WO2021129759A1 - 改性氧化锌纳米颗粒及其改性方法,及量子点发光二极管 - Google Patents

改性氧化锌纳米颗粒及其改性方法,及量子点发光二极管 Download PDF

Info

Publication number
WO2021129759A1
WO2021129759A1 PCT/CN2020/139105 CN2020139105W WO2021129759A1 WO 2021129759 A1 WO2021129759 A1 WO 2021129759A1 CN 2020139105 W CN2020139105 W CN 2020139105W WO 2021129759 A1 WO2021129759 A1 WO 2021129759A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
betaine
oxide nanoparticles
quantum dot
ligand
Prior art date
Application number
PCT/CN2020/139105
Other languages
English (en)
French (fr)
Inventor
聂志文
刘文勇
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2021129759A1 publication Critical patent/WO2021129759A1/zh
Priority to US17/847,835 priority Critical patent/US20220336746A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • This application relates to the technical field of light emitting diodes, and in particular to a method for modifying zinc oxide nanoparticles, modified zinc oxide nanoparticles and quantum dot light emitting diodes.
  • zinc oxide nanomaterials are often used as the electron transport layer, which can significantly improve the recombination efficiency of carriers in the quantum dot light-emitting layer.
  • the presence of hydroxyl groups, carboxyl groups and surface defect states on the surface of zinc oxide nanoparticles is very easy to serve as non-radiative relaxation centers, causing loss of photocurrent and reducing the performance of QLED devices.
  • the abundant hydroxyl groups on the surface of zinc oxide nanoparticles will cause the nanoparticles to directly undergo hydrogen bonding, which will lead to agglomeration between the particles, which will irreversibly affect their dispersibility. In addition, this will also cause an excess of electrons injected into the quantum dot light-emitting layer through the zinc oxide film.
  • One of the objectives of the embodiments of the present application is to provide a method for modifying zinc oxide nanoparticles, modified zinc oxide nanoparticles and quantum dot light-emitting diodes, aiming to solve the application problem of zinc oxide nanoparticles.
  • a method for modifying zinc oxide nanoparticles which includes the following steps:
  • the zinc oxide solution and the betaine ligand are mixed and processed, reacted in a protective gas atmosphere at a preset temperature, and modified zinc oxide is separated and obtained.
  • a modified zinc oxide nanoparticle including zinc oxide nanoparticle, and the surface of the zinc oxide nanoparticle is grafted with a betaine ligand.
  • a quantum dot light emitting diode in a third aspect, includes an anode and a cathode disposed oppositely, a quantum dot light emitting layer disposed between the anode and the cathode, and a quantum dot light emitting diode disposed between the cathode and the cathode.
  • the electron transport layer between the quantum dot light-emitting layers, and the material of the electron transport layer includes the zinc oxide nanoparticles prepared by the above-mentioned modification method, or includes the above-mentioned modified zinc oxide nanoparticles.
  • the beneficial effects of the method for modifying zinc oxide nanoparticles provided in the examples of the application are: the zinc oxide solution and the betaine ligand are mixed and reacted under a protective gas atmosphere at a preset temperature to separate and obtain a surface grafted sugar beet.
  • Modified zinc oxide with base ligands wherein the ligand has a betaine group -N + and -COO - group, during the reaction betaine -N + ligand groups capable of anionic surface of zinc oxide nanoparticles by electrostatic forces bonded to each other, -COO - group capable of Zn to the surface of the zinc oxide nanoparticles bonded to each other by electrostatic force 2+.
  • the betaine ligand can be very firmly combined with the surface of the zinc oxide nanoparticles, ensuring that the modified zinc oxide grafted with the betaine ligand on the surface has good stability.
  • the branched part of the betaine ligands can increase the steric hindrance, not only can effectively prevent the agglomeration caused by the hydrogen bonding of the hydroxyl bond between the particles, and significantly improve the monodispersity of the zinc oxide nanoparticles.
  • the presence of the branched chain part can hinder the transmission rate of electrons to a certain extent, thereby improving the recombination efficiency of electrons and holes in the quantum dot light-emitting layer, and greatly improving the performance indicators of the quantum dot light-emitting diode device.
  • the method for modifying zinc oxide nanoparticles provided in the present application is simple and fast to operate, suitable for industrial production, and meets application requirements.
  • the beneficial effects of the modified zinc oxide nanoparticles provided in the examples of the application are: the surface of the modified zinc oxide nanoparticles is grafted with betaine ligands, and the betaine ligands are very firmly bound to the surface of the zinc oxide nanoparticles , Good stability.
  • the branched part of the betaine ligand can increase the steric hindrance.
  • it can effectively prevent the agglomeration between the particles due to the hydrogen bonding of the hydroxyl bond, and significantly improve the monodispersion of the zinc oxide nanoparticles.
  • the presence of the branched part of the betaine-based ligand grafted on the surface can hinder the transmission rate of electrons to a certain extent, thereby increasing the electrons and holes
  • the recombination efficiency in the quantum dot light-emitting layer greatly improves the performance indicators of the quantum dot light-emitting diode device.
  • the beneficial effects of the quantum dot light-emitting diode provided by the embodiments of the present application are: due to the above-mentioned good stability, excellent monodispersion performance, and the existence of modified zinc oxide nanoparticles that can hinder the transmission rate of electrons to a certain extent, improve electrons and air
  • the recombination efficiency of holes in the quantum dot light-emitting layer greatly improves the performance indicators of the quantum dot light-emitting diode device.
  • Fig. 1 is a schematic flow chart of a method for modifying zinc oxide nanoparticles provided in an embodiment of the present application.
  • some embodiments of the present application provide a method for modifying zinc oxide nanoparticles, which includes the following steps:
  • a zinc oxide solution and betaine ligands are mixed, reacted under a protective gas atmosphere at a preset temperature, and the surface grafted with betaine ligands is separated and obtained Of modified zinc oxide.
  • the ligand has a betaine group -N + and -COO - group, during the reaction betaine -N + ligand groups capable of anionic surface of zinc oxide nanoparticles by electrostatic forces bonded to each other, -COO - group capable of Zn to the surface of the zinc oxide nanoparticles bonded to each other by electrostatic force 2+.
  • the betaine ligand can be very firmly combined with the surface of the zinc oxide nanoparticles, ensuring that the modified zinc oxide grafted with the betaine ligand on the surface has good stability.
  • the branched part of the betaine ligands can increase the steric hindrance, not only can effectively prevent the agglomeration caused by the hydrogen bonding of the hydroxyl bond between the particles, and significantly improve the monodispersity of the zinc oxide nanoparticles.
