WO2021131815A1 - フッ素ガスの製造方法及びフッ素ガス製造装置 - Google Patents
フッ素ガスの製造方法及びフッ素ガス製造装置 Download PDFInfo
- Publication number
- WO2021131815A1 WO2021131815A1 PCT/JP2020/046387 JP2020046387W WO2021131815A1 WO 2021131815 A1 WO2021131815 A1 WO 2021131815A1 JP 2020046387 W JP2020046387 W JP 2020046387W WO 2021131815 A1 WO2021131815 A1 WO 2021131815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mist
- fluid
- particle size
- average particle
- fluorine gas
- Prior art date
Links
- 239000011737 fluorine Substances 0.000 title claims abstract description 185
- 229910052731 fluorine Inorganic materials 0.000 title claims abstract description 185
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title claims abstract description 184
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 118
- 239000003595 mist Substances 0.000 claims abstract description 229
- 239000012530 fluid Substances 0.000 claims abstract description 154
- 239000002245 particle Substances 0.000 claims abstract description 140
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 77
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 76
- 239000007789 gas Substances 0.000 claims description 236
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 45
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 44
- 239000007788 liquid Substances 0.000 claims description 17
- 229910001512 metal fluoride Inorganic materials 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 7
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 5
- 229910003460 diamond Inorganic materials 0.000 claims description 5
- 239000010432 diamond Substances 0.000 claims description 5
- 229910052792 caesium Inorganic materials 0.000 claims description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 4
- 239000003575 carbonaceous material Substances 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 239000003610 charcoal Substances 0.000 claims description 3
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 11
- 238000007599 discharging Methods 0.000 abstract 3
- 230000004048 modification Effects 0.000 description 76
- 238000012986 modification Methods 0.000 description 76
- 238000000149 argon plasma sintering Methods 0.000 description 27
- 239000000843 powder Substances 0.000 description 25
- 230000007246 mechanism Effects 0.000 description 19
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 16
- 238000005192 partition Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000011698 potassium fluoride Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 235000003270 potassium fluoride Nutrition 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910000792 Monel Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- REYHXKZHIMGNSE-UHFFFAOYSA-M silver monofluoride Chemical compound [F-].[Ag+] REYHXKZHIMGNSE-UHFFFAOYSA-M 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 2
- 229910001632 barium fluoride Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229940096017 silver fluoride Drugs 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 241000178343 Butea superba Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical group 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/245—Fluorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/042—Electrodes formed of a single material
- C25B11/043—Carbon, e.g. diamond or graphene
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/023—Measuring, analysing or testing during electrolytic production
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
Definitions
- the present invention relates to a method for producing fluorine gas and a fluorine gas production apparatus.
- Fluorine gas can be synthesized (electrolytic synthesis) by electrolyzing an electrolytic solution containing hydrogen fluoride and metal fluoride. Since mist (for example, mist of electrolytic solution) is generated together with fluorine gas by electrolysis of the electrolytic solution, the mist accompanies the fluorine gas sent out from the electrolytic cell. The mist that accompanies the fluorine gas becomes powder, which may block the pipes and valves used to supply the fluorine gas. Therefore, the operation for producing the fluorine gas may have to be interrupted or stopped, which hinders the continuous operation in the production of the fluorine gas by the electrolytic method.
- mist for example, mist of electrolytic solution
- Patent Document 1 discloses a technique of heating fluorine gas accompanied by mist or a pipe through which the gas passes to a temperature equal to or higher than the melting point of an electrolytic solution.
- Patent Document 2 discloses a gas generating apparatus having a gas diffusion portion which is a space for roughly removing mist and a filler accommodating portion for accommodating a filler for adsorbing mist.
- An object of the present invention is to provide a method for producing fluorine gas and a fluorine gas production apparatus capable of suppressing clogging of pipes and valves due to mist.
- one aspect of the present invention is as follows [1] to [5].
- [1] A method for producing fluorine gas, which produces fluorine gas by electrolyzing an electrolytic solution containing hydrogen fluoride and metal fluoride.
- An air supply step of sending the fluid from the inside of the electrolytic cell to the outside via a flow path and With In the air supply step, the flow path through which the fluid flows is switched according to the average particle size of the mist measured in the average particle size measuring step, and the average particles of the mist measured in the average particle size measuring step are switched.
- the diameter is equal to or less than the preset reference value
- the fluid is sent to the first flow path for sending the fluid from the inside of the electrolytic tank to the first outside, and is larger than the preset reference value.
- the fluid is sent to the second flow path that sends the fluid from the inside of the electrolytic tank to the second outside.
- the method for producing fluorine gas wherein the preset reference value is a numerical value within the range of 0.1 ⁇ m or more and 1.0 ⁇ m or less.
- the anode used in the electrolysis is a carbonaceous electrode formed of at least one carbon material selected from diamond, diamond-like carbon, amorphous carbon, graphite, and glassy carbon [1] or [2].
- the electrolytic cell has a structure in which bubbles generated at the anode or cathode used in the electrolysis rise vertically in the electrolytic solution and reach the liquid level of the electrolytic solution [1] to The method for producing a fluorine gas according to any one of [3].
- a fluorine gas production apparatus for producing fluorine gas by electrolyzing an electrolytic solution containing hydrogen fluoride and metal fluoride.
- An electrolytic cell that houses the electrolyte and is electrolyzed.
- An average particle size measuring unit that measures the average particle size of mist contained in the fluid generated inside the electrolytic cell during electrolysis of the electrolytic cell, and an average particle size measuring unit.
- a flow path for sending the fluid from the inside of the electrolytic cell to the outside With The flow path has a first flow path that sends the fluid from the inside of the electrolytic cell to the first outside, and a second flow path that sends the fluid from the inside of the electrolytic cell to the second outside.
- It has a flow path switching unit that switches the flow path through which the fluid flows to the first flow path or the second flow path according to the average particle size of the mist measured by the average particle size measuring unit.
- the flow path switching unit is connected to the first flow path from the inside of the electrolytic cell.
- the fluid is sent and is larger than the preset reference value, the fluid is sent from the inside of the electrolytic cell to the second flow path.
- the fluorine gas production apparatus whose preset reference value is a numerical value within the range of 0.1 ⁇ m or more and 1.0 ⁇ m or less.
- the present inventors diligently studied the mist that causes clogging of pipes and valves in the electrolytic synthesis of fluorine gas.
- the “mist” in the present invention refers to liquid fine particles or solid fine particles generated together with fluorine gas in an electrolytic cell by electrolysis of an electrolytic solution. Specifically, fine particles of the electrolytic solution, solid fine particles in which the fine particles of the electrolytic cell have undergone phase change, and members constituting the electrolytic cell (metal forming the electrolytic cell, packing for the electrolytic cell, carbon electrode, etc.) and fluorine. It is a solid fine particle produced by the reaction of gas.
- the present inventors measured the average particle size of the mist contained in the fluid generated inside the electrolytic cell during the electrolysis of the electrolytic solution, and confirmed that the average particle size of the mist changed with time.
- by devising a flow path for sending the fluid generated inside the electrolytic cell according to the average particle size of the mist it is possible to suppress the blockage of the piping and the valve, and the operation of producing fluorine gas is performed.
- the method for producing fluorine gas of the present embodiment is a method for producing fluorine gas by electrolyzing an electrolytic solution containing hydrogen fluoride and metal fluoride, and electrolyzing in the electrolytic tank.
- the flow path through which the fluid flows is switched according to the average particle size of the mist measured in the average particle size measurement process. That is, when the average particle size of the mist measured in the average particle size measuring step is equal to or less than a preset reference value, the fluid is sent to the first flow path that sends the fluid from the inside of the electrolytic cell to the first outside. If the value is larger than the preset reference value, the fluid is sent from the inside of the electrolytic cell to the second flow path for sending the fluid to the second outside.
- the preset reference value is a numerical value within the range of 0.1 ⁇ m or more and 1.0 ⁇ m or less.
- the fluorine gas production apparatus of the present embodiment is a fluorine gas production apparatus that electrolyzes an electrolytic solution containing hydrogen fluoride and metal fluoride to produce fluorine gas, and accommodates the electrolytic solution for electrolysis.
- the flow path has a first flow path for sending a fluid from the inside of the electrolytic cell to the first outside, and a second flow path for sending the fluid from the inside of the electrolytic cell to the second outside. Further, this flow path has a flow path switching unit that switches the flow path through which the fluid flows to the first flow path or the second flow path according to the average particle size of the mist measured by the average particle size measurement unit. There is. When the average particle size of the mist measured by the average particle size measuring unit is equal to or less than the preset reference value, the flow path switching unit sends a fluid from the inside of the electrolytic cell to the first flow path and sets it in advance. If it is larger than the set reference value, the fluid is sent from the inside of the electrolytic cell to the second flow path.
- the preset reference value is a numerical value within the range of 0.1 ⁇ m or more and 1.0 ⁇ m or less.
- the flow path through which the fluid flows is switched to the first flow path or the second flow path according to the average particle size of the mist. Blockage is unlikely to occur. Therefore, in the fluorine gas production method and the fluorine gas production apparatus of the present embodiment, when the electrolytic solution containing hydrogen fluoride and metal fluoride is electrolyzed to produce fluorine gas, the pipes and valves are blocked by mist. Can be suppressed. Therefore, the frequency of interruption and stop of the operation of producing the fluorine gas can be reduced, and continuous operation can be easily performed. Therefore, fluorine gas can be economically produced.
