WO2021129455A1 - 左心耳封堵器及封堵系统 - Google Patents

左心耳封堵器及封堵系统 Download PDF

Info

Publication number
WO2021129455A1
WO2021129455A1 PCT/CN2020/136418 CN2020136418W WO2021129455A1 WO 2021129455 A1 WO2021129455 A1 WO 2021129455A1 CN 2020136418 W CN2020136418 W CN 2020136418W WO 2021129455 A1 WO2021129455 A1 WO 2021129455A1
Authority
WO
WIPO (PCT)
Prior art keywords
atrial appendage
left atrial
ablation
catheter
proximal
Prior art date
Application number
PCT/CN2020/136418
Other languages
English (en)
French (fr)
Inventor
李安宁
单烁
Original Assignee
先健科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911376599.8A external-priority patent/CN113040834B/zh
Priority claimed from CN201911379612.5A external-priority patent/CN113040850B/zh
Application filed by 先健科技(深圳)有限公司 filed Critical 先健科技(深圳)有限公司
Priority to US17/779,694 priority Critical patent/US11963708B2/en
Priority to CA3161288A priority patent/CA3161288A1/en
Priority to EP20908246.0A priority patent/EP4082459A4/en
Publication of WO2021129455A1 publication Critical patent/WO2021129455A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12136Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12177Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure comprising additional materials, e.g. thrombogenic, having filaments, having fibers or being coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12122Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder within the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12095Threaded connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00357Endocardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • A61B2018/0268Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • A61B2018/0268Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow
    • A61B2018/0281Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow using a tortuous path, e.g. formed by fins or ribs
    • A61B2018/0287Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow using a tortuous path, e.g. formed by fins or ribs the fluid flowing through a long thin tube with spiral shape

Definitions

  • the present invention relates to the technical field of interventional medical devices, in particular to a left atrial appendage occlusion device and a occlusion system.
  • Atrial fibrillation is the most common clinical arrhythmia phenomenon, and its incidence rate is 1.0% -1.5%, and the incidence rate increases with age. Atrial fibrillation can impair the heart function of patients, and may also induce thrombosis, which seriously affects the quality of life. Atrial fibrillation is the strongest risk factor for stroke and heart failure. 20% of stroke events are related to atrial fibrillation, which poses a huge threat to the lives of patients.
  • Atrial fibrillation is mainly caused by the disturbance of electrical signals in the heart.
  • Special structures of the pulmonary (vena cava) muscle sleeve and atrium such as the border crest, coronary sinus, Marshall ligament, etc., can spontaneously produce electrical activity, and may be driven or triggered by this. Atrial electrical activity, which in turn leads to atrial fibrillation.
  • Haissaguerre discovered that the electrical activity of the pulmonary vein muscle sleeve can drive/trigger the atrial electrical activity to cause atrial fibrillation, and therefore proposed that the electrical connection between the pulmonary vein and the left ventricle can be terminated by catheter radiofrequency ablation. Transcatheter ablation for the treatment of atrial fibrillation has undergone a difficult process of optimizing surgical procedures.
  • LAA left atrial appendage
  • LAAI left atrial appendage isolation
  • Catheter ablation around the pulmonary vein is a generally accepted method for the treatment of atrial fibrillation, but catheter ablation is difficult to operate, takes a long time, and easily leads to recurrence of atrial fibrillation.
  • Passive left atrial appendage electrical isolation leads to cerebrovascular embolism and other diseases. It is necessary to perform ablation again or take long-term oral anticoagulants to avoid the occurrence of such diseases.
  • Left atrial electrical isolation has a good effect in maintaining the patient's sinus rhythm for a long time, but left atrial electrical isolation is prone to thrombosis in the left atrial appendage, causing cerebrovascular embolism.
  • the present invention provides a left atrial appendage occluder and a occlusion system to solve the problems of high operational difficulty and high risk in implementing active left atrial appendage electrical isolation.
  • a left atrial appendage occluder comprising a sealing part, the sealing part comprising an ablation part arranged in the sealing part, and a hollow proximal connector arranged at the proximal end of the sealing part, the ablation part Connected to the proximal connector, the ablation part is used to freeze the left atrial appendage after being injected with cryogen, so that an annular isolation band is formed on the inner wall of the left atrial appendage, and the annular isolation band is used to block the left atrial appendage and the left atrial appendage.
  • An occlusion system including the above-mentioned left atrial appendage occluder, and further includes a push tube, a delivery sheath, and a catheter part.
  • the push tube is movably arranged in the delivery sheath and is connected to the sealing part.
  • the proximal connecting piece is detachably connected, and the catheter part is movably arranged in the pushing tube piece and is detachably connected with the proximal connecting piece.
  • an ablation element connected to the proximal connector is arranged in the sealing part of the left atrial appendage occluder, and the ablation element is delivered to the left along with the left atrial appendage occluder
  • the ablation piece freezes the left atrial appendage after being injected with cryogen, so that a ring-shaped isolation band is formed on the inner wall of the left atrial appendage, thereby blocking the left atrial appendage and the left atrial appendage.
  • the electrical signal conduction between the left atrium realizes the electrical isolation between the left atrial appendage and the left atrium, so that patients can enjoy the benefits of maintaining sinus rhythm for a long time after the left atrial appendage is electrically isolated from the left atrium, and reduce the formation of thrombus in the left atrial appendage.
  • Probability reduce the operational difficulty and risk of active left atrial appendage electrical isolation, and at the same time realize the sealing of the left atrial appendage. Under the dual effects of electrical isolation and sealing, it can better prevent the occurrence of stroke. The post-treatment effect is better.
  • the left atrial appendage occluder includes a sealing portion with a hollow inside and an opening at the proximal end, and the push tube can It is movably arranged in the delivery sheath and is detachably connected to the proximal end of the sealing part; in the delivery state, the ablation member is accommodated in the delivery sheath along with the left atrial appendage occluder, and The ablation part is contained in the sealing part; when the left atrial appendage occluder is deployed in the left atrial appendage, the ablation part is used to freeze the left atrial appendage after being injected with cryogen, so that the inner wall of the left atrial appendage forms a ring shape An isolation band, the annular isolation band is used to block electrical signal conduction between the left atrial appendage and the left atrium.
  • the occlusion system uses the ablation piece delivered to the left atrial appendage together with the left atrial appendage occluder. While the left atrial appendage occluder seals the mouth of the left atrial appendage, the ablation piece is combined with a refrigerant to freeze the left atrial appendage, so that An annular isolation band is formed on the inner wall of the left atrial appendage, which blocks the electrical signal conduction between the left atrial appendage and the left atrium, and realizes the electrical isolation between the left atrial appendage and the left atrium, so that the patient can enjoy the long-term electrical isolation between the left atrial appendage and the left atrium.
  • the benefits of maintaining sinus rhythm reduce the probability of thrombus formation in the left atrial appendage, reduce the operational difficulty and risk of active left atrial appendage electrical isolation, and at the same time realize the sealing of the left atrial appendage, which is electrically isolated and sealed. Under the dual effect of blocking, stroke can be better prevented, and the postoperative treatment effect is better.
  • Fig. 1 is a schematic diagram of a position where a left atrial appendage occluder is implanted in the left atrial appendage in an occlusion system of an embodiment
  • FIG. 2 is a schematic diagram of the structure of the left atrial appendage occluder of the occlusion system of an embodiment
  • FIG. 3 is a schematic diagram of the combination of the left atrial appendage occluder and the balloon of the occlusion system of Embodiment 1;
  • Figure 4 (a) is a partial structural diagram of one embodiment of the plugging system of Example 1;
  • Figure 4(b) is a partial structural diagram of another embodiment of the plugging system of Example 1;
  • Figure 5 is a partial structural diagram of the occlusion system of embodiment 2, in which the balloon is not filled;
  • Fig. 6 is a partial structural diagram of the connection between the sealing part and the ablation element in the occlusion system shown in Fig. 5;
  • Fig. 7 is a schematic diagram of the balloon in the occlusion system shown in Fig. 5 when it is in an inflated state;
  • Figure 8 (a) is a schematic top view of the ablation element of the occlusion system of embodiment 3;
  • Fig. 8(b) is a schematic side view of the ablation member of the occlusion system shown in Fig. 8(a);
  • Figure 9 is a partial structural diagram of the plugging system of implementation 3.
  • FIG. 10 is a top view of one of the structures of the ablation part in the occlusion system of Embodiment 5 after being deployed;
  • Fig. 11 is a schematic diagram of the ablation part and the catheter part in Fig. 10 connected by a proximal connector;
  • FIG. 12 is a plan view of another structure of the ablation part in the occlusion system of Embodiment 5 after being deployed;
  • Fig. 13 is a schematic diagram of the connection between the ablation part and the catheter part in Fig. 12 through a proximal connector.
  • proximal end the end of the medical device implanted in the human or animal body that is closer to the operator
  • distal end the end farther from the operator
  • the principle defines the "proximal” and “distal” of any component of a medical device.
  • the position where the left atrium enters the left atrial appendage is defined as the mouth of the left atrial appendage, and the position in the left atrial appendage adjacent to the entrance of the left atrial appendage is the neck of the left atrial appendage.
  • Axial generally refers to the length direction of the medical device when it is transported, and “radial” generally refers to the direction perpendicular to the “axial” of the medical device, and the "axis” of any part of the medical device is defined according to this principle. Toward” and “Radial”.
  • FIG. 1 shows a schematic diagram of the occlusion system according to the present invention after the left atrial appendage occluder 10 is implanted in the left atrial appendage 101.
  • the occlusion system includes a left atrial appendage occluder 10, a freezing device, a push tube 21, a delivery sheath 22 and an ablation member 30 with an ablation part 31.
  • the left atrial appendage occluder 10 includes a sealing part 11 and a fixing part 12 connected to the sealing part 11.
  • the sealing portion 11 and the fixing portion 12 may be directly connected or connected through an intermediate piece.
  • the sealing portion 11 may have a structure such as a disk shape, a column shape, a plug shape, etc., which is not limited herein.