  • the presence of the branched chain part can hinder the transmission rate of electrons to a certain extent, thereby improving the recombination efficiency of electrons and holes in the quantum dot light-emitting layer, and greatly improving the performance indicators of the quantum dot light-emitting diode device.
  • the method for modifying zinc oxide nanoparticles provided in the embodiments of the present application is simple and fast to operate, suitable for industrial production, and meets application requirements.
  • a zinc oxide solution and a betaine ligand are obtained.
  • the examples of this application use zinc oxide and betaine ligands as raw materials.
  • zinc oxide nanoparticles often have poor crystallinity, and there are a large number of hydroxyl groups, carboxyl groups and surface defect states on the surface, especially prepared by low-temperature solution method, which has low production cost, simple process, fast operation, and environmental protection. And other advantages, it is currently the main preparation method of zinc oxide nanomaterials.
  • the zinc oxide material used in the electron transport layer is generally prepared by a low-temperature solution method. The large number of hydroxyl groups, carboxyl groups and surface defect states on the surface of zinc oxide nanoparticles not only cause the zinc oxide particles to easily agglomerate, but also affect QLED Device performance.
  • the solvent in the zinc oxide solution is selected from at least one of water, ethanol, methanol, propanol, and formamide.
  • the solvent in the zinc oxide solution in the examples of this application is at least one polar solvent among water, ethanol, methanol, propanol or formamide. These polar solvents not only have good solvent properties for zinc oxide, but also have good properties for betaine.
  • the body also has excellent solubility and can provide a solvent environment for the modification reaction between zinc oxide and betaine ligands.
  • zinc oxide is fully dissolved in a polar solvent in advance, so that the betaine ligand can be quickly and uniformly contacted and reacted with zinc oxide, and the uniformity and sufficiency of the reaction can be improved.
  • the concentration of the zinc oxide solution is 5-20 mg/ml.
  • the concentration of the zinc oxide solution in the examples of the application is 5-20 mg/ml, and this concentration ensures the material basis and reaction environment for the subsequent modification of zinc oxide nanoparticles by betaine ligands. If the concentration of the zinc oxide solution is too high or too low, it is not conducive to the modification of zinc oxide nanoparticles by betaine ligands.
  • the zinc oxide solution is prepared by dissolving zinc oxide in at least one polar solvent in water, ethanol, methanol, propanol, or formamide to form a concentration of 5mg/ml, 10mg/ml, 15mg/ml. ml or 20 mg/ml solution.
  • the ligand having a betaine group -N +, -COO - groups and long chain branching.
  • the betaine ligand is selected from: dodecyl dimethyl amine hydantoin, tetradecyl dimethyl amine hydantoin, cetyl dimethyl amine hydantoin At least one of ester, octadecyldimethylamine hydantoin, lauroamidopropyl betaine, and sodium lauroamphoacetate.
  • Betaines ligands embodiment of the present embodiment not only has application group -N + and -COO - group, and having a long branched chain, wherein, -N + anionic groups through the particle surface of the zinc oxide nano electrostatic force combined with each other, -COO - groups of the particle surface capable of Zn 2+ zinc oxide nano-bonded to each other by electrostatic force, improve the stability of zinc oxide nanoparticles after modification.
  • the long-chain branch of the betaine ligand has a longer steric hindrance. On the one hand, it can effectively prevent the agglomeration between particles due to the hydrogen bonding of the hydroxyl bond, and significantly improve the monodispersity problem. ; On the other hand, the existence of the long-chain branch can hinder the transmission rate of electrons to a certain extent, thereby improving the recombination efficiency of electrons and holes in the QLED device, and greatly improving the performance indicators of the QLED device.
  • step S20 after the zinc oxide solution and the betaine ligand are mixed, they are reacted in a protective gas atmosphere at a preset temperature to separate and obtain modified zinc oxide.
  • a protective gas atmosphere at a preset temperature to promote the -N + groups on the surface of the betaine ligand and zinc oxide anionic nanoparticle surface bonded to each other by electrostatic force, -COO - groups to the surface of the Zn 2+ zinc oxide nano-particles bonded to each other by electrostatic force, to ensure that the modified betaines ligand of zinc oxide nanoparticles Adequacy to obtain modified zinc oxide grafted with betaine ligands on the surface.
  • the reaction is performed under a protective gas atmosphere at a temperature of 25 to 100°C. This temperature condition promotes the surface of the betaine ligand. -N + anionic group and nano zinc oxide particle surface, and -COO - groups and the surface of the particle Zn 2+ zinc oxide nano better mutual binding effect, and the reaction time may betaines specific ligand The type is determined, as long as the betaine ligand can fully modify the zinc oxide nanoparticles. In some embodiments, the reaction time is 5 minutes to 12 hours.
  • the temperature is 25° C., 50° C., 75° C., 90° C., or 100° C. in nitrogen, argon, helium, or Under the mixed gas atmosphere, react for 5 minutes, 30 minutes, 1 hour, 3 hours, 6 hours, 8 hours, 10 hours or 12 hours to separate and obtain the modified zinc oxide grafted with betaine ligands on the surface.
  • the mass ratio of the betaine ligand to the zinc oxide nanoparticles is (0.1-1):1.
  • the mass ratio of betaine ligands to zinc oxide nanoparticles is (0.1 ⁇ 1):1. This mass ratio ensures that the betaine ligands can fully modify the zinc oxide nanoparticles. It makes the betaine ligands fully combine with the groups, anions, defect states and Zn 2+ on the surface of the zinc oxide nanoparticles, so that the zinc oxide nanoparticles are fully modified, and the surface of the zinc oxide nanoparticles is effectively passivated.
  • the hydroxyl group, carboxyl group and surface defect state of the ZnO nanoparticles can improve the monodispersity of zinc oxide nanoparticles and slow down the effective electron injection. If the mass ratio of betaine ligands to zinc oxide nanoparticles is too low, the betaine ligands will not sufficiently modify the zinc oxide nanoparticles. In some embodiments, the mass ratio of betaine ligand to zinc oxide nanoparticles may be 0.1:1, 0.2:1, 0.5:1, 0.7:1, 0.9:1, or 1:1.
  • the protective gas atmosphere is selected from at least one of nitrogen, argon, and helium. At least one protective gas of nitrogen, argon, and helium in the embodiments of the present application prevents the metal elements in the zinc oxide from being oxidized and destroyed during the reaction, and at the same time avoids the occurrence of side reactions.
  • the method further includes: cooling the resulting reaction system After treatment, a second solvent is added for precipitation and centrifugal separation to obtain modified zinc oxide grafted with betaine ligands on the surface.
  • a second solvent is added for precipitation and centrifugal separation to obtain modified zinc oxide grafted with betaine ligands on the surface.
  • the second solvent is selected from ethyl acetate and/or methyl acetate.
  • the solvents of ethyl acetate and/or methyl acetate in the examples of this application have a good purification effect on the modified zinc oxide grafted with betaine ligands on the surface of the reaction system, and the purified surface can be obtained by centrifugation. Modified zinc oxide grafted with betaine ligands.
