WO2021132028A1 - フッ素ガスの製造方法及びフッ素ガス製造装置 - Google Patents

フッ素ガスの製造方法及びフッ素ガス製造装置 Download PDF

Info

Publication number
WO2021132028A1
WO2021132028A1 PCT/JP2020/047224 JP2020047224W WO2021132028A1 WO 2021132028 A1 WO2021132028 A1 WO 2021132028A1 JP 2020047224 W JP2020047224 W JP 2020047224W WO 2021132028 A1 WO2021132028 A1 WO 2021132028A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
flow path
fluorine gas
electrolytic cell
mist
Prior art date
Application number
PCT/JP2020/047224
Other languages
English (en)
French (fr)
Inventor
慎也 小黒
陽介 福地
小林 浩
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US17/595,958 priority Critical patent/US20220154353A1/en
Priority to CN202080039009.7A priority patent/CN113874555B/zh
Priority to EP20907466.5A priority patent/EP4083265A4/en
Priority to KR1020227013544A priority patent/KR20220065865A/ko
Priority to JP2021567369A priority patent/JPWO2021132028A1/ja
Publication of WO2021132028A1 publication Critical patent/WO2021132028A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/029Concentration
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells

Definitions

  • the present invention relates to a method for producing fluorine gas and a fluorine gas production apparatus.
  • Fluorine gas can be synthesized (electrolytic synthesis) by electrolyzing an electrolytic solution containing hydrogen fluoride and metal fluoride. Since mist (for example, mist of electrolytic solution) is generated together with fluorine gas by electrolysis of the electrolytic solution, the mist accompanies the fluorine gas sent out from the electrolytic cell. The mist that accompanies the fluorine gas becomes powder, which may block the pipes and valves used to supply the fluorine gas. Therefore, the operation for producing the fluorine gas may have to be interrupted or stopped, which hinders the continuous operation in the production of the fluorine gas by the electrolytic method.
  • mist for example, mist of electrolytic solution
  • Patent Document 1 discloses a technique of heating fluorine gas accompanied by mist or a pipe through which the gas passes to a temperature equal to or higher than the melting point of an electrolytic solution.
  • Patent Document 2 discloses a gas generating apparatus having a gas diffusion portion which is a space for roughly removing mist and a filler accommodating portion for accommodating a filler for adsorbing mist.
  • An object of the present invention is to provide a method for producing fluorine gas and a fluorine gas production apparatus capable of suppressing clogging of pipes and valves due to mist.
  • one aspect of the present invention is as follows [1] to [5].
  • [1] A method for producing fluorine gas, which produces fluorine gas by electrolyzing an electrolytic solution containing hydrogen fluoride and metal fluoride.
  • An electrolysis step in which the electrolysis is performed in an electrolytic cell having an anode chamber in which an anode is arranged and a cathode chamber in which a cathode is arranged.
  • a water concentration measuring step for measuring the water concentration in the fluid generated in the cathode chamber during the electrolysis, and a water concentration measuring step.
  • An air supply step of sending a fluid generated inside the electrolytic cell during electrolysis of the electrolytic cell from the inside of the electrolytic cell to the outside via a flow path and With In the air supply step, the flow path through which the fluid flows is switched according to the water concentration measured in the water concentration measuring step, and the water concentration measured in the water concentration measuring step is a preset reference. If it is less than or equal to the value, the fluid is sent to the first flow path that sends the fluid from the inside of the electrolytic cell to the first outside, and if it is larger than the preset reference value, the inside of the electrolytic cell is used. The fluid is sent to the second flow path that sends the fluid to the second outside.
  • the method for producing fluorine gas wherein the preset reference value is a value within the range of 0.01% by volume or more and 0.09% by volume or less.
  • the anode used in the electrolysis is a carbonaceous electrode formed of at least one carbon material selected from diamond, diamond-like carbon, amorphous carbon, graphite, and glassy carbon [1] or [2].
  • the electrolytic cell has a structure in which bubbles generated at the anode or cathode used in the electrolysis rise vertically in the electrolytic solution and reach the liquid level of the electrolytic solution [1] to The method for producing a fluorine gas according to any one of [3].
  • a fluorine gas production apparatus for producing fluorine gas by electrolyzing an electrolytic solution containing hydrogen fluoride and metal fluoride.
  • An electrolytic cell having an anode chamber in which an anode is arranged and a cathode chamber in which a cathode is arranged, accommodating the electrolytic solution, and performing the electrolysis.
  • a water concentration measuring unit that measures the water concentration in the fluid generated in the cathode chamber during the electrolysis, and a water concentration measuring unit.
  • a flow path for sending the fluid generated inside the electrolytic cell during electrolysis of the electrolytic cell from the inside of the electrolytic cell to the outside With The flow path has a first flow path that sends the fluid from the inside of the electrolytic cell to the first outside, and a second flow path that sends the fluid from the inside of the electrolytic cell to the second outside. It has a flow path switching unit that switches the flow path through which the fluid flows to the first flow path or the second flow path according to the water concentration measured by the water concentration measuring unit. When the water concentration measured by the water concentration measuring unit is equal to or less than a preset reference value, the flow path switching unit sends the fluid from the inside of the electrolytic cell to the first flow path.
  • the fluorine gas production apparatus whose preset reference value is a value within the range of 0.01% by volume or more and 0.09% by volume or less.
  • the present inventors diligently studied the mist that causes clogging of pipes and valves in the electrolytic synthesis of fluorine gas.
  • the “mist” in the present invention refers to liquid fine particles or solid fine particles generated together with fluorine gas in an electrolytic cell by electrolysis of an electrolytic solution. Specifically, fine particles of the electrolytic solution, solid fine particles in which the fine particles of the electrolytic cell have undergone phase change, and members constituting the electrolytic cell (metal forming the electrolytic cell, packing for the electrolytic cell, carbon electrode, etc.) and fluorine. It is a solid fine particle produced by the reaction of gas.
  • the present inventors measured the average particle size of the mist contained in the fluid generated inside the electrolytic cell during the electrolysis of the electrolytic solution, and confirmed that the average particle size of the mist changed with time.
  • the average particle size of the mist and the water concentration in the fluid generated in the cathode chamber of the electrolytic cell during electrolysis (hereinafter, also referred to as "water concentration in the cathode gas").
  • water concentration in the cathode gas water concentration in the cathode gas
  • the method for producing fluorine gas of the present embodiment is a method for producing fluorine gas by electrolyzing an electrolytic solution containing hydrogen fluoride and metal fluoride, and has an anode chamber in which an anode is arranged.
  • An electrolysis step in which electrolysis is performed in an electrolytic tank having a cathode chamber in which a cathode is arranged, a water concentration measurement step in which the water concentration in the fluid generated in the cathode chamber during electrolysis is measured, and electricity of the electrolytic solution. It includes an air supply step of sending the fluid generated inside the electrolytic tank at the time of decomposition from the inside of the electrolytic tank to the outside through a flow path.
  • the flow path through which the fluid flows is switched according to the water concentration measured in the water concentration measuring process. That is, when the water concentration measured in the water concentration measuring step is equal to or less than the preset reference value, the fluid is sent from the inside of the electrolytic cell to the first flow path for sending the fluid to the first outside, and the fluid is set in advance. When it is larger than the set reference value, the fluid is sent to the second flow path that sends the fluid from the inside of the electrolytic cell to the second outside.
  • the preset reference value is a value within the range of 0.01% by volume or more and 0.09% by volume or less.
  • the fluorine gas production apparatus of the present embodiment is a fluorine gas production apparatus that electrolyzes an electrolytic solution containing hydrogen fluoride and metal fluoride to produce fluorine gas, and has an anode chamber in which an anode is arranged.
  • An electrolytic tank having a cathode chamber in which a cathode is arranged and accommodating an electrolytic solution for electrolysis, a moisture concentration measuring unit for measuring the moisture concentration in a fluid generated in the cathode chamber during electrolysis, and a moisture concentration measuring unit. It is provided with a flow path for sending the fluid generated inside the electrolytic tank during electrolysis of the electrolytic solution from the inside of the electrolytic tank to the outside.
  • the flow path has a first flow path for sending a fluid from the inside of the electrolytic cell to the first outside, and a second flow path for sending the fluid from the inside of the electrolytic cell to the second outside. Further, this flow path has a flow path switching unit that switches the flow path through which the fluid flows to the first flow path or the second flow path according to the water concentration measured by the water concentration measuring unit. When the water concentration measured by the water concentration measuring unit is equal to or less than the preset reference value, the flow path switching unit sends the fluid from the inside of the electrolytic cell to the first flow path and sets the preset reference value. If it is larger than, the fluid is sent from the inside of the electrolytic cell to the second flow path.
  • the preset reference value is a value within the range of 0.01% by volume or more and 0.09% by volume or less.
  • the flow path through which the fluid flows is switched to the first flow path or the second flow path according to the water concentration in the cathode gas, and as a result, mist
  • the flow path is switched to the first flow path or the second flow path according to the average particle size of the above, and the flow path is less likely to be blocked by mist. Therefore, in the fluorine gas production method and the fluorine gas production apparatus of the present embodiment, when the electrolytic solution containing hydrogen fluoride and metal fluoride is electrolyzed to produce fluorine gas, the pipes and valves are blocked by mist. Can be suppressed. Therefore, the frequency of interruption and stop of the operation of producing the fluorine gas can be reduced, and continuous operation can be easily performed. Therefore, fluorine gas can be economically produced.
  • the water concentration in the cathode gas may be measured at all times during electrolysis, or at regular intervals (for example, 1 second intervals). It may be vacant and performed regularly, or it may be performed irregularly at any time. Further, although the first flow path and the second flow path are different flow paths, the first outer flow path and the second outer flow path may be different places or the same place.
  • the first flow path is a flow path for sending a fluid from the inside of the electrolytic cell to a fluorine gas sorting unit that sorts and extracts fluorine gas from the fluid via a mist removing unit that removes mist from the fluid.
  • the second flow path is a flow path for sending the fluid from the inside of the electrolytic cell to the fluorine gas sorting part without passing through the mist removing part. That is, when the water concentration in the cathode gas is equal to or less than the preset reference value, the fluid is sent to the mist removing unit provided in the first flow path, and when it is larger than the preset reference value, the fluid is sent.
  • the fluorine gas sorting unit corresponds to the first outside and the second outside, and the first outside and the second outside are the same place, but the first outside and the second outside are the same.
  • the outside may be another place.
  • the second flow path has a blockage suppression mechanism that suppresses blockage of the second flow path by mist.
  • the blockage suppressing mechanism is not particularly limited as long as it can suppress blockage of the second flow path by mist, and examples thereof include the following. That is, a large-diameter pipe, an inclined pipe, a rotating screw, and an air flow generator can be exemplified, and these may be used in combination.
  • the second flow path by forming at least a part of the second flow path with a pipe having a diameter larger than that of the first flow path, it is possible to suppress blockage of the second flow path by mist. Further, by forming at least a part of the second flow path with a pipe that is inclined with respect to the horizontal direction and extends in the direction of descending from the upstream side to the downstream side, the second flow path is blocked by mist. Can be suppressed.
  • a mist removing portion other than the mist removing portion provided in the first flow path may be provided in the second flow path as a clogging suppressing mechanism.
  • the first flow path is less likely to be blocked by the mist because the mist is removed from the fluid by the mist removing portion, and the second flow path is less likely to be blocked by the mist because the blockage suppressing mechanism is provided. Therefore, in the fluorine gas production method and the fluorine gas production apparatus of the present embodiment, when the electrolytic solution containing hydrogen fluoride and metal fluoride is electrolyzed to produce fluorine gas, the pipes and valves are blocked by mist. Can be suppressed. Even if the mist removing part and the blockage suppressing mechanism are not provided, the pipes and valves using the mist can be connected by simply switching the flow path through which the fluid flows to another flow path (first flow path or second flow path). Although the effect of suppressing obstruction is achieved, the above effect is superior when a mist removing portion and an obstruction suppressing mechanism are provided.
  • the mode of the electrolytic cell is not particularly limited, and any electrolytic cell can be used as long as the electrolytic solution containing hydrogen fluoride and metal fluoride can be electrolyzed to generate fluorine gas.
  • the inside of the electrolytic cell is divided into an anode chamber in which an anode is arranged and a cathode chamber in which a cathode is arranged by a partition member such as a partition wall, and fluorine gas generated at the anode and hydrogen gas generated at the cathode are generated. Is not mixed.
  • anode for example, a carbonaceous electrode formed of a carbon material such as diamond, diamond-like carbon, amorphous carbon, graphite, glassy carbon, or amorphous carbon can be used. Further, as the anode, in addition to the above carbon material, for example, a metal electrode formed of a metal such as nickel or Monel (trademark) can be used. As the cathode, for example, a metal electrode made of a metal such as iron, copper, nickel, or Monel TM can be used.
  • the electrolytic solution contains hydrogen fluoride and metal fluoride, and the type of the metal fluoride is not particularly limited, but is a fluoride of at least one metal selected from potassium, cesium, rubidium, and lithium. It is preferable to have.
  • the electrolytic solution contains cesium or rubidium, the specific gravity of the electrolytic solution becomes large, so that the amount of mist generated during electrolysis is suppressed.
  • a mixed molten salt of hydrogen fluoride (HF) and potassium fluoride (KF) can be used as the electrolytic solution.
  • hydrogen fluoride: potassium fluoride 2: 1
  • KF and 2HF are typical electrolytic solutions
  • the melting point of this mixed molten salt is about 72 ° C. Since this electrolytic solution is corrosive, it is preferable that the part in contact with the electrolytic solution, such as the inner surface of the electrolytic cell, is made of a metal such as iron, nickel, or Monel TM.
  • a DC current is applied to the anode and the cathode, a gas containing fluorine gas is generated at the anode, and a gas containing hydrogen gas is generated at the cathode.
  • hydrogen fluoride in the electrolytic solution has a vapor pressure
  • hydrogen fluoride is accompanied by the gases generated at the anode and the cathode, respectively.
  • the gas generated by the electrolysis contains the mist of the electrolytic solution. Therefore, the gas phase portion of the electrolytic cell is composed of a gas generated by electrolysis, hydrogen fluoride, and a mist of an electrolytic solution. Therefore, what is sent out from the inside of the electrolytic cell is composed of a gas generated by electrolysis, hydrogen fluoride, and a mist of an electrolytic solution, which is referred to as a "fluid" in the present invention.
  • a pipe for continuously or intermittently supplying hydrogen fluoride to the electrolytic cell for replenishment may be connected to the electrolytic cell. ..
  • Hydrogen fluoride may be supplied to the cathode chamber side of the electrolytic cell or to the anode chamber side.
  • the main reasons why mist is generated during electrolysis of the electrolytic solution are as follows.
  • the temperature of the electrolytic solution at the time of electrolysis is adjusted to, for example, 80 to 100 ° C. Since the melting point of KF ⁇ 2HF is 71.7 ° C., the electrolytic solution is in a liquid state when adjusted to the above temperature. Gas bubbles generated at both electrodes of the electrolytic cell rise in the electrolytic solution and burst at the liquid level of the electrolytic solution. At this time, a part of the electrolytic solution is released into the gas phase.
  • This powder is considered to be a mixture of potassium fluoride and hydrogen fluoride, KF ⁇ nHF. This powder rides on the flow of other generated gas and becomes mist, forming a fluid generated in the electrolytic cell. It is difficult to effectively remove such mist by ordinary measures such as installing a filter because of its adhesiveness.
  • the soot-like organic compound CFx may be generated as a mist by the reaction between the carbon forming the carbonaceous electrode and the fluorine gas.
  • the electrolytic cell has a structure in which air bubbles generated at the anode or cathode used in electrolysis rise vertically in the electrolytic solution and reach the liquid level of the electrolytic solution. If the structure is such that the bubbles do not easily rise in the electrolytic solution in the vertical direction and rise in the direction inclined with respect to the vertical direction, a plurality of bubbles are likely to aggregate to generate large bubbles. As a result, large bubbles reach the liquid surface of the electrolytic solution and burst, so that the amount of mist generated tends to increase. If the structure is such that bubbles can reach the liquid level of the electrolytic solution if they rise vertically in the electrolytic solution, small bubbles will reach the liquid surface of the electrolytic solution and burst, so that mist is generated. The amount tends to be small.
  • the fluorine gas production apparatus of the present embodiment may include an average particle size measuring unit for measuring the average particle size of mist contained in the fluid, and the average particle size measuring unit uses a light scattering method to measure the average particle size. It may be composed of a light scattering detector for measuring. The light scattering detector is preferable as an average particle size measuring unit because it can measure the average particle size of mist in the fluid flowing through the flow path while continuously operating the fluorine gas production apparatus.
  • the light scattering detector of FIG. 1 is a light scattering detector that can be used as an average particle size measuring unit in the fluorine gas production apparatus of the present embodiment (for example, the fluorine gas production apparatus of FIGS. 2 and 4 to 13 described later). is there. That is, when the electrolytic solution containing hydrogen fluoride and metal fluoride is electrolyzed inside the electrolytic cell of the fluorine gas production apparatus to produce fluorine gas, the mist contained in the fluid generated inside the electrolytic cell It is a light scattering detector that measures the average particle size.
  • a light scattering detector may be connected to a fluorine gas production device, and a fluid may be sent from the inside of the electrolytic tank to the light scattering detector to measure the average particle size of the mist, or the light scattering detector and the fluorine gas production device may be used. Instead of connecting, the fluid may be taken out from the inside of the electrolytic tank and introduced into a light scattering detector to measure the average particle size of the mist.