- the average particle size may be measured only for the mist contained in the fluid generated at the anode, or the fluid generated at the anode. It may be performed on both the mist contained in and the mist contained in the fluid generated at the cathode. Further, the average particle size may be measured at all times during electrolysis, may be performed regularly at regular intervals, or may be measured irregularly at any time. Further, although the first flow path and the second flow path are different flow paths, the first outer flow path and the second outer flow path may be different places or the same place.
- the first flow path is a flow path for sending a fluid from the inside of the electrolytic cell to a fluorine gas sorting unit that sorts and extracts fluorine gas from the fluid via a mist removing unit that removes mist from the fluid.
- the second flow path is a flow path for sending the fluid from the inside of the electrolytic cell to the fluorine gas sorting part without passing through the mist removing part. That is, when the average particle size of the mist is equal to or less than the preset reference value, the fluid is sent to the mist removing portion provided in the first flow path, and when it is larger than the preset reference value, the fluid is sent.
- the fluorine gas sorting unit corresponds to the first outside and the second outside, and the first outside and the second outside are the same place, but the first outside and the second outside are the same.
- the outside may be another place.
- the second flow path has a blockage suppression mechanism that suppresses blockage of the second flow path by mist.
- the blockage suppressing mechanism is not particularly limited as long as it can suppress blockage of the second flow path by mist, and examples thereof include the following. That is, a large-diameter pipe, an inclined pipe, a rotating screw, and an air flow generator can be exemplified, and these may be used in combination. More specifically, by forming at least a part of the second flow path with a pipe having a diameter larger than that of the first flow path, it is possible to suppress blockage of the second flow path by mist. Further, by forming at least a part of the second flow path with a pipe that is inclined with respect to the horizontal direction and extends in the direction of descending from the upstream side to the downstream side, the second flow path is blocked by mist. Can be suppressed.
- a mist removing portion other than the mist removing portion provided in the first flow path may be provided in the second flow path as a clogging suppressing mechanism.
- the first flow path is less likely to be blocked by the mist because the mist is removed from the fluid by the mist removing portion, and the second flow path is less likely to be blocked by the mist because the blockage suppressing mechanism is provided. Therefore, in the fluorine gas production method and the fluorine gas production apparatus of the present embodiment, when the electrolytic solution containing hydrogen fluoride and metal fluoride is electrolyzed to produce fluorine gas, the pipes and valves are blocked by mist. Can be suppressed. Even if the mist removing part and the blockage suppressing mechanism are not provided, the pipes and valves using the mist can be connected by simply switching the flow path through which the fluid flows to another flow path (first flow path or second flow path). Although the effect of suppressing obstruction is achieved, the above effect is superior when a mist removing portion and an obstruction suppressing mechanism are provided.
- the mode of the electrolytic cell is not particularly limited, and any electrolytic cell can be used as long as the electrolytic solution containing hydrogen fluoride and metal fluoride can be electrolyzed to generate fluorine gas.
- the inside of the electrolytic cell is divided into an anode chamber in which an anode is arranged and a cathode chamber in which a cathode is arranged by a partition member such as a partition wall, and fluorine gas generated at the anode and hydrogen gas generated at the cathode are generated. Is not mixed.
- anode for example, a carbonaceous electrode formed of a carbon material such as diamond, diamond-like carbon, amorphous carbon, graphite, glassy carbon, or amorphous carbon can be used. Further, as the anode, in addition to the above carbon material, for example, a metal electrode formed of a metal such as nickel or Monel (trademark) can be used. As the cathode, for example, a metal electrode made of a metal such as iron, copper, nickel, or Monel TM can be used.
- the electrolytic solution contains hydrogen fluoride and metal fluoride, and the type of the metal fluoride is not particularly limited, but is a fluoride of at least one metal selected from potassium, cesium, rubidium, and lithium. It is preferable to have.
- the electrolytic solution contains cesium or rubidium, the specific gravity of the electrolytic solution becomes large, so that the amount of mist generated during electrolysis is suppressed.
- a mixed molten salt of hydrogen fluoride (HF) and potassium fluoride (KF) can be used as the electrolytic solution.
- hydrogen fluoride: potassium fluoride 2: 1
- KF and 2HF are typical electrolytic solutions
- the melting point of this mixed molten salt is about 72 ° C. Since this electrolytic solution is corrosive, it is preferable that the part in contact with the electrolytic solution, such as the inner surface of the electrolytic cell, is made of a metal such as iron, nickel, or Monel TM.
- a DC current is applied to the anode and the cathode, a gas containing fluorine gas is generated at the anode, and a gas containing hydrogen gas is generated at the cathode.
- hydrogen fluoride in the electrolytic solution has a vapor pressure
- hydrogen fluoride is accompanied by the gases generated at the anode and the cathode, respectively.
- the gas generated by the electrolysis contains the mist of the electrolytic solution. Therefore, the gas phase portion of the electrolytic cell is composed of a gas generated by electrolysis, hydrogen fluoride, and a mist of an electrolytic solution. Therefore, what is sent out from the inside of the electrolytic cell is composed of a gas generated by electrolysis, hydrogen fluoride, and a mist of an electrolytic solution, which is referred to as a "fluid" in the present invention.
- a pipe for continuously or intermittently supplying hydrogen fluoride to the electrolytic cell for replenishment may be connected to the electrolytic cell. ..
- Hydrogen fluoride may be supplied to the cathode chamber side of the electrolytic cell or to the anode chamber side.
- the main reasons why mist is generated during electrolysis of the electrolytic solution are as follows.
- the temperature of the electrolytic solution at the time of electrolysis is adjusted to, for example, 80 to 100 ° C. Since the melting point of KF ⁇ 2HF is 71.7 ° C., the electrolytic solution is in a liquid state when adjusted to the above temperature. Gas bubbles generated at both electrodes of the electrolytic cell rise in the electrolytic solution and burst at the liquid level of the electrolytic solution. At this time, a part of the electrolytic solution is released into the gas phase.
- This powder is considered to be a mixture of potassium fluoride and hydrogen fluoride, KF ⁇ nHF. This powder rides on the flow of other generated gas and becomes mist, forming a fluid generated in the electrolytic cell. It is difficult to effectively remove such mist by ordinary measures such as installing a filter because of its adhesiveness.
- the soot-like organic compound CFx may be generated as a mist by the reaction between the carbon forming the carbonaceous electrode and the fluorine gas.
- the electrolytic cell has a structure in which air bubbles generated at the anode or cathode used in electrolysis rise vertically in the electrolytic solution and reach the liquid level of the electrolytic solution. If the structure is such that the bubbles do not easily rise in the electrolytic solution in the vertical direction and rise in the direction inclined with respect to the vertical direction, a plurality of bubbles are likely to aggregate to generate large bubbles. As a result, large bubbles reach the liquid surface of the electrolytic solution and burst, so that the amount of mist generated tends to increase. If the structure is such that bubbles can reach the liquid level of the electrolytic solution if they rise vertically in the electrolytic solution, small bubbles will reach the liquid surface of the electrolytic solution and burst, so that mist is generated. The amount tends to be small.
- the fluorine gas production apparatus of the present embodiment includes an average particle size measuring unit for measuring the average particle size of mist contained in the fluid, and this average particle size measuring unit measures the average particle size by a light scattering method. It may be composed of a light scattering detector.
- the light scattering detector is preferable as an average particle size measuring unit because it can measure the average particle size of mist in the fluid flowing through the flow path while continuously operating the fluorine gas production apparatus.
- the light scattering detector of FIG. 1 is a light scattering detector that can be used as an average particle size measuring unit in the fluorine gas production apparatus of the present embodiment (for example, the fluorine gas production apparatus of FIGS. 2 and 4 to 13 described later). is there. That is, when the electrolytic solution containing hydrogen fluoride and metal fluoride is electrolyzed inside the electrolytic cell of the fluorine gas production apparatus to produce fluorine gas, the mist contained in the fluid generated inside the electrolytic cell It is a light scattering detector that measures the average particle size.
- a light scattering detector may be connected to a fluorine gas production device, and a fluid may be sent from the inside of the electrolytic tank to the light scattering detector to measure the average particle size of the mist, or the light scattering detector and the fluorine gas production device may be used. Instead of connecting, the fluid may be taken out from the inside of the electrolytic tank and introduced into a light scattering detector to measure the average particle size of the mist.
- the sample chamber 1 accommodating the fluid F
- the light source 2 that irradiates the fluid F in the sample chamber 1 with the light L for light scattering measurement, and the light L for light scattering measurement are in the fluid F.
- the scattered light detection unit 3 that detects the scattered light S generated by being scattered by the mist M of the above, the transparent window 4A that is installed in the sample chamber 1 and comes into contact with the fluid F and transmits the light L for light scattering measurement, and the sample chamber. It is provided with a transparent window 4B which is installed in 1 and comes into contact with the fluid F and allows scattered light S to pass through.
- the transparent windows 4A and 4B are at least selected from diamond, calcium fluoride (CaF 2 ), potassium fluoride (KF), silver fluoride (AgF), barium fluoride (BaF 2 ), and potassium bromide (KBr). It is formed by one species.
- the light L for light scattering measurement (for example, laser light) emitted from the light source 2 passes through the focusing lens 6 and the transparent window 4A of the sample chamber 1 and enters the sample chamber 1, and the fluid F housed in the sample chamber 1 enters the sample chamber 1. Is irradiated to. At this time, if a substance that reflects light such as mist M is present in the fluid F, the light L for light scattering measurement is reflected and scattered. A part of the scattered light S generated by the light L for light scattering measurement scattered by the mist M is taken out from the sample chamber 1 through the transparent window 4B of the sample chamber 1, and is taken out from the sample chamber 1 to the condenser lens 7 and the aperture 8. Enters the scattered light detection unit 3 via.
