这表明CPC的“操作”时间只是较长硬化时间的一小部分,也就是可塑形时间过短。
实例2–CPC粉末与实例1相同。硬化液中含有钙离子0.35mol/L、磷酸根离子1.947mol/L、钠离子2.075mol/L,溶液pH=5.75。硬化时间测试结果为IST=6.60±0.10分钟(n=3)和FST=15.1±0.3分钟,IST/FST比=0.45。改CPC硬化液成分的微小变化极大地缩短了IST和FST,并提高了IST/FST比,亦即缩短了CPC的硬化时间,并且使可塑形时间在硬化时间的比例变大。
实例3–CPC粉末与实例1相同。硬化液含有钙离子 0.17mol/L,磷酸根离子1.87mol/L、钠离子1.63mol/L,溶液的pH=2.63。硬化时间测试结果为IST=4.34±0.07分钟(n=3)和FST=7.22±0.09分钟,IST/FST比=0.60。结果表明硬化液组成的进一步调整导致了更短的IST和FST,即更快的初凝时间和终凝时间,并将IST/FST比率显着提高到0.60。该实例中“操作”时间是CPC完全硬化总时间的主要部分。
实例4-CPC粉末与实例1相同。硬化液含有钙离子0.08mol/L、磷酸根离子1.43mol/L、钠离子0.53mol/L,溶液的pH=1.40。硬化时间测试结果为IST=4.03±0.26(n=3)分钟,FST=6.53±0.32(n=3)分钟,IST/FST比=0.61。结果显示,在保持足够的“操作”时间条件下,CPC的终凝时间只有6.53分钟。该实例表明,使用钠离子和钙离子浓度相对较低的溶液可以获得优异的固化性能。尽管该溶液的初始pH值相对较低,但粉末和液体混合后,pH值会迅速升高至接近自然。
实例5–CPC粉末为α-TCP(α-磷酸三钙),硬化液含组成与实例2相同。硬化时间测试结果为IST=8.32±0.21分钟(n=3)和FST=19.8±0.44分钟(n=3),IST/FST比=0.42。结果显示,使用不同的CPC固体粉末体系,使用相同的四组分体系硬化液使初凝时间和终凝时间都有所变长,但初凝时间与终凝时间的比例变化不大。
实例6-CPC粉末为α-TCP(α-磷酸三钙)和CaCO 3(碳酸钙)按摩尔比3:1的混合物,硬化液含组成与实例2相同。硬化时间 测试结果为IST=6.71±0.13分钟(n=3)和FST=20.3±0.58分钟(n=3),IST/FST比=0.33。该实验结果显示,使用相同的硬化液时,CPC粉末中加入CaCO 3,可以缩短CPC的初凝时间,但对终凝时间的影响不大。
实例7–CPC粉末为DCPA(磷酸氢钙)和CaCO 3(碳酸钙)按摩尔比3:2的混合物。硬化液含有钙离子0.21mol/L、磷酸根离子为0.50mol/L、钠离子0.50mol/L。硬化时间测试结果为IST=18.2±0.62分钟(n=3)和FST=60.5±2.57分钟(n=3),IST/FST比=0.33。改变CPC固体粉末的组成,并使用较稀的硬化液浓度时,初凝时间和终凝时间显著变长,特别是终凝时间长达1个小时,已经远远不能满足临床需要的30分钟以内樱花的需要。
实例8–CPC粉末为β-TCP(β-磷酸三钙),硬化液含组成与实例2相同。硬化时间测试结果为IST=11.2±0.32分钟(n=3)和FST=31.1±1.10分钟(n=3),IST/FST比=0.36。结果显示,与实例5和实例2对比,使用相同的硬化液时,β-TCP的硬化时间比α-TCP要慢得多,也比实例2的DCPA+TTCP粉末反应慢,这可能是因为β-TCP的溶解速度较慢的原因。
实例9-CPC粉末为MCPM+CaCO 3按照摩尔比3:7的混合物,硬化液含有钙离子1.87mol/L,磷酸根离子0.17mol/L、氯离子1.63mol/L。硬化时间测试结果为IST=18.2±0.97分钟(n=3)和FST=48.0±1.69分钟,IST/FST比=0.38。结果显示引入氯离 子使磷酸根离子远低于钙离子浓度,使初凝时间和终凝时间都变的很长,以至于终凝时间接近50分钟,不再满足临床上需要半小时内完全硬化的要求。
实例10-CPC粉末是ACP+CaCO 3按照摩尔比3:1的混合物,硬化液与实例4相同。硬化时间测试结果为IST=7.12±0.44分钟(n=3),FST=12.5±0.62分钟(n=3),IST/FST比=0.57。该体系得到足够长的“操作”时间,并且具有快速的终凝硬化时间,CPC的终凝时间只有12.5分钟,非常适合四肢和颅骨开放性骨缺损的修复。