  • the sample chamber 1 accommodating the fluid F
  • the light source 2 that irradiates the fluid F in the sample chamber 1 with the light L for light scattering measurement, and the light L for light scattering measurement are in the fluid F.
  • the scattered light detection unit 3 that detects the scattered light S generated by being scattered by the mist M of the above, the transparent window 4A that is installed in the sample chamber 1 and comes into contact with the fluid F and transmits the light L for light scattering measurement, and the sample chamber. It is provided with a transparent window 4B which is installed in 1 and comes into contact with the fluid F and allows scattered light S to pass through.
  • the transparent windows 4A and 4B are at least selected from diamond, calcium fluoride (CaF 2 ), potassium fluoride (KF), silver fluoride (AgF), barium fluoride (BaF 2 ), and potassium bromide (KBr). It is formed by one species.
  • the light L for light scattering measurement (for example, laser light) emitted from the light source 2 passes through the focusing lens 6 and the transparent window 4A of the sample chamber 1 and enters the sample chamber 1, and the fluid F housed in the sample chamber 1 enters the sample chamber 1. Is irradiated to. At this time, if a substance that reflects light such as mist M is present in the fluid F, the light L for light scattering measurement is reflected and scattered. A part of the scattered light S generated by the light L for light scattering measurement scattered by the mist M is taken out from the sample chamber 1 through the transparent window 4B of the sample chamber 1, and is taken out from the sample chamber 1 to the condenser lens 7 and the aperture 8. Enters the scattered light detection unit 3 via.
  • a substance that reflects light such as mist M
  • the average particle size of the mist M can be known from the information obtained from the scattered light S.
  • the average particle size obtained here is the number average particle size.
  • the scattered light detection unit 3 for example, an aerosol spectral meter welas (registered trademark) digital 2000 manufactured by PALAS can be used.
  • the transparent windows 4A and 4B come into contact with the fluid F, but since the fluid F contains highly reactive fluorine gas, it is necessary to form the transparent windows 4A and 4B with a material that is not easily corroded by the fluorine gas.
  • the material forming the transparent windows 4A and 4B include at least one selected from diamond, calcium fluoride, potassium fluoride, silver fluoride, barium fluoride, and potassium bromide. If the transparent windows 4A and 4B are made of the above materials, deterioration due to contact with the fluid F can be suppressed.
  • a coating made of the above-mentioned material coated on the surface of glass such as quartz can also be used as the transparent windows 4A and 4B. Since the portion in contact with the fluid F is coated with a film made of the above-mentioned material, deterioration due to contact with the fluid F can be suppressed while suppressing the cost.
  • the transparent windows 4A and 4B may be a laminate in which the surface in contact with the fluid F is formed of the above material and the other portion is formed of ordinary glass such as quartz.
  • the material of the light scattering detector other than the transparent windows 4A and 4B is not particularly limited as long as it is a material having corrosion resistance to fluorine gas. For example, Monel (trademark) which is a copper-nickel alloy. ), Hastelloy TM, stainless steel and other metal materials are preferred.
  • the present inventors measured the average particle size of mist generated during the production of fluorine gas by electrolysis of an electrolytic solution using a light scattering detector. An example of the result will be described. Electrolysis is started after replacing the anode of the fluorine gas production equipment with a new anode or filling the electrolytic cell with a new electrolyte, and the average particles of mist in the fluid generated at the anode for a certain period immediately after the start of electrolysis. The diameter was measured. As a result, the average particle size of the mist was 0.5 to 2.0 ⁇ m.
  • the particle size of the mist generated is relatively small. Since such a small mist is unlikely to cause sedimentation or accumulation in a fluid, it can flow stably through pipes and valves. Therefore, during stable electrolysis, the fluid composed of mist and gas generated at the electrodes is relatively unlikely to cause clogging of pipes and valves.
  • the time from immediately after the start of electrolysis to the time of stable electrolysis is usually 25 hours or more and 200 hours or less. Further, from immediately after the start of electrolysis to the time of stable electrolysis, it is necessary to energize approximately 40 kAh or more per 1000 L of the electrolytic solution.
  • the present inventors have found that there is a close relationship between the average particle size of mist and the water concentration in the cathode gas.
  • the water concentration in the cathode gas is large at the start of electrolysis and shows a value larger than 0.05% by volume.
  • the average particle size of the mist at this time is larger than 0.4 ⁇ m. After that, as the electrolysis is continued, the water concentration in the cathode gas decreases, and when it becomes 0.05% by volume or less, the average particle size of the mist becomes 0.4 ⁇ m or less.
  • the water concentration in the cathode gas is measured instead of the average particle size of the mist during electrolysis, and the measurement result is obtained. It can be used to switch the flow path. That is, if the water concentration in the cathode gas is measured at a predetermined timing during electrolysis, the flow path through which the fluid generated by electrolysis flows can be appropriately switched according to the measurement result. ..
  • the fluorine gas production apparatus of this embodiment has a first flow path and a second flow path, and is used for transporting a fluid from the two flow paths by using a flow path switching unit (for example, a switching valve).
  • the flow path may be selected.
  • the fluorine gas production apparatus of the present embodiment has two flow paths and a moving replacement mechanism for moving and replacing the electrolytic cell, and a flow used for transporting a fluid from the two flow paths.
  • the flow path may be switched by selecting a path and moving and connecting the electrolytic cell in the vicinity of the flow path. Since it has a first flow path and a second flow path as described above, even while one flow path is blocked and cleaned, the other flow path is opened to continue the fluorine gas production apparatus. You can drive.
  • mist having a relatively large average particle size is generated from immediately after the start of electrolysis to the time of stable electrolysis. At this time, the fluid is sent to the second flow path having the clogging suppressing mechanism. You may. When time elapses and stable electrolysis is performed, mist having a relatively small average particle size is generated. Therefore, at this time, the flow path may be switched so as to send the fluid to the first flow path having the mist removing portion.
  • Such switching of the flow path is performed according to the measured water concentration in the cathode gas, but the flow path is switched based on a preset reference value.
  • Appropriate reference values for the average particle size of the mist generated at the anode vary from device to device, but are, for example, 0.1 ⁇ m or more and 1.0 ⁇ m or less, preferably 0.2 ⁇ m or more and 0.8 ⁇ m or less, and more preferably 0. It is 4 ⁇ m. Therefore, from the correlation between the average particle size of the mist and the water concentration in the cathode gas, an appropriate reference value for the water concentration in the cathode gas is 0.01% by volume or more and 0.09% by volume or less, preferably 0.
  • the fluid can be sent to the second flow path, and when it is equal to or less than the reference value, the fluid can be sent to the first flow path.
  • the method for measuring the water concentration in the cathode gas is not particularly limited, but can be measured by, for example, infrared spectroscopy or Fourier transform infrared spectroscopy. It is possible to measure the water concentration in the fluid generated in the anode chamber of the electrolytic tank, but since the water concentration changes due to the reaction between the fluorine gas and the water, the water concentration in the cathode gas (hydrogen gas) is measured. It is preferable to do so.
  • a known amount of cathode gas is circulated in the cell of the infrared spectrophotometer, and the absorption intensity of water at a specific wavelength is absorbed. Quantify the water concentration by. For example, if the cathode gas is circulated in the cell while controlling the gas flow rate with a mass flow meter, a desired amount of the cathode gas can be circulated in the cell.
  • main component is hydrogen gas
  • main component is hydrogen gas
  • the average particle size of this powder is about 0.1 ⁇ m, and it has a distribution of ⁇ 0.05 ⁇ m.
  • the particle size distribution of the generated powder did not show a large difference depending on the water concentration in the cathode gas.
  • the mist contained in the fluid generated at the cathode has a smaller average particle size than the mist contained in the fluid generated at the anode, so that the mist contained in the fluid generated at the anode is smaller than the mist contained in the fluid generated at the anode. Is unlikely to occur. Therefore, the mist contained in the fluid generated at the cathode may be removed from the fluid by using an appropriate removal method.
  • the fluorine gas production apparatus of FIG. 2 is an example in which two electrolytic cells are provided, but the number of electrolytic cells may be one or three or more, for example, 10 to 15. You may.
  • the fluorine gas production apparatus shown in FIG. 2 includes electrolytic cells 11 and 11 in which the electrolytic cell 10 is housed and electrolyzed, an anode 13 arranged inside the electrolytic cell 11 and immersed in the electrolytic cell 10. It is provided with a cathode 15 which is arranged inside the electrolytic cell 11 and is immersed in the electrolytic solution 10 and is arranged so as to face the anode 13.
  • the inside of the electrolytic cell 11 is divided into an anode chamber 22 and a cathode chamber 24 by a partition wall 17 extending vertically downward from the ceiling surface inside the electrolytic cell 11 and having its lower end immersed in the electrolytic solution 10.
  • the anode 13 is arranged in the anode chamber 22, and the cathode 15 is arranged in the cathode chamber 24.
  • the space on the liquid surface of the electrolytic solution 10 is separated into a space inside the anode chamber 22 and a space inside the cathode chamber 24 by the partition wall 17, and the portion of the electrolytic solution 10 on the upper side of the lower end of the partition wall 17.
  • the portion of the electrolytic solution 10 below the lower end of the partition wall 17 is not directly separated by the partition wall 17 and is continuous.
  • the fluorine gas production apparatus shown in FIG. 2 includes a water concentration measuring unit 39 for measuring the water concentration in the fluid generated in the cathode chamber 24 of the electrolytic tank 11 during electrolysis of the electrolytic solution 10 and electrolysis of the electrolytic solution 10.
  • the first average particle size measuring unit 31 for measuring the average particle size of the mist contained in the fluid sometimes generated inside the electrolytic tank 11, the first mist removing unit 32 for removing the mist from the fluid, and the fluorine gas from the fluid. It is provided with a fluorine gas sorting unit (not shown) for sorting and taking out, and a flow path for sending a fluid from the inside of the electrolytic tank 11 to the fluorine gas sorting unit.
  • this flow path is a first flow path for sending a fluid from the inside of the electrolytic cell 11 to the fluorine gas sorting unit via the first mist removing unit 32, and an electrolytic cell without passing through the first mist removing unit 32. It has a second flow path for sending a fluid from the inside of the eleven to the fluorine gas sorting unit. Further, this flow path has a flow path switching unit that switches the flow path through which the fluid flows to the first flow path or the second flow path according to the water concentration in the cathode gas measured by the water concentration measuring unit 39. ing. That is, a flow path switching portion is provided in the middle of the flow path extending from the electrolytic cell 11, and the flow path through which the fluid flows can be changed by the flow path switching portion.
  • the flow path switching unit sends a fluid from the inside of the electrolytic cell 11 to the first flow path. If it is larger than the preset reference value, the fluid is sent from the inside of the electrolytic cell 11 to the second flow path.
  • the second flow path has a blockage suppression mechanism that suppresses blockage due to mist in the second flow path.
  • the fluid when the water concentration in the cathode gas is equal to or lower than the reference value, the fluid is sent to the first flow path in which the electrolytic cell 11 and the fluorine gas sorting unit are connected and the first mist removing unit 32 is provided, and the cathode is used.
  • the fluid When the water concentration in the gas is higher than the reference value, the fluid is sent to the second flow path which connects the electrolytic cell 11 and the fluorine gas sorting unit and is provided with the clogging suppressing mechanism.
  • FT-IR Fourier transform infrared spectrophotometer
  • mist removing device capable of removing mist having an average particle diameter of 0.4 ⁇ m or less from the fluid.
  • the type of mist removing device that is, the method for removing mist is not particularly limited, but since the average particle size of mist is small, for example, an electrostatic precipitator, a venturi scrubber, or a filter is used as the mist removing device. be able to.
  • the mist removing device shown in FIG. 3 is a scrubber type mist removing device that uses liquid hydrogen fluoride as a circulating fluid.
  • the mist removing device shown in FIG. 3 can efficiently remove mist having an average particle diameter of 0.4 ⁇ m or less from the fluid.
  • liquid hydrogen fluoride is used as the circulating fluid, it is preferable to cool the circulating fluid in order to reduce the concentration of hydrogen fluoride in the fluorine gas. Therefore, the hydrogen fluoride in the fluorine gas is controlled by controlling the cooling temperature. The concentration can be adjusted.
  • the fluorine gas production apparatus shown in FIG. 2 will be described in more detail.
  • the first pipe 41 that sends the fluid generated in the anode chamber 22 of the electrolytic cell 11 (hereinafter, also referred to as “anode gas”) to the outside communicates the electrolytic cell 11 and the fourth pipe 44, 2
  • the anodic gas sent out from the two electrolytic cells 11 and 11 is sent to the fourth pipe 44 by the first pipe 41 and mixed.
  • the main component of the anode gas is fluorine gas, and the subcomponents are mist, hydrogen fluoride, carbon tetrafluoride, oxygen gas, and water.
  • the fourth pipe 44 is connected to the first mist removing unit 32, and the anodic gas is sent to the first mist removing unit 32 by the fourth pipe 44, so that the mist and hydrogen fluoride in the anodic gas are removed from the first mist.
  • the part 32 removes the anodic gas from the anodic gas.
  • the anodic gas from which mist and hydrogen fluoride have been removed is sent from the first mist removing unit 32 to a fluorine gas sorting unit (not shown) by a sixth pipe 46 connected to the first mist removing unit 32. ..
  • the fluorine gas sorting unit sorts and takes out the fluorine gas from the anode gas.
  • An eighth pipe 48 is connected to the first mist removing unit 32, and liquid hydrogen fluoride, which is a circulating liquid, is supplied to the first mist removing unit 32 by the eighth pipe 48. .. Further, a ninth pipe 49 is connected to the first mist removing unit 32. The ninth pipe 49 is connected to the electrolytic cells 11 and 11 via the third pipe 43, and is used by the first mist removing unit 32 to remove the mist, and is a circulating liquid (liquid hydrogen fluoride) containing the mist. Is returned from the first mist removing unit 32 to the electrolytic cells 11 and 11.
  • the cathode chamber 24 of the electrolytic cell 11 is the same as the anode chamber 22. That is, the second pipe 42 that sends the fluid generated in the cathode chamber 24 of the electrolytic cell 11 (hereinafter, also referred to as “cathode gas”) to the outside communicates the electrolytic cell 11 and the fifth pipe 45.
  • the cathode gas sent out from the two electrolytic cells 11 and 11 is sent to the fifth pipe 45 by the second pipe 42 and mixed.
  • the main component of the cathode gas is hydrogen gas, and the subcomponents are mist, hydrogen fluoride, and water.
  • Cathode gas contains fine mist and 5 to 10% by volume of hydrogen fluoride, so it is not preferable to discharge it to the atmosphere as it is. Therefore, the fifth pipe 45 is connected to the second mist removing unit 33, the cathode gas is sent to the second mist removing unit 33 by the fifth pipe 45, and the mist and hydrogen fluoride in the cathode gas are the second mist. It is designed to be removed from the cathode gas by the removing unit 33. The cathode gas from which the mist and hydrogen fluoride have been removed is discharged to the atmosphere from the second mist removing unit 33 by the seventh pipe 47 connected to the second mist removing unit 33.
  • the type of the second mist removing unit 33 that is, the method of removing the mist is not particularly limited, but a scrubber type mist removing device using an alkaline aqueous solution as a circulating solution can be used.
  • the pipe diameter and installation direction (meaning the direction in which the pipe extends, for example, the vertical direction and the horizontal direction) of the first pipe 41, the second pipe 42, the fourth pipe 44, and the fifth pipe 45 are not particularly limited.
  • the first pipe 41 and the second pipe 42 are installed so as to extend in the vertical direction from the electrolytic tank 11, and the flow velocity of the fluid flowing through the first pipe 41 and the second pipe 42 is 30 cm / sec in the standard state.
  • the pipe diameter is as follows. Then, even if the mist contained in the fluid falls due to its own weight, the mist settles in the electrolytic cell 11, so that the inside of the first pipe 41 and the second pipe 42 is less likely to be blocked by the powder.
  • the fourth pipe 44 and the fifth pipe 45 are installed so as to extend along the horizontal direction and the flow velocity of the fluid flowing through the fourth pipe 44 and the fifth pipe 45 is the first pipe 41 and the second pipe 42. It is preferable to set the pipe diameter so as to be about 1 to 10 times faster than the above.
  • a second bypass pipe 52 for sending the anode gas to the outside of the electrolytic cell 11 is provided separately from the first pipe 41. That is, the second bypass pipe 52 communicates the electrolytic cell 11 and the first bypass pipe 51, and the anode gas sent out from the two electrolytic cells 11 and 11 is transmitted by the second bypass pipe 52 to the first bypass pipe 51. It is sent to and mixed. Further, the anodic gas is sent out to a fluorine gas sorting unit (not shown) by the first bypass pipe 51. Then, the fluorine gas sorting unit sorts and takes out the fluorine gas from the anode gas.
  • the fluorine gas sorting unit connected to the first bypass pipe 51 and the fluorine gas sorting unit connected to the sixth pipe 46 may be the same or different.
  • the pipe diameter and installation direction of the second bypass pipe 52 are not particularly limited, but the second bypass pipe 52 is installed so as to extend from the electrolytic cell 11 in the vertical direction, and the fluid flowing through the second bypass pipe 52. It is preferable to set the pipe diameter so that the flow velocity of the above is 30 cm / sec or less in the standard state.
  • the first bypass pipe 51 is installed so as to extend along the horizontal direction.
  • the first bypass pipe 51 has a pipe diameter larger than that of the fourth pipe 44, and the pipe diameter of the first bypass pipe 51 is such that the first bypass pipe 51 is blocked due to the accumulation of powder. The size is such that it is unlikely to occur. Since the first bypass pipe 51 is a pipe having a diameter larger than that of the fourth pipe 44, a blockage suppressing mechanism is configured.
  • the pipe diameter of the first bypass pipe 51 is preferably 1.0 times more than 3.2 times or less than that of the fourth pipe 44, and more preferably 1.05 times or more and 1.5 times or less. That is, the flow path cross-sectional area of the first bypass pipe 51 is preferably 10 times or less that of the fourth pipe 44.
  • first pipe 41 and the fourth pipe 44 form the first flow path
  • first bypass pipe 51 and the second bypass pipe 52 form the second flow path.
  • a blockage suppressing mechanism is provided in the first bypass pipe 51 that constitutes the second flow path.