  • the embodiment of the present application also provides a modified zinc oxide nanoparticle, including zinc oxide nanoparticle, and the surface of the zinc oxide nanoparticle is grafted with a betaine ligand.
  • the surface of the modified zinc oxide nanoparticles provided by the examples of the present application is grafted with betaine ligands, and the betaine ligands are very firmly combined with the surface of the zinc oxide nanoparticles, and the stability is good.
  • the branched part of the betaine ligand can increase the steric hindrance. On the one hand, it can effectively prevent the agglomeration between the particles due to the hydrogen bonding of the hydroxyl bond, and significantly improve the monodispersion of the zinc oxide nanoparticles.
  • the presence of the branched part of the betaine-based ligand grafted on the surface can hinder the transmission rate of electrons to a certain extent, thereby increasing the electrons and holes
  • the recombination efficiency in the quantum dot light-emitting layer greatly improves the performance indicators of the quantum dot light-emitting diode device.
  • the modified zinc oxide nanoparticles provided in the embodiments of the present application can be prepared by the above-mentioned modification method of zinc oxide nanoparticles.
  • an embodiment of the present application also provides a quantum dot light emitting diode.
  • the quantum dot light emitting diode includes an anode and a cathode disposed oppositely, a quantum dot light emitting layer disposed between the anode and the cathode, and
  • the electron transport layer between the cathode and the quantum dot light-emitting layer, and the material of the electron transport layer includes zinc oxide nanoparticles prepared by the above-mentioned modification method, or includes the above-mentioned modified zinc oxide nanoparticles .
  • the quantum dot light-emitting diode provided by the embodiments of the present application has the above-mentioned good stability, excellent monodispersion performance, and the existence of modified zinc oxide nanoparticles that can hinder the transmission rate of electrons to a certain extent, thereby increasing the electrons and holes in the quantum dots.
  • the recombination efficiency in the light-emitting layer greatly improves the performance indicators of the quantum dot light-emitting diode device.
  • the quantum dot light-emitting diodes in the embodiments of the present application are divided into a positive type structure and an inverted type structure.
  • the positive structure is a substrate/anode/quantum dot light-emitting layer/electron transport layer/cathode, and optionally arranged between the anode and the quantum dot light-emitting layer such as a hole injection layer, a hole transport layer, and an electron blocking layer.
  • the hole function layer such as the layer, the electron injection layer arbitrarily disposed between the electron transport layer and the cathode, and so on.
  • the inverted structure is opposite to the positive structure.
  • the substrate may be a rigid or flexible substrate.
  • the anode can be ITO, FTO or ZTO.
  • the hole injection layer can be PEODT: PSS, WoO 3 , MoO 3 , NiO, V 2 O 5 , HATCN, HATCN or CuS.
  • the hole transport layer may be TFB, PVK, TCTA, TAPC, Poly-TBP, Poly-TPD, NPB, CBP, PEODT: PSS, MoO 3 , WoO 3 , NiO, CuO, V 2 O 5 or CuS.
  • the quantum dot light emitting layer may be at least one of quantum dots composed of IIB and VIA elements, quantum dots composed of IIIA and VA elements, and quantum dots composed of IVA and VIA elements.
  • the quantum dot light-emitting layer may be CdS, AlAs, or SnS.
  • the electron transport layer may be zinc oxide nanoparticles prepared by the above-mentioned modification method, or contain the above-mentioned modified zinc oxide nanoparticles, and have a thickness of 10 to 120 nm.
  • the cathode can be Al or Ag.
  • the thickness of the anode is 30-150 nm; the thickness of the hole injection layer is 30-150 nm; the thickness of the hole transport layer is 30-180 nm; the thickness of the quantum dot light-emitting layer is 30-180 nm; The thickness of the electron transport layer is 10 ⁇ 120 nm; the thickness of the cathode is 80 ⁇ 120 nm.
  • a quantum dot light-emitting diode includes the following preparation steps:
  • a bottom electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer, and a top electrode are sequentially prepared on the substrate.
  • the substrate is a glass substrate;
  • the bottom electrode is ITO with a thickness of 100 nm;
  • the hole injection layer is PEDOT:PSS with a thickness of 40 nm;
  • the hole transport layer is TFB with a thickness of 100 nm;
  • quantum dot light-emitting layer It is CdZnSe/ZnSe/ZnS with a thickness of 120 nm;
  • the electron transport layer is the zinc oxide grafted with dodecyldimethylamine hydantoin on the surface obtained in step S10, and the thickness is 60 nm;
  • the top electrode is Al, The thickness is 50 nm.
  • a quantum dot light-emitting diode includes the following preparation steps:
  • S20 It is basically the same as S20 in Example 1, with the main difference being that the zinc oxide grafted with octadecyldimethylamine hydantoin on the surface obtained in step S10 in this example is used as the electron transport layer.
  • a quantum dot light-emitting diode includes the following preparation steps:
  • S20 It is basically the same as S20 in Example 1, with the main difference being that the zinc oxide grafted with lauramidopropyl betaine on the surface obtained in step S10 in this example is used as the electron transport layer.
  • a quantum dot light-emitting diode includes the following preparation steps:
  • S20 It is basically the same as S20 in Example 1, with the main difference being that the zinc oxide grafted with sodium lauroamphoacetate on the surface obtained in step S10 in this example is used as the electron transport layer.
  • a quantum dot light-emitting diode includes the following preparation steps:
  • S20 It is basically the same as S20 in Example 1, with the main difference being that the zinc oxide grafted with tetradecyldimethylamine hydantoin on the surface obtained in step S10 in this example is used as the electron transport layer.
  • a quantum dot light-emitting diode includes the following preparation steps:
  • S20 It is basically the same as S20 in Example 1, with the main difference being that the zinc oxide grafted with cetyldimethylamine hydantoin on the surface obtained in step S10 in this example is used as the electron transport layer.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 EQEmax(%) 5 12 10 15 8 11 9
  • the external quantum efficiency of the quantum dot light-emitting diodes prepared in Examples 1 to 6 of the present application is significantly higher than that of the quantum dot light-emitting diodes prepared in Comparative Example 1, which shows that the electron transport layers used in Examples 1 to 6 of the present application
  • the modified zinc oxide nanoparticles grafted with betaine ligands on the surface improve the recombination efficiency of electrons and holes in the quantum dot light-emitting layer, thereby improving the photoelectric properties such as the external quantum efficiency of the quantum dot light-emitting diode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种氧化锌纳米颗粒的改性方法,包括步骤:获取氧化锌溶液和甜菜碱类配体;将所述氧化锌溶液和所述甜菜碱类配体混合处理,在预设温度的保护气体氛围下反应,分离得到改性氧化锌。提供的氧化锌纳米颗粒的改性方法,操作简单,快捷,适合工业化生产,满足应用需求,且制得的表面接枝有甜菜碱类配体的改性氧化锌,稳定性好、单分散性能优异,能够一定程度上阻碍电子的传输速率,提高电子和空穴在量子点发光层中的复合效率。