  • the sealing portion 11 is hollow and has an opening at the proximal end, so that the ablation portion 31 of the ablation member 30 can be inserted into the sealing disk 10 from the opening.
  • the shape of the fixing portion 12 is not limited, and may be columnar or umbrella-shaped.
  • the push tube 21 is movably arranged in the delivery sheath 22 and is detachably connected to the proximal end of the sealing portion 11, so as to manipulate the relative movement between the push tube 21 and the delivery sheath 22,
  • the left atrial appendage occluder 10 can be released from the distal end of the delivery sheath 22.
  • the delivery sheath 22 under the delivery of the push tube 21 and the delivery sheath 22, when the left atrial appendage occluder 10 is pushed to the vicinity of the left atrial appendage 101, the delivery sheath 22 is retracted toward the proximal end relative to the push tube 21, The left atrial appendage occluder 10 connected to the distal end of the pushing tube 21 is exposed from the distal end of the delivery sheath 22 and released from expansion.
  • the fixing part 12 is located in the cavity of the left atrial appendage 101 and closely fits with the cavity wall of the left atrial appendage 101 to prevent the left atrial appendage occluder 10 from being removed from The left atrial appendage 101 falls off.
  • the sealing portion 11 seals the mouth of the left atrial appendage 101 to prevent thrombus formed in the left atrial appendage cavity from flowing into the left atrium and prevent blood flow from the left atrium into the left atrial appendage 101 cavity.
  • the freezing device is connected to the ablation member 30 for providing refrigerant to the ablation part 31 of the ablation member 30.
  • the ablation member 30 in the delivery state, the ablation member 30 is contained in the delivery sheath 21 along with the left atrial appendage occluder 10, and the ablation portion 31 is contained in the sealing portion 11, so that the ablation member 30 can be delivered together with the left atrial appendage occluder 10 Left atrial appendage 101.
  • the ablation part 31 located in the sealing part 11 cooperates with refrigerant to freeze the left atrial appendage, so that an annular isolation band is formed on the inner wall of the left atrial appendage 101.
  • the ring-shaped isolation band is used to block the electrical signal conduction between the left atrial appendage 101 and the left atrium, thereby achieving electrical isolation between the left atrial appendage 101 and the left atrium, achieving the effect of electrical isolation, so that the patient can enjoy the electrical isolation of the left atrial appendage 101
  • this way of using the ablation element 30 and the left atrial appendage occluder 10 to be delivered to the left atrial appendage 101 to achieve occlusion and ablation that is, after the left atrial appendage occluder 10 is released in the left atrial appendage 101, the sealing portion 11 occludes In the mouth of the left atrial appendage 101, since the ablation part 31 of the ablation member 30 is located in the sealing part 11, the ablation part 31 freezes the inner wall of the left atrial appendage 101 with the refrigerant injected therein.
  • the ablation part 31 circumferentially abuts the inner wall of the left atrial appendage 101 after being unfolded, it is annular or approximately annular, and an annular isolation band is formed on the inner wall of the left atrial appendage 101 under the action of the refrigerant. Therefore, the occlusion system of the present invention can use the left atrial appendage occluder 10 to seal the left atrial appendage 101, and at the same time, the inner wall of the left atrial appendage 101 is annularly frozen by filling the cryogen in the ablation part 31 to realize the left atrial appendage 101
  • the electrical isolation from the left atrium, the double guarantee of occlusion and ablation, further prevent the patient from having a stroke.
  • the surface on the side where the proximal end of the sealing portion 11 is located is called the "proximal disk surface 11a"
  • the surface on the side where the distal end of the sealing portion 11 is located is called the “distal disk surface 11b”.
  • At least one layer of baffle film (not shown in the figure) is arranged inside or outside the fixing part 12, so as to cooperate with the sealing part 11 to achieve multiple sealing and improve the sealing performance of the left atrial appendage 101.
  • At least one baffle film is provided on the sealing portion 11, for example, a baffle film is covered on the proximal disk surface 11a and/or the distal disk surface 11b. As shown in FIG. 2, at least one layer of baffle film 13 is provided inside the sealing portion 11 to prevent blood flow from the left atrium to the left atrial appendage 101 and to ensure that the mouth of the left atrial appendage 101 is tightly sealed.
  • the choke film 13 is located on the side of the distal end of the ablation portion 31 to ensure that the blocking effect of the choke film 13 is not affected by the ablation member. 30's interference.
  • the choke film 13 of the sealing portion 11 is disposed between the proximal disk surface 11a and the distal disk surface 11b, and the choke film 13 is located between the ablation portion 31 and the distal disk surface 11b, so as to achieve ablation while maintaining the choke.
  • the film 13 has a good blocking effect.
  • the size of the baffle film 13 on the sealing portion 11 is equivalent to the size of the disk surface of the sealing portion 11, so that the baffle film 13 can completely cover the disk surface of the sealing portion 11 to achieve a tight seal.
  • the baffle film 13 is made of a polymer material, preferably PTFE (Polytetrafluoroethylene) or PET (Polyethylene terephthalate).
  • the sealing portion 11 adopts a braided mesh tube structure, which is shaped into a disc-shaped structure through heat treatment.
  • the edge of the baffle film 13 is fixed on the braided wire of the sealing portion 11, and the fixing method can be stitching or bonding.
  • the fixing method of the baffle film 13 and the sealing portion 11 is not limited here.
  • the left atrial appendage occluder 10 adopts a structure in which the left atrial appendage 101 is packed and the mouth of the left atrial appendage 101 is blocked, of which the plug structure and the double-disc structure are mainly used.
  • the left atrial appendage occluder 10 includes a split and integral structure. It can be understood that for the integrally formed left atrial appendage occluder 10, the part used for occlusion can be regarded as the sealing part 11 in the present invention, and the part used for fixing the left atrial appendage occluder 10 can be regarded as the sealing part 11 in the present invention. ⁇ 12 ⁇ The fixed part 12.
  • the sealing part 11 and the fixing part 12 of the left atrial appendage occluder 10 can also be integrally arranged.
  • the left atrial appendage occluder 10 is cylindrical as a whole, and the part of the proximal disc surface for sealing is equivalent to the sealing in the present invention.
  • the part 11, whose side wall part is used to fix the left atrial appendage occluder 10 in the cavity of the left atrial appendage is equivalent to the fixing part 12 in the present invention.
  • the left atrial appendage occluder 10 has a split double-disc structure as an example to further illustrate the various embodiments of the present invention.
  • the ablation portion 31 of the ablation member 30 is a balloon 311 having an open end 311a.
  • the balloon 311 is disposed in the sealing portion 11.
  • the sealing portion 11 includes a proximal disk surface 11 a and a distal disk surface 11 b
  • the balloon 311 is located between the proximal disk surface 11 a and the distal disk surface 11 b of the sealing portion 11.
  • the open end 311a of the balloon 311 is sleeved on the proximal end of the sealing portion 11 and communicates with the proximal opening of the sealing portion 11.
  • the proximal opening of the sealing portion 11 may be a through hole structure opened at the proximal end of the sealing portion 11, or may be a pipe provided at the proximal end of the sealing portion 11 and communicating with the inside of the sealing portion 11.
  • the structure and shape of the proximal opening of the sealing portion 11 are not limited here, and it only needs to be able to inject refrigerant into the balloon 311 via a catheter.
  • the proximal end of the sealing portion 11 is provided with a proximal connector 111, and the proximal connector 111 has a hollow tube shape.
  • the proximal connector 111 has a tube hole 111a, Therefore, the tube hole 111 a of the proximal connector 111 constitutes the proximal opening of the sealing portion 11.
  • the open end 311a of the balloon 311 is sleeved on the proximal connector 111, and the open end 311a of the balloon 311 communicates with the cavity of the proximal connector 111, so that the interior of the balloon 311 is connected to the proximal end
  • the tube hole 111a of the member 111 is connected, so that the balloon 311 can be filled with refrigerant, such as N 2 O, from the tube hole 111 a.
  • the connection and fixing method of the balloon 311 and the proximal connector 111 is not limited, such as glue bonding, connection through a clamp, and the like.
  • the filled balloon 311 With the refrigerant injected into the balloon 311, the filled balloon 311 at least circumferentially abuts on the inner wall of the left atrial appendage 101, thereby forming a ring-shaped freezing area on the neck or mouth of the left atrial appendage 101.
  • a ring-shaped isolation band is formed on the inner wall of the left atrial appendage 101, and then the ring-shaped isolation band is used to block the electrical signal conduction from the left atrial appendage 101 to the left atrium to achieve cryoablation.
  • the left atrial appendage occluder 10 can seal the left atrial appendage 101 while injecting cryogen through the balloon 311 set inside it to achieve ablation, so that the left atrial appendage 101 can be completed in one operation. Sealing and ablation reduces the difficulty of operation, shortens the operation time, reduces the cost, and greatly reduces the probability of stroke in patients.
  • the left atrial appendage 101 can be blocked and the left atrial appendage 101 can be electrically isolated from the left atrium at the same time, the patient can maintain sinus rhythm for a long time without the cerebrovascular caused by the thrombosis in the left atrial appendage 101. Risks such as blockage.
  • the balloon 311 can be made of compliant materials, such as polyamide and polyether block copolymers.
  • Polyamides are aliphatic, such as nylon 12, nylon 11, nylon 9, nylon 6, nylon 6/12, nylon 6/11, nylon 6/9, and nylon 6/6.
  • the polyether block may be selected from polyoxytetramethylene glycol, tetramethylene ether, polyethylene glycol or polypropylene glycol. Since the balloon 311 has good compliance, during delivery, the balloon 311 is contained in the sealing portion 11 without affecting the size selection of the delivery sheath 22, and the balloon 311 can be quickly injected with refrigerant. It expands and can fully abut the circumferential edge of the sealing portion 11 when it is filled to a certain degree. Therefore, an annular isolation band can be formed on the inner wall of the left atrial appendage 101 with the help of a refrigerant to realize the gap between the left atrial appendage 101 and the left atrium. Electrical isolation.
