WO2021132895A1 - 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자 - Google Patents

벤즈아졸 유도체 및 이를 포함한 유기전계발광소자 Download PDF

Info

Publication number
WO2021132895A1
WO2021132895A1 PCT/KR2020/016543 KR2020016543W WO2021132895A1 WO 2021132895 A1 WO2021132895 A1 WO 2021132895A1 KR 2020016543 W KR2020016543 W KR 2020016543W WO 2021132895 A1 WO2021132895 A1 WO 2021132895A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mmol
layer
compound
electrode
Prior art date
Application number
PCT/KR2020/016543
Other languages
English (en)
French (fr)
Inventor
석문기
고병수
임철수
박용필
한갑종
오유진
Original Assignee
주식회사 랩토
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 랩토 filed Critical 주식회사 랩토
Priority to CN202080081843.2A priority Critical patent/CN114981249A/zh
Publication of WO2021132895A1 publication Critical patent/WO2021132895A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a benzazole derivative and an organic electroluminescent device including the same, and to make an organic electroluminescent device including a capping layer have low refractive index by using the benzazole derivative.
  • OLED Organic Light Emitting Diodes
  • the basic structure of an OLED display is generally an anode, a hole injection layer (HIL), a hole transporting layer (HTL), an emission layer (EML), an electron transporting layer (Electron Transporting Layer, ETL), and a multilayer structure of a cathode, and a sandwich structure in which an electron organic multilayer film is formed between two electrodes.
  • HIL hole injection layer
  • HTL hole transporting layer
  • ETL emission layer
  • ETL electron transporting layer
  • multilayer structure of a cathode and a sandwich structure in which an electron organic multilayer film is formed between two electrodes.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon typically has a structure including an anode and a cathode and an organic material layer therebetween.
  • the organic material layer is often formed of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Such an organic light emitting device When a voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet, and the excitons It lights up when it falls to the ground state.
  • Such an organic light emitting device is known to have characteristics such as self-luminescence, high luminance, high efficiency, low driving voltage, wide viewing angle, high contrast, and high-speed response.
  • a material used as an organic material layer in an organic light emitting device may be classified into a light emitting material and a charge transport material, for example, a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like, according to functions.
  • the light emitting material includes blue, green, and red light emitting materials depending on the light emitting color, and yellow and orange light emitting materials necessary for realizing a better natural color.
  • a host/dopant system may be used as a light emitting material. The principle is that when a small amount of a dopant having a smaller energy band gap and excellent luminous efficiency than the host constituting the light emitting layer is mixed in the light emitting layer in a small amount, excitons generated from the host are transported to the dopant to emit light with high efficiency. At this time, since the wavelength of the host moves to the wavelength band of the dopant, light having a desired wavelength can be obtained according to the type of dopant used.
  • materials constituting the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc.
  • the performance of the organic light emitting device is recognized by the products.
  • the organic light emitting diode Since the organic light emitting diode is exposed to an external light source for a large amount of time, it is in an environment exposed to ultraviolet rays having high energy. Accordingly, there is a problem in that the organic material constituting the organic light emitting device is continuously affected. In order to prevent exposure to such a high energy light source, the problem can be solved by applying a capping layer having ultraviolet absorption characteristics to the organic light emitting diode.
  • the viewing angle characteristics of an organic light emitting device are wide, but a significant deviation occurs depending on the viewing angle from the viewpoint of the light source spectrum. This is due to the total refractive index of the glass substrate, organic material, and electrode material constituting the organic light emitting device and the emission wavelength of the organic light emitting device. This is due to the occurrence of a deviation between the appropriate refractive indices.
  • the efficiency of the organic light emitting diode can be generally divided into internal luminescent efficiency and external luminescent efficiency.
  • the internal luminous efficiency is related to the efficiency of the formation of excitons in the organic layer for light conversion to take place.
  • the external light emission efficiency refers to the efficiency at which light generated in the organic layer is emitted to the outside of the organic light emitting device.
  • CPL capping layer
  • the present invention is a first electrode; an organic material layer disposed on the first electrode; a second electrode disposed on the organic material layer; and a capping layer disposed on the second electrode, wherein the organic material layer or the capping layer provides an organic electroluminescent device including a benzazole derivative represented by Formula 1 below.
  • Z 1 is O or S
  • X 1 , X 2 , X 3 , X 4 and X 5 are each independently CH or N,
  • R 1 to R 6 are the same as or different from each other, and are at least one selected from hydrogen, a methyl group, a tert-butyl group, a trimethylsilyl group, a fluoro group, a trifluoromethyl group, and a cyano group.
  • the compound described herein may be used as a material for an organic material layer or a capping layer of an organic light emitting device.
  • the compound according to the present invention exhibits ultraviolet absorption characteristics, thereby minimizing damage to organic materials in the organic light emitting device by an external light source, and improving efficiency, low driving voltage and/or lifespan characteristics in the organic light emitting device.
  • an organic light emitting device using the compound described in the present specification as a capping layer it is possible to significantly improve luminous efficiency and color purity according to a decrease in the emission spectrum half width.
  • FIG. 1 illustrates a first electrode 110, a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, an electron transport layer 230, and an electron injection layer on a substrate 100 according to an embodiment of the present invention.
  • An example of an organic light emitting device in which 235 , the second electrode 120 , and the capping layer 300 are sequentially stacked is shown.
  • FIG. 2 is a graph showing the refraction and absorption characteristics of light when using a benzazole derivative according to an embodiment of the present invention.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • the singular expression includes the plural expression unless the context clearly dictates otherwise.
  • substituted or unsubstituted is a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, a hydroxy group, a silyl group, a boron group, a phosphine oxide group, a phosphine sulfide group, an alkyl group, an alkoxy group, an alke group It may mean unsubstituted or substituted with one or more substituents selected from the group consisting of a nyl group, an aryl group, a heteroaryl group, and a heterocyclic group.
  • each of the substituents exemplified above may be substituted or unsubstituted.
  • a biphenyl group may be interpreted as an aryl group or a phenyl group substituted with a phenyl group.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the alkyl group may be linear, branched or cyclic.
  • Carbon number of an alkyl group is 1 or more and 50 or less, 1 or more and 30 or less, 1 or more and 20 or less, 1 or more and 10 or less, or 1 or more and 6 or less.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, i-butyl group, 2-ethylbutyl group, 3, 3-dimethylbutyl group , n-pentyl group, i-pentyl group, neopentyl group, t-pentyl group, cyclopentyl group, 1-methylpentyl group, 3-methylpentyl group, 2-ethylpentyl group, 4-methyl-2-pentyl group , n-hexyl group, 1-methylhexyl group, 2-ethylhexyl group, 2-butylhexyl group, cyclohexyl group, 4-methylcyclohexyl group, 4-t-butylcyclohexyl group, n-heptyl group, 1 -Methyl
  • the hydrocarbon ring group means any functional group or substituent derived from an aliphatic hydrocarbon ring.
  • the hydrocarbon ring group may be a saturated hydrocarbon ring group having 5 to 20 ring carbon atoms.
  • the aryl group means any functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group.
  • the number of ring carbon atoms of the aryl group may be 6 or more and 30 or less, 6 or more and 20 or less, or 6 or more and 15 or less.
  • aryl group examples include a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a phenanthryl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a quinkphenyl group, a sexyphenyl group, a triphenylenyl group, a pyrenyl group, a peryleneyl group, a naphtha group
  • a cenyl group, a pyrenyl group, a benzo fluoranthenyl group, a chrysenyl group, etc. can be illustrated, it is not limited to these.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the heteroaryl group may be a heteroaryl group including at least one of O, N, P, Si and S as a heterogeneous element.
  • the N and S atoms may optionally be oxidized and the N atom(s) may optionally be quaternized.
  • the number of ring carbon atoms in the heteroaryl group is 2 or more and 30 or less, or 2 or more and 20 or less.
  • the heteroaryl group may be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the polycyclic heteroaryl group may have, for example, a bicyclic or tricyclic structure.
  • heteroaryl group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a pyrazolyl group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridine group, a bipyridine group, a pyrimidine group, a triazine group , tetrazine group, triazole group, tetrazole group, acridyl group, pyridazine group, pyrazinyl group, quinoline group, quinazoline group, quinoxaline group, phenoxazine group, phthalazine group, pyridopyrimidine group, pyridopyrazino group Pyrazine group, isoquinoline group, cinnol group, indole group, isoindole group, indazole group, carbazole group, N-
  • N-oxide aryl groups corresponding to the monocyclic heteroaryl group or polycyclic heteroaryl group, for example, quaternary salts such as pyridyl N-oxide group, quinolyl N-oxide group, etc., but these not limited
  • the silyl group includes an alkyl silyl group and an aryl silyl group.
  • the silyl group include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. not limited
  • the boron group includes an alkyl boron group and an aryl boron group.
  • the boron group include, but are not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a diphenylboron group, and a phenylboron group.
  • the alkenyl group may be straight-chain or branched. Although carbon number is not specifically limited, 2 or more and 30 or less, 2 or more and 20 or less, or 2 or more and 10 or less.
  • Examples of the alkenyl group include, but are not limited to, a vinyl group, a 1-butenyl group, a 1-pentenyl group, a 1,3-butadienyl aryl group, a styrenyl group, and a styryl vinyl group.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group, and may include a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group at the same time.
  • arylamine group examples include a phenylamine group, a naphthylamine group, a biphenylamine group, an anthracenylamine group, a 3-methyl-phenylamine group, a 4-methyl-naphthylamine group, and a 2-methyl-biphenylamine group. group, 9-methyl-anthracenylamine group, diphenyl amine group, phenyl naphthylamine group, ditolyl amine group, phenyl tolyl amine group, carbazole and triphenyl amine group, but is not limited thereto.
  • examples of the heteroallylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group.
  • the heteroaryl group in the heteroarylamine group may be a monocyclic heterocyclic group or a polycyclic heterocyclic group.
  • the heteroarylamine group including two or more heterocyclic groups may include a monocyclic heterocyclic group, a polycyclic heterocyclic group, or a monocyclic heterocyclic group and a polycyclic heterocyclic group at the same time.
  • the aryl heteroarylamine group refers to an amine group substituted with an aryl group and a heterocyclic group.
  • adjacent group may mean a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, another substituent substituted on the atom in which the substituent is substituted, or a substituent sterically closest to the substituent.
  • substituent groups may mean a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, another substituent substituted on the atom in which the substituent is substituted, or a substituent sterically closest to the substituent.
  • 1,2-dimethylbenzene two methyl groups can be interpreted as “adjacent groups” to each other, and in 1,1-diethylcyclopentene, 2 The two ethyl groups can be interpreted as “adjacent groups” to each other.
  • the benzazole derivative compound according to an embodiment of the present invention is represented by the following formula (1).
  • Z 1 is O or S
  • X 1 , X 2 , X 3 , X 4 and X 5 are each independently CH or N,
  • R 1 to R 6 are the same as or different from each other, and are at least one selected from hydrogen, a methyl group, a tert-butyl group, a trimethylsilyl group, a fluoro group, a trifluoromethyl group, and a cyano group.
  • the benzazole derivative represented by Formula 1 may be any one selected from compounds represented by Formula 2 and Formula 3, and the following compounds may be further substituted.
  • FIGS. 1 and 2 an embodiment of the present invention will be described with reference to FIGS. 1 and 2 .
  • FIG. 1 is a cross-sectional view schematically illustrating an organic light emitting diode according to an embodiment of the present invention.
  • a first electrode 110 a hole injection layer 210 , a hole transport layer 215 , a light emitting layer 220 , and electrons are sequentially stacked on a substrate 100 .
  • It may include a transport layer 230 , an electron injection layer 235 , a second electrode 120 , and a capping layer 300 .
  • the first electrode 110 and the second electrode 120 are disposed to face each other, and the organic material layer 200 may be disposed between the first electrode 110 and the second electrode 120 .
  • the organic material layer 200 may include a hole injection layer 210 , a hole transport layer 215 , a light emitting layer 220 , an electron transport layer 230 , and an electron injection layer 235 .
  • the capping layer 300 presented in the present invention is a functional layer deposited on the second electrode 120 and includes an organic material according to Chemical Formula 1 of the present invention.
  • the first electrode 110 has conductivity.
  • the first electrode 110 may be formed of a metal alloy or a conductive compound.
  • the first electrode 110 is generally an anode, but the function as an electrode is not limited.
  • the first electrode 110 may be formed by depositing an electrode material on the substrate 100 using a deposition method, electron beam evaporation, or sputtering.
  • the material of the first electrode 110 may be selected from materials having a high work function to facilitate injection of holes into the organic light emitting device.
  • the capping layer 300 proposed in the present invention is applied when the emission direction of the organic light emitting device is top emission, and therefore, the first electrode 110 uses a reflective electrode.
  • These materials include Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), Mg-Ag (magnesium-silver) and It can also be manufactured using the same metal.
  • carbon substrate flexible electrode materials such as CNT (carbon nanotube) and graphene (graphene) may be used.
  • the organic material layer 200 may be formed of a plurality of layers.
  • the organic material layer 200 includes the hole transport regions 210 to 215 disposed on the first electrode 110 , the light emitting layer 220 disposed on the hole transport region, and the light emitting layer. It may include electron transport regions 230 to 235 disposed on 220 .
  • the capping layer 300 of an embodiment includes an organic compound represented by Chemical Formula 1 to be described later.
  • the hole transport regions 210 to 215 are provided on the first electrode 110 .
  • the hole transport regions 210 to 215 may include at least one of a hole injection layer 210 , a hole transport layer 215 , a hole buffer layer, and an electron blocking layer (EBL).
  • EBL electron blocking layer
  • the hole transport regions 210 to 215 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
  • the hole transport regions 210 to 215 may have a single-layer structure of the hole injection layer 210 or the hole transport layer 215 , or may have a single-layer structure including a hole injection material and a hole transport material. have.
  • the hole transport regions 210 to 215 have a single-layer structure made of a plurality of different materials, or a hole injection layer 210/hole transport layer 215 stacked sequentially from the first electrode 110, Hole injection layer 210 / hole transport layer 215 / hole buffer layer, hole injection layer 210 / hole buffer layer, hole transport layer 215 / hole buffer layer, or hole injection layer 210 / hole transport layer 215 / electron It may have a structure of the blocking layer EBL, but the embodiment is not limited thereto.
  • the hole injection layer 210 of the hole transport regions 210 to 215 may be formed on the anode by various methods, such as a vacuum deposition method, a spin coating method, a casting method, and an LB method.
  • the deposition conditions are 100 to 500 depending on the compound used as the material for the hole injection layer 210, the structure and thermal characteristics of the hole injection layer 210, and the like.
  • the deposition rate at °C can be freely controlled by about 1 ⁇ /s, and is not limited to specific conditions.
  • the coating conditions are different depending on the characteristics between the compound used as the hole injection layer 210 material and the layers formed as the interface, but for an even film formation, the coating speed, coating After that, heat treatment to remove the solvent is required.
  • the hole transport regions 210 to 215 are, for example, m-MTDATA, TDATA, 2-TNATA, NPB, ⁇ -NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, TCTA.
  • Pani/DBSA Polyaniline/Dodecylbenzenesulfonic acid: polyaniline/dodecylbenzene sulfonic acid
  • PEDOT/PSS Poly(3,4-ethylenedioxythiophene) /Poly(4-styrene sulfonate):poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)
  • Pani/CSA Polyaniline/Camphor sulfonicacid: polyaniline/camphorsulfonic acid
  • PANI/PSS Polyaniline)/Poly(4-styrenesulfonate):polyaniline)/poly(4-styrenesulfonate)
  • the hole transport regions 210 to 215 may have a thickness of about 100 to about 10,000 ⁇ , and the organic material layers of each hole transport region 210 to 215 are not limited to the same thickness.
  • the thickness of the hole injection layer 210 is 50 ⁇
  • the thickness of the hole transport layer 215 may be 1000 ⁇
  • the thickness of the electron blocking layer may be 500 ⁇ .
  • the thickness condition of the hole transport regions 210 to 215 may be determined to a degree that satisfies the efficiency and lifespan within a range in which the driving voltage increase of the organic light emitting diode does not increase.
  • the organic material layer 200 is a hole injection layer 210, a hole transport layer 215, a functional layer having a hole injection function and a hole transport function at the same time, a buffer layer, an electron blocking layer, a light emitting layer 220, a hole blocking layer, an electron transport layer ( 230), the electron injection layer 235, and one or more layers selected from the group consisting of a functional layer having an electron transport function and an electron injection function at the same time.
  • the hole transport regions 210 to 215 may use doping to improve properties like the light emitting layer 220 , and doping of a charge-generating material into the hole transport regions 210 to 215 may improve the electrical properties of the organic light emitting device.
  • the charge-generating material is generally made of a material having a very low HOMO and LUMO.
  • the LUMO of the charge-generating material has a value similar to the HOMO of the hole transport layer 215 material. Due to the low LUMO, holes are easily transferred to the adjacent hole transport layer 215 by using the electron vacancy characteristic of the LUMO, thereby improving electrical properties.
  • the charge-generating material may be, for example, a p-dopant.
  • the p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto.
  • the p-dopant include tetracyanoquinonedimethane (TCNQ) and 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane quinone derivatives such as phosphorus (F4-TCNQ) and the like; metal oxides such as tungsten oxide and molybdenum oxide; cyano group-containing compounds; and the like, but is not limited thereto.
  • the hole transport regions 210 to 215 may further include a charge generating material to improve conductivity.
  • the charge generating material may be uniformly or non-uniformly dispersed in the hole transport regions 210 to 215 .
  • the charge generating material may be, for example, a p-dopant.
  • the p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto.
  • p-dopants include quinone derivatives such as TCNQ (Tetracyanoquinodimethane) and F4-TCNQ (2,3,5,6-tetrafluoro-tetracyanoquinodimethane), metal oxides such as tungsten oxide and molybdenum oxide, etc. may be mentioned, but is not limited thereto.
  • the hole transport regions 210 to 215 may further include at least one of a hole buffer layer and an electron blocking layer in addition to the hole injection layer 210 and the hole transport layer 215 .
  • the hole buffer layer may increase light emission efficiency by compensating for a resonance distance according to a wavelength of light emitted from the emission layer 220 .
  • a material included in the hole buffer layer a material that may be included in the hole transport regions 210 to 215 may be used.
  • the electron blocking layer serves to prevent electron injection from the electron transport region 230 to 235 to the hole transport region 210 to 215 .
  • the electron blocking layer may use a material having a high T1 value so that excitons formed in the light emitting layer 220 do not diffuse into the hole transport regions 210 to 215 as well as to block electrons moving to the hole transport region.
  • a host of the light emitting layer 220 having a generally high T 1 value may be used as the electronic blocking layer material.
  • the emission layer 220 is provided on the hole transport regions 210 to 215 .
  • the light emitting layer 220 may have a thickness of, for example, about 100 ⁇ to about 1000 ⁇ , or about 100 ⁇ to about 300 ⁇ .
  • the emission layer 220 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
  • the light emitting layer 220 is a region where holes and electrons meet to form excitons.
  • the material constituting the light emitting layer 220 must have an appropriate energy band gap to exhibit high light emitting characteristics and a desired light emitting color, and generally serve as both a host and a dopant.
  • Eggplant is made of two materials, but is not limited thereto.
  • the host may include at least one of the following TPBi, TBADN, ADN (also referred to as “DNA”), CBP, CDBP, TCP, and mCP, and if the properties are appropriate, the material is not limited thereto.
  • the dopant of the light emitting layer 220 may be an organometallic complex.
  • the general dopant content may be selected from 0.01 to 20%, but in some cases, it is not limited thereto.
  • the electron transport regions 230 to 235 are provided on the emission layer 220 .
  • the electron transport regions 230 to 235 may include at least one of a hole blocking layer, an electron transport layer 230 , and an electron injection layer 235 , but are not limited thereto.
  • the electron transport regions 230 to 235 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
  • the electron transport regions 230 to 235 may have a single-layer structure of the electron injection layer 235 or the electron transport layer 230 , or may have a single-layer structure including an electron injection material and an electron transport material. have.
  • the electron transport regions 230 to 235 have a single layer structure made of a plurality of different materials, or the electron transport layer 230/electron injection layer 235 and hole blocking layer are sequentially stacked from the light emitting layer 220 . It may have a layer/electron transport layer 230/electron injection layer 235 structure, but is not limited thereto.
  • the thickness of the electron transport regions 230 to 235 may be, for example, about 1000 ⁇ to about 1500 ⁇ .
  • the electron transport regions 230 to 235 may include a vacuum deposition method, a spin coating method, a cast method, a Langmuir-Blodgett (LB) method, an inkjet printing method, a laser printing method, and a laser induced thermal imaging (LITI) method. method can be used.
  • a vacuum deposition method a spin coating method, a cast method, a Langmuir-Blodgett (LB) method, an inkjet printing method, a laser printing method, and a laser induced thermal imaging (LITI) method. method can be used.
  • LB Langmuir-Blodgett
  • LITI laser induced thermal imaging
  • the electron transport region 230 may include an anthracene-based compound.
  • the electron transport region is, for example, Alq3(Tris(8-hydroxyquinolinato)aluminum),1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,2 ,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10 -dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10- phenanthroline), Bphen(4,7-
  • the electron transport layer 230 is selected as a material having a fast electron mobility or a slow electron mobility according to the structure of the organic light emitting device, various materials need to be selected, and in some cases, Liq or Li may be doped.
  • the electron transport layers 230 may have a thickness of about 100 ⁇ to about 1000 ⁇ , for example, about 150 ⁇ to about 500 ⁇ . When the thickness of the electron transport layers 230 satisfies the above-described range, a satisfactory electron transport characteristic may be obtained without a substantial increase in driving voltage.
  • the electron transport regions 230 to 235 select a metal material that facilitates electron injection, LiF, Lithium quinolate (LiQ), A lanthanide metal such as Li 2 O, BaO, NaCl, CsF, and Yb, or a metal halide such as RbCl or RbI may be used, but is not limited thereto.
  • the electron injection layer 235 may also be made of a material in which an electron transport material and an insulating organo metal salt are mixed.
  • the organometallic salt may be a material having an energy band gap of about 4 eV or more.
  • the organometallic salt may include metal acetate, metal benzoate, metal acetoacetate, metal acetylacetonate or metal stearate.
  • the electron injection layers 235 may have a thickness of about 1 ⁇ to about 100 ⁇ , or about 3 ⁇ to about 90 ⁇ . When the thickness of the electron injection layers 235 satisfies the above-described range, a satisfactory electron injection characteristic may be obtained without a substantial increase in driving voltage.
  • the electron transport regions 230 to 235 may include a hole blocking layer.
  • the hole blocking layer includes, for example, at least one of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), and Balq. can, but is not limited thereto.
  • the second electrode 120 is provided on the electron transport regions 230 to 235 .
  • the second electrode 120 may be a common electrode or a cathode.
  • the second electrode 120 may be a transmissive electrode or a transflective electrode.
  • the second electrode 120 may use a combination of a metal, an electrically conductive compound, an alloy, etc. having a relatively low work function.
  • the second electrode 120 is a transflective electrode or a reflective electrode.
  • the second electrode 120 includes Li (lithium), Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), and Mg-Ag (magnesium).
  • -silver or a compound or mixture containing them (eg, a mixture of Ag and Mg).
  • a plurality of layer structures including a reflective or semi-transmissive film formed of the above material and a transparent conductive film formed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), etc. can be
  • the second electrode 120 may be connected to the auxiliary electrode.
  • the resistance of the second electrode 120 may be reduced.
  • the substrate 100 may use a rigid or flexible material, for example, soda lime glass, alkali-free glass, aluminosilicate glass as the rigid material.
  • PC polycarbonate
  • PES polyether sulfone
  • COC cyclic oliphene copolymer
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the organic light emitting device As a voltage is applied to each of the first electrode 110 and the second electrode 120 , holes injected from the first electrode 110 pass through the hole transport regions 210 to 215 to the emission layer The electrons are moved to 220 , and the electrons injected from the second electrode 120 are moved to the emission layer 220 through the electron transport regions 230 to 235 . Electrons and holes recombine in the emission layer 220 to generate excitons, and the excitons fall from the excited state to the ground state and emit light.
  • the optical path generated by the light emitting layer 220 may exhibit a very different tendency according to the refractive index of the organic/inorganic materials constituting the organic light emitting device.
  • Light passing through the second electrode 120 may pass only light transmitted at an angle smaller than the critical angle of the second electrode 120 .
  • Lights contacting the second electrode 120 larger than the other critical angles are totally reflected or reflected, so that they are not emitted to the outside of the organic light emitting diode.
  • the refractive index of the capping layer 300 When the refractive index of the capping layer 300 is high, it contributes to the improvement of luminous efficiency by reducing such total reflection or reflection, and also, when it has an appropriate thickness, it contributes to high efficiency improvement and color purity by maximizing the micro-cavity phenomenon. .
  • the capping layer 300 is positioned at the outermost part of the organic light emitting device, and has a great influence on device characteristics without affecting the driving of the device at all. Therefore, the capping layer 300 is important both in terms of both an internal protection role of the organic light-emitting device and improvement of device characteristics.
  • Organic materials absorb light energy in a specific wavelength region, which depends on the energy bandgap. If this energy bandgap is adjusted for the purpose of absorbing the UV region that can affect the organic materials inside the organic light emitting device, the capping layer 300 can be used for the purpose of protecting the organic light emitting device including improving optical properties. have.
  • the organic light emitting device may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • 6-bromonaphthalen-2-ol 10.0 g (44.8 mmol), 4-fluorophenyl boronic acid 6.3 g (44.8 mmol), Pd ( 1.6 g (1.3 mmol) of PPh 3 ) 4 , 28.6 g (134.5 mmol) of K 3 PO 4 , 150 mL of toluene, 30 mL of ethanol, and 30 mL of water were mixed and stirred under reflux for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with ethyl acetate, and the solvent was removed under reduced pressure.
  • reaction mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/Hex) to obtain 8.1 g (yield: 76.0%) of the compound as a white solid (intermediate (1)).
  • reaction product was washed with 100 mL of water, and the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography (CHCl 3 ) to obtain 12.6 g of a yellow liquid compound (intermediate (2)) (yield: 100). %) was obtained.
  • 6-bromonaphthalen-2-ol 50.0 g (224.2 mmol), 3,5-bistrifluoromethyl ethylboronic acid ((3,5-bis(trifluoromethyl)phenyl) boronic acid) 57.8 g (224.2 mmol), Pd(PPh 3 ) 4 7.8 g (6.7 mmol), K 3 PO 4 142.7 g (672.5 mmol), toluene 600 mL, ethanol 200 mL, and water 200 mL 12 Stir at reflux for hours. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with ethyl acetate, and the solvent was removed under reduced pressure.
  • reaction mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/Hex) to obtain 57.2 g (yield: 71.6%) of the compound as a white solid (intermediate (4)).
  • 6-Bromonaphthalen-2-ol 15.0 g (67.2 mmol), 4- (trifluoromethyl) phenyl boronic acid (4- (trifluoromethyl) phenyl boronic acid) 12.8 g (67.2 mmol), Pd(PPh 3 ) 4 2.3 g (2.0 mmol), 2M sodium carbonate 67.2 mL (134.5 mmol), toluene 700 mL, and ethanol 350 mL were stirred under reflux for 12 hours.
  • 6-Bromonaphthalen-2-ol 15.0 g (67.2 mmol), Phenyl boronic acid 8.2 g (67.2 mmol), Pd (PPh 3 ) 4 2.3 g (2.0 mmol), 67.2 mL (134.5 mmol) of 2M sodium carbonate, 700 mL of toluene and 350 mL of ethanol were stirred at reflux for 12 hours.
  • 6-bromonaphthalen-2-ol (6-bromonaphthalen-2-ol) 120.0 g (537.9 mmol), bis (pinacolato) diboron ⁇ bis (pinacolato) diboron ⁇ 150.3 g (591.7) mmol), Pd(dppf)Cl 2 -DCM 17.6 g (21.5 mmol), potassium acetate 211.2 g (1.1 mol), and Dioxane 2000 mL were added together and refluxed at 100° C. under nitrogen all day.
  • the obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/Acetone) to obtain 3.1 g of compound 2-90 (LT19-30-489) as a white solid (yield: 80.3%). .
  • production example 21 Synthesis of compound 3-120 (LT19-30-196)
  • J.A. Measure n (refractive index) and k (extinction coefficient) using WOOLLAM's Ellipsometer.
  • the glass substrate (0.7T) was washed in Ethanol, DI Water, and Acetone for 10 minutes each, and then treated with oxygen plasma on the glass substrate at 125 W at 2 ⁇ 10 -2 Torr for 2 minutes and then treated with 9 ⁇ 10 -2 Torr.
  • a single film is fabricated by depositing 800 ⁇ of the compound on a glass substrate at a rate of 1 ⁇ /sec in a vacuum of 10 - 7 Torr.
  • REF01 was used as a compound in the production of the single film for evaluation of optical properties.
  • the optical properties are refractive index constants at 460 nm and 620 nm wavelengths.
  • n values in the blue region (460 nm) and the red region (620 nm) of Comparative Test Example (REF01) were 1.986 and 1.846, respectively, whereas most of the compounds according to the present invention were generally As a result, it was confirmed to have a lower refractive index than that of Comparative Test Example compound (REF01) in the blue region, the green region and the red region. This satisfies the low refractive index value required to secure a high viewing angle in the blue region.
  • ITO a transparent electrode
  • 2-TNATA for the hole injection layer
  • NPB for the hole transport layer
  • ⁇ -ADN for the host of the emission layer
  • Pyene-CN for the blue fluorescent dopant
  • Liq for the electron injection layer.
  • Mg:Ag was used as the negative electrode.
  • the structures of these compounds are as follows.
  • Comparative Example 1 (Capping layer consists of one layer): ITO / 2-TNATA (60 nm) / NPB (20 nm) / ⁇ -ADN: 10% Pyrene-CN (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) /REF01 (80 nm)
  • Comparative Example 2 (Capping layer consists of two layers): ITO / 2-TNATA (60 nm) / NPB (20 nm) / ⁇ -ADN: 10% Pyrene-CN (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / REF02 (20 nm) / REF01 (60 nm)
  • Blue fluorescence organic light emitting device is ITO (180 nm) / 2-TNATA (60 nm) / NPB (20 nm) / ⁇ -ADN:Pyrene-CN 10% (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / REF (60 nm) by deposition in the order to fabricate a device. Before depositing the organic material, the ITO electrode was subjected to oxygen plasma treatment at 2 ⁇ 10 - 2 Torr at 125 W for 2 minutes.
  • Organic materials were deposited at a vacuum degree of 9 ⁇ 10 - 7 Torr, Liq was 0.1 ⁇ /sec, ⁇ -ADN was 0.18 ⁇ /sec, and Pyrene-CN was simultaneously deposited at 0.02 ⁇ /sec, and the remaining organic materials were all 1 Deposited at a rate of ⁇ /sec.
  • the material of the capping layer used in the experiment was selected as REF01 (high refractive index) and REF02 (low refractive index).
  • REF01 high refractive index
  • REF02 low refractive index
  • Comparative Example 1 As a capping layer instead of REF01, a multilayer having a high refractive index layer (60 nm) formed on a low refractive index layer (20 nm) was provided, and the REF01 compound was added to the high refractive index layer and the low refractive index layer was shown in Table 2 below.
  • a device was manufactured in the same manner as in Comparative Example, except that the compound of
  • Table 2 shows the electroluminescence characteristics of the organic light emitting diodes prepared in Comparative Examples and Examples 1 to 21.
  • a specific benzazole derivative compound according to the present invention can be used as a material for a low refractive index capping layer of an organic electronic device including an organic light emitting device, and an organic electronic device including an organic light emitting device using the same is effective , it can be seen that it exhibits excellent characteristics in driving voltage, stability, etc.
  • the compound according to the present invention exhibited high efficiency characteristics due to excellent micro-cavity ability.
  • the compound of Formula 1 has unexpectedly desirable properties for use as a low refractive index capping layer in an OLED.
  • the compound of the present invention can be applied to industrial organic electronic device products due to these properties.
  • the above-described synthesis example is an example, and the reaction conditions may be changed as needed.
  • the compound according to an embodiment of the present invention may be synthesized to have various substituents using methods and materials known in the art. By introducing various substituents into the core structure represented by Formula 1, it may have properties suitable for use in an organic electroluminescent device.
  • the benzazole derivative compound according to the present invention may be used to improve the quality of an organic electroluminescent device by being used in an organic material layer and/or a capping layer of the organic electroluminescent device.
  • the organic electroluminescent device When the compound is used in the capping layer, the organic electroluminescent device exhibits original characteristics and at the same time, the lifespan can be improved by the optical characteristics of the compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