- a substance that reflects light such as mist M
- the average particle size of the mist M can be known from the information obtained from the scattered light S.
- the average particle size obtained here is the number average particle size.
- the scattered light detection unit 3 for example, an aerosol spectral meter welas (registered trademark) digital 2000 manufactured by PALAS can be used.
- the transparent windows 4A and 4B come into contact with the fluid F, but since the fluid F contains highly reactive fluorine gas, it is necessary to form the transparent windows 4A and 4B with a material that is not easily corroded by the fluorine gas.
- the material forming the transparent windows 4A and 4B include at least one selected from diamond, calcium fluoride, potassium fluoride, silver fluoride, barium fluoride, and potassium bromide. If the transparent windows 4A and 4B are made of the above materials, deterioration due to contact with the fluid F can be suppressed.
- a coating made of the above-mentioned material coated on the surface of glass such as quartz can also be used as the transparent windows 4A and 4B. Since the portion in contact with the fluid F is coated with a film made of the above-mentioned material, deterioration due to contact with the fluid F can be suppressed while suppressing the cost.
- the transparent windows 4A and 4B may be a laminate in which the surface in contact with the fluid F is formed of the above material and the other portion is formed of ordinary glass such as quartz.
- the material of the light scattering detector other than the transparent windows 4A and 4B is not particularly limited as long as it is a material having corrosion resistance to fluorine gas. For example, Monel (trademark) which is a copper-nickel alloy. ), Hastelloy TM, stainless steel and other metal materials are preferred.
- the present inventors measured the average particle size of mist generated during the production of fluorine gas by electrolysis of an electrolytic solution using a light scattering detector. An example of the result will be described. Electrolysis is started after replacing the anode of the fluorine gas production equipment with a new anode or filling the electrolytic cell with a new electrolyte, and the average particles of mist in the fluid generated at the anode for a certain period immediately after the start of electrolysis. The diameter was measured. As a result, the average particle size of the mist was 0.5 to 2.0 ⁇ m.
- the particle size of the mist generated is relatively small. Since such a small mist is unlikely to cause sedimentation or accumulation in a fluid, it can flow stably through pipes and valves. Therefore, during stable electrolysis, the fluid composed of mist and gas generated at the electrodes is relatively unlikely to cause clogging of pipes and valves.
- the time from immediately after the start of electrolysis to the time of stable electrolysis is usually 25 hours or more and 200 hours or less. Further, from immediately after the start of electrolysis to the time of stable electrolysis, it is necessary to energize approximately 40 kAh or more per 1000 L of the electrolytic solution.
- the fluorine gas production apparatus of this embodiment has a first flow path and a second flow path, and is used for transporting a fluid from the two flow paths by using a flow path switching unit (for example, a switching valve).
- the flow path may be selected.
- the fluorine gas production apparatus of the present embodiment has two flow paths and a moving replacement mechanism for moving and replacing the electrolytic cell, and a flow used for transporting a fluid from the two flow paths.
- the flow path may be switched by selecting a path and moving and connecting the electrolytic cell in the vicinity of the flow path. Since it has a first flow path and a second flow path as described above, even while one flow path is blocked and cleaned, the other flow path is opened to continue the fluorine gas production apparatus. You can drive.
- mist having a relatively large average particle size is generated from immediately after the start of electrolysis to the time of stable electrolysis. At this time, the fluid is sent to the second flow path having the clogging suppressing mechanism. You may. When time elapses and stable electrolysis is performed, mist having a relatively small average particle size is generated. Therefore, at this time, the flow path may be switched so as to send the fluid to the first flow path having the mist removing portion.
- Such switching of the flow path is performed according to the average particle size of the mist measured by the light scattering detector, but the flow path is switched based on a preset reference value.
- An appropriate reference value for the mist generated at the anode is 0.1 ⁇ m or more and 1.0 ⁇ m or less, preferably 0.2 ⁇ m or more and 0.8 ⁇ m or less, and more preferably 0.4 ⁇ m.
- the average particle size of the contained mist may be measured.
- the fluid generated at the cathode contains, for example, 20 to 50 ⁇ g of powder per unit volume (1 liter) (calculated assuming that the specific gravity of the mist is 1.0 g / mL).
- the average particle size of the powder is about 0.1 ⁇ m and has a distribution of ⁇ 0.05 ⁇ m.
- the mist contained in the fluid generated at the cathode has a smaller average particle size than the mist contained in the fluid generated at the anode, so that the mist contained in the fluid generated at the anode is smaller than the mist contained in the fluid generated at the anode. Is unlikely to occur. Therefore, the mist contained in the fluid generated at the cathode may be removed from the fluid by using an appropriate removal method.
- the fluorine gas production apparatus of FIG. 2 is an example in which two electrolytic cells are provided, but the number of electrolytic cells may be one or three or more, for example, 10 to 15. You may.
- the fluorine gas production apparatus shown in FIG. 2 includes electrolytic cells 11 and 11 in which the electrolytic cell 10 is housed and electrolyzed, an anode 13 arranged inside the electrolytic cell 11 and immersed in the electrolytic cell 10. It is provided with a cathode 15 which is arranged inside the electrolytic cell 11 and is immersed in the electrolytic solution 10 and is arranged so as to face the anode 13.
- the inside of the electrolytic cell 11 is divided into an anode chamber 22 and a cathode chamber 24 by a partition wall 17 extending vertically downward from the ceiling surface inside the electrolytic cell 11 and having its lower end immersed in the electrolytic solution 10.
- the anode 13 is arranged in the anode chamber 22, and the cathode 15 is arranged in the cathode chamber 24.
- the space on the liquid surface of the electrolytic solution 10 is separated into a space inside the anode chamber 22 and a space inside the cathode chamber 24 by the partition wall 17, and the portion of the electrolytic solution 10 on the upper side of the lower end of the partition wall 17.
- the portion of the electrolytic solution 10 below the lower end of the partition wall 17 is not directly separated by the partition wall 17 and is continuous.
- the fluorine gas production apparatus shown in FIG. 2 includes a first average particle size measuring unit 31 for measuring the average particle size of mist contained in the fluid generated inside the electrolytic tank 11 during electrolysis of the electrolytic solution 10, and a fluid.
- a first mist removing section 32 that removes mist from the inside
- a fluorine gas sorting section (not shown) that sorts and extracts fluorine gas from the fluid
- a flow path that sends the fluid from the inside of the electrolytic tank 11 to the fluorine gas sorting section.
- this flow path is a first flow path for sending a fluid from the inside of the electrolytic cell 11 to the fluorine gas sorting unit via the first mist removing unit 32, and an electrolytic cell without passing through the first mist removing unit 32. It has a second flow path for sending a fluid from the inside of the eleven to the fluorine gas sorting unit.
- this flow path is a flow path switching unit that switches the flow path through which the fluid flows to the first flow path or the second flow path according to the average particle size of the mist measured by the first average particle size measurement unit 31.
- a flow path switching portion is provided in the middle of the flow path extending from the electrolytic cell 11, and the flow path through which the fluid flows can be changed by the flow path switching portion.
- the flow path switching unit is a fluid from the inside of the electrolytic cell 11 to the first flow path. If it is larger than the preset reference value, the fluid is sent from the inside of the electrolytic cell 11 to the second flow path.
- the second flow path has a blockage suppression mechanism that suppresses blockage due to mist in the second flow path.
- the fluid when the average particle size of the mist is equal to or less than the reference value, the fluid is sent to the first flow path in which the electrolytic cell 11 and the fluorine gas sorting unit are connected and the first mist removing unit 32 is provided, and the mist When the average particle size is larger than the reference value, the fluid is sent to the second flow path which connects the electrolytic cell 11 and the fluorine gas sorting unit and is provided with the clogging suppressing mechanism.
- the first average particle size measuring unit 31 for example, the light scattering detector shown in FIG. 1 described above can be used.
- mist removing device capable of removing mist having an average particle diameter of 0.4 ⁇ m or less from the fluid.
- the type of mist removing device that is, the method for removing mist is not particularly limited, but since the average particle size of mist is small, for example, an electrostatic precipitator, a venturi scrubber, or a filter is used as the mist removing device. be able to.
- the mist removing device shown in FIG. 3 is a scrubber type mist removing device that uses liquid hydrogen fluoride as a circulating fluid.
- the mist removing device shown in FIG. 3 can efficiently remove mist having an average particle diameter of 0.4 ⁇ m or less from the fluid.
- liquid hydrogen fluoride is used as the circulating fluid, it is preferable to cool the circulating fluid in order to reduce the concentration of hydrogen fluoride in the fluorine gas. Therefore, the hydrogen fluoride in the fluorine gas is controlled by controlling the cooling temperature. The concentration can be adjusted.
- the fluorine gas production apparatus shown in FIG. 2 will be described in more detail.
- the first pipe 41 that sends the fluid generated in the anode chamber 22 of the electrolytic cell 11 (hereinafter, also referred to as “anode gas”) to the outside communicates the electrolytic cell 11 and the fourth pipe 44, 2
- the anodic gas sent out from the two electrolytic cells 11 and 11 is sent to the fourth pipe 44 by the first pipe 41 and mixed.
- the main component of the anode gas is fluorine gas, and the subcomponents are mist, hydrogen fluoride, carbon tetrafluoride, oxygen gas, and water.
- the fourth pipe 44 is connected to the first mist removing unit 32, and the anodic gas is sent to the first mist removing unit 32 by the fourth pipe 44, so that the mist and hydrogen fluoride in the anodic gas are removed from the first mist.