  • the shape of the balloon 311 can be changed accordingly according to the degree of filling of the balloon 311 to match the traction of the fixing portion 12 to the sealing portion 11, and to strengthen the degree of adhesion between the sealing portion 11 and the mouth of the left atrial appendage 101, thereby Improve the stability and occlusion performance of the left atrial appendage occluder 10.
  • the baffle film 13 of the seal portion 11 may be disposed between the proximal disk surface 11a and the distal disk surface 11b, and the baffle film 13 is located between the balloon 311 and the distal disk surface 11a. Between the end disc surfaces 11 b, that is, the balloon 311 is located on the side of the proximal end of the choke membrane 13 to ensure that the blocking effect of the choke membrane 13 is not interfered by the balloon 311.
  • the ablation member 30 further includes a catheter portion 32 directly or indirectly connected to the ablation portion 31, and the proximal end of the catheter portion 32 is connected to a freezing device for The refrigerant is delivered to the balloon 311.
  • the sealing part 11 is in a compressed state when it is contained in the delivery sheath 22, and the ablation part 31 (that is, the balloon 311) is folded and contained in the sealing part 11. After the balloon 311 is deployed in the sealing portion 11, it abuts at least the circumferential edge of the sealing portion 11 to better perform cryoablation of the left atrial appendage 101.
  • the duct portion 32 may be composed of a push tube 21 with a hollow inside, or may be composed of a tube other than the push tube 21.
  • the structure of the plugging system will be further explained in the following two situations.
  • the push tube 21 is connected to the proximal end of the sealing portion 11, which not only serves to push the left atrial appendage occluder 10 into the left atrial appendage 101, but at the same time, the cavity of the push tube 21 is close to the sealing portion 11.
  • the end openings are communicated, so that refrigerant can be injected into the balloon 311 in the sealing portion 11 through the push tube 21.
  • the embolic agent can be injected into the balloon 311 after cryoablation through the push tube 21, so that after the balloon 311 is filled, multiple plugging can be realized, so as to improve the sealing performance of the sealing portion 11.
  • a proximal connector 111 is provided at the proximal end of the sealing portion 11, the distal end of the push tube 21 and the proximal connector 111 are detachably connected, so that the cavity of the push tube 21 is connected to The tube hole 111a of the proximal connector 111 is connected, and the pushing tube 21 can not only be used to push the left atrial appendage occluder 10 to meet the delivery needs of the left atrial appendage occluder 10 and the balloon 311, and the pushing tube 21 can also serve as The catheter part 32 of the ablation member 30 satisfies the requirement of injecting refrigerant into the balloon 311 to freeze the left atrial appendage 101.
  • the left atrial appendage occluder 10 and the push tube 21 are housed together in the delivery sheath 22 and delivered to the left atrial appendage 101 in the body. After the left atrial appendage occluder 10 is released in the left atrial appendage 101, the connection between the proximal connection piece 111 and the push tube 21 is not disconnected first.
  • the tube hole 111a of the proximal connector 111 can be used to inject the refrigerant delivered through the push tube 21 into the balloon 311, so that the proximal connector 111 and the push tube
  • the fit of 21 can not only meet the needs of delivering the left atrial appendage occluder 10, but also meet the needs of injecting cryogen into the balloon 311 for cryoablation, and can also reduce the number of tubes required for delivery of the left atrial appendage occluder 10, and It can meet the requirement of a small pipe diameter of the components used for transportation as a whole.
  • connection structure of the push tube 21 and the proximal connector 111 there are many possibilities for the connection structure of the push tube 21 and the proximal connector 111.
  • the tube hole 111a of the proximal connector 111 may be a threaded hole, and the distal end of the push tube 21 is threadedly fitted with the tube hole 111a of the proximal connector 111.
  • the distal end of the push tube 21 and the proximal connector 111 are connected by a snap.
  • the push tube 21 and the proximal connector 111 can also be connected in other ways, as long as the two are connected, they can communicate with the interior of the balloon 311 through the lumen of the push tube 21 to meet the requirements of the balloon. It is sufficient to inject refrigerant into 311.
  • the occlusion system may include two internal hollow catheters, one of which is a push tube 21, and the distal end of the catheter is detachably connected to the proximal connector 111 for pushing the left atrial appendage occluder 10;
  • the other catheter is used to fill the balloon 311 with cryogen to realize cryoablation of the left atrial appendage 101.
  • first catheter 21a the other is referred to as the “second catheter 21b”
  • second catheter 21b the “second catheter 21b” is also the push tube 21.
  • first duct 21a is sleeved inside the second duct 21b, and can move relative to each other in the axial direction.
  • first conduit 21a and the second conduit 21b are not sheathed together, and the diameters of the first conduit 21a and the second conduit 21b may be the same or different.
  • the ablation member 30 further includes a catheter portion 32, the catheter portion 32 includes a first catheter 21a, and the first catheter 21a is a tubular body with a hollow inside.
  • the outer diameter of the first pipe 21a is smaller than the inner diameter of the second pipe 21b.
  • the first tube 21a is sleeved inside the second tube 21b, and the first tube 21a can move axially in the cavity of the second tube 21b.
  • the distal end of the second catheter 21b is detachably connected to the proximal connector 111, the distal end of the first catheter 21a extends into the interior of the proximal connector 111, and the cavity of the first catheter 21a is connected to the tube of the proximal connector 111.
  • the holes 111a communicate with each other.
  • the distal end of the first catheter 21a can abut in the proximal connector 111, or can be detachably connected to the proximal connector 111, for example, the distal end of the second catheter 21b and the proximal connector 111 pass through the proximal connector 111
  • the external thread provided on the outer wall of 111 is detachably connected, and the distal end of the first catheter 21a and the proximal connector 111 are detachably connected by the internal thread provided on the inner wall of the proximal connector 111.
  • both the first catheter 21a and the second catheter 21b are delivered to the left atrial appendage 101 along with the left atrial appendage occluder 10.
  • the first catheter 21a is routed to the sealing part 11 A refrigerant is injected into the balloon 311 to perform cryoablation. After performing cryoablation, disconnect the proximal connector 111 from the first catheter 21a and the second catheter 21b, and withdraw the first catheter 21a, the second catheter 21b and the delivery sheath 22 out of the body.
  • the left atrial appendage occluder 10 when the left atrial appendage occluder 10 is delivered, only the second catheter 21 b is connected to the proximal connector 111 and is delivered to the left atrial appendage 101 together with the left atrial appendage occluder 10.
  • the first catheter 21a can be pushed in along the lumen of the second catheter 21b, and then the first catheter 21a and The proximal connector 111 is connected to make the cavity of the first catheter 21a communicate with the inside of the balloon 311, and then refrigerant can be injected into the balloon 311 through the first catheter 21a to realize the freezing of the left atrial appendage 101 Ablation.
  • This kind of cryoablation has simple operation and high safety.
  • the connection between the first catheter 21a and the second catheter 21b and the proximal connector 111 can be released, and the first catheter 21a and the second catheter 21b can follow the delivery sheath. 22 withdraw to the body together.
  • first catheter 21a and the second catheter 21b to cooperate with the delivery and cryoablation of the left atrial appendage occluder 10 is not limited to the above-exemplified situation.
  • a refrigerant is injected into the balloon 311 through the first catheter 21a to perform cryoablation on the left atrial appendage 101.
  • the first catheter 21a is withdrawn, and the embolic agent is delivered into the balloon 311 through the second catheter 21b, so as to fill the inside of the sealing portion 11 after the balloon 311 is inflated, so as to realize the neck or neck of the left atrial appendage 101.
  • the re-blocking of the mouth and multiple blocking can improve the sealing performance of the sealing portion 11.
  • the pushing tube 21 is another hollow tube different from the above-mentioned second tube 21b, and the tube portion 32 includes a first tube 21a and a second tube 21b.
  • the first catheter 21a is withdrawn, and then the second catheter 21b is delivered to the left atrial appendage 101 along the cavity of the delivery sheath 22 and connected to the left atrial appendage occluder 10. Then, the embolic agent is injected into the balloon 311 through the second catheter 21b on the proximal connector 111.
  • the push tube 21 can continue to be connected to the proximal connector 111, or it can be withdrawn from the body together with the first catheter 21a when the first catheter 21a is withdrawn.
  • the distal end of the first catheter 21a has a tapered section (not shown), and the inner diameter of the distal end of the tapered section is smaller than the inner diameter of the proximal end of the tapered section. Therefore, the distal end of the tapered section has a microporous structure, and the micropores are used to fill the balloon 311 with refrigerant.
  • the Joule Thomson principle can be used, that is, when the gas passes through a narrow micropore, it is sprayed from a higher pressure area into a lower pressure area. At this time, it will be throttled, and most of the gas will suddenly drop in temperature after the throttle, which can enhance the freezing effect of the refrigerant.
  • connection between the first catheter 21a and the proximal connecting piece 111, and between the second catheter 21b and the proximal connecting piece 111 it may be a detachable connection such as a screw thread or a snap connection, which is not limited here.
  • the push tube 21 is movably arranged in the delivery sheath 22 and can be detachably connected to the proximal end of the sealing portion 11 of the left atrial appendage occluder 10 to The left atrial appendage occluder 10 is pushed into the distal tube section of the delivery sheath 22 or pushed out from the distal end of the delivery sheath 22 to release the left atrial appendage occluder 10.
  • Embodiment 2 and Embodiment 1 will not be repeated here. The main difference between the two is that, as shown in FIG. 5 and FIG.
  • the balloon 311 has a ring shape and is fixedly sleeved at the distal end of the catheter part 23, and the inside of the balloon 311 is communicated with the inside of the catheter part 23.
  • the balloon 311 and the catheter part 23 together form a balloon catheter.
  • the distal end of the catheter part 23 passes through the proximal opening of the sealing part 11, so that the balloon 311 sheathed at the distal end of the catheter part 23 is located in the sealing part 11 of the left atrial appendage occluder 10.
  • the freezing device delivers the refrigerant into the balloon 311 through the catheter part 23.