UV영역의 고에너지 외부광원을 효과적으로 흡수하여 유기 전계 발광 소자 내부의 유기물들의 손상을 최소화함으로써 유기 전계 발광 소자의 실질적인 수명 향상에 기여하는 벤즈아졸 유도체를 제공한다. 본 발명에 따른 유기 전계 발광 소자는, 제1 전극; 제2 전극; 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층; 및 캡핑층을 포함하고, 상기 유기물층 또는 캡핑층은 본 발명에 따른 화학식 1로 표시되는 벤즈아졸 유도체를 포함한다.

Description

벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
본 발명은 벤즈아졸 유도체 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 벤즈아졸 유도체에 의해 캡핑층을 포함한 유기 전계 발광 소자가 저굴절률 특성을 갖도록 하는 것이다.
디스플레이 산업에서 자기 발광 현상을 이용한 디스플레이로서 OLED(유기발광다이오드, Organic Light Emitting Diodes)가 주목받고 있다.
OLED에 있어, 1963년 Pope 등에 의하여 안트라센(Anthracene) 방향족 탄화수소의 단결정을 이용한 캐리어 주입형 전계발광(Electroluminescence; EL)의 연구가 최초로 시도되었다. 이러한 연구로부터 유기물에서 전하주입, 재결합, 여기자 생성, 발광 등의 기초적 메커니즘과 전기발광 특성 등이 이해되고 연구되어왔다.
특히 발광 효율을 높이기 위해 소자의 구조 변화 및 물질 개발 등 다양한 접근이 이루어지고 있다[Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364].
OLED 디스플레이의 기본적 구조는, 일반적으로 양극(Anode), 정공주입층(Hole Injection Layer, HIL), 정공수송층(Hole Transporting Layer, HTL), 발광층 (Emission Layer, EML), 전자수송층(Electron Transporting Layer, ETL), 그리고 음극(Cathode)의 다층 구조로 구성되며, 전자 유기 다층막이 두 전극 사이에 형성된 샌드위치 구조로 되어 있다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환해주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함할 수 있다.
이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면, 양극에서는 정공이, 음극에서는 전자가 유기물층으로 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다.
유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다.
발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 좀 더 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높게 빛을 내는 것이다. 이때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발현하기 위해, 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등이 개발되었고, 이로 인해 상용화된 제품들에 의해 유기 발광 소자의 성능을 인정받고 있다.
그러나 유기 발광 소자의 상용화가 이루어지고 시간이 지남에 따라 유기 발광 소자 자체의 발광 특성 이외에 다른 특성들의 필요성이 대두되고 있다.
유기 발광 소자는 외부 광원에 노출되는 시간이 많은 경우가 대부분이므로 고에너지를 갖는 자외선에 노출되는 환경에 있게 된다. 이에 따라 유기 발광 소자를 구성하는 유기물이 지속적인 영향을 받게 되는 문제가 있다. 이러한 고에너지 광원에 노출을 막기 위해 자외선 흡수특성을 갖는 캡핑층을 유기 발광 소자에 적용함으로써 문제를 해결할 수 있다.
일반적으로 유기 발광 소자의 시야각 특성은 넓다고 알려져 있지만 광원 스펙트럼 관점에서는 시야각에 따라 상당한 편차가 발생하게 되며 이는 유기 발광 소자를 이루는 유리 기판, 유기물, 전극재료 등의 전체 굴절률과 유기 발광 소자의 발광파장에 따른 적절한 굴절률 사이에서 편차가 발생하는 것에 기인한다.
일반적으로 청색에 필요한 굴절률 값이 크고 파장이 길어질수록 필요 굴절률의 값은 작아진다. 이에 따라 상기 언급된 자외선 흡수특성과 적정 굴절률을 동시에 만족하는 캡핑층을 이루는 재료의 개발이 필요하다.
유기 발광 소자의 효율은 일반적으로 내부 발광 효율 (internal luminescent efficiency)과 외부 발광 효율로 나눌 수 있다. 내부 발광 효율은 광변환이 이루어지기 위해 유기층에서 엑시톤의 형성의 효율성에 관련된다.
외부 발광 효율은 유기층에서 생성된 광이 유기 발광 소자 외부로 방출되는 효율을 말한다.
전체적으로 효율을 제고하기 위해서는 내부 발광 효율뿐만 아니라 외부 발광 효율을 높여야 한다. 외부 발광 효율을 높이는 능력이 우수한 캡핑층(CPL) 물질 개발이 요구되고 있다.
본 발명의 목적은, 발광 효율과 수명을 개선할 수 있고 동시에 시야각 특성을 개선할 수 있는, 유기 발광 소자용 캡핑층 재료를 제공하는 것이다.
본 발명의 목적은 특히 유기 전계 발광 소자의 광 추출율을 개선하기 위하여 굴절률과 내열성이 향상된 캡핑층을 포함하는 고효율 및 장수명의 유기 전계 발광 소자를 제공하는 것에 있다.
본 발명은 제1 전극; 상기 제1 전극 상에 배치된 유기물층; 상기 유기물층 상에 배치된 제2전극; 및 상기 제2 전극 상에 배치된 캡핑층을 포함하며, 상기 유기물층 또는 캡핑층은 하기 화학식 1로 표시되는 벤즈아졸 유도체를 포함하는 유기 전계 발광 소자를 제공한다.
[화학식 1]
Figure PCTKR2020016543-appb-I000001
상기 화학식 1에 있어서,
Z1는 O 또는 S이며,
X1, X2, X3, X4 및 X5는 서로 독립적으로 CH 또는 N이고,
R1 내지 R6는 서로 동일하거나 상이하며, 수소, 메틸기, tert-부틸기, 트리메틸실릴기, 플루오로기, 트리플루오로메틸기 및 시아노기 중에서 선택되는 적어도 어느 하나이다.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층 또는 캡핑층의 재료로 사용될 수 있다.
본 발명에 따른 화합물은 자외선 흡수특성을 나타내어 외부 광원에 의한 유기 발광 소자 내 유기물 손상을 최소화할 수 있고, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
또한, 본 명세서에 기재된 화합물을 캡핑층으로 이용한 유기 발광 소자에서 발광효율 향상, 발광 스펙트럼 반치폭 감소에 따른 색순도를 현저히 개선시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 기판(100) 위에 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120) 및 캡핑층(300)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 벤즈아졸 유도체를 이용할 경우에 나타나는 빛의 굴절과 흡수 특성의 그래프이다.
이하 본 발명에 대하여 더욱 상세히 설명한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐 만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
본 명세서에서, “치환 또는 비치환된”은 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 히드록시기, 실릴기, 붕소기, 포스핀 옥사이드기, 포스핀 설파이드기, 알킬기, 알콕시기, 알케닐기, 아릴기, 헤테로 아릴기 및 헤테로 고리기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 것을 의미할 수 있다. 또한, 상기 예시된 치환기 각각은 치환 또는 비치환된 것일 수 있다. 예를 들어, 바이페닐기는 아릴기로 해석될 수도 있고, 페닐기로 치환된 페닐기로 해석될 수도 있다.
본 명세서에서, 할로겐 원자의 예로는 불소 원자, 염소 원자, 브롬 원자 또는 요오드 원자가 있다.
본 명세서에서, 알킬기는 직쇄, 분지쇄 또는 고리형일 수 있다. 알킬기의 탄소수는 1 이상 50 이하, 1 이상 30 이하, 1 이상 20 이하, 1 이상 10 이하 또는 1 이상 6 이하이다. 알킬기의 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, s-부틸기, t-부틸기, i-부틸기, 2- 에틸부틸기, 3, 3-디메틸부틸기, n-펜틸기, i-펜틸기, 네오펜틸기, t-펜틸기, 시클로펜틸기, 1-메틸펜틸기, 3-메틸펜틸기, 2-에틸펜틸기, 4-메틸-2-펜틸기, n-헥실기, 1-메틸헥실기, 2-에틸헥실기, 2-부틸헥실기, 시클로헥실기, 4-메틸시클로헥실기, 4-t-부틸시클로헥실기, n-헵틸기, 1-메틸헵틸기, 2,2-디메틸헵틸기, 2-에틸헵틸기, 2-부틸헵틸기, n-옥틸기, t-옥틸기, 2-에틸옥틸기, 2-부틸옥틸기, 2-헥실옥틸기, 3,7-디메틸옥틸기, 시클로옥틸기, n-노닐기, n-데실기, 아다만틸기, 2-에틸데실기, 2-부틸데실기, 2-헥실데실기, 2-옥틸데실기, n-운데실기, n-도데실기, 2-에틸도데실기, 2-부틸도데실기, 2-헥실도데실기, 2-옥틸도데실기, n-트리데실기, n-테트라데실기, n-펜타데실기, n-헥사데실기, 2-에틸헥사데실기, 2-부틸헥사데실기, 2-헥실헥사데실기, 2-옥틸헥사데실기, n-헵타데실기, n-옥타데실기, n-노나데실기, n-이코실기, 2-에틸이코실기, 2-부틸이코실기, 2-헥실이코실기, 2-옥틸이코실기, n-헨이코실기, n-도코실기, n-트리코실기, n-테트라코실기, n-펜타코실기, n-헥사코실기, n-헵타코실기, n-옥타코실기, n-노나코실기, 및 n-트리아콘틸기 등을 들 수 있지만, 이들에 한정되지 않는다.
본 명세서에서, 탄화수소 고리기는 지방족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 탄화수소 고리기는 고리 형성 탄소수 5 이상 20 이하의 포화 탄화수소 고리기일 수 있다.
본 명세서에서, 아릴기는 방향족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 아릴기의 고리 형성 탄소수는 6 이상 30 이하, 6 이상 20 이하, 또는 6 이상 15 이하일 수 있다. 아릴기의 예로는 페닐기, 나프틸기, 플루오레닐기, 안트라세닐기, 페난트릴기, 바이페닐기, 터페닐기, 쿼터페닐기, 퀸크페닐기, 섹시페닐기, 트리페닐에닐기, 피레닐기, 페릴렌일기, 나프타세닐기, 파이레닐기, 벤조 플루오란테닐기, 크리세닐기 등을 예시할 수 있지만, 이들에 한정되지 않는다.
본 명세서에서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수도 있다.
본 명세서에서, 헤테로아릴기는 이종 원소로 O, N, P, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기일 수 있다. N 및 S 원자는 경우에 따라 산화될 수 있고, N 원자(들)은 경우에 따라 4차화될 수 있다. 헤테로아릴기의 고리 형성 탄소수는 2 이상 30 이하 또는 2 이상 20 이하이다. 헤테로아릴기는 단환식 헤테로아릴기 또는 다환식 헤테로아릴기일 수 있다. 다환식 헤테로아릴기는 예를 들어, 2환 또는 3환 구조를 갖는 것일 수 있다.
헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 피라졸릴기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딘기, 비피리딘기, 피리미딘기, 트리아진기, 테트라진기, 트리아졸기, 테트라졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 페녹사진기, 프탈라진기, 피리도 피리미딘기, 피리도 피라지노 피라진기, 이소퀴놀린기, 신놀리기, 인돌기, 이소인돌기, 인다졸기, 카바졸기, N-아릴카바졸기, N-헤테로아릴카바졸기, N-알킬카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 벤조티오펜기, 벤조이소티아졸릴, 벤조이속사졸릴, 디벤조티오펜기, 티에노티오펜기, 벤조퓨란기, 페난트롤린기, 페난트리딘기, 티아졸기, 이소옥사졸기, 옥사디아졸기, 티아디아졸기, 이소티아졸기, 이속사졸기, 페노티아진기, 벤조디옥솔기, 디벤조실롤기 및 디벤조퓨란기, 이소벤조퓨란기 등이 있으나, 이들에 한정되지 않는다. 또한, 상기 단환식 헤테로 아릴기 또는 다환식 헤테로 아릴기에 상응하는 N-옥사이드 아릴기, 예를 들어, 피리딜 N-옥사이드기, 퀴놀릴 N-옥사이드기 등의 4차 염 등이 있으나, 이들에 한정되지 않는다.
본 명세서에서, 실릴기는 알킬 실릴기 및 아릴 실릴기를 포함한다. 실릴기의 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에서, 붕소기는 알킬 붕소기 및 아릴 붕소기를 포함한다. 붕소기의 예로는 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에서, 알케닐기는 직쇄 또는 분지쇄일 수 있다. 탄소수는 특별히 한정되지 않으나, 2 이상 30 이하, 2 이상 20 이하 또는 2 이상 10 이하이다. 알케닐기의 예로는 비닐기, 1-부테닐기, 1-펜테닐기, 1,3-부타디에닐 아릴기, 스티레닐기, 스티릴비닐기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기, 또는 단환식아릴기와 다환식 아릴기를 동시에 포함할 수 있다.
아릴 아민기의 구체적인 예로는 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 3-메틸-페닐아민기, 4-메틸-나프틸아민기, 2-메틸-비페닐아민기, 9-메틸-안트라세닐아민기, 디페닐 아민기, 페닐 나프틸아민기, 디톨릴 아민기, 페닐 톨릴 아민기, 카바졸 및 트리페닐 아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로알릴아민기의 예로는 치환 또는 비치환된 모노헤테로아릴아민기, 치환 또는 비치환된 디헤테로아릴아민기, 또는 치환 또는 비치환된 트리헤테로아릴아민기가 있다. 상기 헤테로아릴아민기 중의 헤테로아릴기는 단환식 헤테로 고리기일 수 있고, 다환식 헤테로 고리기일 수 있다. 상기 2이상의 헤테로 고리기를 포함하는 헤테로아릴아민기는 단환식 헤테로 고리기, 다환식 헤테로 고리기, 또는 단환식 헤테로 고리기와 다환식 헤테로 고리기를 동시에 포함할 수 있다.
본 명세서에 있어서, 아릴헤테로아릴아민기는 아릴기 및 헤테로 고리기로 치환된 아민기를 의미한다.
본 명세서에서, “인접하는 기”는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기가 치환된 원자에 치환된 다른 치환기 또는 해당 치환기와 입체구조적으로 가장 인접한 치환기를 의미할 수 있다. 예컨대, 1,2-디메틸벤젠(1,2-dimethylbenzene)에서 2개의 메틸기는 서로 “인접하는 기”로 해석될 수 있고, 1,1-디에틸시클로펜테인(1,1-diethylcyclopentene)에서 2개의 에틸기는 서로 “인접하는 기”로 해석될 수 있다.
이하에서는 상기 유기물층 및/또는 캡핑층에 사용되는 벤즈아졸 유도체 화합물에 대해 설명한다.
본 발명의 일 실시예에 따른 벤즈아졸 유도체 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2020016543-appb-I000002
상기 화학식 1에 있어서,
Z1는 O 또는 S이며,
X1, X2, X3, X4 및 X5는 서로 독립적으로 CH 또는 N이고,
R1 내지 R6는 서로 동일하거나 상이하며, 수소, 메틸기, tert-부틸기, 트리메틸실릴기, 플루오로기, 트리플루오로메틸기 및 시아노기 중에서 선택되는 적어도 어느 하나이다.
본 발명의 일 실시예에 있어서, 상기 화학식 1로 표시되는 벤즈아졸 유도체는 하기 화학식 2 및 화학식 3으로 표시된 화합물들 중에서 선택된 어느 하나일 수 있고, 하기 화합물들은 추가로 치환될 수 있다.
[화학식 2]
Figure PCTKR2020016543-appb-I000003
Figure PCTKR2020016543-appb-I000004
Figure PCTKR2020016543-appb-I000005
Figure PCTKR2020016543-appb-I000006
Figure PCTKR2020016543-appb-I000007
Figure PCTKR2020016543-appb-I000008
Figure PCTKR2020016543-appb-I000009
Figure PCTKR2020016543-appb-I000010
Figure PCTKR2020016543-appb-I000011
Figure PCTKR2020016543-appb-I000012
Figure PCTKR2020016543-appb-I000013
Figure PCTKR2020016543-appb-I000014
Figure PCTKR2020016543-appb-I000015
Figure PCTKR2020016543-appb-I000016
Figure PCTKR2020016543-appb-I000017
Figure PCTKR2020016543-appb-I000018
Figure PCTKR2020016543-appb-I000019
Figure PCTKR2020016543-appb-I000020
Figure PCTKR2020016543-appb-I000021
Figure PCTKR2020016543-appb-I000022
Figure PCTKR2020016543-appb-I000023
Figure PCTKR2020016543-appb-I000024
Figure PCTKR2020016543-appb-I000025
Figure PCTKR2020016543-appb-I000026
Figure PCTKR2020016543-appb-I000027
Figure PCTKR2020016543-appb-I000028
Figure PCTKR2020016543-appb-I000029
Figure PCTKR2020016543-appb-I000030
Figure PCTKR2020016543-appb-I000031
Figure PCTKR2020016543-appb-I000032
Figure PCTKR2020016543-appb-I000033
Figure PCTKR2020016543-appb-I000034
Figure PCTKR2020016543-appb-I000035
Figure PCTKR2020016543-appb-I000036
Figure PCTKR2020016543-appb-I000037
Figure PCTKR2020016543-appb-I000038
Figure PCTKR2020016543-appb-I000039
Figure PCTKR2020016543-appb-I000040