Description

改性氧化锌纳米颗粒及其改性方法,及量子点发光二极管
本申请要求于2019年12月25日提交的中国专利申请No. 201911352574.4的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及发光二极管技术领域,具体涉及一种氧化锌纳米颗粒的改性方法、改性氧化锌纳米颗粒及量子点发光二极管。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
目前,制约QLED发展最根本的问题在于空穴和电子在量子点发光层中不能够得到有效复合。通常,电子的注入要多于空穴的注入,因此,平衡好电子和空穴的注入对QLED整体性能的提升具有重要意义。
QLED技术领域中常采用氧化锌纳米材料作为电子传输层,可显著提高载流子在量子点发光层中的复合效率。
然而,一方面,氧化锌纳米颗粒表面羟基、羧基和表面缺陷态的存在非常容易作为非辐射弛豫中心,引起光电流的损失,造成QLED器件性能降低。另一方面,氧化锌纳米颗粒的表面丰富的羟基会造成纳米粒子直接发生氢键键合作用,从而导致颗粒间发生团聚,对其分散性造成不可逆影响。此外,这还会导致经氧化锌薄膜注入到量子点发光层中的电子过量。
技术问题
本申请实施例的目的之一在于:提供一种氧化锌纳米颗粒的改性方法、改性氧化锌纳米颗粒及量子点发光二极管,旨在解决氧化锌纳米颗粒的应用问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种氧化锌纳米颗粒的改性方法,包括以下步骤:
获取氧化锌溶液和甜菜碱类配体;
将所述氧化锌溶液和所述甜菜碱类配体混合处理,在预设温度的保护气体氛围下反应,分离得到改性氧化锌。
第二方面,提供了一种改性氧化锌纳米颗粒,包括氧化锌纳米颗粒,且所述氧化锌纳米颗粒表面接枝有甜菜碱类配体。
第三方面,提供一种量子点发光二极管,所述量子点发光二极管包括相对设置的阳极和阴极,设置在所述阳极和所述阴极之间的量子点发光层,以及设置在所述阴极和所述量子点发光层之间的电子传输层,且所述电子传输层的材料包含上述的改性方法制得的氧化锌纳米颗粒,或者包含上述的改性氧化锌纳米颗粒。
有益效果
本申请实施例提供的氧化锌纳米颗粒的改性方法的有益效果在于:将氧化锌溶液和甜菜碱类配体混合处理,在预设温度的保护气体氛围下反应,分离得到表面接枝有甜菜碱类配体的改性氧化锌。其中,甜菜碱类配体具有-N +基团和-COO -基团,在反应过程中甜菜碱类配体中的-N +基团能够与氧化锌纳米颗粒的表面的阴离子通过静电作用力相互结合,-COO -基团能够与氧化锌纳米颗粒的表面的Zn 2+通过静电作用力相互结合。因此,甜菜碱类配体能够非常牢固的与氧化锌纳米颗粒的表面结合,确保表面接枝有甜菜碱类配体的改性氧化锌具有良好的稳定性。另外,甜菜碱类配体中支链部分可以增大空间位阻,不但能够有效地防止颗粒间由于羟基键存在氢键键合作用导致的团聚,显著改善了氧化锌纳米颗粒的单分散性问题,而且支链部分的存在能够一定程度上阻碍电子的传输速率,从而提高电子和空穴在量子点发光层中的复合效率,大大提高量子点发光二极管器件性能指标。并且,本申请提供的氧化锌纳米颗粒的改性方法,操作简单,快捷,适合工业化生产,满足应用需求。
本申请实施例提供的改性氧化锌纳米颗粒的有益效果在于:改性氧化锌纳米颗粒的表面接枝有甜菜碱类配体,甜菜碱类配体非常牢固的与氧化锌纳米颗粒的表面结合,稳定性好。另外,甜菜碱类配体中支链部分可以增大空间位阻,一方面,能够有效地防止颗粒间由于羟基键存在氢键键合作用导致的团聚,显著改善了氧化锌纳米颗粒的单分散性问题;另外一方面,将该氧化锌应用于量子点发光器件中,表面接枝的甜菜碱类配体的支链部分的存在能够一定程度上阻碍电子的传输速率,从而提高电子和空穴在量子点发光层中的复合效率,大大提高量子点发光二极管器件性能指标。
本申请实施例提供的量子点发光二极管的有益效果在于:由于具有上述稳定性好、单分散性能优异,且存在能够一定程度上阻碍电子的传输速率的改性氧化锌纳米颗粒,提高电子和空穴在量子点发光层中的复合效率,大大提高了量子点发光二极管器件性能指标。
附图说明
图1是本申请实施例提供的氧化锌纳米颗粒的改性方法的流程示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
如图1所示,本申请的一些实施例提供一种氧化锌纳米颗粒的改性方法,包括以下步骤:
S10. 获取氧化锌溶液和甜菜碱类配体;
S20. 将所述氧化锌溶液和所述甜菜碱类配体混合处理,在预设温度的保护气体氛围下反应,分离得到改性氧化锌。
本申请实施例提供的氧化锌纳米颗粒的改性方法,将氧化锌溶液和甜菜碱类配体混合处理,在预设温度的保护气体氛围下反应,分离得到表面接枝有甜菜碱类配体的改性氧化锌。其中,甜菜碱类配体具有-N +基团和-COO -基团,在反应过程中甜菜碱类配体中的-N +基团能够与氧化锌纳米颗粒的表面的阴离子通过静电作用力相互结合,-COO -基团能够与氧化锌纳米颗粒的表面的Zn 2+通过静电作用力相互结合。因此,甜菜碱类配体能够非常牢固的与氧化锌纳米颗粒的表面结合,确保表面接枝有甜菜碱类配体的改性氧化锌具有良好的稳定性。另外,甜菜碱类配体中支链部分可以增大空间位阻,不但能够有效地防止颗粒间由于羟基键存在氢键键合作用导致的团聚,显著改善了氧化锌纳米颗粒的单分散性问题,而且支链部分的存在能够一定程度上阻碍电子的传输速率,从而提高电子和空穴在量子点发光层中的复合效率,大大提高量子点发光二极管器件性能指标。并且,本申请实施例提供的氧化锌纳米颗粒的改性方法,操作简单,快捷,适合工业化生产,满足应用需求。
具体地,上述步骤S10中,获取氧化锌溶液和甜菜碱类配体。本申请实施例以氧化锌和甜菜碱类配体为原料。其中,氧化锌纳米颗粒往往结晶性较差,且表面存在大量的羟基、羧基和表面缺陷态等,尤其是通过低温溶液法制备的,该方法具有生产成本低、工艺简单、操作快捷、绿色环保等优点,是目前氧化锌纳米材料主要的制备方法。在QLED技术领域中,电子传输层采用的氧化锌材料一般通过低温溶液法制备,氧化锌纳米颗粒表面存在的大量羟基、羧基和表面缺陷态,不但导致氧化锌颗粒间易发生团聚,而且影响QLED器件性能。