  • the balloon 311 cooperates with the refrigerant inside to freeze the neck or mouth of the left atrial appendage 101, so that after the myocardial tissue at the frozen area is injured, an annular isolation zone is formed, and the annular isolation zone is used to block the left atrial appendage 101 to The electrical signal conduction between the left atrium realizes cryoablation.
  • the balloon catheter is arranged in the lumen of the pushing tube 21, and the distal end of the catheter part 23 is provided with a filling and venting port 23a.
  • the balloon 311 is provided at the distal end of the catheter part 23, and the inside of the balloon 311 is communicated with the inflation port 23a.
  • the catheter part 23 can inject refrigerant into the balloon 311 through the inflation and discharge port 23a, so as to meet the needs of cryoablation of the neck or mouth of the left atrial appendage 101.
  • the inflation and discharge port 23 a may be at least one through hole 23 b opened on the side wall of the distal end of the catheter part 23.
  • the balloon 311 is sleeved at the position where the through hole 23 b of the balloon catheter part 23 is opened to communicate with the inner cavity of the catheter part 23 through the through hole 23 b, so that the refrigerant can be injected into the balloon 311 through the catheter part 23.
  • the charging and discharging port 23a includes a plurality of through holes 23b, for example, two or more through holes 23b, and the plurality of through holes 23b are evenly arranged along the circumferential side of the duct part 23, so that the duct part 23 passes through the charging
  • the balloon 311 can be uniformly expanded to avoid local expansion speeds that are too fast or too slow and deviate to one side in the sealing portion 11.
  • the balloon 311 is uniformly expanded in the sealing portion 11, which can ensure that the refrigerant in the balloon 311 uniformly freezes the freezing area of the left atrial appendage 101 to obtain a better cryoablation effect.
  • the shape of the through hole 23b can be round, square or elongated, and it is not limited here, as long as the balloon 311 is provided at the position where the through hole 23b of the catheter part 23 is opened, the through hole 23b can satisfy the need to pass through the catheter part.
  • the cavity of 23 can be filled with refrigerant into the balloon 311.
  • the left atrial appendage occluder 10 and the push tube 21 are housed together in the cavity of the delivery sheath 22, and are passed through the delivery sheath 22. Delivery to 101 left atrial appendage.
  • the balloon catheter is extended from the proximal end of the push tube 21 into the cavity of the push tube 21 and delivered to the location of the left atrial appendage occluder 10 until the balloon catheter After the balloon 311 passes through the tube hole 111 a of the proximal connector 111, it is placed in the sealing portion 11.
  • the catheter part 23 of the balloon catheter and the proximal connecting piece 111 are connected by a threaded connection or a snap connection.
  • the proximal end of the duct part 23 is connected to the refrigeration device.
  • the balloon 311 expands and expands in the sealing part 11.
  • the cryogen in the balloon 311 can perform cryoablation on the neck or mouth of the left atrial appendage 101.
  • the pushing tube 21 may be the aforementioned balloon catheter.
  • the catheter part 23 can not only push the left atrial appendage occluder 10, but also can be used to push the left atrial appendage occluder 10
  • the ablation part 31 conveys refrigerant.
  • the balloon 311 of the unfilled balloon catheter can be pre-placed in the sealing portion 11, so that the balloon catheter and the left atrial appendage occluder 10 together can be assisted by the push tube 21 and the delivery sheath 22
  • the lower part is delivered to the left atrial appendage 101.
  • the refrigerant is injected into the catheter portion 23 through the refrigeration device, and the refrigerant is transported and injected into the balloon 311 through the catheter portion 23, which can also achieve the neck of the left atrial appendage 101. Or cryoablation of the mouth.
  • the tube hole 111 a of the proximal connector 111 on the sealing portion 11 can allow the distal end of the balloon catheter to pass through when it is not inflated.
  • the balloon catheter is axially movably arranged in the lumen of the push tube 21.
  • the distal end of the balloon catheter can remove the balloon 311 from the tube hole.
  • 111a extends into the inside of the sealing portion 11.
  • the balloon 311 at the distal end of the balloon catheter is in an unfilled state.
  • the part of the balloon catheter where the balloon 311 is placed is placed in the left atrial appendage seal.
  • the balloon catheter is connected to the proximal connector 111 of the sealing part 11.
  • the balloon catheter and the left atrial appendage occluder 10 are delivered to the left atrial appendage 101 together.
  • the balloon 311 is located on the proximal disc surface 11a and the distal end of the sealing portion 11 Between the end plate surface 11b.
  • the refrigerant N 2 O is injected into the balloon 311 through the catheter part 23.
  • the balloon 311 will gradually be filled with refrigerant N 2 O, and will expand between the proximal disk surface 11a and the distal disk surface 11b of the sealing portion 11, and then the outer wall of the balloon 311 will gradually approach the mouth or neck of the left atrial appendage 101
  • the nearby inner wall, and under the action of the refrigerant N 2 O makes the myocardial cells around the mouth or neck of the left atrial appendage 101 necrosis due to the sudden drop in temperature, forming a ring-shaped isolation zone, thereby interrupting the left atrial appendage 101 and the left atrium
  • the transmission of abnormal electrical signals between the left atrial appendage 101 and the left atrium achieves the effect of electrical isolation between the left atrial appendage 101 and the left atrium.
  • the balloon catheter is in communication with the balloon 311 through the inflation port 23a at the distal end of the catheter part 23. Therefore, when the refrigerant N 2 O is injected into the balloon 311 through the catheter portion 23, the liquid refrigerant output from the refrigeration device is ejected into the balloon 311 through the catheter portion 23 and the filling port 23a, and is quickly vaporized and vaporized. The refrigerant N 2 O quickly fills the balloon 311. When the liquid refrigerant N 2 O is sprayed into the balloon 311 and vaporized, the vaporization of the liquid refrigerant N 2 O will absorb the heat of the surrounding tissues, so that the temperature of the myocardial tissue abutting the balloon 311 will drop rapidly.
  • myocardial tissue stably drops below -30°C.
  • the temperature drops rapidly (hereinafter referred to as the "freezing stage"), and the balloon 311 follows the catheter 23
  • the temperature of the frozen part of the mouth or neck of the left atrial appendage 101 gradually rises (hereinafter referred to as the "warming stage").
  • the freezing phase ice crystals are formed in the myocardial tissue, which causes dehydration and necrosis of myocardial cells and destroys the cell structure.
  • the ice crystals melt, causing the microcirculation to be blocked, causing secondary damage, and ultimately resulting in irreversible damage to the myocardial tissue, thereby forming a ring-shaped isolation zone on the inner wall of the left atrial appendage 101, preventing the gap between the left atrial appendage 101 and the left atrium. Transmission of abnormal electrical signals to achieve electrical isolation.
  • the ablation portion 31 in Embodiment 2 is a balloon 311 made of a polymer material, while Embodiment 3
  • the ablation part 31 is a plurality of elbow tubes made of metal.
  • the ablation element 1200 is used in conjunction with the left atrial appendage occluder 10 to ablate the inner wall of the left atrial appendage 101, thereby realizing the left atrial appendage 101 and the left atrial appendage occluder 10 Electrical isolation between the left atrium.
  • the ablation part 31 of the ablation element 1200 is folded and housed in the sealing part 11, and the ablation element 1200 and the left atrial appendage occluder 10 are delivered to the left atrial appendage 101 together.
  • the ablation member 1200 includes an ablation part 31 and a catheter part 32, the ablation part 31 is connected to the catheter part 32, and the ablation part 31 is located at the distal end of the catheter part 32.
  • the refrigeration device can deliver the refrigerant to the ablation part 31 through the catheter part 32.
  • the ablation member 1200 and the sealing portion 11 are arranged independently of each other. After the ablation is completed, the ablation member 1200 can be withdrawn from the body as a whole.
  • the ablation member 1200 has a certain elastic deformation ability, that is, it can be compressed and self-expanded, so that the ablation member 1200 can be contained in the delivery sheath 22 and has a long strip shape.
  • the ablation part 31 of the ablation element 1200 can be folded and housed in the delivery sheath 22. When the ablation element 1200 is released from the delivery sheath 22, the ablation part 31 of the ablation element 1200 is automatically unfolded, as shown in Figures 8(a) and The form shown in 8(b).
  • the ablation member 1200 can be made of a polymer material with good resilience.
  • the polymer material can be selected from polyethylene phthalate (PET: Polyethylene Terephthalate), polylactic acid (PLA: Poly-L-lactide Acid) , Polyglycolic acid (PGA: Poly-glycolide), polyhydroxyalkanoate (PHA: Poly-hydroxyalkanoate), polydioxanone (PDO: Poly-dioxanone) and polycaprolactone (PCL: Poly-caprolactone) One or more of them.
  • PET Polyethylene phthalate
  • PLA Poly-L-lactide Acid
  • PGA Poly-glycolide
  • PHA Poly-glycolide
  • PHA Poly-hydroxyalkanoate
  • PDO Poly-dioxanone
  • PCL Poly-caprolactone
  • the ablation member 1200 may be made of a flexible alloy tube, such as a nickel-titanium alloy tube.
  • the ablation member 1200 can also be made by wrapping a flexible spring tube with a polymer tube.
  • the polymer tube may be wrapped outside the spring tube or built into the inside of the spring tube, which is not limited here.
  • the ablation portion 31 of the ablation element 1200 includes a plurality of elbow tubes 1201, and the multiple elbow tubes 1201 cooperate to form a disc shape, so that when the ablation portion 31 is unfolded, the ablation portion 31 maximizes Expand in the radial direction so that the edge of the ablation portion 31 fits with the inner wall of the left atrial appendage 101 to ensure the ablation effect.
  • the ablation member 1200 can adopt the Joule Thomson principle, that is, when gas is sprayed from a higher pressure area into a lower pressure area through a narrow micropore, it will be throttled. The temperature of most gases drops suddenly after throttling.
  • gas is injected into the bend tube 1201 of the ablation member 1200 through a micro-hole provided at the distal end of the tracheal tube (not shown) connected to the ablation part 31, so that the temperature around the bend tube 1201 drops suddenly. , And then perform local cryoablation on the inner wall of the left atrial appendage 101.