Figure PCTKR2020016543-appb-I000041
Figure PCTKR2020016543-appb-I000042
Figure PCTKR2020016543-appb-I000043
Figure PCTKR2020016543-appb-I000044
Figure PCTKR2020016543-appb-I000045
Figure PCTKR2020016543-appb-I000046
Figure PCTKR2020016543-appb-I000047
Figure PCTKR2020016543-appb-I000048
[화학식 3]
Figure PCTKR2020016543-appb-I000049
Figure PCTKR2020016543-appb-I000050
Figure PCTKR2020016543-appb-I000051
Figure PCTKR2020016543-appb-I000052
Figure PCTKR2020016543-appb-I000053
Figure PCTKR2020016543-appb-I000054
Figure PCTKR2020016543-appb-I000055
Figure PCTKR2020016543-appb-I000056
Figure PCTKR2020016543-appb-I000057
Figure PCTKR2020016543-appb-I000058
Figure PCTKR2020016543-appb-I000059
Figure PCTKR2020016543-appb-I000060
Figure PCTKR2020016543-appb-I000061
Figure PCTKR2020016543-appb-I000062
Figure PCTKR2020016543-appb-I000063
Figure PCTKR2020016543-appb-I000064
Figure PCTKR2020016543-appb-I000065
Figure PCTKR2020016543-appb-I000066
Figure PCTKR2020016543-appb-I000067
Figure PCTKR2020016543-appb-I000068
Figure PCTKR2020016543-appb-I000069
Figure PCTKR2020016543-appb-I000070
Figure PCTKR2020016543-appb-I000071
Figure PCTKR2020016543-appb-I000072
Figure PCTKR2020016543-appb-I000073
Figure PCTKR2020016543-appb-I000074
Figure PCTKR2020016543-appb-I000075
Figure PCTKR2020016543-appb-I000076
Figure PCTKR2020016543-appb-I000077
Figure PCTKR2020016543-appb-I000078
Figure PCTKR2020016543-appb-I000079
Figure PCTKR2020016543-appb-I000080
Figure PCTKR2020016543-appb-I000081
Figure PCTKR2020016543-appb-I000082
Figure PCTKR2020016543-appb-I000083
Figure PCTKR2020016543-appb-I000084
Figure PCTKR2020016543-appb-I000085
Figure PCTKR2020016543-appb-I000086
Figure PCTKR2020016543-appb-I000087
Figure PCTKR2020016543-appb-I000088
Figure PCTKR2020016543-appb-I000089
Figure PCTKR2020016543-appb-I000090
Figure PCTKR2020016543-appb-I000091
Figure PCTKR2020016543-appb-I000092
Figure PCTKR2020016543-appb-I000093
이하, 도 1 및 2를 참조하여 본 발명의 실시예를 설명한다.
도 1은 본 발명의 일 실시예에 따른 유기 발광 소자를 개략적으로 나타낸 단면도이다. 도 1을 참조하면, 일 실시예에 따른 유기 발광 소자는 기판(100)위에 순차적으로 적층된 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120), 캡핑층(300)을 포함할 수 있다.
제1 전극(110)과 제2 전극(120)은 서로 마주하고 배치되며, 제1 전극(110)과 제2 전극(120) 사이에는 유기물층(200)이 배치될 수 있다. 유기물층(200)은 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235)을 포함할 수 있다.
한편, 본 발명에서 제시되는 캡핑층(300)은 제2 전극(120) 위에 증착되는 기능층으로서, 본 발명의 화학식 1에 따른 유기물을 포함한다.
도 1에 도시된 일 실시예의 유기 발광 소자에서 제1 전극(110)은 도전성을 갖는다. 제1 전극(110)은 금속 합금 또는 도전성 화합물로 형성될 수 있다. 제1 전극(110)은 일반적으로 양극(anode)이지만 전극으로의 기능은 제한하지 않는다.
제1 전극(110)은 기판(100) 상부에 전극 물질을 증착법, 전자빔 증발 또는 스퍼터링법 등을 이용하여 형성할 수 있다. 제1 전극(110)의 재료는 유기 발광 소자 내부로 정공의 주입이 용이하도록 높은 일함수를 갖는 물질 중에서 선택될 수 있다.
본 발명에서 제안되는 캡핑층(300)은 유기 발광 소자의 발광방향이 전면발광일 경우에 적용되며 따라서 제1 전극(110)은 반사형 전극을 사용한다. 이들의 재료로는 산화물이 아닌 Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은)과 같은 금속을 사용하여 제작할 수도 있다. 최근에 와서는 CNT(탄소나노튜브), Graphene(그래핀) 등 탄소기판 유연 전극 재료가 사용될 수도 있다.
상기 유기물층(200)은 복수의 층으로 형성될 수 있다. 상기 유기물층 (200)이 복수의 층인 경우, 유기물층(200)은 제1 전극(110) 상에 배치된 정공수송영역(210~215), 상기 정공 수송영역 상에 배치된 발광층(220), 상기 발광층(220) 상에 배치된 전자 수송 영역(230~235)을 포함할 수 있다.
일 실시예의 상기 캡핑층(300)은 후술하는 화학식 1로 표시되는 유기화합물을 포함한다.
정공 수송 영역(210~215)은 제1 전극(110) 상에 제공된다. 정공 수송 영역(210~215)은 정공 주입층(210), 정공 수송층(215), 정공 버퍼층 및 전자 저지층(EBL) 중 적어도 하나를 포함할 수 있고, 유기 발광 소자 내로 원활한 정공 주입과 수송의 역할을 맡고 있으며 일반적으로 정공이동도가 전자이동도 보다 빠르기 때문에 전자 수송영역보다 두꺼운 두께를 갖는다.
정공 수송 영역(210~215)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다.
예를 들어, 정공 수송 영역(210~215)은 정공 주입층(210) 또는 정공 수송층(215)의 단일층의 구조를 가질 수도 있고, 정공 주입 물질과 정공 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 정공 수송 영역(210~215)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 제1 전극(110)으로부터 차례로 적층된 정공 주입층(210)/정공 수송층(215), 정공 주입층(210)/정공 수송층(215)/정공 버퍼층, 정공 주입층(210)/정공 버퍼층, 정공 수송층(215)/정공 버퍼층, 또는 정공 주입층(210)/정공 수송층(215)/전자 저지층(EBL)의 구조를 가질 수 있으나, 실시예가 이에 한정되는 것은 아니다.
상기 정공 수송 영역(210~215) 중 정공 주입층(210)은 양극 위로 진공증착법, 스핀코팅법, 캐스트법, LB법 등 다양한 방법으로 형성될 수 있다. 진공 증착법에 의하여 정공 주입층(210)을 형성하는 경우, 그 증착 조건은 정공주입층(210) 재료로 사용하는 화합물, 목적으로 하는 정공주입층(210)의 구조 및 열적 특성 등에 따라 100 내지 500℃에서 증착 속도를 1Å/s 전후로 하여 자유롭게 조절할 수 있으며, 특정한 조건에 한정되는 것은 아니다. 스핀 코팅법에 의하여 정공주입층(210)을 형성하는 경우 코팅 조건은 정공주입층(210) 재료로 사용하는 화합물과 계면으로 형성되는 층들 간의 특성에 따라 상이하지만 고른 막형성을 위해 코팅속도, 코팅 후 용매 제거를 위한 열처리 등이 필요하다.
Figure PCTKR2020016543-appb-I000094
상기 정공 수송 영역(210~215)은, 예를 들면, m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, TCTA(4,4',4"-트리스(N-카바졸일)트리페닐아민(4,4',4"-tris(Ncarbazolyl) triphenylamine)), Pani/DBSA(Polyaniline/Dodecylbenzenesulfonic acid:폴리아닐린/도데실벤젠술폰산), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene) /Poly(4-styrene sulfonate):폴리(3,4-에틸렌디옥시티오펜) /폴리(4-스티렌술포네이트)), Pani/CSA(Polyaniline/Camphor sulfonicacid : 폴리아닐린/캠퍼술폰산), PANI/PSS(Polyaniline)/Poly(4-styrenesulfonate):폴리아닐린)/폴리(4-스티렌술포네이트)) 등을 포함할 수 있다.
Figure PCTKR2020016543-appb-I000095
상기 정공 수송 영역(210~215)의 두께는 약 100 내지 약 10,000Å으로 형성될 수 있으며, 각 정공 수송영역(210~215)의 해당 유기물층들은 같은 두께로 한정되는 것은 아니다. 예를 들면, 정공주입층(210)의 두께가 50Å이면 정공수송층(215)의 두께는 1000Å, 전자저지층의 두께는 500Å을 형성할 수 있다. 정공 수송영역(210~215)의 두께 조건은 유기 발광 소자의 구동전압 상승이 커지지 않는 범위 내에서 효율과 수명을 만족하는 정도로 정할 수 있다. 상기 유기물층(200)은 정공주입층(210), 정공수송층(215), 정공주입 기능과 정공수송 기능을 동시에 갖는 기능층, 버퍼층, 전자저지층, 발광층(220), 정공저지층, 전자수송층(230), 전자주입층(235) 및 전자수송 기능과 전자주입 기능을 동시에 갖는 기능층으로 이루어진 군 중에서 선택되는 1층 이상을 포함할 수 있다.
정공 수송 영역(210~215)은 발광층(220)과 마찬가지로 특성 향상을 위해 도핑을 사용할 수 있으며 이러한 정공 수송 영역(210~215) 내로 전하-생성 물질의 도핑은 유기 발광 소자의 전기적 특성을 향상시킬 수 있다.
전하-생성 물질은 일반적으로 HOMO와 LUMO가 굉장히 낮은 물질로 이루어지며 예를 들어, 전하-생성 물질의 LUMO는 정공수송층(215) 물질의 HOMO와 유사한 값을 갖는다. 이러한 낮은 LUMO로 인하여 LUMO의 전자가 비어 있는 특성을 이용하여 인접한 정공수송층(215)에 쉽게 정공을 전달하여 전기적 특성을 향상시킨다.
상기 전하-생성 물질은 예를 들면, p-도펀트일 수 있다. 상기 p-도펀트는 퀴논 유도체, 금속 산화물 및 시아노기-함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 p-도펀트의 비제한적인 예로는, 테트라사이아노퀴논다이메테인(TCNQ) 및 2,3,5,6-테트라플루오로-테트라사이아노-1,4-벤조퀴논다이메테인(F4-TCNQ) 등과 같은 퀴논 유도체; 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물; 시아노기-함유 화합물; 등을 들 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020016543-appb-I000096
정공 수송 영역(210~215)은 앞서 언급한 물질 외에, 도전성 향상을 위하여 전하 생성 물질을 더 포함할 수 있다.
전하 생성 물질은 정공 수송 영역(210~215) 내에 균일하게 또는 불균일하게 분산되어 있을 수 있다. 전하 생성 물질은 예를 들어, p-도펀트(dopant)일 수 있다. p-도펀트는 퀴논(quinone) 유도체, 금속 산화물 및 시아노(cyano)기 함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, p-도펀트의 비제한적인 예로는, TCNQ(Tetracyanoquinodimethane) 및 F4-TCNQ(2,3,5,6-tetrafluoro-tetracyanoquinodimethane) 등과 같은 퀴논 유도체, 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물 등을 들 수 있으나, 이에 한정되는 것은 아니다.
전술한 바와 같이, 정공 수송 영역(210~215)은 정공주입층(210) 및 정공수송층(215) 외에, 정공 버퍼층 및 전자 저지층 중 적어도 하나를 더 포함할 수 있다. 정공 버퍼층은 발광층(220)에서 방출되는 광의 파장에 따른 공진 거리를 보상하여 광 방출 효율을 증가시킬 수 있다. 정공 버퍼층에 포함되는 물질로는 정공 수송 영역(210~215)에 포함될 수 있는 물질을 사용할 수 있다.
전자 저지층은 전자 수송 영역(230~235)으로부터 정공 수송 영역(210~215)으로의 전자 주입을 방지하는 역할을 하는 층이다. 전자 저지층은 정공 수송영역으로 이동하는 전자를 저지할 뿐 아니라 발광층(220)에서 형성된 엑시톤이 정공수송영역(210~215)으로 확산되지 않도록 높은 T1 값을 갖는 재료를 사용할 수 있다. 예를 들면 일반적으로 높은 T1값을 갖는 발광층(220)의 호스트 등을 전자저지층 재료로 사용할 수 있다.
발광층(220)은 정공 수송 영역(210~215) 상에 제공된다. 발광층(220)은 예를 들어 약 100Å 내지 약 1000Å 또는, 약 100Å 내지 약 300Å의 두께를 갖는 것일 수 있다. 발광층(220)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다.
발광층(220)은 정공과 전자가 만나 엑시톤을 형성하는 영역으로 발광층(220)을 이루는 재료는 높은 발광 특성 및 원하는 발광색을 나타내도록 적절한 에너지밴드갭을 가져야 하며 일반적으로 호스트와 도판트 두 가지 역할을 가지는 두 재료로 이루어지나, 이에 한정된 것은 아니다.
상기 호스트는 하기 TPBi, TBADN, ADN("DNA"라고도 함), CBP, CDBP, TCP, mCP, 중 적어도 하나를 포함할 수 있고, 특성이 적절하다면 재료는 이에 한정된 것은 아니다.
Figure PCTKR2020016543-appb-I000097
일 실시예의 발광층(220)의 도판트는 유기 금속 착물일 수 있다. 일반적인 도판트의 함량은 0.01 내지 20%로 선택될 수 있으며, 경우에 따라 이에 한정되는 것은 아니다.
전자 수송 영역(230~235)은 발광층(220) 상에 제공된다. 전자 수송 영역(230~235)은, 정공 저지층, 전자 수송층(230) 및 전자 주입층(235) 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
전자 수송 영역(230~235)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다.
예를 들어, 전자 수송 영역(230~235)은 전자 주입층(235) 또는 전자 수송층(230)의 단일층의 구조를 가질 수도 있고, 전자 주입 물질과 전자 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 전자 수송 영역(230~235)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 발광층(220)으로부터 차례로 적층된 전자 수송층(230)/전자 주입층(235), 정공 저지층/전자 수송층(230)/전자 주입층(235) 구조를 가질 수 있으나, 이에 한정되는 것은 아니다. 전자 수송 영역(230~235)의 두께는 예를 들어, 약 1000Å 내지 약 1500Å인 것일 수 있다.
전자 수송 영역(230~235)은, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등과 같은 다양한 방법을 이용하여 형성될 수 있다.
전자 수송 영역(230~235)이 전자 수송층(230)을 포함할 경우, 전자 수송 영역(230)은 안트라센계 화합물을 포함하는 것일 수 있다. 다만, 이에 한정되는 것은 아니며, 전자 수송 영역은 예를 들어, Alq3(Tris(8-hydroxyquinolinato)aluminum),1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10-dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline),Bphen(4,7-Diphenyl-1,10-phenanthroline),TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole),NTAZ(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole),tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole),BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum),Bebq2(berylliumbis(benzoquinolin-10-olate),ADN(9,10-di(naphthalene-2-yl)anthracene)및 이들의 혼합물을 포함하는 것일 수 있다.
Figure PCTKR2020016543-appb-I000098
전자수송층(230)은 유기 발광 소자 구조에 따라 빠른 전자이동도 혹은 느린 전자이동도의 재료로 선택되므로 다양한 재료의 선택이 필요하며, 경우에 따라서 하기 Liq나 Li이 도핑되기도 한다.
전자수송층(230)들의 두께는 약 100Å 내지 약 1000Å, 예를 들어 약 150Å 내지 약 500Å일 수 있다. 전자수송층(230)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승이 없이 만족스러운 정도의 전자 수송 특성을 얻을 수 있다.
전자 수송 영역(230~235)이 전자주입층(235)을 포함할 경우, 전자 수송 영역(230~235)은 전자의 주입을 용이하게 하는 금속재료를 선택하며, LiF, LiQ(Lithium quinolate), Li2O, BaO, NaCl, CsF, Yb와 같은 란타넘족 금속, 또는 RbCl, RbI와 같은 할로겐화 금속 등이 사용될 수 있으나 이에 한정되는 것은 아니다.