  • a first piping valve 61 is installed in each of the first piping 41. Then, by switching the first piping valve 61 to the open state or the closed state, it is possible to control whether or not the anode gas can be supplied from the electrolytic cell 11 to the first mist removing unit 32. Further, a bypass valve 62 is installed in each of the second bypass pipes 52. Then, by switching the bypass valve 62 to the open state or the closed state, it is possible to control whether or not the anode gas can be supplied from the electrolytic cell 11 to the first bypass pipe 51.
  • the fluorine gas production apparatus has a water concentration measuring unit 39, and can measure the water concentration in the cathode gas generated in the cathode chamber 24 during electrolysis.
  • the water concentration measuring unit 39 is installed in the middle portion of the fifth pipe 45 and on the downstream side of the connecting portion with the second pipe 42.
  • the first average particle size is measured between the electrolytic cell 11 and the first mist removing portion 32, which is an intermediate portion of the fourth pipe 44 and downstream of the connecting portion with the first pipe 41.
  • the section 31 is installed. Then, the first average particle size measuring unit 31 measures the average particle size of the mist contained in the anode gas flowing through the fourth pipe 44. Further, by analyzing the fluorine gas and the nitrogen gas contained in the anode gas after measuring the average particle size of the mist, the current efficiency in the production of the fluorine gas can be measured.
  • a similar second average particle size measuring unit 34 is installed in the middle portion of the first bypass pipe 51 and on the downstream side of the connecting portion with the second bypass pipe 52 to measure the second average particle size.
  • the unit 34 measures the average particle size of the mist contained in the anode gas flowing through the first bypass pipe 51.
  • the fluorine gas production apparatus shown in FIG. 2 does not have to include the first average particle size measuring unit 31 and the second average particle size measuring unit 34.
  • the water concentration measuring unit 39 measures the water concentration in the cathode gas, and if the measurement result is larger than the preset reference value, the bypass valve 62 is opened and the anode gas is first from the electrolytic cell 11. The gas is sent to the bypass pipe 51 and the first pipe valve 61 is closed to prevent the anode gas from being sent to the fourth pipe 44 and the first mist removing unit 32. That is, the anode gas is sent to the second flow path.
  • the first pipe valve 61 is opened, the anode gas is sent to the fourth pipe 44 and the first mist removing unit 32, and the bypass valve 62 is opened. In the closed state, the anode gas is prevented from being sent from the electrolytic cell 11 to the first bypass pipe 51. That is, the anode gas is sent to the first flow path.
  • the first piping valve 61 and the bypass valve 62 constitute the above-mentioned flow path switching portion.
  • fluorine gas production apparatus As described above, by operating the fluorine gas production apparatus while switching the flow path according to the water concentration in the cathode gas, it is possible to smoothly perform continuous operation while suppressing blockage of pipes and valves due to mist. it can. Therefore, according to the fluorine gas production apparatus shown in FIG. 2, fluorine gas can be economically produced.
  • a plurality of pipes on which a filter is installed may be prepared as a mist removing unit, and electrolysis may be performed while changing the filter as appropriate. Furthermore, the period during which the filter should be replaced frequently and the period during which the filter does not need to be replaced may be determined based on the measurement of the water concentration in the cathode gas. Then, if the switching frequency of the piping through which the fluid flows is appropriately adjusted based on the above determination, the operation of the fluorine gas production apparatus can be efficiently and continuously performed.
  • the second modification will be described with reference to FIG.
  • the fluorine gas production apparatus of the second modification shown in FIG. 5 is an example including one electrolytic cell 11.
  • the first average particle size measuring unit 31 is provided not in the fourth pipe 44 but in the first pipe 41, and is provided on the upstream side of the first pipe valve 61. Further, the second bypass pipe 52 is not provided, and the first bypass pipe 51 is directly connected to the electrolytic cell 11 without passing through the second bypass pipe 52.
  • the first bypass pipe 51 Since the first bypass pipe 51 has a larger diameter than the fourth pipe 44, it functions as a blockage suppressing mechanism. Further, for example, by providing a space for collecting mist at the downstream end of the first bypass pipe 51, the effect of suppressing blockage can be further increased.
  • the space for collecting mist for example, the downstream end portion of the first bypass pipe 51 is formed to have a pipe diameter larger than the central portion in the installation direction (for example, a pipe diameter four times or more the central portion in the installation direction). Examples thereof include a space in which the downstream end portion of the first bypass pipe 51 is formed in a container-like shape, and the space for collecting mist can suppress the blockage of the first bypass pipe 51.
  • bypass valve 62 is provided in the third bypass pipe 53 that connects the first bypass pipe 51 and the fluorine gas sorting unit (not shown). Since the configuration of the fluorine gas production apparatus of the second modification is almost the same as that of the fluorine gas production apparatus of FIG. 2 except for the above points, the description of the same parts will be omitted.
  • a third modification will be described with reference to FIG.
  • the first average particle size measuring unit 31 is provided in the electrolytic cell 11, and the anode gas inside the electrolytic cell 11 is directly connected to the first average particle size measuring unit 31. Introduced in, the average particle size of mist has been measured.
  • the fluorine gas production apparatus of the third modification does not have the second average particle size measuring unit 34. Since the configuration of the fluorine gas production apparatus of the third modification is almost the same as that of the fluorine gas production apparatus of the second modification except for the above points, the description of the same parts will be omitted.
  • a fourth modification will be described with reference to FIG. 7.
  • the fluorine gas production apparatus of the fourth modification is an example in which the clogging suppressing mechanism is different from that of the second modification shown in FIG.
  • the first bypass pipe 51 was installed so as to extend along the horizontal direction, but in the fluorine gas production apparatus of the fourth modification, the first bypass pipe 51 Is inclined with respect to the horizontal direction and extends in a direction descending from the upstream side to the downstream side. This inclination suppresses the accumulation of powder inside the first bypass pipe 51. The larger the slope, the greater the effect of suppressing the accumulation of powder.
  • the inclination angle of the first bypass pipe 51 is preferably 30 degrees or more, and more preferably 40 degrees or more and 60 degrees or less in the range where the depression angle from the horizontal plane is smaller than 90 degrees. If the first bypass pipe 51 is likely to be blocked, hammering the inclined first bypass pipe 51 makes it easier for the deposits inside the first bypass pipe 51 to move, so that the blockage can be avoided. it can. Since the configuration of the fluorine gas production apparatus of the fourth modification is almost the same as that of the fluorine gas production apparatus of the second modification except for the above points, the description of the same parts will be omitted.
  • a fifth modification will be described with reference to FIG.
  • the fluorine gas production apparatus of the fifth modification is an example in which the clogging suppressing mechanism is different from that of the third modification shown in FIG.
  • the first bypass pipe 51 was installed so as to extend along the horizontal direction, but in the fluorine gas production apparatus of the fifth modification, the first bypass pipe 51 Is inclined with respect to the horizontal direction and extends in a direction descending from the upstream side to the downstream side. This inclination suppresses the accumulation of powder inside the first bypass pipe 51.
  • the preferable inclination angle of the first bypass pipe 51 is the same as in the case of the fourth modification. Since the configuration of the fluorine gas production apparatus of the fifth modification is almost the same as that of the fluorine gas production apparatus of the third modification except for the above points, the description of the same parts will be omitted.
  • the fluorine gas production apparatus of the sixth modification is an example in which the structure of the electrolytic cell 11 is different from that of the second modification shown in FIG.
  • the electrolytic cell 11 has one anode 13 and two cathodes 15 and 15, and is divided into one anode chamber 22 and one cathode chamber 24 by a tubular partition wall 17 surrounding one anode 13.
  • the anode chamber 22 is formed so as to extend above the upper surface of the electrolytic cell 11, and the first bypass pipe 51 is connected to the upper end portion of the anode chamber 22 of the electrolytic cell 11. Since the configuration of the fluorine gas production apparatus of the sixth modification is almost the same as that of the fluorine gas production apparatus of the second modification except for the above points, the description of the same parts will be omitted.
  • the fluorine gas production apparatus of the seventh modification is an example in which the structure of the first bypass pipe 51 is different from that of the sixth modification shown in FIG. That is, in the fluorine gas production apparatus of the 7th modification, the 1st bypass pipe 51 is inclined with respect to the horizontal direction and is inclined from the upstream side to the downstream side as in the 4th modification and the 5th modification. It extends in the direction of descending.
  • the preferable inclination angle of the first bypass pipe 51 is the same as in the case of the fourth modification. Since the configuration of the fluorine gas production apparatus of the seventh modification is almost the same as that of the fluorine gas production apparatus of the sixth modification except for the above points, the description of the same parts will be omitted.
  • the fluorine gas production apparatus of the eighth modification is an example in which the clogging suppressing mechanism is different from that of the second modification shown in FIG.
  • the rotary screw 71 constituting the blockage suppressing mechanism is installed inside the first bypass pipe 51.
  • the rotating screw 71 is installed with its rotating shaft parallel to the longitudinal direction of the first bypass pipe 51. Then, by rotating the rotary screw 71 by the motor 72, the mist accumulated inside the first bypass pipe 51 can be sent to the upstream side or the downstream side. As a result, the powder is prevented from accumulating inside the first bypass pipe 51. Since the configuration of the fluorine gas production apparatus of the eighth modification is almost the same as that of the fluorine gas production apparatus of the second modification except for the above points, the description of the same parts will be omitted.
  • the fluorine gas production apparatus of the ninth modification is an example in which the clogging suppressing mechanism is different from that of the second modification shown in FIG.
  • the airflow generator 73 constituting the blockage suppression mechanism is installed in the first bypass pipe 51.
  • the airflow generator 73 sends an airflow (for example, an airflow of nitrogen gas) from the upstream side to the downstream side of the first bypass pipe 51 to increase the flow velocity of the anode gas flowing in the first bypass pipe 51.
  • an airflow for example, an airflow of nitrogen gas
  • the preferable flow velocity of the anode gas flowing in the first bypass pipe 51 is 1 m / sec or more and 10 m / sec or less. It is possible to increase the flow velocity to more than 10 m / sec, but in that case, the pressure loss due to the piping resistance in the first bypass pipe 51 becomes large, and the pressure in the anode chamber 22 of the electrolytic cell 11 becomes high. It is preferable that the pressure in the anode chamber 22 and the pressure in the cathode chamber 24 are about the same, but if the difference between the pressure in the anode chamber 22 and the pressure in the cathode chamber 24 becomes too large, the anode gas becomes a partition wall.
  • [10th modification] A tenth modification will be described with reference to FIG.
  • the first average particle size measuring unit 31 is provided in the electrolytic cell 11, and the anode gas inside the electrolytic cell 11 is directly connected to the first average particle size measuring unit 31. Introduced in, the average particle size of mist has been measured.
  • the fluorine gas production apparatus of the tenth modification does not have the second average particle size measuring unit 34. Since the configuration of the fluorine gas production apparatus of the tenth modification is almost the same as that of the fluorine gas production apparatus of the ninth modification shown in FIG. 12 except for the above points, the description of the same part will be omitted.
  • Fluorine gas was produced by electrolyzing the electrolytic solution.
  • a mixed molten salt (560 L) of 434 kg of hydrogen fluoride and 630 kg of potassium fluoride was used.
  • An amorphous carbon electrode (width 30 cm, length 45 cm, thickness 7 cm) manufactured by SGL Carbon Co., Ltd. was used as the anode, and 16 anodes were installed in the electrolytic cell.
  • a punching plate manufactured by Monel (trademark) was used as a cathode and installed in an electrolytic cell. Two cathodes face one anode, and the total area of the portion of one anode facing the cathode is 1736 cm 2 .
  • the electrolysis temperature was controlled to 85 to 95 ° C.
  • the electrolyte temperature was set to 85 ° C.
  • a DC current of 1000 A was applied at a current density of 0.036 A / cm 2, and electrolysis was started.
  • the water concentration in the electrolytic solution at this time was 1.0% by mass.
  • the water concentration was measured by the Karl Fischer titer analysis method.
  • Electrolysis was started under the above conditions, and a small plosive sound was observed in the vicinity of the anode in the anode chamber for 10 hours (until the integrated energization amount reached 10 kAh) immediately after the start of electrolysis. It is probable that this plosive sound was generated due to the reaction between the generated fluorine gas and the water content in the electrolytic solution.
  • the fluid generated in the cathode chamber in this state was sampled when it was sent out from the cathode chamber of the electrolytic cell, and the water concentration in the fluid was measured and found to be 0.1% by volume. Further, the fluid generated at the anode in this state was collected when it was sent out from the anode chamber of the electrolytic cell, and the mist contained in the fluid was analyzed. As a result, 5.0 to 9.0 mg of powder (calculated assuming that the specific gravity of the mist is 1.0 g / mL. The same applies to the following) is contained in 1 L of the fluid generated at the anode. The average particle size of this powder was 1.0 to 2.0 ⁇ m. When this powder was observed with an optical microscope, the powder having a shape like a hollow inside a sphere was mainly observed. The current efficiency of fluorine gas generation at this time was 0 to 15%.
  • the frequency of plosive sounds inside the anode chamber decreased.
  • the water concentration in the electrolytic solution at this time was 0.7% by mass.
  • the fluid generated in the cathode chamber in this state was sampled when it was sent out from the cathode chamber of the electrolytic cell, and the water concentration in the fluid was measured and found to be 0.07% by volume. Further, the fluid generated at the anode in this state was collected when it was sent out from the anode chamber of the electrolytic cell, and the mist contained in the fluid was analyzed.
  • step (1) The stage of electrolysis from the start of electrolysis to this point is referred to as "step (1)".
  • the electrolysis of the electrolytic solution was continued following the step (1). Then, hydrogen fluoride is consumed and the level of the electrolytic solution is lowered. Therefore, hydrogen fluoride was appropriately replenished from the hydrogen fluoride tank to the electrolytic cell.
  • the water concentration in the supplemented hydrogen fluoride is 500 mass ppm or less.
  • the average particle size of the mist contained in the fluid generated at the anode became 0.36 ⁇ m (that is, 0.4 ⁇ m or less). At this point, no plosives were generated inside the anode chamber.
  • step (2) The stage of electrolysis from the end of step (1) to this point is referred to as "step (2)".
  • the current was increased to 3500 A and the current density was increased to 0.126 A / cm 2, and the electrolysis of the electrolytic solution was continued in the step (2).
  • the fluid generated at the anode in this state was sampled when it was sent out from the anode chamber of the electrolytic cell, and the mist contained in the fluid was analyzed.
  • 0.03 to 0.06 mg of powder was contained in 1 L of the fluid generated at the anode, and the average particle size of this powder was about 0.2 ⁇ m (0.15 to 0.25 ⁇ m).
  • the diameter had a distribution of about 0.1-0.5 ⁇ m.
  • FIG. 14 shows the measurement results of the particle size distribution of this powder.
  • the current efficiency of fluorine gas generation at this time was 94%.
  • the stage of electrolysis from the end of step (2) to this point is referred to as a "stable stage".
  • Table 1 summarizes the contents of the electrolysis of Reference Example 1 performed as described above.
  • Table 1 shows the current, the elapsed electrolysis time, the amount of energization, the water concentration in the electrolytic solution, the mass of mist contained in 1 L of the fluid generated at the anode (denoted as “anode gas” in Table 1), and the mist.
  • the amount of fluid containing fluorine gas, oxygen gas, and mist
  • the water concentration inside is also shown.
  • FIG. 15 shows a graph showing the relationship between the average particle size of mist and the amount of mist generated at the anode. From the graph of FIG. 15, it can be seen that there is a correlation between the average particle size of mist and the amount of mist generated at the anode. The larger the amount of mist generated, the more likely it is that the pipes and valves will be blocked. If mist with an average particle size larger than 0.4 ⁇ m is generated, the amount of mist generated will increase and will be deposited by the action of gravity. Therefore, it can be said that the relationship shown in the graph of FIG. 15 represents the correlation between the average particle size of the mist and the likelihood of clogging of pipes and valves.
  • FIG. 16 shows the relationship between the water concentration in the cathode gas and the likelihood of the pipes and valves being blocked. It can be said that.
  • Example 1 The same electrolysis as in Reference Example 1 was performed using the fluorine gas production apparatus shown in FIG.
  • the fluid generated at the anode was circulated via the second bypass pipe, the bypass valve, and the first bypass pipe.
  • the electrolysis was temporarily stopped, and the inside of the fluorine gas production apparatus was inspected. As a result, although mist was accumulated in the first bypass pipe, the pipe was not blocked because the diameter of the pipe was increased.
  • the average particle size of the mist is 0.4 ⁇ m or less (the water concentration in the fluid generated in the cathode chamber, that is, the water concentration in the cathode gas is about 0.02% by volume, which is 0.05% by volume or less of the reference value). Since the electrolysis was performed in step (2), the fluid generated at the anode was circulated via the first pipe, the first pipe valve, the fourth pipe, and the first mist removing portion. No mist was accumulated or blocked in the first pipe, the first pipe valve, and the fourth pipe, and the fluid generated at the anode was supplied to the first mist removing part, so that the mist was removed in the first mist removing part.
  • the first mist removing part was a scrubber type removing part for removing fine particles such as mist by spraying liquid hydrogen fluoride, and the mist removing rate was 98% or more.
  • the vertical length (immersion depth) of the part of the partition wall in the electrolytic cell that was immersed in the electrolytic solution was 5 cm
  • the pressure on the anode side was about 100 mmH 2 O higher than the pressure on the cathode side
  • the anode side The level of the electrolyte is lower than the lower end of the partition.
  • the fluorine gas gets over the partition wall and mixes with the hydrogen gas on the cathode side, causing a rapid reaction between the fluorine gas and the hydrogen gas, which is extremely dangerous.
  • the insides of the first pipe, the first pipe valve, and the fourth pipe were inspected.
  • the first pipe was a pipe extending in the vertical direction, so there was no blockage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