  • the catheter portion 32 of the ablation element 1200 includes a plurality of axially arranged intake pipes 1201a and exhaust pipes 1201b.
  • the two ends of an elbow 1201 are respectively connected with an intake pipe 1201a and an exhaust pipe 1201b.
  • the refrigeration device inputs refrigerating gas into the elbow 1201 through the intake pipe 1201a, so that the refrigerating gas flows through the elbow 1201.
  • the inner wall of the left atrial appendage 101 contacted by the tube 1201 undergoes local cryoablation, and then the gas in the bend tube 1201 is discharged from the body through the exhaust tube 1201b.
  • the elbow 1201, the intake pipe 1201a, and the exhaust pipe 1201b may be an integral structure formed by a pipe fitting through heat setting. It may also be formed by forming the elbow 1201, the intake pipe 1201a and the exhaust pipe 1201b respectively, and then the intake pipe 1201a and the exhaust pipe 1201b are formed respectively.
  • the exhaust pipe 1201b is connected to both ends of the elbow 1201, and the intake pipe 1201a and the exhaust pipe 1201b are in communication with the elbow 1201.
  • the elbow 1201 is in the shape of a petal.
  • the ablation portion 31 of the ablation part 1200 includes six elbow tubes 1201, and the six elbow tubes 1201 are arranged on the central axis of the ablation part.
  • the center is uniformly arranged in a radial shape, forming an ablation part 31 with 6 petal-like structures and non-interference with each other.
  • the ablation part 31 of this structure can quickly perform cryoablation by using the Joule Thomson principle, and can ensure the ideal freezing effect.
  • the intake pipe 1201a and the exhaust pipe 1201b communicating with the elbow 1201 are bound together. Therefore, it is convenient to accommodate the duct portion 32 formed by the intake pipe 1201a and the exhaust pipe 1201b in the pushing pipe 21.
  • the plurality of intake pipes 1201a and the plurality of exhaust pipes 1201b may be bound together by the sleeve 1202, so that the plurality of intake pipes 1201a and the plurality of exhaust pipes 1201b are more compact and can be conveniently contained in the push tube 21.
  • the plurality of intake pipes 1201a are arranged close to the central axis of the ablation member 1200, and the plurality of exhaust pipes 1201b are enclosed in a tubular shape along the central axis of the ablation member 1200 and are located outside the plurality of intake pipes 1201a.
  • the multiple intake pipes 1201a and the multiple exhaust pipes 1201b can be more compactly bound together, and it is convenient to inject refrigerant into the multiple intake pipes 1201a in a centralized and synchronized manner.
  • the disc-shaped ablation part 31 composed of a plurality of elbow tubes 1201 can be pre-placed inside the sealing part 11 and located on the baffle film 13. On the side where the proximal end is located, in order to maintain a good blocking effect of the baffle film 13.
  • the ablation part 31 can be housed in the sealing part 11 through the tube hole 111a of the proximal connecting member 111 of the sealing part 11 after being folded.
  • the ablation element 1200 is housed in the delivery sheath 22 along with the left atrial appendage occluder 10 and delivered into the left atrial appendage 101.
  • the elbow 1201 expands and unfolds as the sealing portion 11 is released. After the plurality of elbows 1201 are unfolded, the whole is in a disc shape, and the edges thereof abut against the mouth or neck of the left atrial appendage 101.
  • the refrigerating device delivers the refrigerated gas into the elbow 1201 through the air inlet pipe 1201a
  • the refrigerated gas in the elbow 1201 freezes the inner wall of the left atrial appendage 101 that is in contact with or close to the edge of the elbow 1201, so that the refrigerating gas in the left atrial appendage 101
  • a ring-shaped isolation belt is formed near the mouth or neck to block the electrical signal conduction between the left atrial appendage 101 and the left atrium to achieve electrical isolation.
  • Embodiment 4 will not be repeated here.
  • the difference between the two is mainly that the ablation portion 31 including a plurality of petal-shaped elbows 1201 is not integrally provided with the catheter portion 32. They are two separate components.
  • the catheter portion 32 in this embodiment is a hollow tubular member, which can simplify the delivery process, reduce the difficulty of the delivery device when passing through a curved blood vessel, and will not cause too much damage to the position of the left atrial appendage occluder 10 after it is released. influences.
  • the ablation portion 31 is fixedly connected to the proximal connecting piece 111 of the sealing portion 11, and the catheter portion 32 is detachably connected to the proximal connecting piece 111.
  • the ablation part 31 After the ablation part 31 is expanded in the sealing part 11, it abuts against the circumferential edge of the sealing part 11, and forms an annular isolation band on the inner wall of the left atrial appendage 101 after injecting the refrigerant.
  • the end of each elbow 1201 is located in the cavity of the proximal connecting piece 111.
  • the first end of each of the plurality of elbows 1201 is arranged close to the central axis of the proximal connecting piece 111,
  • Each second end of the tube 1201 is fixed on the inner wall of the proximal connector 111.
  • each elbow 1201 is in communication with the cavity of the duct portion 32, and the second end of each elbow 1201 is in communication with the cavity of the push tube 21, so that the refrigeration device can pass through the duct portion 32 and pass through
  • Each first end injects refrigerant into each elbow 1201, the refrigerant enters the cavity of the push tube 21 through the second end after passing through the elbow 1201, and the refrigerant is discharged out of the body through the push tube 21.
  • the first ends of the plurality of elbows 1201 are gathered and fixed together by means of welding, clamping, binding, or bonding.
  • an external thread can be provided on the outer surface of the proximal end thereof, and an internal thread can be provided on the distal end of the catheter portion 32, so that the catheter portion 32 can be connected to the ablation portion 31
  • the proximal end is detachably connected by threads. Since the ablation portion 31 is fixedly connected to the proximal connecting piece 111, a detachable connection between the catheter portion 32 and the proximal connecting piece 111 is realized.
  • first ends of each of the plurality of elbows 1201 are all contained in one sleeve. That is, the respective first ends of the plurality of elbows 1201 are fixed together by the sleeve.
  • An external thread can be provided on the sleeve, and an internal thread can be provided on the distal end of the catheter portion 32, so that the catheter portion 32 can be threaded to the sleeve to achieve a detachable connection between the catheter portion 32 and the proximal end of the ablation portion 31, Since the ablation portion 31 is fixedly connected to the proximal connecting piece 111, a detachable connection between the catheter portion 32 and the proximal connecting piece 111 is realized.
  • the catheter portion 32 can be connected to the proximal connector 111 of the sealing portion 11 and housed in the cavity of the push tube 21. After the push tube 21 and the proximal connector 111 are also connected , The catheter part 32 is delivered to the left atrial appendage 101 in the delivery sheath 22 along with the left atrial appendage occluder 10.
  • the catheter portion 32 is not delivered to the left atrial appendage 101 in the delivery sheath 22 along with the left atrial appendage occluder 10, but after the left atrial appendage occluder 10 is deployed in the left atrial appendage 101 , The distal end of the catheter part 32 extends from the proximal end of the delivery tube into the cavity of the delivery tube, and then the catheter part 32 is delivered to the left atrial appendage 101 along the delivery tube. After the distal end of the catheter portion 32 is connected to the proximal connector 111 and the refrigeration device is connected to the proximal end of the catheter portion 32, the refrigeration device injects refrigerant into the ablation portion 31 through the catheter portion 32.
  • the ablation portion 31 includes a double-lumen elbow 1203 ,
  • the elbow 1203 has a ring shape after unfolding and abuts against the circumferential edge of the sealing portion 11 to form an annular isolation band on the inner wall of the left atrial appendage 101 after injecting the refrigerant.
  • the first end 1203a of the elbow 1203 has two openings, one of which is used to inject the refrigerant after being connected to the duct portion 32, and the other is used to discharge the refrigerant flowing along the elbow 1203.
  • the ablation part 31 only includes one bend, so when the ablation part 31 is folded in the sealing part 11, the outer diameter of the sealing part 11 when it is in a compressed state is not too large, and it is easier to fold.
  • the inside of the elbow 1203 is provided with a partition (not shown in the figure) extending along its length, thereby dividing the inside of the elbow 1203 into two cavities.
  • a partition (not shown in the figure) extending along its length, thereby dividing the inside of the elbow 1203 into two cavities.
  • the two cavities of the elbow 1203 are arranged side by side along the length of the elbow 1203, and the second end 1203b of the elbow 1203 is airtight, close to the position of the second end 1203b At this point, the two cavities of the elbow 1203 are connected.
  • the first end 1203a of the elbow 1203 is fixed on the inner wall of the proximal connector 111.
  • the position of the first opening of the elbow 1203 may be provided with an internal thread, the pipe portion 32 may be provided with an external thread, and the pipe portion 32 and the first end 1203a of the elbow 1203 may be connected by threads.
  • the second end 1203b of the elbow 1203 can be a free end or can be fixed at the distal end of the sealing portion 11, as long as the total length of the elbow 1203 is not greater than the length of the sealing portion 11 in the compressed state.
  • the second end 1203b of the elbow 1203 is fixed at the distal end of the sealing part 11.
  • the refrigerating device injects the refrigerant into the first opening of the first end 1203a of the elbow 1203 through the duct part 32.
  • the refrigerant moves from the first opening along one of the cavities of the elbow 1203 toward the second end 1203b of the elbow 1203, enters the other cavity where the two cavities are connected, and then faces along the elbow 1203.
  • the first end 1203a of the elbow 1203 moves, and is discharged from the second opening into the push tube 21, and is finally discharged out of the body through the push tube 21.
  • the arrows in FIG. 10 and FIG. 11 indicate the moving direction of the refrigerant.
  • the elbow 1203 includes a sleeved inner tube 1203c and an outer tube 1203d, and the inner tube 1203c and the outer tube 1203d are connected by a partition (not shown).
  • the inner tube 1203c is hollow and defines the first cavity of the elbow 1203, and the cavity between the outer tube 1203d and the inner tube 1203c is the second cavity of the elbow 1203.
  • the inner pipe 1203c is provided with internal threads, and the inner pipe 1203c can be detachable from the conduit part 32 through threads at the first end 1203a of the elbow 1203 connection.