- the part 32 removes the anodic gas from the anodic gas.
- the anodic gas from which mist and hydrogen fluoride have been removed is sent from the first mist removing unit 32 to a fluorine gas sorting unit (not shown) by a sixth pipe 46 connected to the first mist removing unit 32. ..
- the fluorine gas sorting unit sorts and takes out the fluorine gas from the anode gas.
- An eighth pipe 48 is connected to the first mist removing unit 32, and liquid hydrogen fluoride, which is a circulating liquid, is supplied to the first mist removing unit 32 by the eighth pipe 48. .. Further, a ninth pipe 49 is connected to the first mist removing unit 32. The ninth pipe 49 is connected to the electrolytic cells 11 and 11 via the third pipe 43, and is used by the first mist removing unit 32 to remove the mist, and is a circulating liquid (liquid hydrogen fluoride) containing the mist. Is returned from the first mist removing unit 32 to the electrolytic cells 11 and 11.
- the cathode chamber 24 of the electrolytic cell 11 is the same as the anode chamber 22. That is, the second pipe 42 that sends the fluid generated in the cathode chamber 24 of the electrolytic cell 11 (hereinafter, also referred to as “cathode gas”) to the outside communicates the electrolytic cell 11 and the fifth pipe 45.
- the cathode gas sent out from the two electrolytic cells 11 and 11 is sent to the fifth pipe 45 by the second pipe 42 and mixed.
- the main component of the cathode gas is hydrogen gas, and the subcomponents are mist, hydrogen fluoride, and water.
- Cathode gas contains fine mist and 5 to 10% by volume of hydrogen fluoride, so it is not preferable to discharge it to the atmosphere as it is. Therefore, the fifth pipe 45 is connected to the second mist removing unit 33, the cathode gas is sent to the second mist removing unit 33 by the fifth pipe 45, and the mist and hydrogen fluoride in the cathode gas are the second mist. It is designed to be removed from the cathode gas by the removing unit 33. The cathode gas from which the mist and hydrogen fluoride have been removed is discharged to the atmosphere from the second mist removing unit 33 by the seventh pipe 47 connected to the second mist removing unit 33.
- the type of the second mist removing unit 33 that is, the method of removing the mist is not particularly limited, but a scrubber type mist removing device using an alkaline aqueous solution as a circulating solution can be used.
- the pipe diameter and installation direction (meaning the direction in which the pipe extends, for example, the vertical direction and the horizontal direction) of the first pipe 41, the second pipe 42, the fourth pipe 44, and the fifth pipe 45 are not particularly limited.
- the first pipe 41 and the second pipe 42 are installed so as to extend in the vertical direction from the electrolytic tank 11, and the flow velocity of the fluid flowing through the first pipe 41 and the second pipe 42 is 30 cm / sec in the standard state.
- the pipe diameter is as follows. Then, even if the mist contained in the fluid falls due to its own weight, the mist settles in the electrolytic cell 11, so that the inside of the first pipe 41 and the second pipe 42 is less likely to be blocked by the powder.
- the fourth pipe 44 and the fifth pipe 45 are installed so as to extend along the horizontal direction and the flow velocity of the fluid flowing through the fourth pipe 44 and the fifth pipe 45 is the first pipe 41 and the second pipe 42. It is preferable to set the pipe diameter so as to be about 1 to 10 times faster than the above.
- a second bypass pipe 52 for sending the anode gas to the outside of the electrolytic cell 11 is provided separately from the first pipe 41. That is, the second bypass pipe 52 communicates the electrolytic cell 11 and the first bypass pipe 51, and the anode gas sent out from the two electrolytic cells 11 and 11 is transmitted by the second bypass pipe 52 to the first bypass pipe 51. It is sent to and mixed. Further, the anodic gas is sent out to a fluorine gas sorting unit (not shown) by the first bypass pipe 51. Then, the fluorine gas sorting unit sorts and takes out the fluorine gas from the anode gas.
- the fluorine gas sorting unit connected to the first bypass pipe 51 and the fluorine gas sorting unit connected to the sixth pipe 46 may be the same or different.
- the pipe diameter and installation direction of the second bypass pipe 52 are not particularly limited, but the second bypass pipe 52 is installed so as to extend from the electrolytic cell 11 in the vertical direction, and the fluid flowing through the second bypass pipe 52. It is preferable to set the pipe diameter so that the flow velocity of the above is 30 cm / sec or less in the standard state.
- the first bypass pipe 51 is installed so as to extend along the horizontal direction.
- the first bypass pipe 51 has a pipe diameter larger than that of the fourth pipe 44, and the pipe diameter of the first bypass pipe 51 is such that the first bypass pipe 51 is blocked due to the accumulation of powder. The size is such that it is unlikely to occur. Since the first bypass pipe 51 is a pipe having a diameter larger than that of the fourth pipe 44, a blockage suppressing mechanism is configured.
- the pipe diameter of the first bypass pipe 51 is preferably 1.0 times more than 3.2 times or less than that of the fourth pipe 44, and more preferably 1.05 times or more and 1.5 times or less. That is, the flow path cross-sectional area of the first bypass pipe 51 is preferably 10 times or less that of the fourth pipe 44.
- first pipe 41 and the fourth pipe 44 form the first flow path
- first bypass pipe 51 and the second bypass pipe 52 form the second flow path.
- a blockage suppressing mechanism is provided in the first bypass pipe 51 that constitutes the second flow path.
- a first piping valve 61 is installed in each of the first piping 41. Then, by switching the first piping valve 61 to the open state or the closed state, it is possible to control whether or not the anode gas can be supplied from the electrolytic cell 11 to the first mist removing unit 32. Further, a bypass valve 62 is installed in each of the second bypass pipes 52. Then, by switching the bypass valve 62 to the open state or the closed state, it is possible to control whether or not the anode gas can be supplied from the electrolytic cell 11 to the first bypass pipe 51.
- the first average particle size is measured between the electrolytic cell 11 and the first mist removing portion 32, which is an intermediate portion of the fourth pipe 44 and downstream of the connecting portion with the first pipe 41.
- the section 31 is installed. Then, the first average particle size measuring unit 31 measures the average particle size of the mist contained in the anode gas flowing through the fourth pipe 44. Further, by analyzing the fluorine gas and the nitrogen gas contained in the anode gas after measuring the average particle size of the mist, the current efficiency in the production of the fluorine gas can be measured.
- a similar second average particle size measuring unit 34 is installed in the middle portion of the first bypass pipe 51 and on the downstream side of the connecting portion with the second bypass pipe 52 to measure the second average particle size. The unit 34 measures the average particle size of the mist contained in the anode gas flowing through the first bypass pipe 51.
- the average particle size of the mist is measured by the first average particle size measuring unit 31 (the average particle size of the mist may be measured at the same time by the second average particle size measuring unit 34), and the measurement result is preset. If it is larger than the reference value, the bypass valve 62 is opened, the anode gas is sent from the electrolytic cell 11 to the first bypass pipe 51, the first pipe valve 61 is closed, and the anode gas is in the fourth pipe 44. And prevent it from being sent to the first mist removing unit 32. That is, the anode gas is sent to the second flow path.
- the first pipe valve 61 is opened, the anode gas is sent to the fourth pipe 44 and the first mist removing unit 32, and the bypass valve 62 is opened. In the closed state, the anode gas is prevented from being sent from the electrolytic cell 11 to the first bypass pipe 51. That is, the anode gas is sent to the first flow path.
- the first piping valve 61 and the bypass valve 62 constitute the above-mentioned flow path switching portion.
- a plurality of pipes on which a filter is installed may be prepared as a mist removing unit, and electrolysis may be performed while changing the filter as appropriate. Furthermore, the period during which the filter should be replaced frequently and the period during which the filter does not need to be replaced may be determined based on the measurement of the light scattering detector applied as the average particle size measuring unit. Then, if the switching frequency of the piping through which the fluid flows is appropriately adjusted based on the above determination, the operation of the fluorine gas production apparatus can be efficiently and continuously performed.
- the second modification will be described with reference to FIG.
- the fluorine gas production apparatus of the second modification shown in FIG. 5 is an example including one electrolytic cell 11.
- the first average particle size measuring unit 31 is provided not in the fourth pipe 44 but in the first pipe 41, and is provided on the upstream side of the first pipe valve 61. Further, the second bypass pipe 52 is not provided, and the first bypass pipe 51 is directly connected to the electrolytic cell 11 without passing through the second bypass pipe 52.
- the first bypass pipe 51 Since the first bypass pipe 51 has a larger diameter than the fourth pipe 44, it functions as a blockage suppressing mechanism. Further, for example, by providing a space for collecting mist at the downstream end of the first bypass pipe 51, the effect of suppressing blockage can be further increased.
- the space for collecting mist for example, the downstream end portion of the first bypass pipe 51 is formed to have a pipe diameter larger than the central portion in the installation direction (for example, a pipe diameter four times or more the central portion in the installation direction). Examples thereof include a space in which the downstream end portion of the first bypass pipe 51 is formed in a container-like shape, and the space for collecting mist can suppress the blockage of the first bypass pipe 51.
- bypass valve 62 is provided in the third bypass pipe 53 that connects the first bypass pipe 51 and the fluorine gas sorting unit (not shown). Since the configuration of the fluorine gas production apparatus of the second modification is almost the same as that of the fluorine gas production apparatus of FIG. 2 except for the above points, the description of the same parts will be omitted.
- a third modification will be described with reference to FIG.