ミストによる配管やバルブの閉塞を抑制することができるフッ素ガスの製造方法を提供する。電解槽内で電解液の電気分解を行う電解工程と、電気分解時に陰極室で発生した流体中の水分濃度を測定する水分濃度測定工程と、電解液の電気分解時に電解槽の内部で生じた流体を電解槽の内部から外部へ流路を介して送る送気工程と、を備える方法によりフッ素ガスを製造する。送気工程においては、水分濃度測定工程で測定された水分濃度に応じて流体を流す流路を切り替え、水分濃度測定工程で測定された水分濃度が、予め設定された基準値以下である場合は、電解槽の内部から第1の外部へ流体を送る第1流路に流体を送り、予め設定された基準値よりも大きい場合は、電解槽の内部から第2の外部へ流体を送る第2流路に流体を送るようになっている。予め設定された基準値は0.01体積%以上0.09体積%以下の範囲内の数値である。

Description

フッ素ガスの製造方法及びフッ素ガス製造装置
 本発明はフッ素ガスの製造方法及びフッ素ガス製造装置に関する。
 フッ素ガスは、フッ化水素及び金属フッ化物を含有する電解液を電気分解することによって合成(電解合成)することができる。電解液の電気分解によってフッ素ガスとともにミスト(例えば電解液のミスト)も発生するため、電解槽から送り出されたフッ素ガスにはミストが同伴する。フッ素ガスに同伴したミストは粉体となり、フッ素ガスの送気に使用される配管やバルブを閉塞させるおそれがある。そのため、フッ素ガスを製造する運転を中断又は停止せざるを得ない場合があり、電解法によるフッ素ガスの製造における連続運転の支障になっていた。
 ミストによる配管やバルブの閉塞を抑制するために、特許文献1には、ミストを同伴するフッ素ガス又は当該ガスが通過する配管を、電解液の融点以上に加熱する技術が開示されている。また、特許文献2には、ミストを粗取りする空間であるガス拡散部と、ミストを吸着させるための充填材を収容する充填材収容部と、を有するガス生成装置が開示されている。
日本国特許公報 第5584904号 日本国特許公報 第5919824号
 しかしながら、ミストによる配管やバルブの閉塞をより効果的に抑制することができる技術が望まれていた。
 本発明は、ミストによる配管やバルブの閉塞を抑制することができるフッ素ガスの製造方法及びフッ素ガス製造装置を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[5]の通りである。
[1] フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造するフッ素ガスの製造方法であって、
 陽極が配された陽極室と陰極が配された陰極室とを内部に有する電解槽内で前記電気分解を行う電解工程と、
 前記電気分解時に前記陰極室で発生した流体中の水分濃度を測定する水分濃度測定工程と、
 前記電解液の電気分解時に前記電解槽の内部で生じた流体を前記電解槽の内部から外部へ流路を介して送る送気工程と、
を備え、
 前記送気工程においては、前記水分濃度測定工程で測定された前記水分濃度に応じて前記流体を流す流路を切り替え、前記水分濃度測定工程で測定された前記水分濃度が、予め設定された基準値以下である場合は、前記電解槽の内部から第1の外部へ前記流体を送る第1流路に前記流体を送り、前記予め設定された基準値よりも大きい場合は、前記電解槽の内部から第2の外部へ前記流体を送る第2流路に前記流体を送るようになっており、
 前記予め設定された基準値は0.01体積%以上0.09体積%以下の範囲内の数値であるフッ素ガスの製造方法。
[2] 前記金属フッ化物は、カリウム、セシウム、ルビジウム、及びリチウムから選ばれる少なくとも1種の金属のフッ化物である[1]に記載のフッ素ガスの製造方法。
[3] 前記電気分解において使用する陽極が、ダイヤモンド、ダイヤモンドライクカーボン、アモルファスカーボン、グラファイト、及びグラッシーカーボンから選ばれる少なくとも1種の炭素材料で形成された炭素質電極である[1]又は[2]に記載のフッ素ガスの製造方法。
[4] 前記電解槽は、前記電気分解において使用する陽極又は陰極で発生した気泡が前記電解液中を鉛直方向に上昇し、前記電解液の液面に到達可能な構造を有する[1]~[3]のいずれか一項に記載のフッ素ガスの製造方法。
[5] フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造するフッ素ガス製造装置であって、
 陽極が配された陽極室と陰極が配された陰極室とを内部に有し且つ前記電解液を収容し前記電気分解が行われる電解槽と、
 前記電気分解時に前記陰極室で発生した流体中の水分濃度を測定する水分濃度測定部と、
 前記電解液の電気分解時に前記電解槽の内部で生じた流体を前記電解槽の内部から外部へ送る流路と、
を備え、
 前記流路は、前記電解槽の内部から第1の外部へ前記流体を送る第1流路と、前記電解槽の内部から第2の外部へ前記流体を送る第2流路と、を有するとともに、前記水分濃度測定部で測定された前記水分濃度に応じて前記流体を流す流路を前記第1流路又は前記第2流路に切り替える流路切り替え部を有しており、
 前記流路切り替え部は、前記水分濃度測定部で測定された前記水分濃度が、予め設定された基準値以下である場合は、前記電解槽の内部から前記第1流路に前記流体を送り、前記予め設定された基準値よりも大きい場合は、前記電解槽の内部から前記第2流路に前記流体を送るようになっており、
 前記予め設定された基準値は0.01体積%以上0.09体積%以下の範囲内の数値であるフッ素ガス製造装置。
 本発明によれば、フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造する際に、ミストによる配管やバルブの閉塞を抑制することができる。
本発明の一実施形態に係るフッ素ガス製造装置において平均粒子径測定部として使用される光散乱検出器の一例を説明する模式図である。 本発明の一実施形態に係るフッ素ガス製造装置の一例を説明する概略図である。 図2のフッ素ガス製造装置においてミスト除去部として使用されるミスト除去装置の一例を説明する模式図である。 図2のフッ素ガス製造装置の第1変形例を説明する概略図である。 図2のフッ素ガス製造装置の第2変形例を説明する概略図である。 図2のフッ素ガス製造装置の第3変形例を説明する概略図である。 図2のフッ素ガス製造装置の第4変形例を説明する概略図である。 図2のフッ素ガス製造装置の第5変形例を説明する概略図である。 図2のフッ素ガス製造装置の第6変形例を説明する概略図である。 図2のフッ素ガス製造装置の第7変形例を説明する概略図である。 図2のフッ素ガス製造装置の第8変形例を説明する概略図である。 図2のフッ素ガス製造装置の第9変形例を説明する概略図である。 図2のフッ素ガス製造装置の第10変形例を説明する概略図である。 参考例1において、陽極で発生した流体に含まれるミストの粒子径分布を示すグラフである。 参考例1において、ミストの平均粒子径と陽極で発生したミストの量との相関性を示すグラフである。 参考例1において、ミストの平均粒子径と陰極ガス中の水分濃度との関係を示すグラフである。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本発明者らは、フッ素ガスの電解合成において配管やバルブの閉塞を引き起こすミストについて鋭意検討を行った。本発明における「ミスト」とは、電解液の電気分解によって電解槽でフッ素ガスとともに発生する液体の微粒子や固体の微粒子のことである。具体的には、電解液の微粒子、電解液の微粒子が相変化した固体の微粒子、及び、電解槽を構成する部材(電解槽を形成する金属、電解槽用のパッキン、炭素電極など)とフッ素ガスが反応して生じた固体の微粒子のことである。
 本発明者らは、電解液の電気分解時に電解槽の内部で生じた流体に含まれるミストの平均粒子径を測定し、ミストの平均粒子径が経時的に変化していることを確認した。また、鋭意検討の結果、ミストの平均粒子径と電気分解時に電解槽の陰極室で発生した流体中の水分濃度(以下、「陰極ガス中の水分濃度」と記すこともある)とに相関性があることを見出し、さらに、ミストの平均粒子径と流体を送る配管やバルブの閉塞の起こりやすさとの間に相関性があることを見出した。そして、陰極ガス中の水分濃度に応じて、電解槽の内部で生じた流体を送るための流路を工夫することによって、配管やバルブの閉塞を抑制することができ、フッ素ガスを製造する運転の中断や停止の頻度を低減することができることを見出し、本発明を完成するに至った。本発明の一実施形態について、以下に説明する。
 本実施形態のフッ素ガスの製造方法は、フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造するフッ素ガスの製造方法であって、陽極が配された陽極室と陰極が配された陰極室とを内部に有する電解槽内で電気分解を行う電解工程と、電気分解時に陰極室で発生した流体中の水分濃度を測定する水分濃度測定工程と、電解液の電気分解時に電解槽の内部で生じた流体を電解槽の内部から外部へ流路を介して送る送気工程と、を備える。
 送気工程においては、水分濃度測定工程で測定された水分濃度に応じて、流体を流す流路を切り替えるようになっている。すなわち、水分濃度測定工程で測定された水分濃度が、予め設定された基準値以下である場合は、電解槽の内部から第1の外部へ流体を送る第1流路に流体を送り、予め設定された基準値よりも大きい場合は、電解槽の内部から第2の外部へ流体を送る第2流路に流体を送るようになっている。そして、予め設定された基準値は、0.01体積%以上0.09体積%以下の範囲内の数値とされている。
 また、本実施形態のフッ素ガス製造装置は、フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造するフッ素ガス製造装置であって、陽極が配された陽極室と陰極が配された陰極室とを内部に有し且つ電解液を収容し電気分解が行われる電解槽と、電気分解時に陰極室で発生した流体中の水分濃度を測定する水分濃度測定部と、電解液の電気分解時に電解槽の内部で生じた流体を電解槽の内部から外部へ送る流路と、を備えている。
 上記流路は、電解槽の内部から第1の外部へ流体を送る第1流路と、電解槽の内部から第2の外部へ流体を送る第2流路と、を有している。また、この流路は、水分濃度測定部で測定された水分濃度に応じて、流体を流す流路を第1流路又は第2流路に切り替える流路切り替え部を有している。
 流路切り替え部は、水分濃度測定部で測定された水分濃度が、予め設定された基準値以下である場合は、電解槽の内部から第1流路に流体を送り、予め設定された基準値よりも大きい場合は、電解槽の内部から第2流路に流体を送るようになっている。そして、予め設定された基準値は、0.01体積%以上0.09体積%以下の範囲内の数値とされている。
 本実施形態のフッ素ガスの製造方法及びフッ素ガス製造装置においては、陰極ガス中の水分濃度に応じて、流体を流す流路を第1流路又は第2流路に切り替えるので、結果として、ミストの平均粒子径に応じて流路を第1流路又は第2流路に切り替えていることとなり、ミストによる流路の閉塞が生じにくい。そのため、本実施形態のフッ素ガスの製造方法及びフッ素ガス製造装置は、フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造する際に、ミストによる配管やバルブの閉塞を抑制することができる。よって、フッ素ガスを製造する運転の中断や停止の頻度を低減することができ、連続運転を行うことが容易である。そのため、フッ素ガスを経済的に製造することができる。
 なお、本実施形態のフッ素ガスの製造方法及びフッ素ガス製造装置においては、陰極ガス中の水分濃度の測定は、電気分解中の常時行ってもよいし、一定の間隔(例えば1秒間間隔)を空けて定期的に行ってもよいし、不定期的に随時行ってもよい。さらに、第1流路と第2流路は別の流路であるが、第1の外部と第2の外部は別の箇所でもよいし、同一の箇所でもよい。
 ここで、本実施形態のフッ素ガスの製造方法及びフッ素ガス製造装置の一例を示す。第1流路は、電解槽の内部から、流体からミストを除去するミスト除去部を経由して、流体からフッ素ガスを選別して取り出すフッ素ガス選別部へ流体を送る流路である。第2流路は、ミスト除去部を経由せずに電解槽の内部からフッ素ガス選別部へ流体を送る流路である。すなわち、陰極ガス中の水分濃度が、予め設定された基準値以下である場合は、第1流路に備えられたミスト除去部に流体が送られ、予め設定された基準値よりも大きい場合は、流体はミスト除去部に送られないようになっている。本例においては、フッ素ガス選別部が第1の外部及び第2の外部に相当し、第1の外部と第2の外部が同一の箇所となっているが、第1の外部と第2の外部は別の箇所であってもよい。
 そして、第2流路は、ミストによる第2流路の閉塞を抑制する閉塞抑制機構を有している。閉塞抑制機構は、ミストによる第2流路の閉塞を抑制することができるものであれば特に限定されるものではないが、例えば、下記のようなものが挙げられる。すなわち、大径な配管、傾斜した配管、回転スクリュー、気流発生装置を例示することができ、これらは組み合わせて用いてもよい。
 詳述すると、第2流路の少なくとも一部を、第1流路よりも大径な配管で構成することにより、ミストによる第2流路の閉塞を抑制することができる。また、第2流路の少なくとも一部を、水平方向に対して傾斜し、且つ、上流側から下流側に向かって下降する方向に延びる配管で構成することにより、ミストによる第2流路の閉塞を抑制することができる。
 さらに、第2流路の内部に堆積したミストを上流側又は下流側に送る回転スクリューを、第2流路の内部に設置することにより、ミストによる第2流路の閉塞を抑制することができる。さらに、第2流路内を流れる流体の流速を上昇させるための気流を流す気流発生装置を、第2流路に設けることにより、ミストによる第2流路の閉塞を抑制することができる。なお、第1流路に備えられたミスト除去部とは別のミスト除去部を、閉塞抑制機構として第2流路に設けてもよい。
 第1流路は、ミスト除去部によって流体からミストが除去されるためミストによる閉塞が生じにくく、第2流路は、閉塞抑制機構が設けられているためミストによる閉塞が生じにくい。そのため、本実施形態のフッ素ガスの製造方法及びフッ素ガス製造装置は、フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造する際に、ミストによる配管やバルブの閉塞を抑制することができる。なお、ミスト除去部や閉塞抑制機構が備えられていなくても、流体を流す流路を別の流路(第1流路又は第2流路)に切り替えることのみによって、ミストによる配管やバルブの閉塞を抑制する効果は奏されるが、ミスト除去部や閉塞抑制機構が備えられている方が、上記効果が優れている。
 以下に、本実施形態のフッ素ガスの製造方法及びフッ素ガス製造装置について、さらに詳細に説明する。
〔電解槽〕
 電解槽の態様に特に制限はなく、フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを発生させることができるならば、どのような電解槽でも使用可能である。
 通常、電解槽の内部は、隔壁等の仕切り部材によって、陽極が配された陽極室と陰極が配された陰極室とに区画されており、陽極で発生するフッ素ガスと陰極で発生する水素ガスが混合しないようになっている。