在一些实施例中,所述氧化锌溶液中的溶剂选自:水、乙醇、甲醇、丙醇、甲酰胺中至少一种。本申请实施例氧化锌溶液中的溶剂为水、乙醇、甲醇、丙醇或甲酰胺中至少一种极性溶剂,这些极性溶剂不但对氧化锌具有较好的溶剂性,而且对甜菜碱配体也具有极佳的溶解性,能够为氧化锌和甜菜碱类配体之间的改性反应提供溶剂环境。本申请实施例将氧化锌预先充分溶解在极性溶剂中,使后加入甜菜碱类配体能够快速均匀地与氧化锌接触反应,提高反应的均匀性和充分性。
在一些实施例中,所述氧化锌溶液的浓度为5~20 mg/ml。本申请实施例氧化锌溶液的浓度为5~20 mg/ml,该浓度确保了后续甜菜碱类配体对氧化锌纳米颗粒改性的物质基础和反应环境。若氧化锌溶液的浓度过高或过低,都不利于甜菜碱类配体对氧化锌纳米颗粒的改性。
在一些实施例中,所述氧化锌溶液为将氧化锌溶解在水、乙醇、甲醇、丙醇或甲酰胺中至少一种极性溶剂中,形成浓度为5mg/ml、10mg/ml、15mg/ml或20 mg/ml的溶液。
本申请实施例中,所述甜菜碱类配体具有-N +基团、-COO -基团和长支链。在一些实施例中,所述甜菜碱类配体选自:十二烷基二甲基胺乙内酯、十四烷基二甲基胺乙内酯、十六烷基二甲基胺乙内酯、十八烷基二甲基胺乙内酯、月桂酰胺丙基甜菜碱、月桂酰两性基乙酸钠中至少一种。本申请实施例采用的甜菜碱类配体不但具有-N +基团和-COO -基团,而且具有较长的支链,其中,-N +基团能够与氧化锌纳米颗粒表面的阴离子通过静电作用力相互结合,-COO -基团能够与氧化锌纳米颗粒表面的Zn 2+通过静电作用力相互结合,提高改性后的氧化锌纳米颗粒的稳定性。另外,甜菜碱类配体中长支链部分具有较长的空间位阻,一方面,能够有效地防止颗粒间由于羟基键存在氢键键合作用导致的团聚,显著改善了其单分散性问题;另一方面,长支链部分的存在能够一定程度上阻碍电子的传输速率,从而提高电子和空穴在QLED器件中的复合效率,大大提高QLED器件性能指标。
具体地,上述步骤S20中,将所述氧化锌溶液和所述甜菜碱类配体混合后,在预设温度的保护气体氛围下反应,分离得到改性氧化锌。本申请实施例,将所述氧化锌溶液和所述甜菜碱类配体混合后,在预设温度的保护气体氛围下反应,促进了甜菜碱类配体表面的-N +基团与氧化锌纳米颗粒表面的阴离子通过静电作用力相互结合,-COO -基团与氧化锌纳米颗粒表面的Zn 2+通过静电作用力相互结合,确保了甜菜碱类配体对氧化锌纳米颗粒的改性的充分性,得到表面接枝有甜菜碱类配体的改性氧化锌。
在一些实施例中,将所述氧化锌溶液和所述甜菜碱类配体混合后,在温度为25~100℃的保护气体氛围下的反应,该温度条件促进了甜菜碱类配体表面的-N +基团与氧化锌纳米颗粒表面的阴离子,以及-COO -基团与氧化锌纳米颗粒表面的Zn 2+有更好的相互结合效果,其反应时间可以根据甜菜碱类配体的具体类型决定,只要能确保甜菜碱类配体对氧化锌纳米颗粒改性充分即可,在一些实施例中,反应时间为5分钟~12小时。
在一些具体实施例中,将所述氧化锌溶液和所述甜菜碱类配体混合后,在温度为25℃、50℃、75℃、90℃或100℃的氮气、氩气、氦气或其混合气体氛围下,反应5分钟、30分钟、1小时、3小时、6小时、8小时、10小时或12小时,分离得到表面接枝有甜菜碱类配体的改性氧化锌。
在一些实施例中,将所述氧化锌溶液和所述甜菜碱类配体混合后的体系中,所述甜菜碱类配体与氧化锌纳米颗粒的质量比为(0.1~1):1。本申请实施例反应体系中,甜菜碱类配体与氧化锌纳米颗粒的质量比为(0.1~1):1,该质量比确保了甜菜碱类配体对氧化锌纳米颗粒的改性的充分性,使甜菜碱类配体充分地与氧化锌纳米颗粒的表面的基团、阴离子、缺陷态以及Zn 2+结合,使氧化锌纳米颗粒的改性充分,有效钝化氧化锌纳米颗粒的表面的羟基、羧基和表面缺陷态,提高氧化锌纳米颗粒的单分散性,同时减慢电子的有效注入。若甜菜碱类配体与氧化锌纳米颗粒的质量比太低,则甜菜碱类配体对氧化锌纳米颗粒的改性不充分。在一些实施例中,甜菜碱类配体与氧化锌纳米颗粒的质量比可以是0.1:1、0.2:1、0.5:1、0.7:1、0.9:1或者1:1。
在一些实施例中,所述保护气体氛围选自:氮气、氩气、氦气中至少一种。本申请实施例氮气、氩气、氦气中的至少一种保护气体,使氧化锌中金属元素在反应过程中不被氧化破坏,同时避免了副反应的发生。
在一些实施例中,在将所述氧化锌溶液和所述甜菜碱类配体混合处理,在温度为25~100℃的保护气体氛围下反应的步骤之后,还包括:将得到的反应体系冷却处理,添加第二溶剂进行沉淀、离心分离处理,得到表面接枝有甜菜碱类配体的改性氧化锌。本申请实施例将所述氧化锌溶液和所述甜菜碱类配体混合后,在温度为25~100℃的保护气体氛围下反应后,将反应体系冷却至室温,然后添加第二溶剂沉淀、离心分离,得到纯化后的表面接枝有甜菜碱类配体的改性氧化锌。
在一些实施例中,所述第二溶剂选自:乙酸乙酯和/或乙酸甲酯。本申请实施例乙酸乙酯和/或乙酸甲酯溶剂,对反应后的体系中表面接枝有甜菜碱类配体的改性氧化锌具有较好的纯化作用,离心分离可得到纯化后的表面接枝有甜菜碱类配体的改性氧化锌。
相应地,本申请实施例还提供了一种改性氧化锌纳米颗粒,包括氧化锌纳米颗粒,且所述氧化锌纳米颗粒表面接枝有甜菜碱类配体。
本申请实施例提供的改性氧化锌纳米颗粒的表面接枝有甜菜碱类配体,甜菜碱类配体非常牢固的与氧化锌纳米颗粒的表面结合,稳定性好。另外,甜菜碱类配体中支链部分可以增大空间位阻,一方面,能够有效地防止颗粒间由于羟基键存在氢键键合作用导致的团聚,显著改善了氧化锌纳米颗粒的单分散性问题;另外一方面,将该氧化锌应用于量子点发光器件中,表面接枝的甜菜碱类配体的支链部分的存在能够一定程度上阻碍电子的传输速率,从而提高电子和空穴在量子点发光层中的复合效率,大大提高量子点发光二极管器件性能指标。
本申请实施例提供的改性氧化锌纳米颗粒可通过上述氧化锌纳米颗粒的改性方法制得。
相应地,本申请实施例还提供了一种量子点发光二极管,所述量子点发光二极管包括相对设置的阳极和阴极,设置在所述阳极和所述阴极之间的量子点发光层,以及设置在所述阴极和所述量子点发光层之间的电子传输层,且所述电子传输层的材料包含上述的改性方法制得的氧化锌纳米颗粒,或者包含上述的改性氧化锌纳米颗粒。
本申请实施例提供的量子点发光二极管,由于具有上述稳定性好、单分散性能优异,且存在能够一定程度上阻碍电子的传输速率的改性氧化锌纳米颗粒,提高电子和空穴在量子点发光层中的复合效率,大大提高了量子点发光二极管器件性能指标。