- the first average particle size measuring unit 31 is provided in the electrolytic cell 11, and the anode gas inside the electrolytic cell 11 is directly connected to the first average particle size measuring unit 31. Introduced in, the average particle size of mist has been measured.
- the fluorine gas production apparatus of the third modification does not have the second average particle size measuring unit 34. Since the configuration of the fluorine gas production apparatus of the third modification is almost the same as that of the fluorine gas production apparatus of the second modification except for the above points, the description of the same parts will be omitted.
- a fourth modification will be described with reference to FIG. 7.
- the fluorine gas production apparatus of the fourth modification is an example in which the clogging suppressing mechanism is different from that of the second modification shown in FIG.
- the first bypass pipe 51 was installed so as to extend along the horizontal direction, but in the fluorine gas production apparatus of the fourth modification, the first bypass pipe 51 Is inclined with respect to the horizontal direction and extends in a direction descending from the upstream side to the downstream side. This inclination suppresses the accumulation of powder inside the first bypass pipe 51. The larger the slope, the greater the effect of suppressing the accumulation of powder.
- the inclination angle of the first bypass pipe 51 is preferably 30 degrees or more, and more preferably 40 degrees or more and 60 degrees or less in the range where the depression angle from the horizontal plane is smaller than 90 degrees. If the first bypass pipe 51 is likely to be blocked, hammering the inclined first bypass pipe 51 makes it easier for the deposits inside the first bypass pipe 51 to move, so that the blockage can be avoided. it can. Since the configuration of the fluorine gas production apparatus of the fourth modification is almost the same as that of the fluorine gas production apparatus of the second modification except for the above points, the description of the same parts will be omitted.
- a fifth modification will be described with reference to FIG.
- the fluorine gas production apparatus of the fifth modification is an example in which the clogging suppressing mechanism is different from that of the third modification shown in FIG.
- the first bypass pipe 51 was installed so as to extend along the horizontal direction, but in the fluorine gas production apparatus of the fifth modification, the first bypass pipe 51 Is inclined with respect to the horizontal direction and extends in a direction descending from the upstream side to the downstream side. This inclination suppresses the accumulation of powder inside the first bypass pipe 51.
- the preferable inclination angle of the first bypass pipe 51 is the same as in the case of the fourth modification. Since the configuration of the fluorine gas production apparatus of the fifth modification is almost the same as that of the fluorine gas production apparatus of the third modification except for the above points, the description of the same parts will be omitted.
- the fluorine gas production apparatus of the sixth modification is an example in which the structure of the electrolytic cell 11 is different from that of the second modification shown in FIG.
- the electrolytic cell 11 has one anode 13 and two cathodes 15 and 15, and is divided into one anode chamber 22 and one cathode chamber 24 by a tubular partition wall 17 surrounding one anode 13.
- the anode chamber 22 is formed so as to extend above the upper surface of the electrolytic cell 11, and the first bypass pipe 51 is connected to the upper end portion of the anode chamber 22 of the electrolytic cell 11. Since the configuration of the fluorine gas production apparatus of the sixth modification is almost the same as that of the fluorine gas production apparatus of the second modification except for the above points, the description of the same parts will be omitted.
- the fluorine gas production apparatus of the seventh modification is an example in which the structure of the first bypass pipe 51 is different from that of the sixth modification shown in FIG. That is, in the fluorine gas production apparatus of the 7th modification, the 1st bypass pipe 51 is inclined with respect to the horizontal direction and is inclined from the upstream side to the downstream side as in the 4th modification and the 5th modification. It extends in the direction of descending.
- the preferable inclination angle of the first bypass pipe 51 is the same as in the case of the fourth modification. Since the configuration of the fluorine gas production apparatus of the seventh modification is almost the same as that of the fluorine gas production apparatus of the sixth modification except for the above points, the description of the same parts will be omitted.
- the fluorine gas production apparatus of the eighth modification is an example in which the clogging suppressing mechanism is different from that of the second modification shown in FIG.
- the rotary screw 71 constituting the blockage suppressing mechanism is installed inside the first bypass pipe 51.
- the rotating screw 71 is installed with its rotating shaft parallel to the longitudinal direction of the first bypass pipe 51.
- the mist accumulated inside the first bypass pipe 51 can be sent to the upstream side or the downstream side.
- the powder is prevented from accumulating inside the first bypass pipe 51. Since the configuration of the fluorine gas production apparatus of the eighth modification is almost the same as that of the fluorine gas production apparatus of the second modification except for the above points, the description of the same parts will be omitted.
- the fluorine gas production apparatus of the ninth modification is an example in which the clogging suppressing mechanism is different from that of the second modification shown in FIG.
- the airflow generator 73 constituting the blockage suppression mechanism is installed in the first bypass pipe 51.
- the airflow generator 73 sends an airflow (for example, an airflow of nitrogen gas) from the upstream side to the downstream side of the first bypass pipe 51 to increase the flow velocity of the anode gas flowing in the first bypass pipe 51.
- an airflow for example, an airflow of nitrogen gas
- the preferable flow velocity of the anode gas flowing in the first bypass pipe 51 is 1 m / sec or more and 10 m / sec or less. It is possible to increase the flow velocity to more than 10 m / sec, but in that case, the pressure loss due to the piping resistance in the first bypass pipe 51 becomes large, and the pressure in the anode chamber 22 of the electrolytic cell 11 becomes high. It is preferable that the pressure in the anode chamber 22 and the pressure in the cathode chamber 24 are about the same, but if the difference between the pressure in the anode chamber 22 and the pressure in the cathode chamber 24 becomes too large, the anode gas becomes a partition wall.
- [10th modification] A tenth modification will be described with reference to FIG.
- the first average particle size measuring unit 31 is provided in the electrolytic cell 11, and the anode gas inside the electrolytic cell 11 is directly connected to the first average particle size measuring unit 31. Introduced in, the average particle size of mist has been measured.
- the fluorine gas production apparatus of the tenth modification does not have the second average particle size measuring unit 34. Since the configuration of the fluorine gas production apparatus of the tenth modification is almost the same as that of the fluorine gas production apparatus of the ninth modification shown in FIG. 12 except for the above points, the description of the same part will be omitted.
- Fluorine gas was produced by electrolyzing the electrolytic solution.
- a mixed molten salt (560 L) of 434 kg of hydrogen fluoride and 630 kg of potassium fluoride was used.
- An amorphous carbon electrode (width 30 cm, length 45 cm, thickness 7 cm) manufactured by SGL Carbon Co., Ltd. was used as the anode, and 16 anodes were installed in the electrolytic cell.
- a punching plate manufactured by Monel (trademark) was used as a cathode and installed in an electrolytic cell. Two cathodes face one anode, and the total area of the portion of one anode facing the cathode is 1736 cm 2 .
- the electrolysis temperature was controlled to 85 to 95 ° C.
- the electrolyte temperature was set to 85 ° C.
- a DC current of 1000 A was applied at a current density of 0.036 A / cm 2, and electrolysis was started.
- the water concentration in the electrolytic solution at this time was 1.0% by mass.
- the water concentration was measured by the Karl Fischer titer analysis method.
- Electrolysis was started under the above conditions, and a small plosive sound was observed in the vicinity of the anode in the anode chamber for 10 hours immediately after the start of electrolysis. It is probable that this plosive sound was generated due to the reaction between the generated fluorine gas and the water content in the electrolytic solution.
- the fluid generated at the anode in this state was sampled when it was sent out from the anode chamber of the electrolytic cell, and the mist contained in the fluid was analyzed.
- 5.0 to 9.0 mg of powder (calculated assuming that the specific gravity of the mist is 1.0 g / mL. The same applies to the following) is contained in 1 L of the fluid generated at the anode.
- the average particle size of this powder was 1.0 to 2.0 ⁇ m. When this powder was observed with an optical microscope, the powder having a shape like a hollow inside a sphere was mainly observed.
- the current efficiency of fluorine gas generation at this time was 0 to 15%.
- step (1) The stage of electrolysis from the start of electrolysis to this point is referred to as "step (1)".
- step (2) The stage of electrolysis from the end of step (1) to this point is referred to as "step (2)".
- the current was increased to 3500 A and the current density was increased to 0.126 A / cm 2, and the electrolysis of the electrolytic solution was continued in the step (2).
- the fluid generated at the anode in this state was sampled when it was sent out from the anode chamber of the electrolytic cell, and the mist contained in the fluid was analyzed.
- 0.03 to 0.06 mg of powder was contained in 1 L of the fluid generated at the anode, and the average particle size of this powder was about 0.2 ⁇ m (0.15 to 0.25 ⁇ m).
- the diameter had a distribution of about 0.1-0.5 ⁇ m.
- FIG. 14 shows the measurement results of the particle size distribution of this powder.
- the current efficiency of fluorine gas generation at this time was 94%.
- the stage of electrolysis from the end of step (2) to this point is referred to as a "stable stage".
- Table 1 summarizes the contents of the electrolysis of Reference Example 1 performed as described above.
- Table 1 shows the current, the elapsed electrolysis time, the amount of energization, the water concentration in the electrolytic solution, the mass of mist contained in 1 L of the fluid generated at the anode (denoted as “anode gas” in Table 1), and the mist.
- the amount of fluid containing fluorine gas, oxygen gas, and mist
- the water concentration inside is also shown.