  • the end of the outer pipe 1203d is closed and constitutes the second end 1203b of the elbow 1203, and the end of the inner pipe 1203c is located inside the outer pipe 1203d, thus, the first cavity It communicates with the second cavity at the second end 1203b of the elbow 1203.
  • the refrigerant injected into the first cavity through the catheter part 32 moves along the inner tube 1203c and enters the second cavity at the second end 1203b of the elbow 1203, and then Move along the outer tube 1203d toward the first end 1203a of the elbow 1203, and through the opening between the inner tube 1203c and the outer tube 1203d at the first end 1203a of the elbow 1203, it is discharged into the push tube 21, and finally It is discharged to the outside of the body along the push tube 21.
  • the ablation part 31 includes a single-lumen elbow tube with both ends open.
  • An annular isolation belt is formed on the inner wall.
  • the first end of the elbow is located in the cavity of the proximal connector 111, can be suspended in the cavity of the proximal connector 111, or can be fixed on the inner wall of the proximal connector 111.
  • the second end of the elbow is fixed on the inner wall of the proximal connecting piece 111.
  • the first end of the elbow can be detachably connected to the distal end of the catheter portion 32 through threaded connection or clamping.
  • the refrigeration device injects the refrigerant into the ablation portion 31, that is, the elbow, through the catheter portion 32.
  • the refrigerant moves along the elbow toward its second end, and is discharged into the push tube 21 through the opening at the second end, and is finally discharged from the push tube 21 to the outside of the body.

Abstract

一种左心耳封堵器(10)及封堵系统,左心耳封堵器(10)包括密封部(11)和设置在密封部(11)内的消融部(31),以及在密封部(11)近端的中空近端连接件(111),消融部(31)与近端连接件(111)连接,消融部(31)用于在被注入冷冻剂后冷冻左心耳(101),以使左心耳(101)的内壁上形成环形隔离带,用于阻断左心耳(101)与左心房之间的电信号传导;密封部(11)处于压缩状态时,消融部(31)被折叠并收容于密封部(11)内,且消融部(31)在密封部(11)内展开后,至少抵接密封部(11)的周向边缘。还提供另一种封堵系统。在左心耳封堵器(10)对左心耳(101)的口部进行封堵的同时,消融件(1200)在被注入冷冻剂后冷冻左心耳(101),使左心耳(101)内壁上形成环形隔离带,阻断左心耳(101)与左心房之间的电信号传导,实现左心耳(101)与左心房之间的电隔离,降低主动式左心耳(101)电隔离的操作难度。

Description

左心耳封堵器及封堵系统 技术领域
本发明涉及介入医疗器械技术领域,特别是涉及一种左心耳封堵器及封堵系统。
背景技术
房颤是临床最常见的一种心律失常现象,其发病率为1.0%-1.5%,且随着年龄增长,发病率随之升高。房颤可使患者心脏功能受损,还可能诱发血栓形成,严重影响生活质量。房颤是脑卒中和心衰最强烈的危险因素,20%的脑卒中事件与房颤有关,对患者生命安全造成巨大威胁。
房颤主要由心脏内电信号紊乱引起,肺(腔)静脉肌袖及心房的特殊结构如界嵴、冠状静脉窦、Marshall韧带等均可自发地产生电活动,并有可能以此驱动或触发心房电活动,进而导致房颤。1997年Haissaguerre发现肺静脉肌袖的电活动可驱动/触发心房电活动而引发房颤,并因此提出,通过导管射频消融隔离肺静脉与左心房间的电连接可终止房颤。经导管消融治疗房颤经历了优化术式的艰难探索过程,迄今以环肺静脉消融作为手术基石,并在此基础上可依需增加必要的消融径线、增加碎裂电位及神经丛消融也已形成共识。但常规消融通常有手术时间长、消融面积大、消融不完全的弊端,不能完全阻止电流折返,导致房颤复发的可能。
左心耳(left atrial appendage,LAA)因其特殊形态及结构,不仅为心房颤动(房颤)导致血栓形成最主要的部位,也是其发生和维持的关键区域之一,部分房颤患者可通过主动式的左心耳电隔离(left atrial appendage isolation,LAAI)获益。另外,非阵发性房颤常需于左心房内行激进消融以达到消融终点,易致被动LAAI。消融相关的医源性LAAI理论上可使血栓栓塞事件风险显著增加,需引起电生理术者高度警惕。
在肺静脉周行导管消融术为普遍认同的治疗房颤的手段,但导管消融术操作难度大,手术时间长,且易引发房颤复发,被动左心耳电隔离导致脑血管栓塞等疾病,患者往往需要再次进行消融术或长期口服抗凝药避免此类疾病的发生。左心房电隔离术在长期维持患者窦性心律方面有良好的效果,但左心房电隔离易发生左心耳内血栓,引起脑血管栓塞事件。
发明内容
基于此,本发明提供一种左心耳封堵器及封堵系统,以解决实施主动式的左心耳电隔离所存在的操作难度大、风险大的问题。
提出一种左心耳封堵器,包括密封部,所述密封部包括设置在所述密封部内的消融部,以及设置在所述密封部的近端的中空的近端连接件,所述消融部与所述近端连接件连接,所述消融部用于在被注入冷冻剂后冷冻左心耳,以使左心耳的内壁上形成环形隔离带,所述环形隔离带用于阻断左心耳与左心房之间的电信号传导;所述密封部处于压缩状态时,所述消融部被折叠并收容于所述密封部内,且所述消融部在所述密封部内展开后,至少抵接所述密封部的周向边缘。
还提出一种封堵系统,包括上述左心耳封堵器,还包括推送管件、输送鞘管以及导管部,所述推送管件可移动地设于所述输送鞘管内,并与所述密封部的所述近端连接件可拆卸连接,所述导管部可移动地设于所述推送管件内,并与所述近端连接件可拆卸连接。
本发明提供的左心耳封堵器及其封堵系统,在左心耳封堵器的密封部内设置与近端连接件连接的消融件,且消融件随着左心耳封堵器一起被输送至左心耳处,在左心耳封堵器对左心耳的口部进行封堵的同时,消融件在被注入冷冻剂后冷冻左心耳,使得左心耳的内壁上形成环形隔离带,从而阻断左心耳与左心房之间的电信号传导,实现左心耳与左心房之间的电隔离,使患者能够享受左心耳与左心房电隔离后长期维持窦性心律的好处,减少了在左心耳处形成血栓的概率,降低主动式的左心耳电隔离所存在的操作难度及风险,同时还实现了对 左心耳的封堵,在电隔离和封堵的双重作用下,能够更好地预防中风的发生,术后治疗效果更好。
还提出另一种封堵系统,包括左心耳封堵器、推送管件、输送鞘管以及消融件,所述左心耳封堵器包括内部中空且近端具有开口的密封部,所述推送管件可移动地设于所述输送鞘管内,并与所述密封部的近端可拆卸连接;在输送状态下,所述消融件随所述左心耳封堵器收容至所述输送鞘管内,且所述消融部收容于所述密封部内;当所述左心耳封堵器在左心耳内展开后,所述消融部在被注入冷冻剂后用于冷冻左心耳,以使左心耳的内壁上形成环形隔离带,所述环形隔离带用于阻断左心耳与左心房之间的电信号传导。该封堵系统,利用随左心耳封堵器一起输送至左心耳的消融件,在左心耳封堵器对左心耳的口部进行封堵的同时,消融件配合冷冻剂来冷冻左心耳,使得左心耳的内壁上形成环形隔离带,从而阻断左心耳与左心房之间的电信号传导,实现左心耳与左心房之间的电隔离,使患者能够享受左心耳与左心房电隔离后长期维持窦性心律的好处,减少了在左心耳处形成血栓的概率,降低主动式的左心耳电隔离所存在的操作难度及风险,同时还实现了对左心耳的封堵,在电隔离和封堵的双重作用下,能够更好地预防中风的发生,术后治疗效果更好。
附图说明
图1为一实施例的封堵系统中左心耳封堵器植入左心耳位置处的示意图;
图2为一实施例的封堵系统的左心耳封堵器的结构示意图;
图3为实施例1的封堵系统的左心耳封堵器与球囊的组合示意图;
图4(a)为实施例1的封堵系统其中一个实施方式的部分结构示意图;
图4(b)为实施例1的封堵系统另一个实施方式的部分结构示意图;
图5为实施例2的封堵系统的部分结构示意图,其中,球囊未被充盈;