具体的,本申请实施例量子点发光二极管分正型结构和反型结构。其中,正型结构为衬底/阳极/量子点发光层/电子传输层/阴极,以及任选地设置在阳极与量子点发光层之间的诸如空穴注入层、空穴传输层和电子阻挡层等的空穴功能层,任性地设置在电子传输层与阴极之间的电子注入层,等等。反型结构与正型结构相反。
示例性地,衬底可以是钢性或柔性衬底。阳极可以是ITO、FTO或ZTO。空穴注入层可以是PEODT:PSS、WoO 3、MoO 3、NiO、V 2O 5、HATCN、HATCN或CuS。空穴传输层可以是TFB、PVK、TCTA、TAPC、Poly-TBP、Poly-TPD、NPB、CBP、PEODT:PSS、MoO 3、WoO 3、NiO、CuO、V 2O 5或CuS。量子点发光层可以是由IIB族和VIA族元素组成的量子点、由IIIA族和VA族元素组成的量子点、由IVA族和VIA族元素组成的量子点中至少一种。例如,量子点发光层可以是CdS、AlAs或SnS。电子传输层可以是上述改性方法制得的氧化锌纳米颗粒,或者包含有上述的改性氧化锌纳米颗粒,厚度为10~120 nm。阴极可以是Al或Ag。
在优选实施例中,阳极的厚度为30~150 nm;空穴注入层的厚度为30~150 nm;空穴传输层的厚度为30~180nm;量子点发光层的厚度为30~180 nm;电子传输层的厚度为10~120 nm;阴极的厚度为80~120 nm。
实施例1
一种量子点发光二极管,包括以下制备步骤:
S10. 制备表面接枝有十二烷基二甲基胺乙内酯的氧化锌:向体积为10 ml,浓度为15 mg/ml的ZnO乙醇溶液中加入为75 mg十二烷基二甲基胺乙内酯,其中,氧化锌采用低温制备技术制备;于80℃下搅拌反应30 min。待反应结束后,产物通过乙酸乙酯进行沉淀、离心和分离三次,得到表面接枝有十二烷基二甲基胺乙内酯修饰的ZnO;
S20. 制备QLED器件:在衬底上依次制备底电极、空穴注入层、空穴传输层、量子点发光层、电子传输层、和顶电极。其中,所述衬底为玻璃基底;底电极为ITO,厚度为100 nm;空穴注入层为PEDOT:PSS,厚度为40 nm;空穴传输层为TFB,厚度为100 nm;量子点发光层为CdZnSe/ZnSe/ZnS,厚度为120 nm;电子传输层为步骤S10中得到的表面接枝有十二烷基二甲基胺乙内酯的氧化锌,厚度为60 nm;顶电极为Al,厚度为50 nm。
实施例2
一种量子点发光二极管,包括以下制备步骤:
S10. 制备表面接枝有十八烷基二甲基胺乙内酯的氧化锌:向体积为10 ml,浓度为15 mg/ml的ZnO乙醇溶液中加入为75 mg十八烷基二甲基胺乙内酯,其中,氧化锌采用低温制备技术制备;于70℃下搅拌反应60 min。待反应结束后,产物通过乙酸乙酯进行沉淀、离心和分离三次,得到表面接枝有十八烷基二甲基胺乙内酯修饰的ZnO;
S20.与实施例1中的S20基本相同,主要区别在于,使用本实施例中的步骤S10得到的表面接枝有十八烷基二甲基胺乙内酯的氧化锌作为电子传输层。
实施例3
一种量子点发光二极管,包括以下制备步骤:
S10. 制备表面接枝有月桂酰胺丙基甜菜碱的氧化锌:向体积为10 ml,浓度为15 mg/ml的ZnO乙醇溶液中加入为75 mg月桂酰胺丙基甜菜碱,其中,氧化锌采用低温制备技术制备;于90℃下搅拌反应30 min。待反应结束后,产物通过乙酸乙酯进行沉淀、离心和分离三次,得到表面接枝有月桂酰胺丙基甜菜碱修饰的ZnO;
S20.与实施例1中的S20基本相同,主要区别在于,使用本实施例中的步骤S10得到的表面接枝有月桂酰胺丙基甜菜碱的氧化锌作为电子传输层。
实施例4
一种量子点发光二极管,包括以下制备步骤:
S10. 制备表面接枝有月桂酰两性基乙酸钠的氧化锌:向体积为10 ml,浓度为15 mg/ml的ZnO乙醇溶液中加入为75 mg月桂酰两性基乙酸钠,其中,氧化锌采用低温制备技术制备;于50℃下搅拌反应120 min。待反应结束后,产物通过乙酸乙酯进行沉淀、离心和分离三次,得到表面接枝有月桂酰两性基乙酸钠修饰的ZnO;
S20. 与实施例1中的S20基本相同,主要区别在于,使用本实施例中的步骤S10得到的表面接枝有月桂酰两性基乙酸钠的氧化锌作为电子传输层。
实施例5
一种量子点发光二极管,包括以下制备步骤:
S10. 制备表面接枝有十四烷基二甲基胺乙内酯的氧化锌:向体积为10 ml,浓度为15 mg/ml的ZnO乙醇溶液中加入为75 mg十四烷基二甲基胺乙内酯,其中,氧化锌采用低温制备技术制备;于60℃下搅拌反应360 min。待反应结束后,产物通过乙酸乙酯进行沉淀、离心和分离三次,得到表面接枝有十四烷基二甲基胺乙内酯修饰的ZnO;
S20. 与实施例1中的S20基本相同,主要区别在于,使用本实施例中的步骤S10得到的表面接枝有十四烷基二甲基胺乙内酯的氧化锌作为电子传输层。
实施例6
一种量子点发光二极管,包括以下制备步骤:
S10. 制备表面接枝有十六烷基二甲基胺乙内酯的氧化锌:向体积为10 ml,浓度为15 mg/ml的ZnO乙醇溶液中加入为75 mg十六烷基二甲基胺乙内酯,其中,氧化锌采用低温制备技术制备;于40℃下搅拌反应8小时。待反应结束后,产物通过乙酸乙酯进行沉淀、离心和分离三次,得到表面接枝有十六烷基二甲基胺乙内酯修饰的ZnO;
S20. 与实施例1中的S20基本相同,主要区别在于,使用本实施例中的步骤S10得到的表面接枝有十六烷基二甲基胺乙内酯的氧化锌作为电子传输层。
对比例1
与实施例1中的S20基本相同,主要区别在于,使用氧化锌作为电子传输层。
为了验证本申请实施例1~6制备的量子点发光二极管的进步性,本申请测试例对实施例1~6以及对比例1制备的量子点发光二极管的外量子效率(EQE max)进行了测试,测试结果如下表1所示:
表1
 测试对象   测试项目 对照组1 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
EQEmax(%) 5 12 10 15 8 11 9
由上述测试结果可知,本申请实施例1~6制备的量子点发光二极管的外量子效率显著高于对比例1制备的量子点发光二极管,说明本申请实施例1~6电子传输层中采用的表面接枝有甜菜碱类配体的改性氧化锌纳米颗粒,提高电子和空穴在量子点发光层中的复合效率,从而提高量子点发光二极管的外量子效率等光电性能。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (16)