 陽極としては、例えば、ダイヤモンド、ダイヤモンドライクカーボン、アモルファスカーボン、グラファイト、グラッシーカーボン、不定形炭素などの炭素材料で形成された炭素質電極を用いることができる。また、陽極としては、上記炭素材料の他に、例えば、ニッケル、モネル(商標)などの金属で形成された金属電極も用いることができる。陰極としては、例えば、鉄、銅、ニッケル、モネル(商標)などの金属で形成された金属電極を用いることができる。
 電解液はフッ化水素及び金属フッ化物を含有し、この金属フッ化物の種類は特に限定されるものではないが、カリウム、セシウム、ルビジウム、及びリチウムから選ばれる少なくとも1種の金属のフッ化物であることが好ましい。電解液にセシウム又はルビジウムが含有されていると、電解液の比重が大きくなるため、電気分解時のミストの発生量が抑制される。
 電解液としては、例えば、フッ化水素(HF)とフッ化カリウム(KF)の混合溶融塩を用いることができる。フッ化水素とフッ化カリウムの混合溶融塩中のフッ化水素とフッ化カリウムのモル比は、例えば、フッ化水素:フッ化カリウム=1.5~2.5:1とすることができる。フッ化水素:フッ化カリウム=2:1の場合のKF・2HFが代表的な電解液であり、この混合溶融塩の融点は約72℃である。この電解液は腐食性を有するため、電解槽の内面など電解液の接する部位は、鉄、ニッケル、モネル(商標)などの金属で形成することが好ましい。
 電解液の電気分解時には、陽極と陰極に直流電流が印加され、フッ素ガスを含有する気体が陽極で発生し、水素ガスを含有する気体が陰極で発生する。また、電解液のフッ化水素に蒸気圧があるため、陽極及び陰極で発生する気体には、それぞれフッ化水素が同伴される。さらに、電解液の電気分解によるフッ素ガスの製造においては、電気分解によって発生する気体には、電解液のミストが含有される。よって、電解槽の気相部分は、電気分解によって発生する気体とフッ化水素と電解液のミストからなる。したがって、電解槽の内部から外部へ送り出されるものは、電気分解によって発生する気体とフッ化水素と電解液のミストからなり、本発明においては、これを「流体」と称する。
 なお、電解の進行によって電解液中のフッ化水素が消費されるため、フッ化水素を連続的又は断続的に電解槽に供給して補給するための配管を、電解槽に接続してもよい。フッ化水素の供給は、電解槽の陰極室側に供給してもよいし、陽極室側に供給してもよい。
 電解液の電気分解時にミストが発生する主な理由は、以下のとおりである。電気分解時の電解液の温度は、例えば80~100℃に調整されている。KF・2HFの融点は71.7℃であるため、上記温度に調整されている場合には電解液は液体状態である。電解槽の両電極で発生する気体の気泡は、電解液中を上昇し、電解液の液面ではじける。このとき、電解液の一部が気相中に放出される。
 気相の温度は電解液の融点よりも低いため、この放出された電解液は、極微小な粉体のような状態に相変化する。この粉体は、フッ化カリウムとフッ化水素の混合物KF・nHFと考えられる。この粉体は、他に発生した気体の流れに乗ってミストとなり、電解槽で発生する流体を形成する。こうしたミストは、粘着性を有するなどの理由により、フィルターの設置等の通常の対策では効果的に除去することが難しい。
 また、発生量としては少量であるが、陽極である炭素質電極と電気分解で発生したフッ素ガスとの反応によって、有機化合物の微粉末がミストとして発生する場合もある。詳述すると、炭素質電極への電流の給電部分は、接触抵抗が発生することが多く、ジュール熱によって電解液の温度よりも高い温度になる場合がある。そのため、炭素質電極を形成する炭素とフッ素ガスとが反応することによって、煤状の有機化合物CFxがミストとして発生する場合がある。
 なお、電解槽は、電気分解において使用する陽極又は陰極で発生した気泡が電解液中を鉛直方向に上昇し、電解液の液面に到達可能な構造を有することが好ましい。気泡が電解液中を鉛直方向に上昇しにくく、鉛直方向に対して傾斜した方向に上昇する構造を有していると、複数の気泡が集合して大きな気泡が生成しやすくなる。その結果、大きな気泡が電解液の液面に到達してはじけることとなるため、ミストの発生量が多くなりやすい。気泡が電解液中を鉛直方向に上昇すれば電解液の液面に到達可能な構造を有していると、小さな気泡が電解液の液面に到達してはじけることとなるため、ミストの発生量が少なくなりやすい。
〔平均粒子径測定部〕
 本実施形態のフッ素ガス製造装置は、流体に含まれるミストの平均粒子径を測定する平均粒子径測定部を備えていてもよいが、この平均粒子径測定部は、光散乱方式で平均粒子径を測定する光散乱検出器で構成されていてもよい。光散乱検出器は、フッ素ガス製造装置を連続運転しながら、流路を流れる流体中のミストの平均粒子径を測定することができるため、平均粒子径測定部として好ましい。
 光散乱検出器の一例を、図1を参照しながら説明する。図1の光散乱検出器は、本実施形態のフッ素ガス製造装置(例えば、後述する図2及び図4~13のフッ素ガス製造装置)において平均粒子径測定部として使用可能な光散乱検出器である。すなわち、フッ化水素及び金属フッ化物を含有する電解液をフッ素ガス製造装置の電解槽の内部で電気分解してフッ素ガスを製造する際に、電解槽の内部で発生した流体に含まれるミストの平均粒子径を測定する光散乱検出器である。
 光散乱検出器をフッ素ガス製造装置に接続し、流体を電解槽の内部から光散乱検出器に送ってミストの平均粒子径を測定してもよいし、光散乱検出器とフッ素ガス製造装置を接続せずに、電解槽の内部から流体を取り出し光散乱検出器に導入してミストの平均粒子径を測定してもよい。
 図1の光散乱検出器は、流体Fを収容する試料室1と、光散乱測定用光Lを試料室1中の流体Fに照射する光源2と、光散乱測定用光Lが流体F中のミストMにより散乱して生じた散乱光Sを検知する散乱光検知部3と、試料室1に設置されて流体Fと接触し光散乱測定用光Lが透過する透明窓4Aと、試料室1に設置されて流体Fと接触し散乱光Sが透過する透明窓4Bと、を備えている。透明窓4A、4Bは、ダイヤモンド、フッ化カルシウム(CaF2)、フッ化カリウム(KF)、フッ化銀(AgF)、フッ化バリウム(BaF2)、及び臭化カリウム(KBr)から選ばれる少なくとも1種で形成されている。
 光源2から発せられた光散乱測定用光L(例えばレーザー光)は、収束レンズ6及び試料室1の透明窓4Aを透過して試料室1内に入り、試料室1に収容された流体Fに照射される。この時、流体F中にミストMのような光を反射する物質が存在すると、光散乱測定用光Lが反射して散乱する。光散乱測定用光LがミストMにより散乱して生じた散乱光Sの一部は、試料室1の透明窓4Bを透過して試料室1から外部に取り出され、集光レンズ7及び絞り8を介して散乱光検知部3に入る。この時、散乱光Sから得られる情報により、ミストMの平均粒子径を知ることができる。なお、ここで得られる平均粒子径は、個数平均粒子径である。散乱光検知部3としては、例えば、PALAS社製のエアロゾルスペクトルロメーターwelas(登録商標) digital 2000を用いることができる。
 透明窓4A、4Bは流体Fに接触するが、流体Fには反応性の高いフッ素ガスが含有されているので、フッ素ガスに腐食されにくい材質で透明窓4A、4Bを形成する必要がある。透明窓4A、4Bを形成する材質としては、ダイヤモンド、フッ化カルシウム、フッ化カリウム、フッ化銀、フッ化バリウム、及び臭化カリウムから選ばれる少なくとも1種が挙げられる。透明窓4A、4Bが上記の材質で形成されていれば、流体Fと接触することによる劣化を抑制することができる。
 また、上記の材質からなる被膜を石英等のガラスの表面にコーティングしたものを、透明窓4A、4Bとして使用することもできる。流体Fと接触する部分が上記の材質からなる被膜でコーティングされているので、流体Fと接触することによる劣化をコストを抑えつつ抑制することができる。透明窓4A、4Bは、流体Fと接触する面を上記の材質で形成し、それ以外の部分を石英等の通常のガラスで形成した積層体でもよい。
 光散乱検出器のうち透明窓4A、4B以外の部分の材質は、フッ素ガスに対して耐食性を有する材質であれば特に限定されるものではないが、例えば、銅-ニッケル合金であるモネル(商標)、ハステロイ(商標)、ステンレス鋼等の金属材料を使用することが好ましい。
〔ミストの平均粒子径と電気分解時に陰極室で発生した流体中の水分濃度〕
 本発明者らは、電解液の電解によるフッ素ガスの製造の際に発生するミストの平均粒子径を、光散乱検出器を用いて測定した。その結果の一例を説明する。フッ素ガス製造装置の陽極を新しい陽極に交換したり、電解槽内に新しい電解液を充填したりした後に電解を開始し、電解開始直後から一定期間に陽極で発生する流体中のミストの平均粒子径を測定した。その結果、ミストの平均粒子径は0.5~2.0μmであった。その後、電解を継続し十分な時間が経過すると電解が安定し始めるが、この安定電解時の流体中のミストの平均粒子径は、約0.2μmであった。
 このように、電解開始直後から安定電解時に至るまでの間に、比較的大きな粒子径のミストが発生する。電解開始直後の大きなミストを含有する流体が、配管やバルブ内を流れる場合に、ミストが配管やバルブの内面に吸着して配管やバルブの閉塞が起こりやすくなる。
 これに対して、安定電解時には、発生するミストの粒子径は比較的小さい。このような小さいミストは、流体中で沈降や堆積などを起こしにくいので、配管やバルブを安定的に流れていくことができる。このため、安定電解時には、ミストと電極で発生したガスとからなる流体は、配管やバルブの閉塞を引き起こす可能性が比較的低い。なお、電解開始直後から安定電解時に至るまでの時間は、通常は25時間以上200時間以下である。また、電解開始直後から安定電解時に至るまでに、電解液1000L当たり概ね40kAh以上の通電が必要である。
 また、本発明者らは、ミストの平均粒子径と陰極ガス中の水分濃度との間には、密接な関係があることを見出した。通常、陰極ガス中の水分濃度は、電解開始時に大きく、0.05体積%よりも大きな値を示す。この時のミストの平均粒子径は、0.4μmよりも大きい。その後、電解を継続するにつれて陰極ガス中の水分濃度は低下し、0.05体積%以下になると、ミストの平均粒子径は0.4μm以下になる。
 このように、ミストの平均粒子径と陰極ガス中の水分濃度とには相関性があるので、電気分解時にミストの平均粒子径の代わりに陰極ガス中の水分濃度を測定し、その測定結果を流路の切り替えに利用することができる。すなわち、電気分解中の所定のタイミングで陰極ガス中の水分濃度を測定すれば、その測定結果に応じて、上記所定のタイミングで電気分解により生じた流体を流す流路を適切に切り替えることができる。
 本発明者らは、こうした知見に基づき、陰極ガス中の水分濃度に応じて流体を流す流路を切り替えることができる構造を有する上記フッ素ガスの製造方法及びフッ素ガス製造装置を発明した。本実施形態のフッ素ガス製造装置は第1流路と第2流路を有しており、流路切り替え部(例えば切り替えバルブ)を用いて、2つの流路の中から流体の搬送に使用する流路を選択するようになっていてもよい。
 あるいは、本実施形態のフッ素ガス製造装置は、2つの流路と、電解槽の移動及び付け替えを行う移動付け替え機構とを有していて、2つの流路の中から流体の搬送に使用する流路を選択し、その流路の近傍に電解槽を移動させて接続することにより、流路を切り替えるようになっていてもよい。
 上記のように第1流路と第2流路を有しているので、一方の流路を遮断してクリーニングしている間でも、他方の流路を開いてフッ素ガス製造装置を継続して運転することができる。
 本発明者らの検討では、電解開始直後から安定電解時に至るまでの間は、平均粒子径が比較的大きいミストが発生するので、この時には、閉塞抑制機構を有する第2流路に流体を送ってもよい。時間が経過し、安定電解時に至ると、平均粒子径が比較的小さいミストが発生するので、この時には、ミスト除去部を有する第1流路に流体を送るように流路を切り替えてもよい。
 このような流路の切り替えは、測定された陰極ガス中の水分濃度に応じて行うが、予め設定された基準値に基づいて流路の切り替えを行う。陽極で発生するミストの平均粒子径についての適切な基準値は、装置ごとに異なるが、例えば、0.1μm以上1.0μm以下、好ましくは0.2μm以上0.8μm以下、さらに好ましくは0.4μmである。
 よって、ミストの平均粒子径と陰極ガス中の水分濃度との相関性から、陰極ガス中の水分濃度についての適切な基準値は、0.01体積%以上0.09体積%以下、好ましくは0.03体積%以上0.07体積%以下、さらに好ましくは0.05体積%となる。陰極ガス中の水分濃度が基準値よりも大きい場合には、第2流路に流体を送り、基準値以下である場合には、第1流路に流体を送ることができる。
 陰極ガス中の水分濃度の測定方法は、特に限定されるものではないが、例えば、赤外分光法、フーリエ変換赤外分光法によって測定することができる。電解槽の陽極室で発生する流体中の水分濃度を測定することも可能であるが、フッ素ガスと水分が反応して水分濃度が変化するので、陰極ガス(水素ガス)中の水分濃度を測定する方が好適である。
 赤外分光法、フーリエ変換赤外分光法によって陰極ガス中の水分濃度を測定する際には、赤外分光光度計のセル内に既知量の陰極ガスを流通し、水の特定波長の吸収強度によって水分濃度を定量する。例えばマスフローメーターでガス流量を制御しつつセル内に陰極ガスを流通すれば、所望の量の陰極ガスをセル内に流通させることができる。
 なお、陰極で発生する流体(主成分は水素ガス)中には、例えば、単位体積(1リットル)当たり20~50μg(ミストの比重は1.0g/mLであると仮定して算出した)の粉体が含まれており、この粉体の平均粒子径は約0.1μmで、±0.05μmの分布を持っている。
 陰極で発生する流体においては、発生する粉体の粒子径分布に、陰極ガス中の水分濃度による大きな差は認められなかった。陰極で発生する流体に含有されるミストは、陽極で発生する流体に含有されるミストよりも平均粒子径が小さいので、陽極で発生する流体に含有されるミストに比べると、配管やバルブの閉塞を生じさせにくい。よって、陰極で発生する流体に含有されるミストは、適当な除去方法を用いて流体から除去すればよい。
 本実施形態のフッ素ガス製造装置の一例を、図2を参照しながら詳細に説明する。図2のフッ素ガス製造装置は、電解槽を2基備えている例であるが、電解槽は1基であってもよいし、3基以上であってもよく、例えば10~15基であってもよい。
 図2に示すフッ素ガス製造装置は、内部に電解液10を収容し電気分解が行われる電解槽11、11と、電解槽11の内部に配されて電解液10に浸漬される陽極13と、電解槽11の内部に配されて電解液10に浸漬されるとともに陽極13に対向して配された陰極15と、を備えている。
 電解槽11の内部は、電解槽11の内部の天井面から鉛直方向下方に延び且つその下端が電解液10に浸漬している隔壁17によって、陽極室22と陰極室24に区画されている。そして、陽極室22内に陽極13が配され、陰極室24内に陰極15が配されている。ただし、電解液10の液面上の空間は、隔壁17によって陽極室22内の空間と陰極室24内の空間に分離されており、電解液10のうち隔壁17の下端よりも上方側の部分については隔壁17によって分離されているが、電解液10のうち隔壁17の下端よりも下方側の部分については隔壁17によって直接的には分離されておらず連続している。