- FIG. 15 shows a graph showing the relationship between the average particle size of mist and the amount of mist generated at the anode. From the graph of FIG. 15, it can be seen that there is a correlation between the average particle size of mist and the amount of mist generated at the anode. The larger the amount of mist generated, the more likely it is that the pipes and valves will be blocked. If mist with an average particle size larger than 0.4 ⁇ m is generated, the amount of mist generated will increase and will be deposited by the action of gravity. Therefore, it can be said that the relationship shown in the graph of FIG. 15 represents the correlation between the average particle size of the mist and the likelihood of clogging of pipes and valves.
- FIG. 16 shows a graph showing the relationship between the concentration of mist contained in the fluid generated at the anode (mass of mist per 1 L of fluid (unit: mg / L)) and the average particle size of mist.
- Example 1 The same electrolysis as in Reference Example 1 was performed using the fluorine gas production apparatus shown in FIG.
- the fluid generated at the anode was circulated via the second bypass pipe, the bypass valve, and the first bypass pipe.
- the electrolysis was temporarily stopped, and the inside of the fluorine gas production apparatus was inspected. As a result, although mist was accumulated in the first bypass pipe, the pipe was not blocked because the diameter of the pipe was increased.
- the fluid generated at the anode was transferred to the first pipe, the first pipe valve, the fourth pipe, and the like. It was distributed via the first mist removing section. No mist was accumulated or blocked in the first pipe, the first pipe valve, and the fourth pipe, and the fluid generated at the anode was supplied to the first mist removing part, so that the mist was removed in the first mist removing part.
- the first mist removing part was a scrubber type removing part for removing fine particles such as mist by spraying liquid hydrogen fluoride, and the mist removing rate was 98% or more.
- the vertical length (immersion depth) of the part of the partition wall in the electrolytic cell that was immersed in the electrolytic solution was 5 cm
- the pressure on the anode side was about 100 mmH 2 O higher than the pressure on the cathode side
- the anode side The level of the electrolyte is lower than the lower end of the partition.
- the fluorine gas gets over the partition wall and mixes with the hydrogen gas on the cathode side, causing a rapid reaction between the fluorine gas and the hydrogen gas, which is extremely dangerous.
- the inside of the 1st pipe, 1st pipe valve, and 4th pipe was inspected.
- the 1st pipe was a pipe extending in the vertical direction, so there was no blockage.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
ミストによる配管やバルブの閉塞を抑制するために、特許文献1には、ミストを同伴するフッ素ガス又は当該ガスが通過する配管を、電解液の融点以上に加熱する技術が開示されている。また、特許文献2には、ミストを粗取りする空間であるガス拡散部と、ミストを吸着させるための充填材を収容する充填材収容部と、を有するガス生成装置が開示されている。
本発明は、ミストによる配管やバルブの閉塞を抑制することができるフッ素ガスの製造方法及びフッ素ガス製造装置を提供することを課題とする。
[1] フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造するフッ素ガスの製造方法であって、
電解槽内で前記電気分解を行う電解工程と、
前記電解液の電気分解時に前記電解槽の内部で生じた流体に含まれるミストの平均粒子径を測定する平均粒子径測定工程と、
前記流体を前記電解槽の内部から外部へ流路を介して送る送気工程と、
を備え、
前記送気工程においては、前記平均粒子径測定工程で測定された前記ミストの平均粒子径に応じて前記流体を流す流路を切り替え、前記平均粒子径測定工程で測定された前記ミストの平均粒子径が、予め設定された基準値以下である場合は、前記電解槽の内部から第1の外部へ前記流体を送る第1流路に前記流体を送り、前記予め設定された基準値よりも大きい場合は、前記電解槽の内部から第2の外部へ前記流体を送る第2流路に前記流体を送るようになっており、
前記予め設定された基準値は0.1μm以上1.0μm以下の範囲内の数値であるフッ素ガスの製造方法。
[3] 前記電気分解において使用する陽極が、ダイヤモンド、ダイヤモンドライクカーボン、アモルファスカーボン、グラファイト、及びグラッシーカーボンから選ばれる少なくとも1種の炭素材料で形成された炭素質電極である[1]又は[2]に記載のフッ素ガスの製造方法。
[4] 前記電解槽は、前記電気分解において使用する陽極又は陰極で発生した気泡が前記電解液中を鉛直方向に上昇し、前記電解液の液面に到達可能な構造を有する[1]~[3]のいずれか一項に記載のフッ素ガスの製造方法。
前記電解液を収容し前記電気分解が行われる電解槽と、
前記電解液の電気分解時に前記電解槽の内部で生じた流体に含まれるミストの平均粒子径を測定する平均粒子径測定部と、
前記流体を前記電解槽の内部から外部へ送る流路と、
を備え、
前記流路は、前記電解槽の内部から第1の外部へ前記流体を送る第1流路と、前記電解槽の内部から第2の外部へ前記流体を送る第2流路と、を有するとともに、前記平均粒子径測定部で測定された前記ミストの平均粒子径に応じて前記流体を流す流路を前記第1流路又は前記第2流路に切り替える流路切り替え部を有しており、
前記流路切り替え部は、前記平均粒子径測定部で測定された前記ミストの平均粒子径が、予め設定された基準値以下である場合は、前記電解槽の内部から前記第1流路に前記流体を送り、前記予め設定された基準値よりも大きい場合は、前記電解槽の内部から前記第2流路に前記流体を送るようになっており、
前記予め設定された基準値は0.1μm以上1.0μm以下の範囲内の数値であるフッ素ガス製造装置。
流路切り替え部は、平均粒子径測定部で測定されたミストの平均粒子径が、予め設定された基準値以下である場合は、電解槽の内部から第1流路に流体を送り、予め設定された基準値よりも大きい場合は、電解槽の内部から第2流路に流体を送るようになっている。そして、予め設定された基準値は、0.1μm以上1.0μm以下の範囲内の数値とされている。
詳述すると、第2流路の少なくとも一部を、第1流路よりも大径な配管で構成することにより、ミストによる第2流路の閉塞を抑制することができる。また、第2流路の少なくとも一部を、水平方向に対して傾斜し、且つ、上流側から下流側に向かって下降する方向に延びる配管で構成することにより、ミストによる第2流路の閉塞を抑制することができる。
〔電解槽〕
電解槽の態様に特に制限はなく、フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを発生させることができるならば、どのような電解槽でも使用可能である。
通常、電解槽の内部は、隔壁等の仕切り部材によって、陽極が配された陽極室と陰極が配された陰極室とに区画されており、陽極で発生するフッ素ガスと陰極で発生する水素ガスが混合しないようになっている。
電解液の電気分解時にミストが発生する主な理由は、以下のとおりである。電気分解時の電解液の温度は、例えば80~100℃に調整されている。KF・2HFの融点は71.7℃であるため、上記温度に調整されている場合には電解液は液体状態である。電解槽の両電極で発生する気体の気泡は、電解液中を上昇し、電解液の液面ではじける。このとき、電解液の一部が気相中に放出される。
本実施形態のフッ素ガス製造装置は、流体に含まれるミストの平均粒子径を測定する平均粒子径測定部を備えているが、この平均粒子径測定部は、光散乱方式で平均粒子径を測定する光散乱検出器で構成されていてもよい。光散乱検出器は、フッ素ガス製造装置を連続運転しながら、流路を流れる流体中のミストの平均粒子径を測定することができるため、平均粒子径測定部として好ましい。
光散乱検出器をフッ素ガス製造装置に接続し、流体を電解槽の内部から光散乱検出器に送ってミストの平均粒子径を測定してもよいし、光散乱検出器とフッ素ガス製造装置を接続せずに、電解槽の内部から流体を取り出し光散乱検出器に導入してミストの平均粒子径を測定してもよい。
光散乱検出器のうち透明窓4A、4B以外の部分の材質は、フッ素ガスに対して耐食性を有する材質であれば特に限定されるものではないが、例えば、銅-ニッケル合金であるモネル(商標)、ハステロイ(商標)、ステンレス鋼等の金属材料を使用することが好ましい。
本発明者らは、電解液の電解によるフッ素ガスの製造の際に発生するミストの平均粒子径を、光散乱検出器を用いて測定した。その結果の一例を説明する。フッ素ガス製造装置の陽極を新しい陽極に交換したり、電解槽内に新しい電解液を充填したりした後に電解を開始し、電解開始直後から一定期間に陽極で発生する流体中のミストの平均粒子径を測定した。その結果、ミストの平均粒子径は0.5~2.0μmであった。その後、電解を継続し十分な時間が経過すると電解が安定し始めるが、この安定電解時の流体中のミストの平均粒子径は、約0.2μmであった。