  1. 一种氧化锌纳米颗粒的改性方法,其特征在于,包括以下步骤:
    获取氧化锌溶液和甜菜碱类配体;
    将所述氧化锌溶液和所述甜菜碱类配体混合处理,在预设温度的保护气体氛围下反应,分离得到改性氧化锌。
  2. 如权利要求1所述的氧化锌纳米颗粒的改性方法,其特征在于,将所述氧化锌溶液和所述甜菜碱类配体混合处理的步骤中,按照所述甜菜碱类配体与氧化锌纳米颗粒的质量比为(0.1~1):1的比例,将所述氧化锌溶液和所述甜菜碱类配体进行混合。
  3. 如权利要求1所述的氧化锌纳米颗粒的改性方法,其特征在于,所述甜菜碱类配体包括-N +基团、-COO -基团和支链。
  4. 如权利要求3所述的氧化锌纳米颗粒的改性方法,其特征在于,所述甜菜碱类配体选自:十二烷基二甲基胺乙内酯、十四烷基二甲基胺乙内酯、十六烷基二甲基胺乙内酯、十八烷基二甲基胺乙内酯、月桂酰胺丙基甜菜碱、月桂酰两性基乙酸钠中至少一种。
  5. 如权利要求4所述的氧化锌纳米颗粒的改性方法,其特征在于,所述氧化锌溶液中的溶剂选自:水、乙醇、甲醇、丙醇、甲酰胺中至少一种。
  6. 如权利要求1所述的氧化锌纳米颗粒的改性方法,其特征在于,所述氧化锌溶液的浓度为5~20 mg/ml。
  7. 如权利要求6所述的氧化锌纳米颗粒的改性方法,其特征在于,所述保护气体氛围选自:氮气、氩气、氦气中的至少一种。
  8. 如权利要求1所述的氧化锌纳米颗粒的改性方法,其特征在于,所述预设温度为25~100℃。
  9. 如权利要求1所述的氧化锌纳米颗粒的改性方法,其特征在于,所述在预设温度的保护气体氛围下反应时间为5分钟~12小时。
  10. 如权利要求8所述的氧化锌纳米颗粒的改性方法,其特征在于,所述分离的步骤包括:将反应体系冷却处理,添加第二溶剂进行沉淀、离心分离处理,得到改性氧化锌。
  11. 如权利要求10所述的氧化锌纳米颗粒的改性方法,其特征在于,所述第二溶剂选自:乙酸乙酯、乙酸甲酯中的至少一种。
  12. 一种改性氧化锌纳米颗粒,其特征在于,包括氧化锌纳米颗粒,且所述氧化锌纳米颗粒表面接枝有甜菜碱类配体。
  13. 如权利要求12所述的改性氧化锌纳米颗粒,其特征在于,所述甜菜碱类配体包括-N +基团、-COO -基团和支链。
  14. 如权利要求13所述的氧化锌纳米颗粒,其特征在于,所述甜菜碱类配体选自:十二烷基二甲基胺乙内酯、十四烷基二甲基胺乙内酯、十六烷基二甲基胺乙内酯、十八烷基二甲基胺乙内酯、月桂酰胺丙基甜菜碱、月桂酰两性基乙酸钠中至少一种。
  15. 如权利要求12所述的氧化锌纳米颗粒,其特征在于,所述改性氧化锌纳米颗粒由质量比为(0.1~1):1的甜菜碱类配体与氧化锌纳米颗粒制得。
  16. 一种量子点发光二极管,其特征在于,所述量子点发光二极管包括相对设置的阳极和阴极,设置在所述阳极和所述阴极之间的量子点发光层,以及设置在所述阴极和所述量子点发光层之间的电子传输层,且所述电子传输层的材料包含如权利要求1~11任一所述的改性方法制得的氧化锌纳米颗粒,或者包含有如权利要求12~15所述的改性氧化锌纳米颗粒。
PCT/CN2020/139105 2019-12-25 2020-12-24 改性氧化锌纳米颗粒及其改性方法,及量子点发光二极管 WO2021129759A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/847,835 US20220336746A1 (en) 2019-12-25 2022-06-23 Modified zinc oxide nanoparticles, method for modifying thereof, and quantum dot light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911352574.4 2019-12-25
CN201911352574.4A CN113023767B (zh) 2019-12-25 2019-12-25 改性氧化锌纳米颗粒及其改性方法,及量子点发光二极管