전자주입층(235)은 또한, 전자 수송 물질과 절연성의 유기 금속염(organo metal salt)이 혼합된 물질로 이루어질 수 있다. 유기 금속염은 에너지 밴드 갭(energy band gap)이 대략 4eV 이상의 물질이 될 수 있다. 구체적으로 예를 들어, 유기 금속염은 금속 아세테이트(metal acetate), 금속 벤조에이트(metal benzoate), 금속 아세토아세테이트(metal acetoacetate), 금속 아세틸아세토네이트(metal acetylacetonate) 또는 금속 스테아레이트(stearate)를 포함할 수 있다. 전자주입층(235)들의 두께는 약 1Å 내지 약 100Å, 약 3Å 내지 약 90Å일 수 있다. 전자 주입층(235)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다.
전자 수송 영역(230~235)은 앞서 언급한 바와 같이, 정공 저지층을 포함할 수 있다. 정공 저지층은 예를 들어, BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen(4,7-diphenyl-1,10-phenanthroline) 및 Balq 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
제2 전극(120)은 전자 수송 영역(230~235) 상에 제공된다. 제2 전극(120)은 공통 전극 또는 음극일 수 있다. 제2 전극(120)은 투과형 전극 또는 반투과형 전극 전극일 수 있다. 제2 전극(120)은 제1 전극(110)과 다르게 상대적으로 낮은 일함수를 갖는 금속, 전기전도성 화합물, 합금 등을 조합하여 사용할 수 있다.
제2 전극(120)은 반투과형 전극 또는 반사형 전극이다. 제2 전극(120)은 Li(리튬), Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은) 또는 이들을 포함하는 화합물이나 혼합물(예를 들어, Ag와 Mg의 혼합물)을 포함할 수 있다. 또는 상기 물질로 형성된 반사막이나 반투과막 및 ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 형성된 투명 도전막을 포함하는 복수의 층 구조일 수 있다.
도시하지는 않았으나, 제2 전극(120)은 보조 전극과 연결될 수 있다. 제2 전극(120)가 보조 전극과 연결되면, 제2 전극(120)의 저항을 감소시킬 수 있다.
도시된 기판(100) 상에 전극 및 유기물층을 형성하며, 이때 기판(100) 재료는 경성 또는 연성 재료를 사용할 수 있으며, 예를 들어 경성 재료로는 소다라임 글래스, 무알칼리 글래스, 알루미노 실리케이트 글래스 등을 사용할 수 있으며, 연성 재료로는 PC(폴리카보네이트), PES(폴리에테르술폰), COC(싸이클릭올리펜코폴리머), PET(폴리에틸렌테레프탈레이트), PEN(폴리에틸렌나프탈레이트) 등을 사용할 수 있다.
유기 발광 소자에서, 제1 전극(110)과 제2 전극(120)에 각각 전압이 인가됨에 따라 제1 전극(110)으로부터 주입된 정공(hole)은 정공 수송 영역(210~215)을 거쳐 발광층(220)으로 이동되고, 제2 전극(120)로부터 주입된 전자가 전자 수송 영역(230~235)을 거쳐 발광층(220)으로 이동된다. 전자와 정공은 발광층(220)에서 재결합하여 여기자(exciton)를 생성하며, 여기자가 여기 상태에서 바닥 상태로 떨어지면서 발광하게 된다.
발광층(220)에서 발생된 광경로는 유기 발광 소자를 구성하는 유무기물들의 굴절률에 따라 매우 다른 경향을 나타낼 수 있다. 제2 전극(120)을 통과하는 빛은 제2 전극(120)의 임계각보다 작은 각도로 투과되는 빛들만 통과할 수 있다. 그 외 임계각보다 크게 제2 전극(120)에 접촉하는 빛들은 전반사 또는 반사되어 유기 발광 소자 외부로 방출되지 못한다.
캡핑층(300)의 굴절률이 높으면 이러한 전반사 또는 반사 현상을 줄여서 발광효율 향상에 기여하고 또한 적절한 두께를 갖게 되면 미소공동현상(Micro-cavity)현상의 극대화로 높은 효율 향상과 색순도 향상에도 기여하게 된다.
캡핑층(300)은 유기 발광 소자의 가장 바깥에 위치하게 되며, 소자의 구동에 전혀 영향을 주지 않으면서 소자특성에는 지대한 영향을 미친다. 따라서 캡핑층(300)은 유기 발광 소자의 내부 보호역할과 동시에 소자특성 향상 두 가지 관점에서 모두 중요하다. 유기물질들은 특정 파장영역의 광에너지를 흡수하며 이는 에너지밴드갭에 의존한다. 이 에너지밴드갭을 유기 발광 소자 내부의 유기물질들에 영향을 줄 수 있는 UV영역의 흡수를 목적으로 조정하면 캡핑층(300)이 광학특성 개선을 포함하여 유기 발광 소자 보호의 목적으로도 사용될 수 있다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[제조예]
중간체 합성예 1: 중간체(3)의 합성
Figure PCTKR2020016543-appb-I000099
(중간체(1)의 합성)
6-브로모나프틸렌-2-올(6-bromonaphthalen-2-ol) 10.0 g(44.8 mmol), 4-플루오로페닐보론산(4-fluorophenyl)boronic acid) 6.3 g(44.8 mmol), Pd(PPh3)4 1.6 g(1.3 mmol), K3PO4 28.6 g(134.5 mmol), 톨루엔 150 mL, 에탄올 30 mL, 및 물 30 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(1)) 8.1 g(수율: 76.0%)을 얻었다.
(중간체(2)의 합성)
중간체 화합물(1) 8.1 g(34.1 mmol)을 다이클로로메탄(DCM) 170 mL에 녹이고 피리딘(Pyridine) 8.2 mL(102.2 mmol)을 적가한 후 0℃로 온도를 낮췄다. Tf2O(Trifluoromethanesulfonic anhydride) 6.9 mL(40.9 mmol)를 천천히 적가한 후 상온으로 온도를 올린 후 12시간 동안 반응시켰다. 반응물을 물 100 mL에 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼 크로마토그래피(CHCl3)로 정제하여 노란색 액체의 화합물(중간체(2)) 12.6 g(수율: 100 %)을 얻었다.
(중간체(3)의 합성)
1구 500 mL 플라스크에 중간체(2) 12.6 g(34.0 mmol), 피나콜디보론(Bis(pinacolato)diboron) 13.0 g(51.0 mmol), Pd(dppf)Cl2-CH2Cl2 556 mg(680.5 μmol), KOAc 10.0 g(102.1 mmol) 및 1,4-디옥산 170 mL를 혼합한 다음, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(3)) 7.55 g(수율: 63.7%)을 얻었다.
중간체 합성예 2: 중간체(6)의 합성
Figure PCTKR2020016543-appb-I000100
(중간체(4)의 합성)
6-브로모나프틸렌-2-올(6-bromonaphthalen-2-ol) 50.0 g(224.2 mmol), 3,5-비스트리플루오로메틸페틸보론산((3,5-bis(trifluoromethyl)phenyl) boronic acid) 57.8 g(224.2 mmol), Pd(PPh3)4 7.8 g(6.7 mmol), K3PO4 142.7 g(672.5 mmol), 톨루엔 600 mL, 에탄올 200 mL 및 물 200 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(4)) 57.2 g(수율: 71.6%)을 얻었다.
(중간체(5)의 합성)
중간체 화합물(4) 57.2 g(160.6 mmol)을 다이클로로메탄(DCM) 800 mL에 녹이고 피리딘(Pyridine) 38.8 mL(481.7mmol)을 적가한 후 0℃로 온도를 낮췄다. Tf2O 32.4 mL(192.7 mmol)를 천천히 적가한 후 상온으로 온도를 올린 후 12시간 동안 반응시켰다. 반응물을 물(500 mL)에 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼 크로마토그래피(CHCl3)로 정제하여 노란색 고체의 화합물(중간체(5)) 78.0 g(수율: 100 %)을 얻었다.
(중간체(6)의 합성)
1구 2 L 플라스크에 중간체(5) 78.0 g(159.7 mmol), 피나콜디보론(Bis(pinacolato)diboron) 60.8 g(239.6 mmol), Pd(dppf)Cl2-CH2Cl2 2.6 g(3.2 mmol), KOAc 47.0 g(479.2 mmol) 및 1,4-디옥산 800 mL를 혼합한 다음, 100℃에서 5시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(6)) 57.0 g(수율: 76.5%)을 얻었다.
중간체 합성예 3: 중간체(8)의 합성
Figure PCTKR2020016543-appb-I000101
(중간체(7)의 합성)
6-브로모나프탈렌-2-올(6-Bromonaphthalen-2-ol) 15.0 g(67.2 mmol), 4-(트리플루오로메틸)페닐 보론산(4-(trifluoromethyl)phenyl boronic acid) 12.8 g(67.2 mmol), Pd(PPh3)4 2.3 g(2.0 mmol), 2M 탄산나트륨 67.2 mL(134.5 mmol), 톨루엔 700 mL 및 에탄올 350 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 날리고 물을 첨가한 후 디클로로메탄 1000 mL를 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 약간 흰색 고체 화합물(중간체(7)) 12.1 g(수율: 62.4%)을 얻었다.
(중간체(8)의 합성)
중간체(7) 12.1 g(42.0 mmol), 디클로로메탄 400 mL 와 같이 넣고 교반하다가 피리딘(pyridine) 5.0 g(63.0 mmol)를 첨가하고 0 ℃에서 무수트리플루오로메탄 설폰산(Trifluoromethanesulfonic anhydride) 17.8 g(63.0 mmol)를 천천히 첨가하고 상온으로 승온하고 하루종일 교반하였다. 반응이 종결되면 0 ℃에서 물과 디클로로메탄 500 mL을 넣은 후 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 옅은 갈색 고체 화합물(중간체(8)) 8.7 g(수율: 49.3%)을 얻었다.
중간체 합성예 4: 중간체(10)의 합성
Figure PCTKR2020016543-appb-I000102
(중간체(9)의 합성)
6-브로모나프탈렌-2-올(6-Bromonaphthalen-2-ol) 15.0 g(67.2 mmol), 페닐 보론산(Phenyl boronic acid) 8.2 g(67.2 mmol), Pd(PPh3)4 2.3 g(2.0 mmol), 2M 탄산나트륨 67.2 mL(134.5 mmol), 톨루엔 700 mL 및 에탄올 350 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 날리고 물을 첨가한 후 디클로로메탄 1000 mL를 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 약간 흰색 고체 화합물(중간체(9)) 12.1 g(수율: 81.7%)을 얻었다.
(중간체(10)의 합성)
중간체(9) 12.1 g(42.0 mmol), 디클로로메탄 400 mL와 같이 넣고 교반하다가 피리딘(pyridine) 5.0 g(63.0 mmol)를 첨가하고 0 ℃에서 무수트리플루오로메탄 설폰산(Trifluoromethanesulfonic anhydride) 17.8 g(63.0 mmol)를 천천히 첨가하고 상온으로 승온하고 하루 종일 교반하였다. 반응이 종결되면 0 ℃에서 물과 디클로로메탄 500 mL을 넣은 후 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 옅은 갈색 고체 화합물(중간체(10)) 12.3 g(수율: 83.1%)을 얻었다.
중간체 합성예 5: 중간체(14)의 합성
Figure PCTKR2020016543-appb-I000103
(중간체(11)의 합성)
1구 3000 mL 플라스크에 6-브로모나프탈렌-2-올(6-bromonaphthalen-2-ol) 120.0 g(537.9 mmol), 비스(피나콜레이토)디보론{bis(pinacolato)diboron} 150.3 g(591.7 mmol), Pd(dppf)Cl2-DCM 17.6 g(21.5 mmol), 포타슘아세테이트(potassium acetate) 211.2 g(1.1 mol), Dioxane 2000 mL을 같이 넣고 질소하에서 100℃에서 하루 종일 환류시켰다. 반응이 종결되면 용매를 날리고 물을 첨가한 후 CHCl3로 추출하고 분리된 유기층을 무수 MgSO4로 건조하고, 컬럼 크로마토그래피로 정제하여 옅은 노란색 고체의 화합물(중간체(11)) 102.2 g(수율: 70.3%)을 얻었다.
(중간체(12)의 합성)
1-브로모-2,3,4,5,6-펜타플루오로벤젠(1-bromo-2,3,4,5,6-pentafluorobenzene) 20.0g(81.3 mmol), 중간체(11) 21.9 g(81.3 mmol), Pd(PPh3)4 2.8 g(2.4 mmol), 탄산칼륨 28.1 g(203.2 mmol), 톨루엔 300 mL, 에탄올 150 mL 및 물 150 mL의 혼합물을 12 시간 동안 환류 교반하였다. 농축 잔류물을 디클로로메탄에 용해하여 물로 세척하고 유기층을 분리하여 무수 황산나트륨으로 건조하고 여과, 농축하였다. 농축된 혼합물을 컬럼 크로마토그래피로 정제하여 흰색 고체 화합물(중간체(12)) 20.0 g(수율: 79.3%)을 얻었다.
(중간체(13)의 합성)
중간체(12) 20.0 g(64.5 mmol), 피리딘(Pyridine) 7.6 mL(96.7 mmol), 무수 트리플루오로메탄 설폰산(Trifluoromethanesulfonic anhydride) 16.2 mL(96.7 mmol), 디클로로메탄 500 mL의 혼합물을 16시간 동안 교반하였다. 반응혼합물을 0 ℃로 냉각한 후 물을 첨가하였다. 이렇게 얻은 고체 화합물을 여과하여 흰색 고체의 화합물(중간체(13)) 21.5 g(수율: 75.4%)을 얻었다.
(중간체(14)의 합성)
중간체(13) 10.0 g(22.6 mmol), PIN2B2 11.5 g(45.2 mmol), Pd(dppf)2DCM 735.0 mg(0.9 mmol), 아세트산칼륨 4.4 g(45.2 mmol) 및 다이옥산 300 mL의 혼합물을 12 시간 동안 환류 교반하였다. 얻어진 화합물을 Silica 패드에 여과한 후 고체화하여 갈색 고체의 화합물(중간체(14)) 7.5 g(수율: 79.0%)을 얻었다.
중간체 합성예 6: 중간체(17)의 합성
Figure PCTKR2020016543-appb-I000104
(중간체(15)의 합성)
1구 500 mL 플라스크에 2-(4-브로모페닐)벤조옥사졸(2-(4-bromophenyl)benzo[d]oxazole) 10.0 g(36.5 mmol), Bis(pinacolato)diboron 10.2 g(40.1 mmol), Pd(dppf)Cl2·CH2Cl2 1.2 g(1.5 mmol), 아세트산칼륨(KOAc) 7.2 g (73.0 mmol)과 디옥산(Dioxane) 300 mL을 같이 넣고, 100℃에서 하루 종일 환류 교반하였다. 반응이 종결되면 용매를 날리고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 약간 흰색 고체 화합물(중간체(15)) 8.6 g(수율: 73.4%)을 얻었다.
(중간체(16)의 합성)
1구 250 mL 플라스크에 중간체(15) 8.9 g(27.8 mmol), 2,6-디클로로퀴놀린(2,6-dichloroquinoline) 5.0 g(25.2 mmol), 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) 1.5 g(1.3 mmol), 톨루엔(Toluene)/에탄올(EtOH) = 2/1) 168 mL 및 2M 탄산칼륨(2M K2CO3) 25.2 mL를 혼합한 다음, 3시간 환류 교반하였다. 반응 종결을 얇은 막 크로마토그래피(TLC)로 확인 후 상온으로 냉각하고 1시간동안 교반하였다. 생성된 고체를 여과하고 톨루엔(Toluene)과 증류수, 아세톤(Acetone) 순으로 세척하고 건조하여 고체의 화합물(중간체(16)) 7.5 g(수율: 83.4%)을 얻었다.
(중간체(17)의 합성)
1구 250 mL 플라스크에 중간체(16) 3.5 g(9.8 mmol), 비스(피나콜)디보란(Bis(pinacolato)diboron)) 5.0 g(19.6 mmol), 비스(디벤질리덴아세톤)팔라듐(Pd(dba)2) 1.1 g(1.9 mmol), P(cy)3BF4 1.4 g(3.9 mmol), 아세트산칼륨(KOAc) 3.8 g(39.2 mmol)과 디옥산(Dioxane) 50 mL을 같이 넣고, 100℃에서 2시간 환류 교반하였다. 반응 종결을 얇은 막 크로마토그래피(TLC)로 확인 후 반응물을 상온으로 냉각하고 감압 하에 용매를 제거하였다. 생성된 고체를 디클로로메탄(DCM)에 용해시킨 후 셀라이트(Celite) 여과하고 디클로로메탄(DCM)으로 세척한다. 감압 하여 용매를 제거한 후 메탄올(MeOH)로 고체화하여 여과하여 고체 화합물(중간체(17) 4.0 g(수율: 91.0%)을 얻었다.
중간체 합성예 7: 중간체(20)의 합성
Figure PCTKR2020016543-appb-I000105
(중간체(18)의 합성)
1구 3 L 플라스크에 4-티부틸아닐린(4-(tert-butyl)aniline) 50.0 g(335.1 mmol)을 아세토나이트릴 1.1 L에 녹인다. 0℃로 냉각한 후 NBS 59.6 g(335.1 mmol)을 넣고 상온으로 온도를 올렸다. 12 시간 교반 후 물 800 mL을 넣고 다이클로로메탄으로 추출하고 용매를 감압 농축하였다. 다이클로로메탄 700 mL를 넣고 2N NaOH 400 mL으로 씻어준 후 실리카 패드 여과를 하고 용매를 감압 농축하여, 노란색 액체의 화합물(중간체(18)) 76.0 g(수율: 99.4%)을 얻었다.
(중간체(19)의 합성)
2구 2 L 플라스크에 중간체(18) 76.0 g(333.2 mmol)을 NMP 500 mL에 녹였다. 4-브로모벤조일 클로라이드(4-bromobenzoyl chloride) 76.8 g(349.8 mmol)을 NMP 170 mL에 희석시킨 후 상온에서 천천히 적가하고, 12 시간 동안 반응하였다. 물 500 mL을 넣고 고체가 석출되면 여과하고, 물과 메탄올로 씻어서 흰색 고체의 화합물(중간체(19)) 133.0 g(수율: 97.1%)을 얻었다.
(중간체(20)의 합성)
2구 3 L 플라스크에 중간체(19) 133.0 g(323.5 mmol), CuI 6.2 g(32.4 mmol), 1,10-페난쓰롤린(1,10-Phenanthroline) 11.7 g(64.7 mmol), Cs2CO3 316.0 g(970.5 mmol)과 DME 1000 mL를 넣고 90℃에서 하루 동안 반응하였다. 반응이 종결된 후 상온으로 냉각하고 셀라이트 패드 여과하고 반응용매를 감압 농축하였다. 반응 혼합물을 실리카 패드 여과하고 용매를 감압 농축하였다. 혼합용액(DCM/MeOH)으로 고체화하여 흰색 고체의 화합물(중간체(20)) 95.4 g(수율: 89.3%)을 얻었다.