このように、電解開始直後から安定電解時に至るまでの間に、比較的大きな粒子径のミストが発生する。電解開始直後の大きなミストを含有する流体が、配管やバルブ内を流れる場合に、ミストが配管やバルブの内面に吸着して配管やバルブの閉塞が起こりやすくなる。
上記のように第1流路と第2流路を有しているので、一方の流路を遮断してクリーニングしている間でも、他方の流路を開いてフッ素ガス製造装置を継続して運転することができる。
図2に示すフッ素ガス製造装置は、内部に電解液10を収容し電気分解が行われる電解槽11、11と、電解槽11の内部に配されて電解液10に浸漬される陽極13と、電解槽11の内部に配されて電解液10に浸漬されるとともに陽極13に対向して配された陰極15と、を備えている。
第1平均粒子径測定部31としては、例えば、前述した図1に示す光散乱検出器を用いることができる。
また、第4配管44及び第5配管45は、水平方向に沿って延びるように設置し、第4配管44及び第5配管45を流れる流体の流速が第1配管41及び第2配管42の場合の1倍~10倍程度速くなるような管径とすることが好ましい。
第1バイパス配管51の管径は、第4配管44の1.0倍超過3.2倍以下が好ましく、1.05倍以上1.5倍以下がさらに好ましい。つまり、第1バイパス配管51の流路断面積は、第4配管44の10倍以下が好ましい。
以上の説明から分かるように、第1配管弁61及びバイパス弁62によって上記の流路切り替え部が構成される。
上記のようにして、ミストの平均粒子径に応じて流路を切り替えながらフッ素ガス製造装置の運転を行うことにより、ミストによる配管やバルブの閉塞を抑制しつつ円滑に連続運転を行うことができる。よって、図2に示すフッ素ガス製造装置によれば、フッ素ガスを経済的に製造することができる。
さらには、フィルターの交換を頻繁に行うべき期間と、フィルターの交換を頻繁に行う必要がない期間とを、平均粒子径測定部として適用される光散乱検出器の測定に基づいて判断するとよい。そして、上記判断に基づいて、流体を流す配管の切り替え頻度を適切に調整すれば、フッ素ガス製造装置の運転を効率良く継続して行うことができる。
〔第1変形例〕
第1変形例について、図4を参照しながら説明する。図2に示すフッ素ガス製造装置においては、第2バイパス配管52は電解槽11と第1バイパス配管51を連結しているのに対して、図4に示す第1変形例のフッ素ガス製造装置においては、第2バイパス配管52は第1配管41と第1バイパス配管51を連結している。第1変形例のフッ素ガス製造装置の構成は、上記の点以外は図2のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
第2変形例について、図5を参照しながら説明する。図5に示す第2変形例のフッ素ガス製造装置は、電解槽11を1基備えている例である。第1平均粒子径測定部31は、第4配管44ではなく第1配管41に設けられており、且つ、第1配管弁61の上流側に設けられている。また、第2バイパス配管52は有しておらず、第1バイパス配管51は、第2バイパス配管52を介さずに電解槽11に直接的に接続されている。
さらに、バイパス弁62は、第1バイパス配管51と図示しないフッ素ガス選別部とを接続する第3バイパス配管53に設けられている。第2変形例のフッ素ガス製造装置の構成は、上記の点以外は図2のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
第3変形例について、図6を参照しながら説明する。第3変形例のフッ素ガス製造装置においては、第1平均粒子径測定部31が電解槽11に設けられており、電解槽11の内部の陽極ガスが第1平均粒子径測定部31に直接的に導入されて、ミストの平均粒子径の測定が行われるようになっている。第3変形例のフッ素ガス製造装置は、第2平均粒子径測定部34は有していない。第3変形例のフッ素ガス製造装置の構成は、上記の点以外は第2変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
第4変形例について、図7を参照しながら説明する。第4変形例のフッ素ガス製造装置は、図5に示す第2変形例に対して閉塞抑制機構が異なる例である。第2変形例のフッ素ガス製造装置においては、第1バイパス配管51は、水平方向に沿って延びるように設置されていたが、第4変形例のフッ素ガス製造装置においては、第1バイパス配管51は、水平方向に対して傾斜し、且つ、上流側から下流側に向かって下降する方向に延びている。この傾斜により、粉体が第1バイパス配管51の内部に堆積することが抑制される。この傾斜が大きいほど、粉体の堆積を抑制する作用が大きい。
第4変形例のフッ素ガス製造装置の構成は、上記の点以外は第2変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
第5変形例について、図8を参照しながら説明する。第5変形例のフッ素ガス製造装置は、図6に示す第3変形例に対して閉塞抑制機構が異なる例である。第3変形例のフッ素ガス製造装置においては、第1バイパス配管51は、水平方向に沿って延びるように設置されていたが、第5変形例のフッ素ガス製造装置においては、第1バイパス配管51は、水平方向に対して傾斜し、且つ、上流側から下流側に向かって下降する方向に延びている。この傾斜により、粉体が第1バイパス配管51の内部に堆積することが抑制される。第1バイパス配管51の好ましい傾斜角度は、上記第4変形例の場合と同様である。第5変形例のフッ素ガス製造装置の構成は、上記の点以外は第3変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
第6変形例について、図9を参照しながら説明する。第6変形例のフッ素ガス製造装置は、図5に示す第2変形例に対して電解槽11の構造が異なる例である。電解槽11は、1つの陽極13と2つの陰極15、15とを有しており、且つ、1つの陽極13を囲む筒状の隔壁17によって1つの陽極室22と1つの陰極室24に区画されている。陽極室22は、電解槽11の上面よりも上方まで延びて形成されており、第1バイパス配管51は電解槽11の陽極室22の上端部分に接続されている。第6変形例のフッ素ガス製造装置の構成は、上記の点以外は第2変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
第7変形例について、図10を参照しながら説明する。第7変形例のフッ素ガス製造装置は、図9に示す第6変形例に対して第1バイパス配管51の構造が異なる例である。すなわち、第7変形例のフッ素ガス製造装置においては、第1バイパス配管51は、第4変形例及び第5変形例と同様に、水平方向に対して傾斜し、且つ、上流側から下流側に向かって下降する方向に延びている。第1バイパス配管51の好ましい傾斜角度は、上記第4変形例の場合と同様である。第7変形例のフッ素ガス製造装置の構成は、上記の点以外は第6変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
第8変形例について、図11を参照しながら説明する。第8変形例のフッ素ガス製造装置は、図5に示す第2変形例に対して閉塞抑制機構が異なる例である。第8変形例のフッ素ガス製造装置においては、閉塞抑制機構を構成する回転スクリュー71が第1バイパス配管51の内部に設置されている。この回転スクリュー71は、その回転軸を第1バイパス配管51の長手方向に対して平行にして設置されている。
第9変形例について、図12を参照しながら説明する。第9変形例のフッ素ガス製造装置は、図5に示す第2変形例に対して閉塞抑制機構が異なる例である。第9変形例のフッ素ガス製造装置においては、閉塞抑制機構を構成する気流発生装置73が第1バイパス配管51に設置されている。気流発生装置73が、第1バイパス配管51の上流側から下流側に向かって気流(例えば窒素ガスの気流)を送り込み、第1バイパス配管51内を流れる陽極ガスの流速を上昇させる。これにより、粉体が第1バイパス配管51の内部に堆積することが抑制される。
第9変形例のフッ素ガス製造装置の構成は、上記の点以外は第2変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
第10変形例について、図13を参照しながら説明する。第10変形例のフッ素ガス製造装置においては、第1平均粒子径測定部31が電解槽11に設けられており、電解槽11の内部の陽極ガスが第1平均粒子径測定部31に直接的に導入されて、ミストの平均粒子径の測定が行われるようになっている。第10変形例のフッ素ガス製造装置は、第2平均粒子径測定部34は有していない。第10変形例のフッ素ガス製造装置の構成は、上記の点以外は図12に示す第9変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔参考例1〕
電解液を電気分解して、フッ素ガスを製造した。電解液としては、フッ化水素434kgとフッ化カリウム630kgとの混合溶融塩(560L)を用いた。陽極としてSGLカーボン社製のアモルファスカーボン電極(横30cm、縦45cm、厚さ7cm)を使用し、16枚の陽極を電解槽に設置した。また、陰極としてモネル(商標)製のパンチングプレートを使用し、電解槽に設置した。1枚の陽極に2枚の陰極が対向しており、1枚の陽極のうち陰極に対向している部分の合計の面積は1736cm2である。
上記の条件での電解を開始し、電解開始直後から10時間の間は、陽極室内の陽極の近傍において小さな破裂音が観測された。この破裂音は、発生したフッ素ガスと電解液中の水分とが反応したために発生したものと考えられる。
さらに、電解を継続して通電量が60kAhになると、陽極で発生した流体に含有されるミストの平均粒子径が0.36μm(すなわち0.4μm以下)となった。この時点では、陽極室の内部で破裂音が全く発生しなくなった。また、この時の電解液中の水分濃度は0.2質量%(すなわち0.3質量%以下)であった。さらに、この時のフッ素ガス生成の電流効率は65%であった。段階(1)の終了時点からここまでの電解の段階を、「段階(2)」とする。
参考例1と同様の電解を、図2に示すフッ素ガス製造装置を用いて行った。段階(1)の電解においては、陽極で発生した流体を、第2バイパス配管、バイパス弁、第1バイパス配管を経由させて流通させた。段階(1)の電解が終了した後に一旦電解を停止して、フッ素ガス製造装置の内部の点検を行った。その結果、第1バイパス配管内にはミストが堆積していたものの、配管の径を太くしてあるため配管の閉塞は起こらなかった。
段階(1)の電解において、陽極で発生した流体を、第1配管、第1配管弁、第4配管、第1ミスト除去部を経由させて流通させた点以外は、実施例1と同様に電解を行った。
段階(1)の電解中、電解槽の陽極側及び陰極側に取り付けた圧力計のうち陽極側の圧力計の計測値が徐々に高くなり、陰極側の圧力との差圧が90mmH2Oになったため、電解を停止した。停止の理由は以下のとおりである。電解槽内の隔壁のうち電解液に浸漬した部分の鉛直方向長さ(浸漬深さ)が5cmであったため、陽極側の圧力が陰極側の圧力よりも約100mmH2O高くなると、陽極側の電解液の液面が隔壁の下端よりも低くなる。その結果、フッ素ガスが隔壁を乗り越えて陰極側の水素ガスと混合し、フッ素ガスと水素ガスの急激な反応を起こすようになるので、非常に危険である。
2・・・光源
3・・・散乱光検知部
4A、4B・・・透明窓
10・・・電解液
11・・・電解槽
13・・・陽極
15・・・陰極
22・・・陽極室
24・・・陰極室
31・・・第1平均粒子径測定部
32・・・第1ミスト除去部
33・・・第2ミスト除去部
34・・・第2平均粒子径測定部
41・・・第1配管
42・・・第2配管
43・・・第3配管
44・・・第4配管
45・・・第5配管
46・・・第6配管
47・・・第7配管
48・・・第8配管
49・・・第9配管
51・・・第1バイパス配管
52・・・第2バイパス配管
61・・・第1配管弁
62・・・バイパス弁
F・・・流体
L・・・光散乱測定用光
M・・・ミスト
S・・・散乱光
Claims (5)
- フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造するフッ素ガスの製造方法であって、
電解槽内で前記電気分解を行う電解工程と、
前記電解液の電気分解時に前記電解槽の内部で生じた流体に含まれるミストの平均粒子径を測定する平均粒子径測定工程と、
前記流体を前記電解槽の内部から外部へ流路を介して送る送気工程と、
を備え、
前記送気工程においては、前記平均粒子径測定工程で測定された前記ミストの平均粒子径に応じて前記流体を流す流路を切り替え、前記平均粒子径測定工程で測定された前記ミストの平均粒子径が、予め設定された基準値以下である場合は、前記電解槽の内部から第1の外部へ前記流体を送る第1流路に前記流体を送り、前記予め設定された基準値よりも大きい場合は、前記電解槽の内部から第2の外部へ前記流体を送る第2流路に前記流体を送るようになっており、