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/847,835 Continuation US20220336746A1 (en) 2019-12-25 2022-06-23 Modified zinc oxide nanoparticles, method for modifying thereof, and quantum dot light-emitting diode

Publications (1)

Publication Number Publication Date
WO2021129759A1 true WO2021129759A1 (zh) 2021-07-01

Family

ID=76452411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139105 WO2021129759A1 (zh) 2019-12-25 2020-12-24 改性氧化锌纳米颗粒及其改性方法,及量子点发光二极管

Country Status (3)

Country Link
US (1) US20220336746A1 (zh)
CN (1) CN113023767B (zh)
WO (1) WO2021129759A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113717715B (zh) * 2021-08-31 2023-12-12 北京京东方技术开发有限公司 电子传输层的材料及其制备方法、量子点发光二极管
CN116496658A (zh) * 2022-01-20 2023-07-28 中国科学院苏州纳米技术与纳米仿生研究所 晶态非晶态杂化的氧化锌纳米粒子墨水、制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264089A (ja) * 2004-03-22 2005-09-29 National Institute Of Advanced Industrial & Technology 紫外線発光体用酸化亜鉛ナノ微粒子及び該ナノ微粒子が分散した溶液並びに同酸化亜鉛ナノ微粒子の製造方法
CN106634948A (zh) * 2016-10-31 2017-05-10 纳晶科技股份有限公司 氧化锌纳米晶、其制备方法、氧化锌纳米晶墨水和电致发光器件
CN107010651A (zh) * 2017-05-15 2017-08-04 广西放心源生物科技有限公司 纳米氧化锌的表面改性方法
CN107129596A (zh) * 2017-05-15 2017-09-05 广西放心源生物科技有限公司 纳米氧化锌的改性方法
CN108529662A (zh) * 2018-05-25 2018-09-14 洛阳理工学院 一种纳米氧化锌粉体材料的改性方法
CN109148695A (zh) * 2017-06-28 2019-01-04 Tcl集团股份有限公司 一种金属氧化物纳米颗粒薄膜的制备方法及电学器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7964200A (en) * 1999-11-05 2001-06-06 Nof Corporation Asymmetric organic peroxide, crosslinking agent comprising the same, and method of crosslinking with the same
DE102005025972A1 (de) * 2005-06-03 2006-12-07 Basf Ag Oberflächenmodifizierte Metalloxide, Verfahren zur Herstellung und deren Verwendung in kosmetischen Zubereitungen
DE102005056621A1 (de) * 2005-11-25 2007-05-31 Merck Patent Gmbh Nanopartikel
CN101880482B (zh) * 2010-07-12 2012-10-24 重庆大学 一种偶合接枝改性纳米金属氧化物的方法
WO2014007045A1 (ja) * 2012-07-02 2014-01-09 日本碍子株式会社 酸化亜鉛粉末及びその製造方法
CN106544002A (zh) * 2016-10-12 2017-03-29 浙江工业大学 生物基稳定的氧化锌量子点及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264089A (ja) * 2004-03-22 2005-09-29 National Institute Of Advanced Industrial & Technology 紫外線発光体用酸化亜鉛ナノ微粒子及び該ナノ微粒子が分散した溶液並びに同酸化亜鉛ナノ微粒子の製造方法
CN106634948A (zh) * 2016-10-31 2017-05-10 纳晶科技股份有限公司 氧化锌纳米晶、其制备方法、氧化锌纳米晶墨水和电致发光器件
CN107010651A (zh) * 2017-05-15 2017-08-04 广西放心源生物科技有限公司 纳米氧化锌的表面改性方法
CN107129596A (zh) * 2017-05-15 2017-09-05 广西放心源生物科技有限公司 纳米氧化锌的改性方法
CN109148695A (zh) * 2017-06-28 2019-01-04 Tcl集团股份有限公司 一种金属氧化物纳米颗粒薄膜的制备方法及电学器件
CN108529662A (zh) * 2018-05-25 2018-09-14 洛阳理工学院 一种纳米氧化锌粉体材料的改性方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO, CHENGLI ET AL.: "Synthesis of ZnO Photocatalysts Using Various Surfactants", 《RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A》, vol. 91, no. 13, 31 December 2017 (2017-12-31), XP036426994, ISSN: 0036-0244, DOI: 10.1134/S0036024417130088 *

Also Published As

Publication number Publication date
US20220336746A1 (en) 2022-10-20
CN113023767B (zh) 2022-05-24
CN113023767A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2021129759A1 (zh) 改性氧化锌纳米颗粒及其改性方法,及量子点发光二极管
CN113903865B (zh) 氧化锌纳米材料及其制备方法、发光器件
CN110718637B (zh) 一种量子点发光二极管及其制备方法
WO2018001372A1 (zh) 氧化镍薄膜及其制备方法、功能材料、薄膜结构的制作方法及电致发光器件
CN109456766A (zh) 一种量子点配体复合物及其制备方法、量子点器件
WO2020108073A1 (zh) 一种量子点发光二极管及其制备方法
CN113809272A (zh) 氧化锌纳米材料及制备方法、电子传输薄膜、发光二极管
CN113838985B (zh) 氧化锌纳米材料及其制备方法、发光器件
CN110534656B (zh) 一种纳米材料及制备方法与量子点发光二极管
CN110739408B (zh) 量子点发光二极管及其制备方法
CN114039002B (zh) 电子传输墨水、电子传输薄膜、电致发光二极管及显示器件
CN112582565B (zh) 发光器件及其制备方法
CN114203941B (zh) 薄膜的制备方法和发光二极管
CN113754978B (zh) 量子点复合材料及其制备方法,量子点发光器件
CN113046077B (zh) 一种复合材料、量子点发光二极管及其制备方法
CN113121382B (zh) 金属化合物材料及其制备方法、量子点发光二极管和发光装置
CN114388713A (zh) 电子传输材料及制备方法、光电器件
CN112531123B (zh) 电子传输膜层的制备方法和量子点发光二极管的制备方法
CN114672314A (zh) 核壳结构量子点及其制备方法,量子点发光薄膜和二极管
CN113707777A (zh) 复合材料及其制备方法、发光器件
WO2020035004A1 (zh) 复合材料和量子点发光二极管及其制备方法
CN111628092B (zh) 一种量子点发光二极管及其制备方法
CN114203940B (zh) 薄膜的制备方法和发光二极管
WO2023159993A1 (zh) 量子点材料及制备方法、发光二极管
WO2023093494A1 (zh) 电致发光器件及其制备方法、光电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907311

Country of ref document: EP

Kind code of ref document: A1