중간체 합성예 8: 중간체(22)의 합성
Figure PCTKR2020016543-appb-I000106
(중간체(21)의 합성)
1구 2 L 플라스크에 2-아미노-5-플루오로페놀(2-amino-5-fluorophenol) 13.7 g(108.1 mmol)과 4-브로모벤잘데하이드(4-bromobenzaldehyde) 20.0 g(108.1 mmol)을 에탄올 540 mL에 혼합한 다음, 70℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 반응 혼합물을 감압 증류하여, 갈색 고체의 화합물(중간체(21)) 31.8 g(crude)을 얻었다.
(중간체(22)의 합성)
1구 2 L 플라스크에 중간체(21) 31.8 g(108.1 mmol)를 다이클로로메탄(DCM) 540 mL에 녹였다. DDQ 43.9 g(129.7 mmol)을 넣어준 후. 상온에서 12시간 동안 교반하였다. 반응 혼합물을 셀라이트 패드(CHCl3)로 여과하고 혼합용액(DCM/EtOH)으로 고체화하여, 노란색 고체의 화합물(중간체(22)) 24.2 g(수율: 76.7%)을 얻었다.
중간체 합성예 9: 중간체(24)의 합성
Figure PCTKR2020016543-appb-I000107
(중간체(23)의 합성)
2구 2 L 플라스크에 4-아미노-3-브로모벤조나이트릴(4-amino-3-bromobenzonitrile) 100.0 g(507.5 mmol)을 NMP 800 mL에 녹인다. 4-브로모벤조일 클로라이드(4-bromobenzoyl chloride) 117.0 g(532.9 mmol)을 NMP 200 mL에 희석시킨 후 상온에서 천천히 적가하고, 12 시간 동안 반응하였다. 물 500 mL을 넣고 고체가 석출되면 여과하고, 물과 메탄올로 씻어서 흰색 고체의 화합물(중간체(23)) 177.7 g(수율: 92.1%)을 얻었다.
(중간체(24)의 합성)
1구 3 L 플라스크에 중간체(23) 181.8 g(478.4 mmol), Cu 15.2 g(239.2 mmol), K2CO3 132.2 g(956.8 mmol), Na2SO4 135.9 g(956.8 mmol) 및 나이트로벤젠 1500 mL를 혼합한 다음 2일 동안 환류 교반하였다. 반응이 종결된 후 셀라이트 패드에 통과시킨 후 감압 농축하였고 혼합용액(DCM/MeOH)으로 고체화하여, 노란색 고체의 화합물(중간체(24)) 119.0 g(수율: 83.2%)을 얻었다.
중간체 합성예 10: 중간체(26)의 합성
Figure PCTKR2020016543-appb-I000108
(중간체(25)의 합성)
1구 2 L 플라스크에 2-아미노페놀(2-aminophenol) 20.0 g(183.3 mmol)과 6-브로모피콜린알데히드(6-bromopicolinaldehyde) 34.1 g(183.3 mmol)을 에탄올 900 mL에 혼합한 다음, 70℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 반응 혼합물을 감압 증류하여, 갈색 고체의 화합물(중간체(25)) 50.8 g(crude)을 얻었다.
(중간체(26)의 합성)
1구 2 L 플라스크에 중간체(25) 50.8 g(183.3 mmol)를 다이클로로메탄(DCM) 900 mL에 녹였다. DDQ 49.9 g(220.0 mmol)을 넣어준 후. 상온에서 12시간 동안 교반하였다. 반응혼합물을 셀라이트(CHCl3) 패드를 통하여 여과하고 혼합용액(DCM/EtOH)으로 고체화하여, 노란색 고체의 화합물(중간체(26)) 42.0 g(수율: 83.3%)을 얻었다.
중간체 합성예 11: 중간체(28)의 합성
Figure PCTKR2020016543-appb-I000109
(중간체(27)의 합성)
1구 2 L 플라스크에 2-아미노페놀 (2-aminophenol) 17.6 g(161.3 mmol)과 5-브로모피콜린알데히드(5-bromopicolinaldehyde) 30.0 g(161.3 mmol)을 에탄올 800 mL에 혼합한 다음, 70℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 반응 혼합물을 감압 증류하여, 갈색 고체의 화합물(중간체(27)) 45.0 g(crude)을 얻었다.
(중간체(28)의 합성)
1구 2 L 플라스크에 중간체(27) 45.0 g(161.3 mmol)를 다이클로로메탄 800 mL에 녹였다. DDQ 43.9 g(193.5 mmol)을 넣어준 후. 40℃에서 12시간 동안 교반하였다. 반응 혼합물을 셀라이트(CHCl3)로 여과하고 혼합용액(DCM/EtOH)으로 고체화하여, 분홍색 고체의 화합물(중간체(28)) 36.2 g(수율: 81.6%)을 얻었다.
중간체 합성예 12: 중간체(29)의 합성
Figure PCTKR2020016543-appb-I000110
1구 500 mL 플라스크에 2-아미노피리딘-3-올(2-aminopyridin-3-ol) 20.0 g(181.6 mmol)과 4-아이오도벤조익엑시드(4-iodobenzoic acid) 45.0 g(181.6 mmol)을 잘 섞은 후, 0℃에서 POCl3 140 mL를 천천히 조심해서 넣어주며 교반하였다. 90℃로 승온한 후 12시간 동안 반응하였다. 반응이 종결된 후 상온으로 냉각하고 얼음에 반응물을 천천히 적가하였다. Na2CO3 수용액으로 중화시킨 후 고체를 여과하고 물과 메탄올로 씻어서 건조하여 흰색 고체의 화합물(중간체(29)) 43.0 g(수율: 73.5%)을 얻었다.
중간체 합성예 13: 중간체(30)의 합성
Figure PCTKR2020016543-appb-I000111
1구 500 mL 플라스크에 2-아미노피리딘-3-올(2-aminopyridin-3-ol) 20.0 g(181.6 mmol)과 5-브로모피콜리닉엑시드(5-bromopicolinic acid) 36.7 g(181.6 mmol)을 잘 섞은 후, 0℃에서 POCl3 180 mL를 천천히 조심해서 넣어주며 교반하였다. 100℃로 온도를 올린 후 12시간 동안 반응하였다. 반응이 종결된 후 상온으로 냉각하고 얼음에 위의 반응물을 천천히 적가하였다. K2CO3 500 g을 물 3 L에 녹인 용액으로 반응물을 중화시킨 후 클로로포름를 넣고 교반하였다. 셀라이트 패드로 여과하고 클로로포름으로 추출한 후 감압 증류하였다. 실리카겔 컬럼 크로마토그래피(CHCl3:EA=20:1)로 정제하고 뜨거운 메탄올로 고체화하여, 노란색 고체의 화합물(중간체(30)) 23.0 g(수율: 45.9%)을 얻었다.
중간체 합성예 14: 중간체(33)의 합성
Figure PCTKR2020016543-appb-I000112
(중간체(31)의 합성)
2-(4-브로모페닐)벤조[d]티아졸(2-(4-bromophenyl)benzo[d]thiazole) 30.0 g(103.4 mmol), 비스(피나콜라토)디보론(bis(pinacolato)diboron) 31.5 g(124.0 mmol), Pd(dppf)Cl2 3.4 g(4.1 mmol), 아세트산 칼륨 20.3 g(206.8 mol), 1,4-디옥산 300 mL의 혼합물을 90℃에서 12시간 동안 교반하였다. 반응 혼합물을 감압 농축한 후 디클로로메탄 600 mL을 가하여 30분간 교반하였다. 불용성 침전을 celite 패드로 여과하여 제거하고 감압 농축하였다. 농축 잔류물에 메탄올 200 mL를 가하고 1시간 동안 교반하였다. 생성된 침전을 여과하고 메탄올로 세척, 진공 건조하여 옅은 노란색 고체 화합물(중간체(31)) 25.0 g(수율: 72.1%)을 얻었다.
(중간체(32)의 합성)
중간체(31) 18.6 g(55.2 mmol), 2,6-디클로로퀴녹살린(2,6-dichloroquinoxaline) 10.0 g(50.1 mmol), Pd(PPh3)4 1.7 g(1.5 mmol), 2M 탄산나트륨 용액 25.1 mL(75.2 mmol), 톨루엔 350 mL 및 에탄올 170 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 제거하고 물을 첨가한 후 디클로로메탄 500 mL를 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체 화합물(중간체(32)) 12.5 g(수율: 66.7%)을 얻었다.
(중간체(33)의 합성)
중간체(32) 6.0 g(16.1 mmol), Bis(pinacolato)diboron 8.2 g(32.1 mmol), Pd(dba)2 1.9 g(3.2 mmol), 아세트산칼륨(KOAc) 6.3 g(64.2 mmol), 트리시클로헥실포스핀 테트라플루오로보레이트(tricyclohexylphosphine tetrafluoroborate, P(Cy)3·HBF4) 2.4 g(6.4 mmol) 및 디옥산(Dioxane) 300 mL을 같이 넣고, 100℃에서 4~5 일간 환류 교반하였다. 반응이 종결되면 용매를 제거하고 얻어진 반응물을 실리카겔 컬럼 크로마토그래피로 정제하여 옅은 노란색 고체 화합물(중간체(33)) 3.4 g(수율: 45.1%)을 얻었다.
중간체 합성예 15: 중간체(35)의 합성
Figure PCTKR2020016543-appb-I000113
(중간체(34)의 합성)
2-(4-브로모페닐)벤조티아졸(2-(4-bromophenyl)benzo[d]thiazole) 60.0 g(206.7 mmol), 중간체(11) 55.9 g(206.7 mmol), Pd(PPh3)4 7.1 g(6.2 mmol), 2M 탄산나트륨 155.1 mL(310.2 mmol), 톨루엔 700 mL 및 에탄올 350 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 제거하고 물을 첨가한 후 디클로로메탄 1000 mL를 넣어 유기층을 추출 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체 화합물(중간체(34)) 35.1 g(수율: 48.0%)을 얻었다.
(중간체(35)의 합성)
중간체(34) 15.0 g(42.4 mmol), 디클로로메탄 400 mL와 같이 넣고, 피리딘(Pyridine) 5.1 mL(63.6 mmol)를 첨가하고 0 ℃에서 무수트리플루오로메탄 설폰산(Trifluoromethanesulfonic anhydride) 18.0 g(63.6 mmol)를 천천히 첨가하고 상온으로 승온하고 하루종일 교반하였다. 반응이 종결되면 0 ℃에서 물을 첨가한 후 디클로로메탄 500 mL와 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 약간 흰색 고체 화합물(중간체(35)) 17.1 g(수율: 83.1%)을 얻었다.
상기 합성된 중간체 화합물을 이용하여 이하와 같이 다양한 벤즈아졸 유도체를 제조하였다.
제조예 1: 화합물 2-10(LT19-30-535)의 합성
Figure PCTKR2020016543-appb-I000114
2-(4-브로모페닐벤조옥사졸(2-(4-bromophenyl)benzo[d]oxazole) 3.2 g(11.5 mmol), 중간체(3) 4.0 g(11.5 mmol), Pd(PPh3)4 664 mg(574.4 μmol), K3PO4 6.1 g(28.7 mmol) 톨루엔 40 mL, 에탄올 10 mL 및 물 10 mL을 혼합한 다음 4 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 에탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 클로로포름으로 고체화하여, 흰색 고체의 화합물 2-10(LT19-30-535) 3.1 g(수율: 64.9%)을 얻었다.
제조예 2: 화합물 2-13(LT19-35-102)의 합성
Figure PCTKR2020016543-appb-I000115
2-(4-브로모페닐)벤조옥사졸(2-(4-bromophenyl)benzo[d]oxazole) 3.0 g(10.9 mmol), 중간체(14) 4.6 g(10.9 mmol), Pd(PPh3)4 0.4 g(0.3 mmol), 탄산칼륨 3.8 g(27.4 mmol), 톨루엔 80 mL, 에탄올 40 mL 및 물 40 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 메탄올 200 mL를 가하였다. 생성된 침전을 여과하고 메탄올로 세척하였다. 여과된 침전을 실리카겔/Celite 패드로 정제하여 노란색 형광을 띄는 고체 화합물 2-13(LT19-35-102) 2.5 g(수율: 46.7%)을 얻었다.
제조예 3: 화합물 2-14(LT19-30-174)의 합성
Figure PCTKR2020016543-appb-I000116
중간체(15) 4.2 g(13.1 mmol), 중간체(8) 5.0 g(11.9 mmol), Pd(PPh3)4 0.4 g(0.4 mmol), 2M 탄산나트륨 8.9 mL(17.8 mmol), 톨루엔 70 mL 및 에탄올 35 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 날리고 물을 첨가한 후 디클로로메탄 300 mL를 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 옅은 노란색 고체 화합물 2-14(LT19-30-174) 3.0 g(수율: 54.2%)을 얻었다.
제조예 4: 화합물 2-15(LT19-30-153)의 합성
Figure PCTKR2020016543-appb-I000117
중간체(5) 4.0 g(8.2 mmol), 중간체(15) 2.89 g(9.0 mmol), Pd(PPh3)4 0.28 g(0.25 mmol), 2M K2CO3 8 mL(16 mmol), 톨루엔 20 mL 및 에탄올 8 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 생성된 침전을 감압 여과하고 톨루엔, 물, 메탄올로 세척하였다. 여과된 침전을 테트라히드로퓨란 120 mL에 용해한 후 불용성 침전을 celite 패드에 여과하여 제거하고, 테트라히드로퓨란 40 mL로 세척하였다. 여과액에 메탄올 160 mL를 가한 후 3시간 동안 정치하였다. 생성된 침전을 여과하고 메탄올로 세척, 진공 건조하여 흰색 고체 화합물 2-15(LT19-30-153) 3.50 g(수율: 80.0%)을 얻었다.
제조예 5: 화합물 2-30(LT19-30-480)의 합성
Figure PCTKR2020016543-appb-I000118
중간체(20) 2.0 g(6.1 mmol), 중간체(6) 2.8 g(6.1 mmol), Pd(PPh3)4 350 mg(302.8 mmol), K3PO4 3.2 g(15.1 mmol), 톨루엔 30 mL, 에탄올 5 mL 및 물 5 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각하여 물을 가한 후 클로로포름으로 추출하였다. 유기층을 무수 황산마그네슘으로 건조, 여과하고 감압 농축하였다. 얻어진 화합물을 클로로포름 200 mL에 가열하여 녹인 후 컬럼 크로마토그래피로 정제한 후 아세톤과 메탄올로 재결정하여 흰색의 고체 화합물 2-30(LT19-30-480) 2.3 g(수율: 63.3%)을 얻었다.
제조예 6: 화합물 2-45(LT19-30-481)의 합성
Figure PCTKR2020016543-appb-I000119
중간체(22) 2.0 g(6.9 mmol), 중간체(6) 3.2 g(6.9 mmol), Pd(PPh3)4 395 mg(342.3 μmol), K3PO4 3.6 g(17.1 mmol) 톨루엔 30 mL, 에탄올 5 mL 및 물 5 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 에탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Acetone)으로 고체화하여, 흰색 고체의 화합물 2-45(LT19-30-481) 2.1 g(수율: 56.7%)을 얻었다.
제조예 7: 화합물 2-75(LT19-30-524)의 합성
Figure PCTKR2020016543-appb-I000120
중간체(24) 2.5 g(8.4 mmol), 중간체(6) 4.3 g(9.2 mmol), Pd(PPh3)4 0.9 g(0.8 mmol), 2M 탄산세슘 용액 13.0 mL(25.1 mmol), 톨루엔 42 mL 및 에탄올 21 mL의 혼합물을 2시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 침전된 고체를 감압 여과한 후 물과 메탄올로 세척하였다. 여과한 고체를 클로로포름 400 mL에 가열하여 녹인 후 컬럼 크로마토그래피로 정제한 후 클로로포름과 아세톤으로 재결정하여 흰색의 고체 화합물 2-75(LT19-30-524) 4.0 g(수율: 86.8%)을 얻었다.
제조예 8: 화합물 2-87(LT19-30-532)의 합성
Figure PCTKR2020016543-appb-I000121
중간체(6) 5.1 g(10.9 mmol), 중간체(28) 2.5 g(9.1 mmol), Pd(OAc)2 0.2 g(0.9 mmol), 트리페닐포스핀 0.7 g(2.7 mmol), 세슘카보네이트 11.8 g(36.4 mmol), 1,4-디옥산 45 mL 및 물 9 mL의 혼합물을 85 ℃에서 4시간 동안 교반하였다. 반응혼합물을 상온으로 냉각하여 물을 가한 후 다이클로로메탄 60 mL로 2회 추출하였다. 유기층을 무수 황산마그네슘으로 건조, 여과하고 감압 농축하였다. 얻어진 화합물을 컬럼 크로마토그래피로 정제한 후 클로로포름으로 재결정하여 노란색의 고체 화합물 2-87(LT19-30-532) 3.8 g(수율: 78.3 %)을 얻었다.
제조예 9: 화합물 2-90(LT19-30-489)의 합성
Figure PCTKR2020016543-appb-I000122
중간체(26) 2.0 g(7.3 mmol), 중간체(6) 3.4 g(7.3 mmol), Pd(PPh3)4 420 mg(363.5 μmol), K3PO4 3.9 g(18.2 mmol), 톨루엔 30 mL, 에탄올 5 mL 및 물 5 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Acetone)으로 고체화하여, 흰색 고체의 화합물 2-90(LT19-30-489) 3.1 g(수율: 80.3%)을 얻었다.
제조예 10: 화합물 2-105(LT19-30-522)의 합성
Figure PCTKR2020016543-appb-I000123
중간체(29) 2.5 g(7.8 mmol), 중간체(6) 4.0 g(8.5 mmol), Pd(PPh3)4 0.4 g(0.4 mmol), 2M 탄산세슘 용액 12.0 mL(23.3 mmol), 톨루엔 40 mL 및 에탄올 20 mL의 혼합물을 16 시간 동안 환류 교반하였다. 반응혼합물을 상온으로 냉각하여 물을 가한 후 클로로포름 100 mL로 2회 추출하였다. 유기층을 무수 황산마그네슘으로 건조, 여과하고 감압 농축하였다. 얻어진 화합물을 클로로포름 200 mL에 가열하여 녹인 후 컬럼 크로마토그래피로 정제한 후 클로로포름과 아세톤으로 재결정하여 노란색의 고체 화합물 2-105(LT19-30-522) 3.1 g(수율: 69.1%)을 얻었다.