 また、図2に示すフッ素ガス製造装置は、電解液10の電気分解時に電解槽11の陰極室24で発生した流体中の水分濃度を測定する水分濃度測定部39と、電解液10の電気分解時に電解槽11の内部で発生した流体に含まれるミストの平均粒子径を測定する第1平均粒子径測定部31と、流体からミストを除去する第1ミスト除去部32と、流体からフッ素ガスを選別して取り出すフッ素ガス選別部(図示せず)と、流体を電解槽11の内部からフッ素ガス選別部へ送る流路と、を備えている。
 さらに、この流路は、第1ミスト除去部32を経由して電解槽11の内部からフッ素ガス選別部へ流体を送る第1流路と、第1ミスト除去部32を経由せずに電解槽11の内部からフッ素ガス選別部へ流体を送る第2流路と、を有している。また、この流路は、水分濃度測定部39で測定された陰極ガス中の水分濃度に応じて、流体を流す流路を第1流路又は第2流路に切り替える流路切り替え部を有している。すなわち、電解槽11から延びる流路の途中に流路切り替え部が設けられており、流路切り替え部によって流体を流す流路を変更できるようになっている。
 この流路切り替え部は、水分濃度測定部39で測定された陰極ガス中の水分濃度が、予め設定された基準値以下である場合は、電解槽11の内部から第1流路に流体を送り、予め設定された基準値よりも大きい場合は、電解槽11の内部から第2流路に流体を送るようになっている。そして、第2流路は、第2流路のミストによる閉塞を抑制する閉塞抑制機構を有している。
 すなわち、陰極ガス中の水分濃度が基準値以下である場合は、電解槽11とフッ素ガス選別部を連結し且つ第1ミスト除去部32が設けられた第1流路に流体が送られ、陰極ガス中の水分濃度が基準値よりも大きい場合は、電解槽11とフッ素ガス選別部を連結し且つ閉塞抑制機構が設けられた第2流路に流体が送られるようになっている。
 水分濃度測定部39としては、例えば、フーリエ変換赤外分光光度計(FT-IR)を用いることができる。
 第1ミスト除去部32としては、例えば平均粒子径0.4μm以下のミストを流体から除去することができるミスト除去装置を用いる。ミスト除去装置の種類、すなわち、ミストを除去する方式については特に限定されるものではないが、ミストの平均粒子径が小さいので、例えば、電気集塵装置、ベンチュリースクラバー、フィルターをミスト除去装置として用いることができる。
 上記のミスト除去装置の中でも、図3に示すミスト除去装置を用いることが好ましい。図3に示すミスト除去装置は、液体のフッ化水素を循環液として用いるスクラバー式のミスト除去装置である。図3に示すミスト除去装置は、平均粒子径0.4μm以下のミストを流体から効率よく除去することができる。また、液体のフッ化水素を循環液として用いるが、フッ素ガス中のフッ化水素の濃度を下げるために循環液を冷却することが好ましいので、冷却温度の制御によってフッ素ガス中のフッ化水素の濃度を調整することができる。
 図2に示すフッ素ガス製造装置について、さらに詳細に説明する。電解槽11の陽極室22で発生する流体(以下、「陽極ガス」と記すこともある)を外部に送る第1配管41が、電解槽11と第4配管44とを連通しており、2つの電解槽11、11から送り出された陽極ガスが第1配管41によって第4配管44に送られて混合されるようになっている。なお、陽極ガスの主成分はフッ素ガスであり、副成分はミスト、フッ化水素、四フッ化炭素、酸素ガス、水である。
 第4配管44は第1ミスト除去部32に接続されており、陽極ガスが第4配管44によって第1ミスト除去部32に送られるので、陽極ガス中のミスト及びフッ化水素が第1ミスト除去部32によって陽極ガスから除去されるようになっている。ミスト及びフッ化水素が除去された陽極ガスは、第1ミスト除去部32に接続された第6配管46によって、第1ミスト除去部32から図示しないフッ素ガス選別部へ送り出されるようになっている。そして、フッ素ガス選別部によって、陽極ガスからフッ素ガスが選別されて取り出されるようになっている。
 なお、第1ミスト除去部32には第8配管48が接続されており、循環液である液体のフッ化水素が第8配管48によって第1ミスト除去部32に供給されるようになっている。さらに、第1ミスト除去部32には第9配管49が接続されている。第9配管49は第3配管43を介して電解槽11、11に接続されており、第1ミスト除去部32でミストの除去に使用されてミストを含有する循環液(液体のフッ化水素)が、第1ミスト除去部32から電解槽11、11に戻されるようになっている。
 電解槽11の陰極室24についても陽極室22と同様である。すなわち、電解槽11の陰極室24で発生する流体(以下、「陰極ガス」と記すこともある)を外部に送る第2配管42が、電解槽11と第5配管45とを連通しており、2つの電解槽11、11から送り出された陰極ガスが第2配管42によって第5配管45に送られて混合されるようになっている。なお、陰極ガスの主成分は水素ガスであり、副成分はミスト、フッ化水素、水である。
 陰極ガスは、細かいミストと5~10体積%のフッ化水素を含有するため、そのまま大気に排出することは好ましくない。そのため、第5配管45は第2ミスト除去部33に接続されており、陰極ガスが第5配管45によって第2ミスト除去部33に送られ、陰極ガス中のミスト及びフッ化水素が第2ミスト除去部33によって陰極ガスから除去されるようになっている。ミスト及びフッ化水素が除去された陰極ガスは、第2ミスト除去部33に接続された第7配管47によって、第2ミスト除去部33から大気に排出されるようになっている。第2ミスト除去部33の種類、すなわち、ミストを除去する方式については特に限定されるものではないが、アルカリ水溶液を循環液として用いるスクラバー式のミスト除去装置を用いることができる。
 第1配管41、第2配管42、第4配管44、第5配管45の管径や設置方向(配管が延びる方向を意味し、例えば鉛直方向、水平方向である)は特に限定されるものではないが、第1配管41及び第2配管42は、電解槽11から鉛直方向に沿って延びるように設置し、第1配管41及び第2配管42を流れる流体の流速が標準状態で30cm/sec以下になるような管径とすることが好ましい。そうすれば、流体に含有されるミストが自重で落下した場合でも、ミストが電解槽11内に沈降するため、粉体による第1配管41及び第2配管42の内部の閉塞が生じにくい。
 また、第4配管44及び第5配管45は、水平方向に沿って延びるように設置し、第4配管44及び第5配管45を流れる流体の流速が第1配管41及び第2配管42の場合の1倍~10倍程度速くなるような管径とすることが好ましい。
 さらに、陽極ガスを電解槽11の外部に送るための第2バイパス配管52が、第1配管41とは別に設けられている。すなわち、第2バイパス配管52が、電解槽11と第1バイパス配管51とを連通しており、2つの電解槽11、11から送り出された陽極ガスが第2バイパス配管52によって第1バイパス配管51に送られて混合されるようになっている。さらに、第1バイパス配管51によって、陽極ガスが図示しないフッ素ガス選別部へ送り出されるようになっている。そして、フッ素ガス選別部によって、陽極ガスからフッ素ガスが選別されて取り出されるようになっている。なお、第1バイパス配管51に接続されたフッ素ガス選別部と、第6配管46に接続されたフッ素ガス選別部は、同一のものであってもよいし、異なるものであってもよい。
 第2バイパス配管52の管径や設置方向は特に限定されるものではないが、第2バイパス配管52は電解槽11から鉛直方向に沿って延びるように設置し、第2バイパス配管52を流れる流体の流速が標準状態で30cm/sec以下になるような管径とすることが好ましい。
 また、第1バイパス配管51は、水平方向に沿って延びるように設置する。そして、第1バイパス配管51は、第4配管44よりも大径な管径の配管とされていて、第1バイパス配管51の管径は、粉体の堆積による第1バイパス配管51の閉塞が生じにくいような大きさとなっている。第1バイパス配管51が第4配管44よりも大径な管径の配管であることにより、閉塞抑制機構が構成されている。
 第1バイパス配管51の管径は、第4配管44の1.0倍超過3.2倍以下が好ましく、1.05倍以上1.5倍以下がさらに好ましい。つまり、第1バイパス配管51の流路断面積は、第4配管44の10倍以下が好ましい。
 以上の説明から分かるように、第1配管41及び第4配管44によって上記の第1流路が構成され、第1バイパス配管51及び第2バイパス配管52によって上記の第2流路が構成される。そして、第2流路を構成する第1バイパス配管51に、閉塞抑制機構が設けられている。
 次に、流路切り替え部について説明する。第1配管41には、それぞれ第1配管弁61が設置されている。そして、第1配管弁61を開状態又は閉状態に切り替えることにより、電解槽11から第1ミスト除去部32への陽極ガスの送気の可否を制御できるようになっている。また、第2バイパス配管52には、それぞれバイパス弁62が設置されている。そして、バイパス弁62を開状態又は閉状態に切り替えることにより、電解槽11から第1バイパス配管51への陽極ガスの送気の可否を制御できるようになっている。
 さらに、フッ素ガス製造装置は水分濃度測定部39を有しており、電気分解時に陰極室24で発生した陰極ガス中の水分濃度を測定することができるようになっている。水分濃度測定部39は、第5配管45の中間部であり且つ第2配管42との連結部よりも下流側に設置されている
 さらに、電解槽11と第1ミスト除去部32との間、詳述すると、第4配管44の中間部であり且つ第1配管41との連結部よりも下流側に、第1平均粒子径測定部31が設置されている。そして、第1平均粒子径測定部31により、第4配管44を流れる陽極ガスに含有されるミストの平均粒子径が測定されるようになっている。また、ミストの平均粒子径を測定した後の陽極ガスに含有されるフッ素ガスと窒素ガスを分析することにより、フッ素ガスの製造における電流効率を測定することができる。
 なお、第1バイパス配管51の中間部で且つ第2バイパス配管52との連結部よりも下流側にも、同様の第2平均粒子径測定部34が設置されており、第2平均粒子径測定部34により、第1バイパス配管51を流れる陽極ガスに含有されるミストの平均粒子径が測定されるようになっている。ただし、図2に示すフッ素ガス製造装置は、第1平均粒子径測定部31及び第2平均粒子径測定部34を備えていなくてもよい。
 水分濃度測定部39によって陰極ガス中の水分濃度を測定し、その測定結果が、予め設定された基準値よりも大きい場合は、バイパス弁62を開状態として、陽極ガスを電解槽11から第1バイパス配管51へ送るとともに、第1配管弁61を閉状態として、陽極ガスが第4配管44及び第1ミスト除去部32へ送られないようにする。すなわち、陽極ガスを第2流路に送る。
 一方、測定結果が、予め設定された基準値以下である場合は、第1配管弁61を開状態として、陽極ガスを第4配管44及び第1ミスト除去部32へ送るとともに、バイパス弁62を閉状態として、電解槽11から第1バイパス配管51へ陽極ガスが送られないようにする。すなわち、陽極ガスを第1流路に送る。
 以上の説明から分かるように、第1配管弁61及びバイパス弁62によって上記の流路切り替え部が構成される。
 上記のようにして、陰極ガス中の水分濃度に応じて流路を切り替えながらフッ素ガス製造装置の運転を行うことにより、ミストによる配管やバルブの閉塞を抑制しつつ円滑に連続運転を行うことができる。よって、図2に示すフッ素ガス製造装置によれば、フッ素ガスを経済的に製造することができる。
 例えば、ミスト除去部として、フィルターを設置した配管を複数用意して、適宜切り替えながら、フィルターを交換しながら、電解を実施しても構わない。
 さらには、フィルターの交換を頻繁に行うべき期間と、フィルターの交換を頻繁に行う必要がない期間とを、陰極ガス中の水分濃度の測定に基づいて判断するとよい。そして、上記判断に基づいて、流体を流す配管の切り替え頻度を適切に調整すれば、フッ素ガス製造装置の運転を効率良く継続して行うことができる。
 次に、図2に示すフッ素ガス製造装置の変形例について説明する。
〔第1変形例〕
 第1変形例について、図4を参照しながら説明する。図2に示すフッ素ガス製造装置においては、第2バイパス配管52は電解槽11と第1バイパス配管51を連結しているのに対して、図4に示す第1変形例のフッ素ガス製造装置においては、第2バイパス配管52は第1配管41と第1バイパス配管51を連結している。第1変形例のフッ素ガス製造装置の構成は、上記の点以外は図2のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔第2変形例〕
 第2変形例について、図5を参照しながら説明する。図5に示す第2変形例のフッ素ガス製造装置は、電解槽11を1基備えている例である。第1平均粒子径測定部31は、第4配管44ではなく第1配管41に設けられており、且つ、第1配管弁61の上流側に設けられている。また、第2バイパス配管52は有しておらず、第1バイパス配管51は、第2バイパス配管52を介さずに電解槽11に直接的に接続されている。
 そして、第1バイパス配管51は、第4配管44に比べて大径であるので、閉塞抑制機構として機能する。さらに、例えば第1バイパス配管51の下流側末端にミスト溜まり用の空間を設置することにより、閉塞抑制の効果をさらに増大させることができる。このミスト溜まり用の空間としては、例えば、第1バイパス配管51の下流側末端部分を設置方向中央部分よりも大きな管径(設置方向中央部分の例えば4倍以上の管径)に形成してなる空間や、第1バイパス配管51の下流側末端部分を容器のような形状に形成してなる空間が挙げられ、ミスト溜まり用の空間によって第1バイパス配管51の閉塞を抑制することができる。これは、流路断面積が大きいことによる閉塞防止の効果と、ガス流動の線速度の低下によるミストの重力落下を利用した閉塞防止の効果を狙ったものである。
 さらに、バイパス弁62は、第1バイパス配管51と図示しないフッ素ガス選別部とを接続する第3バイパス配管53に設けられている。第2変形例のフッ素ガス製造装置の構成は、上記の点以外は図2のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔第3変形例〕
 第3変形例について、図6を参照しながら説明する。第3変形例のフッ素ガス製造装置においては、第1平均粒子径測定部31が電解槽11に設けられており、電解槽11の内部の陽極ガスが第1平均粒子径測定部31に直接的に導入されて、ミストの平均粒子径の測定が行われるようになっている。第3変形例のフッ素ガス製造装置は、第2平均粒子径測定部34は有していない。第3変形例のフッ素ガス製造装置の構成は、上記の点以外は第2変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔第4変形例〕