图6为图5示出的封堵系统中密封部与消融件连接的局部结构示意图;
图7为图5示出的封堵系统中球囊处于充盈状态时的示意图;
图8(a)为实施例3的封堵系统的消融件的俯视示意图;
图8(b)为图8(a)示出的封堵系统的消融件的侧视示意图;
图9为实施3的封堵系统的部分结构示意图;
图10为实施例5的封堵系统中消融部的其中一种结构在展开后的俯视图;
图11为图10中消融部与导管部通过近端连接件连接的示意图;
图12为实施例5的封堵系统中消融部的另一结构在展开后的俯视图;
图13为图12中消融部与导管部通过近端连接件连接的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在介入医疗器械领域,一般将植入人体或动物体内的医疗器械的距离操作者较近的一端 称为“近端”,将距离操作者较远的一端称为“远端”,并依据此原理定义医疗器械的任一部件的“近端”和“远端”。定义左心房进入左心耳的位置为左心耳的口部,左心耳内邻接左心耳入口的位置为左心耳的颈部。“轴向”一般是指医疗器械在被输送时的长度方向,“径向”一般是指医疗器械的与其“轴向”垂直的方向,并依据此原理定义医疗器械的任一部件的“轴向”和“径向”。
图1示出了依据本发明的封堵系统在左心耳封堵器10植入左心耳101后的示意图。参阅图1所示,封堵系统包括左心耳封堵器10、冷冻装置、推送管件21、输送鞘管22以及具有消融部31的消融件30。
左心耳封堵器10包括密封部11和与密封部11连接的固定部12。密封部11和固定部12可以直接连接,或通过中间件连接。密封部11可以为盘状或柱状、塞子状等结构,在此不作限定。密封部11内部中空且近端具有开口,以便将消融件30的消融部31从该开口置入密封盘10内。固定部12的形状不限,可以为柱状或伞状等。
继续参阅图1所示,推送管件21可移动地设于输送鞘管22内,并与密封部11的近端可拆卸连接,从而通过操控推送管件21和输送鞘管22之间的相对移动,使得左心耳封堵器10能够从输送鞘管22的远端释放。例如,在一些实施方式中,在推送管件21和输送鞘管22的输送下,将左心耳封堵器10推送至左心耳101附近时,输送鞘管22相对推送管件21朝近端回撤,使得连接于推送管件21远端的左心耳封堵器10从输送鞘管22的远端露出并自膨胀释放。
需要说明的是,当左心耳封堵器10植入左心耳101中后,固定部12位于左心耳101的腔内并与左心耳101的腔壁紧密贴合,防止左心耳封堵器10从左心耳101中脱落。密封部11封堵在左心耳101的口部,防止左心耳腔内形成的血栓流入左心房,以及防止血流从左心房流入左心耳101腔内。
本发明提供的封堵系统中,冷冻装置与消融件30连接,用于向消融件30的消融部31提供冷冻剂。其中,在输送状态下,消融件30随左心耳封堵器10收容至输送鞘管21内,消融部31收容于密封部11内,从而消融件30能够随左心耳封堵器10一起输送至左心耳101。当左心耳封堵器10在左心耳101内展开后,位于密封部11内的消融部31配合冷冻剂冷冻左心耳,使得左心耳101的内壁上形成环形隔离带。环形隔离带用于阻断左心耳101与左心房之间的电信号传导,从而实现左心耳101与左心房之间的电隔离,达到电隔离的效果,使患者能够享受左心耳101电隔离后长期维持窦性心律的好处。
此外,这种利用消融件30与左心耳封堵器10一起输送至左心耳101实现封堵和消融的方式,也即左心耳封堵器10在左心耳101内释放后,密封部11封堵左心耳101的口部,由于消融件30的消融部31位于密封部11内,从而消融部31将配合在其内部注入的冷冻剂对左心耳101的内壁进行冷冻消融。且由于消融部31在展开后周向抵接左心耳101的内壁而呈环形或近似环形,进而在冷冻剂的作用下在左心耳101的内壁上形成环形隔离带。因此,本发明的封堵系统能够利用左心耳封堵器10封堵左心耳101的同时,通过在消融部31内充盈冷冻剂的方式对左心耳101的内壁进行环形冷冻,以实现左心耳101与左心房之间的电隔离,封堵和消融的双重保证,进一步避免患者发生中风。
结合图2所示,为方便对左心耳封堵器10的结构作进一步描述,以密封部11呈盘状为例,将密封部11的近端所在一侧的面称为“近端盘面11a”,相应地,密封部11的远端所在一侧的面称为“远端盘面11b”。固定部12的内部或外部设置至少一层阻流膜(图中未示出),从而配合密封部11实现多重封堵,提高对左心耳101的封堵性能。密封部11上设有至少一层阻流膜,例如,在近端盘面11a和/或远端盘面11b上覆设有阻流膜。如图2所示,密封部11的内部设有至少一层阻流膜13,用于阻止左心房到左心耳101内的血液流通,保证对左心耳101的口部封堵严密。
该实施例中,在消融件30的消融部31置入密封部11内时,阻流膜13位于消融部31的远端所在一侧,以确保阻流膜13的封堵效果不受消融件30的干扰。例如,密封部11的阻流 膜13设置在近端盘面11a和远端盘面11b之间,阻流膜13位于消融部31与远端盘面11b之间,从而在实现消融的同时能够维持阻流膜13良好的封堵效果。
密封部11上的阻流膜13的大小和密封部11的盘面大小相当,使阻流膜13能够完全覆盖密封部11的盘面,以实现封堵严实。例如,当阻流膜13和密封部11均为规则的圆形时,阻流膜13的直径与密封部11的直径相等或差别较小。阻流膜13为高分子材料,优选PTFE(Poly tetra fluoroethylene,聚四氟乙烯)或PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)。
在一些实施例中,密封部11采用编织网管结构,通过热处理定型为盘状结构。阻流膜13边缘固定在密封部11的编织丝上,固定方式可以是缝合或粘接的方式,对于阻流膜13与密封部11的固定方式,在此不作限定。
需要说明的是,大部分左心耳封堵器10采用左心耳101内填塞、左心耳101的口部封堵的结构,其中,以塞子结构形式和双盘结构为主。
本发明的封堵系统中,左心耳封堵器10包括分体式和一体成型的结构。可以理解,对于一体成型的左心耳封堵器10,其用于封堵的部分可视为本发明中的密封部11,其用于固定左心耳封堵器10的部分可视为本发明中的固定部12。左心耳封堵器10中密封部11与固定部12还可以为一体设置的,例如左心耳封堵器10整体为柱状,其近端的盘面用于封堵的部分相当于本发明中的密封部11,其侧壁部分用于将左心耳封堵器10固定在左心耳的腔体内,因而相当于本发明中的固定部12。
以下将以左心耳封堵器10为分体式的双盘结构为例,对本发明的各个实施例作进一步说明。
实施例1
结合图3所示,消融件30的消融部31为具有一个开口端311a的球囊311。球囊311设置在密封部11内,例如,密封部11包括近端盘面11a和远端盘面11b的实施例中,球囊311位于密封部11的近端盘面11a和远端盘面11b之间。
球囊311的开口端311a套设在密封部11的近端,并与密封部11的近端开口连通。其中,密封部11的近端开口可以是开设于密封部11的近端的通孔结构,也可以是设置在密封部11的近端,且与密封部11内部相连通的管件。对于密封部11的近端开口的结构和形状,在此不作限制,只需要满足能够借助导管向球囊311内注入冷冻剂即可。
例如,在一些实施例中,结合图3所示,密封部11的近端设有近端连接件111,近端连接件111呈中空管状,具体地,近端连接件111具有管孔111a,从而近端连接件111的管孔111a构成密封部11的近端开口。
该实施例中,球囊311的开口端311a套接在近端连接件111上,球囊311的开口端311a与近端连接件111的腔体连通,因而球囊311的内部与近端连接件111的管孔111a相连通,从而可以从管孔111a处向球囊311内充盈冷冻剂,例如N 2O。球囊311与近端连接件111的连接固定方式不限,如胶水粘接、通过卡箍连接等。借助注入球囊311内的冷冻剂,充盈后的球囊311至少周向抵接在左心耳101的内壁上,从而在左心耳101的颈部或口部形成环形的冷冻区域,该冷冻区域处的心肌组织被冷冻损伤后,在左心耳101的内壁上形成环形隔离带,进而利用环形隔离带阻断左心耳101内至左心房之间的电信号传导,实现冷冻消融。
通过这种结构设置,左心耳封堵器10对左心耳101进行封堵的同时,可以通过其内部设置的球囊311注入冷冻剂来实现消融,从而在一次手术中即可完成左心耳101的封堵和消融,降低手术难度,缩短手术时间,降低成本,大大降低患者发生中风的概率。此外,由于能够在封堵左心耳101的同时实现左心耳101与左心房之间的电隔离,从而可以使患者能够长期维持窦性心律,且无左心耳101内血栓脱落而带来的脑血管堵塞等风险。
球囊311可采用顺应性材料,例如聚酰胺和聚醚嵌段共聚物。聚酰胺是脂肪族的,例如尼龙12、尼龙11、尼龙9、尼龙6、尼龙6/12、尼龙6/11、尼龙6/9和尼龙6/6。聚醚嵌段可以选自聚氧四甲撑二醇、四亚甲基醚、聚乙二醇或聚丙二醇。由于球囊311具有很好的顺应 性,因而在输送时,球囊311收容在密封部11内不会对输送鞘管22的尺寸选择造成影响,且球囊311能够在被注入冷冻剂后快速膨胀起来,且在充盈到一定程度时能够充分抵接密封部11的周向边缘,因而能够借助冷冻剂,在左心耳101的内壁上形成环形隔离带,实现左心耳101与左心房之间的电隔离。
由此,球囊311的形状可根据球囊311的充盈程度而相应地改变,以配合固定部12对密封部11的牵引,加强密封部11与左心耳101的口部的贴合程度,从而提高左心耳封堵器10的稳定性及封堵性能。
在密封部11内设有阻流膜13的实施例中,密封部11的阻流膜13可以是设置在近端盘面11a和远端盘面11b之间,阻流膜13位于球囊311与远端盘面11b之间,也即,球囊311位于阻流膜13的近端所在一侧,以确保阻流膜13的封堵效果不受球囊311的干扰。
结合图1和图4(a),本发明提供的封堵系统中,消融件30还包括与消融部31直接或间接连接的导管部32,导管部32的近端与冷冻装置连接,用以向球囊311输送冷冻剂。密封部11收容在输送鞘管22内时处于压缩状态,消融部31(也即球囊311)被折叠并收容于密封部11内。球囊311在密封部11内展开后,至少抵接密封部11的周向边缘,以更好地对左心耳101进行冷冻消融。