제조예 11: 화합물 2-120(LT19-30-165)의 합성
Figure PCTKR2020016543-appb-I000124
1구 250 mL 플라스크에 중간체(17) 4.0 g(8.9 mmol), 1-브로모-3,5-비스(트리플로로메틸)벤젠(1-bromo-3,5-bis(trifluoromethyl)benzene) 2.6 g(8.9 mmol), 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4) 0.5 g(0.45 mmol), 혼합용액(톨루엔(Toluene)/에탄올(EtOH)=2/1) 45 mL 및 2M 탄산칼륨(2M K2CO3) 9 mL와 혼합한 다음, 12시간 환류 교반하였다. 반응 종결을 막 크로마토그래피(TLC)로 확인 후 반응물을 상온으로 냉각하였다. 증류수를 첨가하여 클로로포름(CHCl3)으로 추출한 후 분리된 유기층을 무수 황산나트륨(Na2SO4)로 건조하고 감압 하에 용매를 제거하였다. 얻어진 고체를 클로로포름(CHCl3)에 환류하여 녹인 후, 셀라이트(Celite) 여과하고 클로로포름(CHCl3)으로 세척하였다. 감압하여 용매를 제거한 후 초산에틸(EtOAc)로 고체화하여 고체 화합물 2-120(LT19-30-165) 2.5 g(수율: 52.6%)을 얻었다.
제조예 12: 화합물 2-138(LT19-30-504)의 합성
Figure PCTKR2020016543-appb-I000125
중간체(30) 2.0 g(7.3 mmol), 중간체(6) 3.4 g(7.3 mmol), Pd(PPh3)4 420 mg(363.5 μmol), Cs2CO3 5.9 g(18.2 mmol) 톨루엔 30 mL, 에탄올 5 mL, 및 물 5 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Acetone)으로 고체화하여, 흰색 고체의 화합물 2-138(LT19-30-504) 1.5 g(수율: 38.7%)을 얻었다.
제조예 13: 화합물 3-1(LT19-30-379)의 합성
Figure PCTKR2020016543-appb-I000126
중간체(31) 3.0 g(8.9 mmol), 중간체(10) 3.0 g(8.5 mmol), Pd(PPh3)4 0.30 g(0.26 mmol), 2M K2CO3 9.0 mL(18.0 mmol), 톨루엔 23 mL 및 에탄올 9 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 생성된 침전을 감압 여과하고 톨루엔, 물, 메탄올로 세척하였다. 여과된 침전을 모노클로로벤젠 120 mL에 가열 용해한 후 불용성 침전을 celite 패드에 여과하여 제거하고, 모노클로로벤젠 40 mL로 세척하였다. 여과액을 상온으로 냉각하여 2시간 동안 교반하였다. 생성된 침전을 여과하고 디클로로메탄으로 세척, 진공 건조하여 흰색 고체 화합물 3-1(LT19-30-379) 2.3 g(수율: 65.1%)을 얻었다.
제조예 14: 화합물 3-2(LT19-30-486)의 합성
Figure PCTKR2020016543-appb-I000127
중간체(35) 6.0 g(12.4 mmol), p-톨일 보론산(p-Tolyl boronic acid) 1.9 g(13.6 mmol), Pd(PPh3)4 0.4 g(0.4 mmol), 2M 탄산나트륨 9.3 mL(18.5 mmol), 톨루엔 70 mL 및 에탄올 35 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 날리고 물을 첨가한 후 디클로로메탄 300 mL를 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 흰색 고체 화합물 3-2(LT19-30-486) 3.0 g(수율: 56.8%)을 얻었다.
제조예 15: 화합물 3-6(LT19-35-111)의 합성
Figure PCTKR2020016543-appb-I000128
중간체(35) 4.3 g(8.8 mmol), ((4-tert-부틸)페닐)보론산((4-(tert-butyl)phenyl)boronic acid) 1.7 g(9.7 mmol), Pd(PPh3)4 0.3 g(2.6 mmol), 탄산칼륨 3.0 g(21.9 mmol), 톨루엔 80 mL, 에탄올 40 mL 및 물 40 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 메탄올 200 mL를 가하였다. 생성된 침전을 여과하고 메탄올로 세척하였다. 여과된 침전을 실리카겔/Celite 패드로 정제하여 노란색 형광을 띄는 고체 화합물 3-6(LT19-35-111) 2.1 g(수율: 50.9%)을 얻었다.
제조예 16: 화합물 3-8(LT19-30-457)의 합성
Figure PCTKR2020016543-appb-I000129
중간체(35) 10.0 g(20.6 mmol), (4-(트리메틸실릴)페닐)보론산 (4-(trimethylsilyl)phenyl)boronic acid) 4.3 g(22.6 mmol), Pd(PPh3)4 1.4 g(1.2 mmol), 탄산칼륨 14.2 g(102.7 mmol), 톨루엔 100 mL, 에탄올 50 mL 및 물 50 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 메탄올 200 mL를 가하였다. 생성된 침전을 여과하고 메탄올로 세척하였다. 여과된 침전을 실리카겔/Celite 패드로 정제하여 노란색 형광을 띄는 고체 화합물 3-8(LT19-30-457) 5.5 g(수율: 54.6%)을 얻었다.
제조예 17: 화합물 3-10(LT19-35-115)의 합성
Figure PCTKR2020016543-appb-I000130
중간체(35) 10.0 g(20.6 mmol), (4-플르오로페닐)보론산((4-fluorophenyl)boronic acid) 3.1 g(22.6 mmol), Pd(PPh3)4 1.4 g(1.2 mmol), 탄산칼륨 14.2 g(102.7 mmol), 톨루엔 100 mL, 에탄올 50 mL 및 물 50 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 메탄올 200 mL를 가하였다. 생성된 침전을 여과하고 메탄올로 세척하였다. 여과된 침전을 실리카겔/Celite 패드로 정제하여 노란색 형광을 띄는 고체 화합물 3-10(LT19-35-115) 4.1 g(수율: 46.2%)을 얻었다.
제조예 18: 화합물 3-14(LT19-35-115)의 합성
Figure PCTKR2020016543-appb-I000131
중간체(35) 4.3 g(8.8 mmol), ((4-(트리플루오로메틸)페닐)보론산 ((4-(trifluoromethyl)phenyl)boronic acid) 1.8 g(9.7 mmol), Pd(PPh3)4 0.3 g(2.6 mmol), 탄산칼륨 3.0 g(21.9 mmol), 톨루엔 80 mL, 에탄올 40 mL 및 물 40 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 메탄올 200 mL를 가하였다. 생성된 침전을 여과하고 메탄올로 세척하였다. 여과된 침전을 실리카겔/Celite 패드로 정제하여 노란색 형광을 띄는 고체 화합물 3-14(LT19-35-118) 2.1 g(수율: 50.0%)을 얻었다.
제조예 19: 화합물 3-15(LT19-30-173)의 합성
Figure PCTKR2020016543-appb-I000132
중간체(31) 3.0 g(8.9 mmol), 중간체(5) 4.0 g(8.2 mmol), Pd(PPh3)4 0.3 g(0.2 mmol), 2M 탄산나트륨 6.1 mL(12.1 mmol), 톨루엔 70 mL 및 에탄올 35 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 제거하고 물을 첨가한 후 디클로로메탄 300 mL를 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 약간 노란색 고체 화합물 3-15(LT19-30-173) 3.0 g(수율: 67.5%)을 얻었다.
제조예 20: 화합물 3-16(LT19-30-443)의 합성
Figure PCTKR2020016543-appb-I000133
중간체(35) 6.0 g(12.4 mmol), 4-시아노페닐 보론산(4-cyanophenyl boronic acid) 2.0 g(13.6 mmol), Pd(PPh3)4 0.4 g(0.4 mmol), 2M 탄산나트륨 9.3 mL(18.5 mmol), 톨루엔 70 mL 및 에탄올 35 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 날리고 물을 첨가한 후 디클로로메탄 300 mL을 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 옅은 붉은색 고체 화합물 3-16(LT19-30-443) 3.0 g(수율: 55.4%)을 얻었다.
제조예 21: 화합물 3-120(LT19-30-196)의 합성
Figure PCTKR2020016543-appb-I000134
중간체(33) 2.8 g(6.0 mmol), 1-브로모-3,5-비스(트리플루오로메틸)벤젠{1-bromo-3,5-bis(trifluoromethyl)benzene} 2.1 g(7.2 mmol), Pd(PPh3)4 0.2 g(0.2 mmol), 2M 탄산나트륨 4.5 mL(9.0 mmol), 톨루엔 70 mL 및 에탄올 35 mL의 혼합물을 하루종일 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 날리고 물을 첨가한 후 디클로로메탄 300 mL를 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 약간 노란색 고체 화합물 3-120(LT19-30-196) 1.0 g(수율: 30.2%)을 얻었다.
<시험예>
본 발명의 화합물에 대하여 J.A. WOOLLAM社 Ellipsometer 기기를 이용하여 n(refractive index)와 k(extinction coefficient)을 측정한다.
시험예를 위한 단막 제작 :
화합물의 광학 특성 측정을 위해, 유리기판(0.7T)을 Ethanol, DI Water, Acetone에 각각 10분씩 세척한 후, 2×10-2Torr에서 125 W로 2분간 유리기판 위에 산소 플라즈마 처리하고 9×10- 7Torr의 진공도에서 1Å/sec의 속도로 유리기판 위에 화합물을 800Å 증착하여 단막을 제작한다.
비교시험예 :
상기 광학 특성 평가용 단막 제작에서 화합물로 REF01을 사용하였다.
Figure PCTKR2020016543-appb-I000135
< 시험예 1 내지 21 >
상기 비교시험예에서, REF01을 이용하는 대신에 하기 표 1에 나타낸 각각의 화합물을 사용한 것을 제외하고는 상기 비교시험예와 동일한 방법으로 단막을 제작하였다.
상기 비교시험예 및 시험예 1 내지 21에 의한 화합물의 광학 특성을 표 1에 나타냈다.
광학 특성은 460nm 및 620nm 파장에서 굴절률 상수이다.
구분 화합물 n(460nm) n(620nm)
비교시험예 REF01 1.986 1.846
시험예 1 2-10
(LT19-30-535)
1.468 1.443
시험예 2 2-13
(LT19-35-102)
1.425 1.418
시험예 3 2-14
(LT19-30-174)
1.439 1.424
시험예 4 2-15
(LT19-30-153)
1.417 1.405
시험예 5 2-30
(LT19-30-480)
1.446 1.439
시험예 6 2-45
(LT19-30-481)
1.483 1.453
시험예 7 2-72
(LT19-30-524)
1.427 1.415
시험예 8 2-87
(LT19-30-532)
1.468 1.443
시험예 9 2-90
(LT19-30-489)
1.425 1.418
시험예 10 2-105
(LT19-30-522)
1.483 1.453
시험예 11 2-120
(LT19-30-165)
1.427 1.415
시험예 12 2-138
(LT19-30-504)
1.468 1.443
시험예 13 3-1
(LT19-30-379)
1.621 1.593
시험예 14 3-2
(LT19-30-486)
1.583 1.551
시험예 15 3-6
(LT19-35-111)
1.591 1.563
시험예 16 3-8
(LT19-30-457)
1.468 1.443
시험예 17 3-10
(LT19-35-115)
1.468 1.443
시험예 18 3-14
(LT19-35-118)
1.425 1.418
시험예 19 3-15
(LT19-30-173)
1.446 1.439
시험예 20 3-16
(LT19-30-443)
1.620 1.590
시험예 21 3-135
(LT19-30-196)
1.425 1.411
상기 표 1에서 알 수 있는 바와 같이, 비교시험예(REF01)의 청색영역(460nm)과 적색영역(620nm)에서의 n값이 각각 1.986, 1.846이었고, 이에 반해 대부분의 본 발명에 따른 화합물들은 대체적으로 청색영역, 녹색영역 및 적색영역에서 비교시험예 화합물(REF01) 보다 낮은 굴절률을 갖는 것으로 확인되었다. 이것은 청색영역에서의 높은 시야각을 확보하기 위해 필요한 낮은 굴절률 값에 만족한다.
<실시예>
소자 제작
소자 제작을 위해 투명 전극인 ITO는 양극 층으로 사용하였고, 2-TNATA는 정공 주입층, NPB는 정공 수송층, αβ-ADN은 발광층의 호스트, Pyene-CN은 청색 형광 도판트, Liq는 전자 주입층, Mg:Ag은 음극으로 사용하였다. 이 화합물들의 구조는 하기의 화학식과 같다.
Figure PCTKR2020016543-appb-I000136
비교실시예 1(캡핑층을 1층으로 구성): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) /REF01(80nm)
비교실시예 2(캡핑층을 2층으로 구성): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) / REF02(20nm) / REF01(60nm)
청색 형광 유기발광소자는 ITO(180 nm) / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN:Pyrene-CN 10% (30 nm) / Alq3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / REF(60nm) 순으로 증착하여 소자를 제작하였다. 유기물을 증착하기 전에 ITO 전극은 2 × 10- 2Torr에서 125W로 2분간 산소 플라즈마 처리를 하였다. 유기물은 9 × 10- 7Torr의 진공도에서 증착하였으며, Liq는 0.1 Å/sec, αβ-ADN은 0.18 Å/sec의 기준으로 Pyrene-CN는 0.02 Å/sec으로 동시 증착하였고, 나머지 유기물들은 모두 1 Å/sec의 속도로 증착하였다. 실험에 사용된 캡핑층 물질은 REF01(고굴절) 및 REF02(저굴절)로 선택하였다. 소자 제작이 끝난 후 소자의 공기 및 수분의 접촉을 막기 위하여 질소 기체로 채워져 있는 글러브 박스 안에서 봉지를 하였다. 3M사의 접착용 테이프로 격벽을 형성 후 수분 등을 제거할 수 있는 흡습제인 바륨산화물(Barium Oxide)을 넣고 유리판을 붙였다.
Figure PCTKR2020016543-appb-I000137
< 실시예 1 내지 21 >
상기 비교실시예 1에서, REF01 대신에 캡핑층으로서 저굴절률 층(20nm) 위에 고굴절률 층(60nm)이 형성된 복층을 구비하고, 고굴절률 층에 REF01 화합물을 저굴절률 층에 하기 표 2에 나타낸 각각의 화합물을 사용한 것을 제외하고는 상기 비교실시예와 동일한 방법으로 소자를 제작하였다.
상기 비교실시예 및 실시예 1 내지 21에서 제조된 유기 발광 소자에 대한 전기적 발광특성을 표 2에 나타냈다.
구분 화합물 구동전압
[V]
효율
[cd/A]
수명
(%)
비교실시예 1 REF01 단독 4.50 5.10 88.92
실시예 1 2-10
(LT19-30-535)
4.42 6.11 97.54
실시예 2 2-13
(LT19-35-102)
4.47 6.52 98.13
실시예 3 2-14
(LT19-30-174)
4.45 6.13 97.45
실시예 4 2-15
(LT19-30-153)
4.38 6.23 97.40
실시예 5 2-30
(LT19-30-480
4.40 6.10 97.32
실시예 6 2-45
(LT19-30-481)
4.41 6.23 97.55
실시예 7 2-72
(LT19-30-524)
4.42 6.00 98.00
실시예 8 2-87
(LT19-30-532)
4.49 5.99 95.61
실시예 9 2-90
(LT19-30-489)
4.40 6.22 98.11
실시예 10 2-105
(LT19-30-522)
4.42 6.11 97.54
실시예 11 2-120
(LT19-30-165)
4.40 6.25 97.42
실시예 12 2-138
(LT19-30-504)
4.41 6.23 97.55
실시예 13 3-1
(LT19-30-379)
4.51 5.31 95.61
실시예 14 3-2
(LT19-30-486)
4.49 5.43 95.55
실시예 15 3-6
(LT19-35-111)
4.50 5.36 95.67
실시예 16 3-8
(LT19-30-457)
4.41 6.23 97.55
실시예 17 3-10
(LT19-35-115)
4.40 6.22 98.11
실시예 18 3-14
(LT19-35-118)
4.45 6.13 97.45
실시예 19 3-15
(LT19-30-173)
4.38 6.23 97.40
실시예 20 3-16
(LT19-30-443)
4.50 5.21 97.32
실시예 21 3-135
(LT19-30-196)
4.41 6.23 97.55
상기 표 2의 결과로부터, 본 발명에 따른 특정의 벤즈아졸 유도체 화합물은 유기 발광 소자를 비롯한 유기 전자 소자의 저굴절률 캡핑층의 재료로서 사용될 수 있고, 이를 이용한 유기 발광 소자를 비롯한 유기 전자 소자는 효율, 구동전압, 안정성 등에서 우수한 특성을 나타냄을 알 수 있다. 특히, 본 발명에 따른 화합물은 미소공동현상(Micro-cavity)현상의 능력이 우수하여 높은 효율 특성을 나타냈다.
화학식 1의 화합물은 OLED에서 저굴절률 캡핑층으로 사용하기 위한 의외의 바람직한 특성을 가지고 있다.
본 발명의 화합물이 이러한 특성에 의해 산업용 유기 전자 소자 제품에 적용될 수 있다.
다만, 전술한 합성예는 일 예시이며, 반응 조건은 필요에 따라 변경될 수 있다. 또한, 본 발명의 일 실시예에 따른 화합물은 당 기술분야에 알려진 방법 및 재료를 이용하여 다양한 치환기를 가지도록 합성될 수 있다. 화학식 1로 표시되는 코어 구조에 다양한 치환체를 도입함으로써 유기 전계 발광 소자에 사용되기에 적합한 특성을 가질 수 있다.
본 발명에 따른 벤즈아졸 유도체 화합물은 유기 전계 발광 소자의 유기물층 및/또는 캡핑층에 사용되는 것에 의해 유기 전계 발광 소자의 품질 향상에 이용될 수 있다.
상기 화합물을 캡핑층에 사용할 경우에, 유기 전계 발광 소자가 본래의 특성을 발현하면서 동시에 상기 화합물의 광학적 특성에 의해 수명 향상이 가능해진다.