实例11–CPC粉末和硬化液中的各离子浓度均与实例4比例一致,唯一的改变是将实例4中硬化液中的钠离子改为钾离子。硬化时间测试结果为IST=6.20±0.42分钟(n=3),FST=13.0±0.73分钟(n=3),IST/FST比=0.48。结果显示,将硬化液中钠离子替代为钾离子,硬化时间都有加长趋势,初凝时间略有增加,但终凝时间几乎加倍。
实例12–CPC粉末与实例1相同,硬化液含有钙离子0.73mol/L,磷酸根离子0.08mol/L、氯离子0.2mol/L。硬化时间测试结果为IST=18.4±0.78分钟(n=3)和FST=35.2±1.24分钟,IST/FST比=0.52。结果表明硬化液引入氯离子使初凝时间和终凝时间都变长。
实例13-CPC粉末主要成分与实例1的CPC粉末相同,另外以10%摩尔百分比加入了NaHCO 3,混合物组成为 TTCP+DCPA+NaHCO 3,硬化液与实例3相同。硬化时间测试结果为IST=12.4±0.57分钟(n=3)和FST=17.1±0.89分钟,IST/FST比=0.73。该实例的得到的CPC的IST/FST比值最大,也就是初凝时间占终凝时间的比例最大,也就是相对于一定的终凝时间,具有最长的“操作”时间。这个硬化时间具有非常重要的临床意义,它比较适合较为复杂的脊柱修复手术。由于脊柱修复的复杂性,临床上一般需要相对较长的操作时间,该CPC给予了医生足够长的操作时间去塑形,而一旦注射进体内,CPC就会立即快速硬化。之所以得到初凝较长、终凝较快的CPC这是因为该CPC不仅硬化液中钙、磷、钠离子独立调节,并且粉末中引入钠离子和碳酸氢根离子对硬化时间进行双重调控的优势。
实例14–CPC粉末是MCP、TCP、TTCP按摩尔比1:1:4的混合物,而硬化液将钙离子更换为锶离子,硬化液含有锶离子0.17mol/L,磷酸根离子1.87mol/L、钠离子1.63mol/L。硬化时间测试结果为IST=5.42±0.27分钟(n=3)和FST=12.6±0.47分钟,IST/FST比=0.43。结果表明硬化液组成的进一步调整导致了更短的IST和FST,即更快的初凝时间和终凝时间,并将IST/FST比率显着提高到0.60。该实例中“操作”时间是CPC完全硬化总时间的主要部分。相对于相同组成的钙离子硬化液而言,初凝时间和终凝时间均有所延长,这可能是由于锶离子较大的离子半径以及锶杂化的羟基磷灰石较大的溶解性的缘故,使锶掺杂CPC硬化较慢。当然,粉末组成的改变也是影响硬化时间的 另外一个因素。
实例15–CPC粉末是DCP、CaO、TCP按照摩尔比1:1:1.3混合的混合物,硬化液与实例4相同。硬化时间测试结果为IST=2.86±0.23分钟(n=3),FST=4.26±0.32分钟(n=3),IST/FST比=0.67。该体系得到IST/FST比值很高且初凝时间和终凝时间都很短的体系,该体系非常适合口腔种植的快速硬化CPC,在大量唾液分泌的情况下,快速硬化骨水泥十分必要。
实例16–CPC粉末是等摩尔混合的MCP、DCPA、TTCP、CaCO 3,硬化液含有较稀的离子,其中钙离子0.03mol/L、磷酸根离子0.27mol/L、钠离子0.31mol/L,溶液的pH=1.40。硬化时间测试结果为IST=10.2±1.04分钟(n=3),FST=21.3±1.63分钟(n=3),IST/FST比=0.46,该硬化时间的范围及比例也非常适合四肢开放性骨缺损的填充。结果显示,通过对硬化液和粉末进行各组分独立调节,能够更加有效地调控硬化时间到临床需求的范围内。值得说明的是,虽然硬化液成分可以通过本专利的技术完全独立调节,从而随意调节硬化时间,多组分的固体粉末为硬化时间和产品性能调控提供了更加丰富的手段。根据本专利独有技术,结合硬化液和粉末内各组分比例的调节,能够开发出一系列适合不同创伤部位、不同临床需求的具有不同硬化时间、机械强度、降解速率的新型磷酸钙骨水泥(注射型人工骨)。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换, 或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