 第4変形例について、図7を参照しながら説明する。第4変形例のフッ素ガス製造装置は、図5に示す第2変形例に対して閉塞抑制機構が異なる例である。第2変形例のフッ素ガス製造装置においては、第1バイパス配管51は、水平方向に沿って延びるように設置されていたが、第4変形例のフッ素ガス製造装置においては、第1バイパス配管51は、水平方向に対して傾斜し、且つ、上流側から下流側に向かって下降する方向に延びている。この傾斜により、粉体が第1バイパス配管51の内部に堆積することが抑制される。この傾斜が大きいほど、粉体の堆積を抑制する作用が大きい。
 第1バイパス配管51の傾斜角度は、水平面からの俯角が90度より小さい範囲で30度以上が好ましく、40度以上60度以下がより好ましい。もし第1バイパス配管51の閉塞が起こりそうなときには、傾斜した第1バイパス配管51をハンマリングすれば、第1バイパス配管51の内部の堆積物が移動しやすくなるので、閉塞を回避することができる。
 第4変形例のフッ素ガス製造装置の構成は、上記の点以外は第2変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔第5変形例〕
 第5変形例について、図8を参照しながら説明する。第5変形例のフッ素ガス製造装置は、図6に示す第3変形例に対して閉塞抑制機構が異なる例である。第3変形例のフッ素ガス製造装置においては、第1バイパス配管51は、水平方向に沿って延びるように設置されていたが、第5変形例のフッ素ガス製造装置においては、第1バイパス配管51は、水平方向に対して傾斜し、且つ、上流側から下流側に向かって下降する方向に延びている。この傾斜により、粉体が第1バイパス配管51の内部に堆積することが抑制される。第1バイパス配管51の好ましい傾斜角度は、上記第4変形例の場合と同様である。第5変形例のフッ素ガス製造装置の構成は、上記の点以外は第3変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔第6変形例〕
 第6変形例について、図9を参照しながら説明する。第6変形例のフッ素ガス製造装置は、図5に示す第2変形例に対して電解槽11の構造が異なる例である。電解槽11は、1つの陽極13と2つの陰極15、15とを有しており、且つ、1つの陽極13を囲む筒状の隔壁17によって1つの陽極室22と1つの陰極室24に区画されている。陽極室22は、電解槽11の上面よりも上方まで延びて形成されており、第1バイパス配管51は電解槽11の陽極室22の上端部分に接続されている。第6変形例のフッ素ガス製造装置の構成は、上記の点以外は第2変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔第7変形例〕
 第7変形例について、図10を参照しながら説明する。第7変形例のフッ素ガス製造装置は、図9に示す第6変形例に対して第1バイパス配管51の構造が異なる例である。すなわち、第7変形例のフッ素ガス製造装置においては、第1バイパス配管51は、第4変形例及び第5変形例と同様に、水平方向に対して傾斜し、且つ、上流側から下流側に向かって下降する方向に延びている。第1バイパス配管51の好ましい傾斜角度は、上記第4変形例の場合と同様である。第7変形例のフッ素ガス製造装置の構成は、上記の点以外は第6変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔第8変形例〕
 第8変形例について、図11を参照しながら説明する。第8変形例のフッ素ガス製造装置は、図5に示す第2変形例に対して閉塞抑制機構が異なる例である。第8変形例のフッ素ガス製造装置においては、閉塞抑制機構を構成する回転スクリュー71が第1バイパス配管51の内部に設置されている。この回転スクリュー71は、その回転軸を第1バイパス配管51の長手方向に対して平行にして設置されている。
 そして、モーター72によって回転スクリュー71を回転させることにより、第1バイパス配管51の内部に堆積したミストを上流側又は下流側に送ることができるようになっている。これにより、粉体が第1バイパス配管51の内部に堆積することが抑制される。第8変形例のフッ素ガス製造装置の構成は、上記の点以外は第2変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔第9変形例〕
 第9変形例について、図12を参照しながら説明する。第9変形例のフッ素ガス製造装置は、図5に示す第2変形例に対して閉塞抑制機構が異なる例である。第9変形例のフッ素ガス製造装置においては、閉塞抑制機構を構成する気流発生装置73が第1バイパス配管51に設置されている。気流発生装置73が、第1バイパス配管51の上流側から下流側に向かって気流(例えば窒素ガスの気流)を送り込み、第1バイパス配管51内を流れる陽極ガスの流速を上昇させる。これにより、粉体が第1バイパス配管51の内部に堆積することが抑制される。
 このときの第1バイパス配管51内を流れる陽極ガスの好ましい流速は、1m/sec以上10m/sec以下である。流速を10m/secよりも大きくすることも可能であるが、その場合は第1バイパス配管51内での配管抵抗による圧力損失が大きくなり、電解槽11の陽極室22内の圧力が高くなる。陽極室22内の圧力と陰極室24内の圧力はほぼ同程度であることが好ましいが、陽極室22内の圧力と陰極室24内の圧力との差が大きくなり過ぎると、陽極ガスが隔壁17を超えて陰極室24に流れ込み、フッ素ガスと水素ガスの反応が起こり、フッ素ガスの発生に支障をきたす場合がある。
 第9変形例のフッ素ガス製造装置の構成は、上記の点以外は第2変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
〔第10変形例〕
 第10変形例について、図13を参照しながら説明する。第10変形例のフッ素ガス製造装置においては、第1平均粒子径測定部31が電解槽11に設けられており、電解槽11の内部の陽極ガスが第1平均粒子径測定部31に直接的に導入されて、ミストの平均粒子径の測定が行われるようになっている。第10変形例のフッ素ガス製造装置は、第2平均粒子径測定部34は有していない。第10変形例のフッ素ガス製造装置の構成は、上記の点以外は図12に示す第9変形例のフッ素ガス製造装置とほぼ同様であるので、同様の部分の説明は省略する。
 以下に実施例及び比較例を示して、本発明をより具体的に説明する。
〔参考例1〕
 電解液を電気分解して、フッ素ガスを製造した。電解液としては、フッ化水素434kgとフッ化カリウム630kgとの混合溶融塩(560L)を用いた。陽極としてSGLカーボン社製のアモルファスカーボン電極(横30cm、縦45cm、厚さ7cm)を使用し、16枚の陽極を電解槽に設置した。また、陰極としてモネル(商標)製のパンチングプレートを使用し、電解槽に設置した。1枚の陽極に2枚の陰極が対向しており、1枚の陽極のうち陰極に対向している部分の合計の面積は1736cm2である。
 電解温度は85~95℃に制御した。まず、電解液温度を85℃とし、電流密度0.036A/cm2で1000Aの直流電流を印加し、電解を開始した。この時の電解液中の水分濃度は1.0質量%であった。なお、水分濃度は、カールフィッシャー分析法によって測定したものである。
 上記の条件での電解を開始し、電解開始直後から10時間(積算の通電量が10kAhとなるまで)の間は、陽極室内の陽極の近傍において小さな破裂音が観測された。この破裂音は、発生したフッ素ガスと電解液中の水分とが反応したために発生したものと考えられる。
 この状態において陰極室で発生した流体を、電解槽の陰極室から外部に送り出されたところで採取して、流体中の水分濃度を測定したところ、0.1体積%であった。また、この状態において陽極で発生した流体を、電解槽の陽極室から外部に送り出されたところで採取して、流体に含有されるミストを分析した。その結果、陽極で発生した流体1Lあたり5.0~9.0mg(ミストの比重は1.0g/mLであると仮定して算出した。以下も同様である。)の粉体が含有されており、この粉体の平均粒子径は1.0~2.0μmであった。この粉体を光学顕微鏡で観察したところ、球の内部をくり抜いたような形状をした粉体が主に観察された。また、この時のフッ素ガス生成の電流効率は0~15%であった。
 さらに、積算の通電量で30kAhとなるまで電気分解を継続すると、陽極室の内部で破裂音が発生する頻度が低減してきた。この時の電解液中の水分濃度は0.7質量%であった。この状態において陰極室で発生した流体を、電解槽の陰極室から外部に送り出されたところで採取して、流体中の水分濃度を測定したところ、0.07体積%であった。また、この状態において陽極で発生した流体を、電解槽の陽極室から外部に送り出されたところで採取して、流体に含有されるミストを分析した。その結果、陽極で発生した流体1Lあたり0.4~1.0mgのミストが含有されており、このミストの平均粒子径は0.5~0.7μmであった。さらに、この時のフッ素ガス生成の電流効率は15~55%であった。電解開始からここまでの電解の段階を、「段階(1)」とする。
 さらに、段階(1)に引き続き電解液の電解を継続した。すると、フッ化水素が消費されて電解液のレベルが低下するので、フッ化水素タンクから電解槽にフッ化水素を適宜補給した。補給されるフッ化水素中の水分濃度は、500質量ppm以下である。
 さらに、電解を継続して、積算の通電量が60kAhを超えると、陽極で発生した流体に含有されるミストの平均粒子径が0.36μm(すなわち0.4μm以下)となった。この時点では、陽極室の内部で破裂音が全く発生しなくなった。この状態において陰極室で発生した流体を、電解槽の陰極室から外部に送り出されたところで採取して、流体中の水分濃度を測定したところ、0.02体積%(すなわち0.05体積%以下)であった。また、この時の電解液中の水分濃度は0.2質量%(すなわち0.3質量%以下)であった。さらに、この時のフッ素ガス生成の電流効率は65%であった。段階(1)の終了時点からここまでの電解の段階を、「段階(2)」とする。
 さらに、電流を3500Aに増加し電流密度を0.126A/cm2に増加して、段階(2)に引き続き電解液の電解を継続した。この状態において陽極で発生した流体を、電解槽の陽極室から外部に送り出されたところで採取して、流体に含有されるミストを分析した。その結果、陽極で発生した流体1Lあたり0.03~0.06mgの粉体が含有されており、この粉体の平均粒子径は約0.2μm(0.15~0.25μm)で、粒子径は約0.1~0.5μmの分布を持っていた。図14に、この粉体の粒子径分布の測定結果を示す。さらに、この時のフッ素ガス生成の電流効率は94%であった。段階(2)の終了時点からここまでの電解の段階を、「安定段階」とする。
 上記のようにして行った参考例1の電気分解の内容を、表1にまとめて示す。表1には、電流、電解経過時間、通電量、電解液中の水分濃度、陽極で発生した流体(表1では「陽極ガス」と記してある)1L中に含有されるミストの質量、ミストの平均粒子径、電流効率とともに、陽極で発生した流体(フッ素ガス、酸素ガス、ミストを含有する)の量、陽極で発生したミストの量、破裂音の強さ、及び、陰極で生成した流体中の水分濃度(表1では「陰極ガス中の水分濃度」と記してある)も示してある。
 また、ミストの平均粒子径と陽極で発生したミストの量との関係を示すグラフを、図15に示す。図15のグラフから、ミストの平均粒子径と陽極で発生するミストの量との間には相関性があることが分かる。ミストの発生量が多いほど配管やバルブの閉塞が起こりやすく、また、平均粒子径が0.4μmよりも大きいミストが発生する場合は、ミストの発生量が増加し、さらには重力の作用によって沈着するので、図15のグラフに示す関係が、ミストの平均粒子径と配管やバルブの閉塞の起こりやすさとの相関性を表していると言える。
 さらに、ミストの平均粒子径と陰極ガス中の水分濃度との関係を示すグラフを、図16に示す。ミストの平均粒子径が大きいほど配管やバルブの閉塞が起こりやすいので、図16のグラフに示す関係が、陰極ガス中の水分濃度と配管やバルブの閉塞の起こりやすさとの相関性を表していると言える。
Figure JPOXMLDOC01-appb-T000001
〔実施例1〕
 参考例1と同様の電解を、図2に示すフッ素ガス製造装置を用いて行った。段階(1)の電解においては、陽極で発生した流体を、第2バイパス配管、バイパス弁、第1バイパス配管を経由させて流通させた。段階(1)の電解が終了した後に一旦電解を停止して、フッ素ガス製造装置の内部の点検を行った。その結果、第1バイパス配管内にはミストが堆積していたものの、配管の径を太くしてあるため配管の閉塞は起こらなかった。
 ミストの平均粒子径が0.4μm以下(陰極室で発生した流体中の水分濃度、すなわち陰極ガス中の水分濃度は基準値の0.05体積%以下である約0.02体積%)である段階(2)の電解となったため、陽極で発生した流体を、第1配管、第1配管弁、第4配管、第1ミスト除去部を経由させて流通させた。第1配管、第1配管弁、第4配管にミストの堆積や閉塞は起こらず、陽極で発生した流体は第1ミスト除去部に供給されたため、第1ミスト除去部においてミストは除去された。第1ミスト除去部は、液体のフッ化水素を噴霧してミスト等の微粒子を除去するスクラバー式の除去部であり、ミストの除去率は98%以上であった。
〔比較例1〕
 段階(1)の電解において、陽極で発生した流体を、第1配管、第1配管弁、第4配管、第1ミスト除去部を経由させて流通させた点以外は、実施例1と同様に電解を行った。
 段階(1)の電解中、電解槽の陽極側及び陰極側に取り付けた圧力計のうち陽極側の圧力計の計測値が徐々に高くなり、陰極側の圧力との差圧が90mmH2Oになったため、電解を停止した。停止の理由は以下のとおりである。電解槽内の隔壁のうち電解液に浸漬した部分の鉛直方向長さ(浸漬深さ)が5cmであったため、陽極側の圧力が陰極側の圧力よりも約100mmH2O高くなると、陽極側の電解液の液面が隔壁の下端よりも低くなる。その結果、フッ素ガスが隔壁を乗り越えて陰極側の水素ガスと混合し、フッ素ガスと水素ガスの急激な反応を起こすようになるので、非常に危険である。
 系内を窒素ガス等でパージした後に、第1配管、第1配管弁、第4配管の内部を点検したところ、第1配管は鉛直方向に延びる配管であるので閉塞はなかった。第1配管弁に少量の粉の付着があり、第1配管弁の下流側の配管、すなわち第4配管への入口部分が粉で閉塞していた。第4配管にも粉の堆積はあったが、配管を閉塞させるほどの量ではなかった。
    1・・・試料室
    2・・・光源
    3・・・散乱光検知部
    4A、4B・・・透明窓
   10・・・電解液
   11・・・電解槽
   13・・・陽極
   15・・・陰極
   22・・・陽極室
   24・・・陰極室
   31・・・第1平均粒子径測定部
   32・・・第1ミスト除去部
   33・・・第2ミスト除去部
   34・・・第2平均粒子径測定部
   39・・・水分濃度測定部
   41・・・第1配管
   42・・・第2配管
   43・・・第3配管
   44・・・第4配管
   45・・・第5配管
   46・・・第6配管
   47・・・第7配管
   48・・・第8配管
   49・・・第9配管
   51・・・第1バイパス配管
   52・・・第2バイパス配管
   61・・・第1配管弁
   62・・・バイパス弁
    F・・・流体
    L・・・光散乱測定用光
    M・・・ミスト
    S・・・散乱光