Claims (4)

  1. 하기 화학식 1로 표시되는, 유기 전계 발광 소자 용 벤즈아졸 유도체.
    [화학식 1]
    Figure PCTKR2020016543-appb-I000138
    상기 화학식 1에 있어서,
    Z1는 O 또는 S이며,
    X1, X2, X3, X4 및 X5는 서로 독립적으로 CH 또는 N이고,
    R1 내지 R6는 서로 동일하거나 상이하며, 수소, 메틸기, tert-부틸기, 트리메틸실릴기, 플루오로기, 트리플루오로메틸기 및 시아노기 중에서 선택되는 적어도 어느 하나이다.
  2. 제 1항에 있어서,
    상기 화학식 1은 하기 화학식 2 및 화학식 3으로 표시되는 화합물들 중에서 선택되는 유기 전계 발광 소자 용 벤즈아졸 유도체.
    [화학식 2]
    Figure PCTKR2020016543-appb-I000139
    Figure PCTKR2020016543-appb-I000140
    Figure PCTKR2020016543-appb-I000141
    Figure PCTKR2020016543-appb-I000142
    Figure PCTKR2020016543-appb-I000143
    Figure PCTKR2020016543-appb-I000144
    Figure PCTKR2020016543-appb-I000145
    Figure PCTKR2020016543-appb-I000146
    Figure PCTKR2020016543-appb-I000147
    Figure PCTKR2020016543-appb-I000148
    Figure PCTKR2020016543-appb-I000149
    Figure PCTKR2020016543-appb-I000150
    Figure PCTKR2020016543-appb-I000151
    Figure PCTKR2020016543-appb-I000152
    Figure PCTKR2020016543-appb-I000153
    Figure PCTKR2020016543-appb-I000154
    Figure PCTKR2020016543-appb-I000155
    Figure PCTKR2020016543-appb-I000156
    Figure PCTKR2020016543-appb-I000157
    Figure PCTKR2020016543-appb-I000158
    Figure PCTKR2020016543-appb-I000159
    Figure PCTKR2020016543-appb-I000160
    Figure PCTKR2020016543-appb-I000161
    Figure PCTKR2020016543-appb-I000162
    Figure PCTKR2020016543-appb-I000163
    Figure PCTKR2020016543-appb-I000164
    Figure PCTKR2020016543-appb-I000165
    Figure PCTKR2020016543-appb-I000166
    Figure PCTKR2020016543-appb-I000167
    Figure PCTKR2020016543-appb-I000168
    Figure PCTKR2020016543-appb-I000169
    Figure PCTKR2020016543-appb-I000170
    Figure PCTKR2020016543-appb-I000171
    Figure PCTKR2020016543-appb-I000172
    Figure PCTKR2020016543-appb-I000173
    Figure PCTKR2020016543-appb-I000174
    Figure PCTKR2020016543-appb-I000175
    Figure PCTKR2020016543-appb-I000176
    Figure PCTKR2020016543-appb-I000177
    Figure PCTKR2020016543-appb-I000178
    Figure PCTKR2020016543-appb-I000179
    Figure PCTKR2020016543-appb-I000180
    Figure PCTKR2020016543-appb-I000181
    Figure PCTKR2020016543-appb-I000182
    Figure PCTKR2020016543-appb-I000183
    Figure PCTKR2020016543-appb-I000184
    [화학식 3]
    Figure PCTKR2020016543-appb-I000185
    Figure PCTKR2020016543-appb-I000186
    Figure PCTKR2020016543-appb-I000187
    Figure PCTKR2020016543-appb-I000188
    Figure PCTKR2020016543-appb-I000189
    Figure PCTKR2020016543-appb-I000190
    Figure PCTKR2020016543-appb-I000191
    Figure PCTKR2020016543-appb-I000192
    Figure PCTKR2020016543-appb-I000193
    Figure PCTKR2020016543-appb-I000194
    Figure PCTKR2020016543-appb-I000195
    Figure PCTKR2020016543-appb-I000196
    Figure PCTKR2020016543-appb-I000197
    Figure PCTKR2020016543-appb-I000198
    Figure PCTKR2020016543-appb-I000199
    Figure PCTKR2020016543-appb-I000200
    Figure PCTKR2020016543-appb-I000201
    Figure PCTKR2020016543-appb-I000202
    Figure PCTKR2020016543-appb-I000203
    Figure PCTKR2020016543-appb-I000204
    Figure PCTKR2020016543-appb-I000205
    Figure PCTKR2020016543-appb-I000206
    Figure PCTKR2020016543-appb-I000207
    Figure PCTKR2020016543-appb-I000208
    Figure PCTKR2020016543-appb-I000209
    Figure PCTKR2020016543-appb-I000210
    Figure PCTKR2020016543-appb-I000211
    Figure PCTKR2020016543-appb-I000212
    Figure PCTKR2020016543-appb-I000213
    Figure PCTKR2020016543-appb-I000214
    Figure PCTKR2020016543-appb-I000215
    Figure PCTKR2020016543-appb-I000216
    Figure PCTKR2020016543-appb-I000217
    Figure PCTKR2020016543-appb-I000218
    Figure PCTKR2020016543-appb-I000219
    Figure PCTKR2020016543-appb-I000220
    Figure PCTKR2020016543-appb-I000221
    Figure PCTKR2020016543-appb-I000222
    Figure PCTKR2020016543-appb-I000223
    Figure PCTKR2020016543-appb-I000224
    Figure PCTKR2020016543-appb-I000225
    Figure PCTKR2020016543-appb-I000226
    Figure PCTKR2020016543-appb-I000227
    Figure PCTKR2020016543-appb-I000228
    Figure PCTKR2020016543-appb-I000229
  3. 제1 전극;
    상기 제1 전극 상에 배치된, 복수의 유기물층으로 구성된 유기물층;
    상기 유기물층 상에 배치된 제2 전극; 및
    상기 제2 전극 상에 배치된 캡핑층;을 포함하고,
    상기 유기물층 또는 캡핑층은 상기 제 1항 내지 제 2항 중 어느 한 항에 따른 벤즈아졸 유도체를 포함하는 유기 전계 발광 소자.
  4. 제 3항에 있어서,
    상기 유기물층은 발광층과 전자수송층을 포함하고, 상기 전자수송층은 상기 벤즈아졸 유도체를 포함하는 유기전계발광소자.
PCT/KR2020/016543 2019-12-26 2020-11-23 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자 WO2021132895A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080081843.2A CN114981249A (zh) 2019-12-26 2020-11-23 苯并吡咯衍生物及包含其的有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190175111A KR102252493B1 (ko) 2019-12-26 2019-12-26 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
KR10-2019-0175111 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021132895A1 true WO2021132895A1 (ko) 2021-07-01