  1. 一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,其特征在于:包括硬化液体系和固体粉末体系,所述硬化液体系除了水(包含H +、OH -)、钙离子、和磷酸根离子(包括PO 4 3-、HPO 4 2-、H 2PO 4 -)以外,包括至少另外一种或几种的M n离子;所述固体粉末体系包括以下至少一种含钙的化合物,一水合磷酸二氢钙(MCPM)、无水磷酸二氢钙(MCPA)、无水磷酸氢钙(DCPA)、二水合磷酸氢钙(DCPD)、α-磷酸三钙(α-TCP)、β-磷酸三钙(β-TCP)、无定形磷酸三钙(ACP)、四磷酸钙(TTCP)、氧化钙(CaO)、氢氧化钙Ca(OH) 2、碳酸钙、八磷酸钙(OCP)等。
  2. 根据权利要求1所述的一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,其特征在于:所述硬化液体系中的M n离子是一种或几种阴离子或阳离子,其中n为+1、+2、+3或-1、-2、-3;包括Na +、K +、Mg +、Sr +、Zn 2+、Fe 2+、Fe 3+、Mn 2+;类似地,氯离子也可以被其他阴离子代替,比如F -、NO 3 -、SO 4 2-、HSO 4 -、CO 3 -、HCO 3 -、乙酸根离子、草酸根离子、柠檬酸根离子、乳酸根离子、氨基酸根离子、以及其他有机酸阴离子。
  3. 根据权利要求2所述的一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,其特征在于:其他有机酸根离子是有机小分子或有机高分子酸的阴离子H(CH 2) x-(P) p-(K) y(x=0、1、2、3、…100000,P为N、O、P元素,p为0、1、2、3、……、 100000,K=COOH、SO 3H、PO 3H 2,y=1、2、3、…、100000)。
  4. 根据权利要求1所述的一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,其特征在于:所述固体粉末体系还包括碳酸根离子源,目的是在CPC骨水泥产品中形成碳酸化的磷灰石,所述碳酸根离子源是碳酸钙、碳酸钠、碳酸氢钠、碳酸镁、碳酸氢镁、碳酸钾、碳酸氢钾、碳酸锶、碳酸氢锶、碳酸亚铁、碳酸锌或其组合。
  5. 根据权利要求4所述的一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,其特征在于:所述碳酸根离子源的用量应足够在CPC固化产物中形成0%至30%的碳酸根含量。
  6. 根据权利要求1所述的一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,其特征在于:所述固体粉末体系还包括柠檬酸、柠檬酸钠或其组合,其用量应该足以在固体和硬化液体系混合时产生0mol/L至5mol/L的柠檬酸盐浓度。
  7. 根据权利要求1所述的一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,其特征在于:所述硬化液体系还包含浓度为0mol/L至5mol/L的柠檬酸根离子。
  8. 根据权利要求1所述的一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,其特征在于:所述硬化液体系还包含0%至10%的液体增稠剂,以改善糊剂的粘结性,所述增稠剂选自黄原胶、瓜尔胶、卡波姆、邹波角叉菜、羟乙基纤维素、羧甲基纤维素、上述增稠剂的盐、或其组合。
  9. 根据权利要求1所述的一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥,其特征在于:所述骨水泥还包括如下一种或几种添加剂,如造孔剂、抗生素或其他药物、不透射线填料、增强填料和增强纤维、以及骨诱导添加剂。
PCT/CN2019/130318 2019-12-31 2019-12-31 一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥 WO2021134398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130318 WO2021134398A1 (zh) 2019-12-31 2019-12-31 一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130318 WO2021134398A1 (zh) 2019-12-31 2019-12-31 一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥

Publications (1)

Publication Number Publication Date
WO2021134398A1 true WO2021134398A1 (zh) 2021-07-08

Family

ID=76685817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130318 WO2021134398A1 (zh) 2019-12-31 2019-12-31 一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥

Country Status (1)

Country Link
WO (1) WO2021134398A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113769159A (zh) * 2021-08-23 2021-12-10 广州润虹医药科技股份有限公司 一种无水状态磷酸钙骨水泥及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157045A (zh) * 2007-10-26 2008-04-09 中国科学院上海硅酸盐研究所 生物活性磷酸钙/硅酸三钙复合自固化材料、方法及应用
CN101284150A (zh) * 2008-06-11 2008-10-15 华中科技大学 聚合物增强硅酸钙复合多孔骨水泥
CN101366971A (zh) * 2008-10-15 2009-02-18 苗军 可注射防水型磷酸钙骨水泥
CN101524557A (zh) * 2009-04-21 2009-09-09 华南理工大学 抗溃散的磷酸钙骨水泥及其制备方法与应用
CN101880033A (zh) * 2010-03-04 2010-11-10 上海纳米技术及应用国家工程研究中心有限公司 一种生物陶瓷用磷酸钙的制备方法
US20120178684A1 (en) * 2011-01-11 2012-07-12 Maxigen Biotech Inc. Surgical Calcium Phosphate Citrate-Containing Cement and Method of Manufacturing the Same
CN103961741A (zh) * 2014-05-14 2014-08-06 常州大学 一种磷酸钙类骨修复材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157045A (zh) * 2007-10-26 2008-04-09 中国科学院上海硅酸盐研究所 生物活性磷酸钙/硅酸三钙复合自固化材料、方法及应用
CN101284150A (zh) * 2008-06-11 2008-10-15 华中科技大学 聚合物增强硅酸钙复合多孔骨水泥
CN101366971A (zh) * 2008-10-15 2009-02-18 苗军 可注射防水型磷酸钙骨水泥
CN101524557A (zh) * 2009-04-21 2009-09-09 华南理工大学 抗溃散的磷酸钙骨水泥及其制备方法与应用
CN101880033A (zh) * 2010-03-04 2010-11-10 上海纳米技术及应用国家工程研究中心有限公司 一种生物陶瓷用磷酸钙的制备方法
US20120178684A1 (en) * 2011-01-11 2012-07-12 Maxigen Biotech Inc. Surgical Calcium Phosphate Citrate-Containing Cement and Method of Manufacturing the Same
CN103961741A (zh) * 2014-05-14 2014-08-06 常州大学 一种磷酸钙类骨修复材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113769159A (zh) * 2021-08-23 2021-12-10 广州润虹医药科技股份有限公司 一种无水状态磷酸钙骨水泥及其制备方法

Similar Documents

Publication Publication Date Title
JP5383961B2 (ja) マグネシウム塩で安定化されたブラッシュ石水硬セメント
EP1715829B1 (en) Rapid-hardening calcium phosphate cement compositions
US6616742B2 (en) Process for preparing a paste from calcium phosphate cement
JP3559265B2 (ja) ヒトおよび動物の身体内への移植のための組成物
EP2421543B1 (en) Dual-phase calcium phosphate cement composition
JP4273073B2 (ja) 外科用のリン酸カルシウムをベースとする水硬性セメント
CA2624331C (en) Dual-phase cement precursor systems for bone repair
JP6130098B2 (ja) ガリウム化リン酸カルシウム生体材料
US9259439B2 (en) Dual-phase cement precursor systems for bone repair
US20130156864A1 (en) Inorganic Cement for Biomedical uses, Preparation Method Thereof and Use of Same
WO2021134398A1 (zh) 一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥
CN113559316A (zh) 一种初凝时间和终凝时间可独立调节的自固化磷酸钙骨水泥
JP2537121B2 (ja) 硬化性組成物
RU2609835C1 (ru) Кальций-фосфатный цемент для регенерации костной ткани (варианты)
US20220273841A1 (en) Bone cement with hyaluronic acid
KR101978386B1 (ko) 주입형 다공성 브루샤이트 골 충진재용 조성물 키트 및 골 충진재의 제조방법
JP2022030655A (ja) リン酸カルシウム組成物
JPH04187608A (ja) 歯科用及び整形外科用セメント
TWI453174B (zh) 骨水泥配方及由其製備的生物可吸收的硬化骨水泥複合材料
TWI436795B (zh) An injection-type bone filling composition
JPH0533635B2 (zh)
Sarıibrahimoğlu et al. INJECTABLE BIPHASIC CALCIUM PHOSPHATE CEMENTS AS A POTANTIAL BONE SUBSTITUTE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958590

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19958590

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19958590

Country of ref document: EP

Kind code of ref document: A1