Claims (5)

  1.  フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造するフッ素ガスの製造方法であって、
     陽極が配された陽極室と陰極が配された陰極室とを内部に有する電解槽内で前記電気分解を行う電解工程と、
     前記電気分解時に前記陰極室で発生した流体中の水分濃度を測定する水分濃度測定工程と、
     前記電解液の電気分解時に前記電解槽の内部で生じた流体を前記電解槽の内部から外部へ流路を介して送る送気工程と、
    を備え、
     前記送気工程においては、前記水分濃度測定工程で測定された前記水分濃度に応じて前記流体を流す流路を切り替え、前記水分濃度測定工程で測定された前記水分濃度が、予め設定された基準値以下である場合は、前記電解槽の内部から第1の外部へ前記流体を送る第1流路に前記流体を送り、前記予め設定された基準値よりも大きい場合は、前記電解槽の内部から第2の外部へ前記流体を送る第2流路に前記流体を送るようになっており、
     前記予め設定された基準値は0.01体積%以上0.09体積%以下の範囲内の数値であるフッ素ガスの製造方法。
  2.  前記金属フッ化物は、カリウム、セシウム、ルビジウム、及びリチウムから選ばれる少なくとも1種の金属のフッ化物である請求項1に記載のフッ素ガスの製造方法。
  3.  前記電気分解において使用する陽極が、ダイヤモンド、ダイヤモンドライクカーボン、アモルファスカーボン、グラファイト、及びグラッシーカーボンから選ばれる少なくとも1種の炭素材料で形成された炭素質電極である請求項1又は請求項2に記載のフッ素ガスの製造方法。
  4.  前記電解槽は、前記電気分解において使用する陽極又は陰極で発生した気泡が前記電解液中を鉛直方向に上昇し、前記電解液の液面に到達可能な構造を有する請求項1~3のいずれか一項に記載のフッ素ガスの製造方法。
  5.  フッ化水素及び金属フッ化物を含有する電解液を電気分解してフッ素ガスを製造するフッ素ガス製造装置であって、
     陽極が配された陽極室と陰極が配された陰極室とを内部に有し且つ前記電解液を収容し前記電気分解が行われる電解槽と、
     前記電気分解時に前記陰極室で発生した流体中の水分濃度を測定する水分濃度測定部と、
     前記電解液の電気分解時に前記電解槽の内部で生じた流体を前記電解槽の内部から外部へ送る流路と、
    を備え、
     前記流路は、前記電解槽の内部から第1の外部へ前記流体を送る第1流路と、前記電解槽の内部から第2の外部へ前記流体を送る第2流路と、を有するとともに、前記水分濃度測定部で測定された前記水分濃度に応じて前記流体を流す流路を前記第1流路又は前記第2流路に切り替える流路切り替え部を有しており、
     前記流路切り替え部は、前記水分濃度測定部で測定された前記水分濃度が、予め設定された基準値以下である場合は、前記電解槽の内部から前記第1流路に前記流体を送り、前記予め設定された基準値よりも大きい場合は、前記電解槽の内部から前記第2流路に前記流体を送るようになっており、
     前記予め設定された基準値は0.01体積%以上0.09体積%以下の範囲内の数値であるフッ素ガス製造装置。
PCT/JP2020/047224 2019-12-27 2020-12-17 フッ素ガスの製造方法及びフッ素ガス製造装置 WO2021132028A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/595,958 US20220154353A1 (en) 2019-12-27 2020-12-17 Method for producing fluorine gas and device for producing fluorine gas
CN202080039009.7A CN113874555B (zh) 2019-12-27 2020-12-17 氟气的制造方法及氟气制造装置
EP20907466.5A EP4083265A4 (en) 2019-12-27 2020-12-17 METHOD FOR PRODUCING FLUORINE GAS AND DEVICE FOR PRODUCING FLUORINE GAS
KR1020227013544A KR20220065865A (ko) 2019-12-27 2020-12-17 불소 가스의 제조 방법 및 불소 가스 제조 장치
JP2021567369A JPWO2021132028A1 (ja) 2019-12-27 2020-12-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-238480 2019-12-27
JP2019238480 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132028A1 true WO2021132028A1 (ja) 2021-07-01

Family

ID=76574476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047224 WO2021132028A1 (ja) 2019-12-27 2020-12-17 フッ素ガスの製造方法及びフッ素ガス製造装置

Country Status (7)

Country Link
US (1) US20220154353A1 (ja)
EP (1) EP4083265A4 (ja)
JP (1) JPWO2021132028A1 (ja)
KR (1) KR20220065865A (ja)
CN (1) CN113874555B (ja)
TW (1) TWI762107B (ja)
WO (1) WO2021132028A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263988A (ja) * 1988-12-27 1990-10-26 Mitsui Toatsu Chem Inc 三弗化窒素ガスの製造方法
JP2011038145A (ja) * 2009-08-10 2011-02-24 Yokogawa Electric Corp 電気分解装置及び電気分解方法
JP2011225922A (ja) * 2010-04-16 2011-11-10 Central Glass Co Ltd フッ素ガス生成装置
JP2013507629A (ja) * 2009-10-16 2013-03-04 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング 高純度フッ素ガス、その発生および使用、ならびにフッ素ガス中の不純物の監視方法
JP5919824B2 (ja) * 2012-01-05 2016-05-18 セントラル硝子株式会社 ガス生成装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3905433B2 (ja) * 2002-07-11 2007-04-18 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード フッ素ガス生成装置
KR100533411B1 (ko) * 2002-11-08 2005-12-02 도요탄소 가부시키가이샤 불소가스 발생장치와 그 전해욕 액면 제어방법
JP4624699B2 (ja) * 2004-03-18 2011-02-02 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード フッ素ガス生成装置
WO2006043125A1 (en) * 2004-10-20 2006-04-27 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Fluorine gas generator
JP5345060B2 (ja) * 2007-09-20 2013-11-20 東洋炭素株式会社 炭素質基材及びフッ素発生電解用電極
US20090159454A1 (en) * 2007-12-20 2009-06-25 Air Products And Chemicals, Inc. Divided electrochemical cell and low cost high purity hydride gas production process
JP5584904B2 (ja) * 2008-03-11 2014-09-10 東洋炭素株式会社 フッ素ガス発生装置
JP2011084806A (ja) * 2009-06-29 2011-04-28 Central Glass Co Ltd フッ素ガス生成装置
JP5375673B2 (ja) * 2010-03-01 2013-12-25 セントラル硝子株式会社 フッ素ガス生成装置
WO2012132963A1 (ja) * 2011-03-30 2012-10-04 クロリンエンジニアズ株式会社 オゾン発生用電解セルの始動方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263988A (ja) * 1988-12-27 1990-10-26 Mitsui Toatsu Chem Inc 三弗化窒素ガスの製造方法
JP2011038145A (ja) * 2009-08-10 2011-02-24 Yokogawa Electric Corp 電気分解装置及び電気分解方法
JP2013507629A (ja) * 2009-10-16 2013-03-04 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング 高純度フッ素ガス、その発生および使用、ならびにフッ素ガス中の不純物の監視方法
JP2011225922A (ja) * 2010-04-16 2011-11-10 Central Glass Co Ltd フッ素ガス生成装置
JP5919824B2 (ja) * 2012-01-05 2016-05-18 セントラル硝子株式会社 ガス生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083265A4 *

Also Published As

Publication number Publication date
CN113874555A (zh) 2021-12-31
US20220154353A1 (en) 2022-05-19
TW202138624A (zh) 2021-10-16
CN113874555B (zh) 2024-01-05
TWI762107B (zh) 2022-04-21
EP4083265A1 (en) 2022-11-02
EP4083265A4 (en) 2024-09-11
JPWO2021132028A1 (ja) 2021-07-01
KR20220065865A (ko) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2021131815A1 (ja) フッ素ガスの製造方法及びフッ素ガス製造装置
WO2021131578A1 (ja) フッ素ガス製造装置及び光散乱検出器
WO2021132028A1 (ja) フッ素ガスの製造方法及びフッ素ガス製造装置
WO2021131579A1 (ja) フッ素ガスの製造方法及びフッ素ガス製造装置
WO2021131817A1 (ja) フッ素ガスの製造方法及びフッ素ガス製造装置
WO2021131818A1 (ja) フッ素ガスの製造方法及びフッ素ガス製造装置
WO2021131816A1 (ja) フッ素ガスの製造方法及びフッ素ガス製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567369

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227013544

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907466

Country of ref document: EP

Effective date: 20220727