Family

ID=75915283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016543 WO2021132895A1 (ko) 2019-12-26 2020-11-23 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자

Country Status (3)

Country Link
KR (1) KR102252493B1 (ko)
CN (1) CN114981249A (ko)
WO (1) WO2021132895A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210141825A (ko) * 2020-05-13 2021-11-23 주식회사 랩토 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
CN113277992B (zh) * 2021-05-25 2022-10-14 上海钥熠电子科技有限公司 链状化合物和包含其的有机电致发光显示器件
KR102577530B1 (ko) * 2022-11-17 2023-09-12 덕산네오룩스 주식회사 금속패터닝층을 포함하는 유기전기소자 및 그 전자장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060083944A1 (en) * 2002-12-27 2006-04-20 Tatsuya Igarashi Organic electroluminescent device
US20090058279A1 (en) * 2007-08-29 2009-03-05 Fujifilm Corporation Organic electroluminescence device
KR101384046B1 (ko) * 2006-05-11 2014-04-09 이데미쓰 고산 가부시키가이샤 유기 전계발광 소자
KR20170030427A (ko) * 2015-09-09 2017-03-17 주식회사 엘지화학 유기전계발광소자
JP2018100267A (ja) * 2016-12-16 2018-06-28 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、および照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101788366B1 (ko) 2014-11-24 2017-10-20 삼성디스플레이 주식회사 고굴절률 캡핑층을 포함하는 유기발광 표시장치
JP6464985B2 (ja) * 2015-10-14 2019-02-06 Jnc株式会社 自己組織化し得る多環式芳香族化合物およびそれを用いた有機el素子
CN107848989B (zh) * 2016-07-20 2021-06-11 株式会社Lg化学 新杂环化合物和包含其的有机发光器件
CN107021956B (zh) * 2017-04-28 2020-12-01 石家庄诚志永华显示材料有限公司 苯并恶唑衍生物及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060083944A1 (en) * 2002-12-27 2006-04-20 Tatsuya Igarashi Organic electroluminescent device
KR101384046B1 (ko) * 2006-05-11 2014-04-09 이데미쓰 고산 가부시키가이샤 유기 전계발광 소자
US20090058279A1 (en) * 2007-08-29 2009-03-05 Fujifilm Corporation Organic electroluminescence device
KR20170030427A (ko) * 2015-09-09 2017-03-17 주식회사 엘지화학 유기전계발광소자
JP2018100267A (ja) * 2016-12-16 2018-06-28 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、および照明装置

Also Published As

Publication number Publication date
KR102252493B1 (ko) 2021-05-14
CN114981249A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2020251180A1 (ko) 3차 아민 유도체 및 이를 포함한 유기 전계 발광 소자
WO2018216990A1 (ko) 유기화합물 및 이를 포함하는 유기전계발광소자
WO2012091471A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2019212287A9 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2012134203A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2019139419A1 (ko) 유기 발광 소자
WO2019240464A1 (ko) 유기 발광 소자
WO2021132895A1 (ko) 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
WO2021066319A2 (ko) 3차 아민 유도체 및 이를 포함한 유기 전계 발광 소자
WO2022103031A1 (ko) 트리아진 또는 피리미딘 유도체, 및 이를 포함한 유기전계발광소자
WO2019135665A1 (ko) 유기 발광 소자
WO2011055932A9 (ko) 유기화합물 및 이를 이용한 유기전기소자, 그 단말
WO2017082574A1 (ko) 신규한 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021029616A1 (ko) 유기 발광 소자
WO2020166873A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020022771A1 (ko) 유기 발광 소자
WO2012043996A2 (ko) 플루오렌에 아민유도체가 치환된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2021230511A1 (ko) 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
WO2021230512A1 (ko) 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
WO2021230513A1 (ko) 유기 화합물 및 이를 포함한 유기전계발광소자
WO2023008895A1 (ko) 유기 화합물 및 이를 포함하는 유기발광소자
WO2022080715A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2016060463A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2023022417A1 (ko) 시아노기가 치환된 헤테로아릴 아민 유도체 및 이를 포함한 유기전계발광소자
WO2023018040A1 (ko) 시아노기가 치환된 카바졸 유도체 및 이를 포함한 유기전계발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905350

Country of ref document: EP

Kind code of ref document: A1