前記予め設定された基準値は0.1μm以上1.0μm以下の範囲内の数値であるフッ素ガスの製造方法。 - 前記金属フッ化物は、カリウム、セシウム、ルビジウム、及びリチウムから選ばれる少なくとも1種の金属のフッ化物である請求項1に記載のフッ素ガスの製造方法。
- 前記電気分解において使用する陽極が、ダイヤモンド、ダイヤモンドライクカーボン、アモルファスカーボン、グラファイト、及びグラッシーカーボンから選ばれる少なくとも1種の炭素材料で形成された炭素質電極である請求項1又は請求項2に記載のフッ素ガスの製造方法。
- 前記電解槽は、前記電気分解において使用する陽極又は陰極で発生した気泡が前記電解液中を鉛直方向に上昇し、前記電解液の液面に到達可能な構造を有する請求項1~3のいずれか一項に記載のフッ素ガスの製造方法。
- フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造するフッ素ガス製造装置であって、
前記電解液を収容し前記電気分解が行われる電解槽と、
前記電解液の電気分解時に前記電解槽の内部で生じた流体に含まれるミストの平均粒子径を測定する平均粒子径測定部と、
前記流体を前記電解槽の内部から外部へ送る流路と、
を備え、
前記流路は、前記電解槽の内部から第1の外部へ前記流体を送る第1流路と、前記電解槽の内部から第2の外部へ前記流体を送る第2流路と、を有するとともに、前記平均粒子径測定部で測定された前記ミストの平均粒子径に応じて前記流体を流す流路を前記第1流路又は前記第2流路に切り替える流路切り替え部を有しており、
前記流路切り替え部は、前記平均粒子径測定部で測定された前記ミストの平均粒子径が、予め設定された基準値以下である場合は、前記電解槽の内部から前記第1流路に前記流体を送り、前記予め設定された基準値よりも大きい場合は、前記電解槽の内部から前記第2流路に前記流体を送るようになっており、
前記予め設定された基準値は0.1μm以上1.0μm以下の範囲内の数値であるフッ素ガス製造装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20904412.2A EP4083260A4 (en) | 2019-12-27 | 2020-12-11 | METHOD FOR PRODUCING FLUORINE GAS AND APPARATUS FOR PRODUCING FLUORINE GAS |
JP2021567253A JPWO2021131815A1 (ja) | 2019-12-27 | 2020-12-11 | |
US17/613,865 US20220213605A1 (en) | 2019-12-27 | 2020-12-11 | Method for producing fluorine gas and device for producing fluorine gas |
KR1020227013001A KR20220065831A (ko) | 2019-12-27 | 2020-12-11 | 불소 가스의 제조 방법 및 불소 가스 제조 장치 |
CN202080039805.0A CN113906164B (zh) | 2019-12-27 | 2020-12-11 | 氟气的制造方法及氟气制造装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019238476 | 2019-12-27 | ||
JP2019-238476 | 2019-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021131815A1 true WO2021131815A1 (ja) | 2021-07-01 |
Family
ID=76574422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046387 WO2021131815A1 (ja) | 2019-12-27 | 2020-12-11 | フッ素ガスの製造方法及びフッ素ガス製造装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220213605A1 (ja) |
EP (1) | EP4083260A4 (ja) |
JP (1) | JPWO2021131815A1 (ja) |
KR (1) | KR20220065831A (ja) |
CN (1) | CN113906164B (ja) |
TW (1) | TWI759030B (ja) |
WO (1) | WO2021131815A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113906166B (zh) * | 2019-12-27 | 2024-02-09 | 株式会社力森诺科 | 氟气制造装置及光散射检测器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004353015A (ja) * | 2003-05-28 | 2004-12-16 | L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude | フッ素ガス生成装置 |
JP2011038145A (ja) * | 2009-08-10 | 2011-02-24 | Yokogawa Electric Corp | 電気分解装置及び電気分解方法 |
JP2011225922A (ja) * | 2010-04-16 | 2011-11-10 | Central Glass Co Ltd | フッ素ガス生成装置 |
JP2013507629A (ja) * | 2009-10-16 | 2013-03-04 | ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 高純度フッ素ガス、その発生および使用、ならびにフッ素ガス中の不純物の監視方法 |
JP5919824B2 (ja) * | 2012-01-05 | 2016-05-18 | セントラル硝子株式会社 | ガス生成装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11326154A (ja) * | 1998-04-30 | 1999-11-26 | L'air Liquide | 寸法制御粒子を含む流体流の形成方法 |
JP3905433B2 (ja) * | 2002-07-11 | 2007-04-18 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | フッ素ガス生成装置 |
JP2005179709A (ja) * | 2003-12-17 | 2005-07-07 | Toyo Tanso Kk | ガス発生装置 |
JP4624699B2 (ja) * | 2004-03-18 | 2011-02-02 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | フッ素ガス生成装置 |
JP5584904B2 (ja) * | 2008-03-11 | 2014-09-10 | 東洋炭素株式会社 | フッ素ガス発生装置 |
JP2011084806A (ja) * | 2009-06-29 | 2011-04-28 | Central Glass Co Ltd | フッ素ガス生成装置 |
JP5544895B2 (ja) * | 2010-01-21 | 2014-07-09 | セントラル硝子株式会社 | フッ素ガス生成装置 |
DE112012002702T8 (de) * | 2011-06-29 | 2014-04-10 | Toyo Tanso Co., Ltd. | Elektrolytische Vorrichtung |
-
2020
- 2020-12-11 CN CN202080039805.0A patent/CN113906164B/zh active Active
- 2020-12-11 US US17/613,865 patent/US20220213605A1/en active Pending
- 2020-12-11 JP JP2021567253A patent/JPWO2021131815A1/ja active Pending
- 2020-12-11 EP EP20904412.2A patent/EP4083260A4/en active Pending
- 2020-12-11 WO PCT/JP2020/046387 patent/WO2021131815A1/ja unknown
- 2020-12-11 KR KR1020227013001A patent/KR20220065831A/ko not_active Application Discontinuation
- 2020-12-24 TW TW109145873A patent/TWI759030B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004353015A (ja) * | 2003-05-28 | 2004-12-16 | L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude | フッ素ガス生成装置 |
JP2011038145A (ja) * | 2009-08-10 | 2011-02-24 | Yokogawa Electric Corp | 電気分解装置及び電気分解方法 |
JP2013507629A (ja) * | 2009-10-16 | 2013-03-04 | ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 高純度フッ素ガス、その発生および使用、ならびにフッ素ガス中の不純物の監視方法 |
JP2011225922A (ja) * | 2010-04-16 | 2011-11-10 | Central Glass Co Ltd | フッ素ガス生成装置 |
JP5919824B2 (ja) * | 2012-01-05 | 2016-05-18 | セントラル硝子株式会社 | ガス生成装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4083260A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20220213605A1 (en) | 2022-07-07 |
EP4083260A1 (en) | 2022-11-02 |
TW202138626A (zh) | 2021-10-16 |
KR20220065831A (ko) | 2022-05-20 |
JPWO2021131815A1 (ja) | 2021-07-01 |
TWI759030B (zh) | 2022-03-21 |
CN113906164B (zh) | 2024-01-05 |
EP4083260A4 (en) | 2024-10-09 |
CN113906164A (zh) | 2022-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021131815A1 (ja) | フッ素ガスの製造方法及びフッ素ガス製造装置 | |
WO2021131578A1 (ja) | フッ素ガス製造装置及び光散乱検出器 | |
WO2021131818A1 (ja) | フッ素ガスの製造方法及びフッ素ガス製造装置 | |
WO2021131817A1 (ja) | フッ素ガスの製造方法及びフッ素ガス製造装置 | |
WO2021131816A1 (ja) | フッ素ガスの製造方法及びフッ素ガス製造装置 | |
WO2021131579A1 (ja) | フッ素ガスの製造方法及びフッ素ガス製造装置 | |
WO2021132028A1 (ja) | フッ素ガスの製造方法及びフッ素ガス製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20904412 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021567253 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227013001 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020904412 Country of ref document: EP Effective date: 20220727 |