需要说明的是,导管部32可以是由内部中空的推送管件21构成,也可以是独立于推送管件21以外的管件构成。下面将分别就这两种情形对封堵系统的结构作进一步说明。
在一些实施例中,推送管件21与密封部11的近端相连,不仅起到推送左心耳封堵器10至左心耳101内的作用,同时,推送管件21的腔体与密封部11的近端开口相连通,以便通过推送管件21向位于密封部11内的球囊311注入冷冻剂。进一步地,还可通过推送管件21向进行冷冻消融后的球囊311内注入栓塞剂,以在充盈球囊311后,实现多重封堵,以提高密封部11的密封性能。
结合图4(a),在密封部11的近端设有近端连接件111的实施例中,推送管件21的远端与近端连接件111可拆卸连接,使得推送管件21的腔体与近端连接件111的管孔111a相连通,进而推送管件21不仅能够用于推送左心耳封堵器10,以满足左心耳封堵器10和球囊311的输送需要,同时推送管件21还作为消融件30的导管部32,满足向球囊311内注入冷冻剂,以冷冻左心耳101。
该实施例中,推送管件21与近端连接件111相连接后,将左心耳封堵器10和推送管件21一起收容至输送鞘管22内,并输送至体内的左心耳101处。在左心耳101内释放左心耳封堵器10后,先不断开近端连接件111与推送管件21之间的连接。在推送管件21的近端与冷冻装置连接的情况下,利用近端连接件111的管孔111a可将经由推送管件21输送的冷冻剂注入球囊311内,从而近端连接件111与推送管件21的配合不仅能适应输送左心耳封堵器10的需要,还能满足向球囊311内注入冷冻剂进行冷冻消融的需要,还能减少输送左心耳封堵器10所需的管件数量,且能够满足用于输送的组件整体上的管径小的需求。在进行冷冻消融后,断开近端连接件111与推送管件21之间的连接,并将推送管件21和输送鞘管22撤出体外即可。
推送管件21与近端连接件111的连接结构具有多种可能。例如,在一些实施例中,近端连接件111的管孔111a可以是螺纹孔,推送管件21的远端与近端连接件111的管孔111a螺纹配合。在另一些实施例中,推送管件21的远端与近端连接件111通过卡扣连接。在其他实施方式中,推送管件21与近端连接件111还可以通过其他方式进行连接,只要两者相连后,能够通过推送管件21的管腔与球囊311的内部相连通,满足向球囊311内注入冷冻剂的需要即可。
在其他实施例,封堵系统可包括两个内部中空的导管,其中一个导管为推送管件21,该导管的远端与近端连接件111可拆卸连接,用于推送左心耳封堵器10;另一个导管用于向球囊311内充盈冷冻剂,实现对左心耳101的冷冻消融。
为便于描述,将其中一个导管称为“第一导管21a”,将另一个导管称为“第二导管21b”, “第二导管21b”也即推送管件21。在一些实施例中,第一导管21a套设在第二导管21b的内部,且可彼此轴向相对运动。在另一些实施例中,第一导管21a和第二导管21b未套设在一起,且第一导管21a和第二导管21b的直径可以相同,也可以不同。
具体地,结合图4(b)所示,消融件30还包括一个导管部32,导管部32包括第一导管21a,第一导管21a为一个内部中空的管状体。第一导管21a的外径小于第二导管21b的内径。第一导管21a套设在第二导管21b的内部,且第一导管21a可在第二导管21b的腔体内进行轴向移动。第二导管21b的远端与近端连接件111可拆卸连接,第一导管21a的远端伸入近端连接件111的内部,且第一导管21a的腔体与近端连接件111的管孔111a相连通。第一导管21a的远端可抵接在近端连接件111内,也可以与近端连接件111可拆卸连接,例如,第二导管21b的远端与近端连接件111通过近端连接件111外壁上设置的外螺纹进行可拆卸连接,第一导管21a的远端与近端连接件111通过近端连接件111内壁上设置的内螺纹进行可拆卸连接。在输送时,第一导管21a和第二导管21b均随着左心耳封堵器10一起被输送至左心耳101处,待左心耳封堵器10释放后,通过第一导管21a向密封部11内的球囊311内注入冷冻剂进行冷冻消融。在进行冷冻消融后,断开近端连接件111与第一导管21a和第二导管21b的连接,并将第一导管21a、第二导管21b和输送鞘管22撤出体外即可。
在其他实施例中,在输送左心耳封堵器10时,只有第二导管21b与近端连接件111相连,并与左心耳封堵器10一起被输送至左心耳101处。待左心耳封堵器10在左心耳101处展开后,需要对左心耳101进行冷冻消融时,可以将第一导管21a沿着第二导管21b的管腔推入后,将第一导管21a与近端连接件111相连接,使得第一导管21a的腔体与球囊311的内部相连通,进而可以通过第一导管21a向球囊311的内部注入冷冻剂,以实现对左心耳101的冷冻消融。这种冷冻消融操作简单,且安全性高。在完成消融后,可以在将冷冻剂撤出体外后,解除第一导管21a和第二导管21b与近端连接件111的连接,并将第一导管21a、第二导管21b随着输送鞘管22一起回撤至体外。
需要说明的是,采用第一导管21a和第二导管21b配合进行左心耳封堵器10的输送和冷冻消融的方式,不限于上述所例举的情形。例如,在其它实施方式中,在左心耳封堵器10在左心耳101处展开后,通过第一导管21a向球囊311注入冷冻剂,对左心耳101进行冷冻消融。然后,再将第一导管21a撤出,并通过第二导管21b向球囊311内输送栓塞剂,以在球囊311被充盈后充满密封部11的内部,实现对左心耳101的颈部或口部的再次封堵,多重封堵能够提高密封部11的密封性能。在其他实施例中,推送管件21为不同于上述第二导管21b的另一个中空管件,导管部32包括第一导管21a和第二导管21b。与上述情况不同的是,在进行冷冻消融后撤出第一导管21a,然后将第二导管21b顺着输送鞘管22的腔体输送至左心耳101处,并连接至左心耳封堵器10的近端连接件111上,之后再通过第二导管21b向球囊311内注入栓塞剂。在需要注入栓塞剂时,推送管件21可继续连接在近端连接件111上,也可以在撤出第一导管21a时,与第一导管21a一起被撤出体外。
进一步地,在一些实施例中,第一导管21a的远端所在一端具有锥形段(图未示),锥形段的远端的内径小于锥形段的近端的内径。因而,锥形段的远端为微孔结构,利用微孔向球囊311内充盈冷冻剂,可利用焦耳汤姆森原理,即当气体通过一个狭小的微孔从较高压力区域喷入较低压力区域时,将被节流,且大多数气体在节流后温度骤然下降,由此能够增强冷冻剂的冷冻效果。
关于第一导管21a与近端连接件111之间,以及第二导管21b与近端连接件111之间的连接方式,可以是螺纹或卡接等可拆卸连接方式,在此不做限制。
实施例2
与实施例1相似,实施例2的封堵系统中,推送管件21可移动地设于输送鞘管22内,并且能够与左心耳封堵器10的密封部11的近端可拆卸连接,以将左心耳封堵器10推送进入输送鞘管22的远端管段,或从输送鞘管22的远端推出以释放左心耳封堵器10。实施例2与实施例1的相同或相似之处在此不再赘述,两者的主要区别在于,结合图5和图6所示,实 施例2的封堵系统中,构成消融部31的球囊311为环形,其固定地套设在导管部23的远端,且球囊311的内部与导管部23的内部连通。球囊311和导管部23一起,构成一个球囊导管。
该实施例中,在输送状态下,导管部23的远端穿过密封部11的近端开口,使得套设在导管部23远端的球囊311位于左心耳封堵器10的密封部11内,以便左心耳封堵器10在左心耳101内展开后,冷冻装置通过导管部23向球囊311内输送冷冻剂。球囊311配合其内部的冷冻剂对左心耳101的颈部或口部进行冷冻,使得冷冻区域处的心肌组织被损伤后,形成环形隔离带,进而利用环形隔离带阻断左心耳101内至左心房之间的电信号传导,实现冷冻消融。
球囊导管设置在推送管件21的管腔内,且导管部23的远端设置有充泄口23a。球囊311设置在导管部23的远端,球囊311的内部与充泄口23a相连通。导管部23能够通过充泄口23a向球囊311内注入冷冻剂,从而适应对左心耳101的颈部或口部进行冷冻消融的需要。
参考图7,充泄口23a可以是开设在导管部23远端的侧壁上的至少一个通孔23b。球囊311套设在球导管部23的开设通孔23b的位置处,以通过通孔23b与导管部23的内腔相连通,从而可以通过导管部23向球囊311内注入冷冻剂。
在一些实施例中,充泄口23a包括多个通孔23b,例如2个或2个以上的通孔23b,多个通孔23b沿导管部23的周侧均匀设置,从而导管部23通过充泄口23a向球囊311充盈冷冻剂时,球囊311能够均匀的膨胀,避免局部膨胀速度过快或过慢而在密封部11内偏向一侧。球囊311在密封部11内均匀膨胀,能够确保球囊311内的冷冻剂对左心耳101的冷冻区域进行均匀冷冻,以获得较佳的冷冻消融效果。
通孔23b的形状可以是圆形、方形或长条形,在此不做限定,只需球囊311设置于导管部23的开设通孔23b的位置处时,通孔23b能够满足通过导管部23的腔体向球囊311充盈冷冻剂即可。
在一些实施方式中,左心耳封堵器10与推送管件21的远端连接后,左心耳封堵器10和推送管件21一起收容在输送鞘管22的腔体内,并经输送鞘管22被输送至左心耳101处。在左心耳封堵器10展开后,将球囊导管从推送管件21的近端伸入推送管件21的腔体内,并输送至左心耳封堵器10所在位置处,直至将球囊导管上的球囊311通过近端连接件111的管孔111a后,被置入密封部11内。球囊导管的导管部23与近端连接件111通过螺纹连接或卡扣连接。导管部23的近端与冷冻装置连接。通过导管部23向球囊311内注入冷冻剂后,球囊311在密封部11内膨胀展开。球囊311内的冷冻剂能够对左心耳101的颈部或口部进行冷冻消融。在其他实施方式中,推送管件21可以为上述球囊导管,球囊导管在连接近端连接件111后,导管部23既可以起到推送左心耳封堵器10的作用,还能够用于向消融部31输送冷冻剂。
在其他实施例中,可预先将未充盈的球囊导管的球囊311置入密封部11内,使球囊导管和左心耳封堵器10一起,在推送管件21和输送鞘管22的辅助下被输送至左心耳101内。在密封部11在左心耳101内展开后,再通过冷冻装置向导管部23内注入冷冻剂,并经过导管部23将冷冻剂输送注入球囊311内,同样能够实现对左心耳101的颈部或口部的冷冻消融。
再次参考图6,密封部11上的近端连接件111的管孔111a,能够供未充盈时的球囊导管的远端穿过。具体地,球囊导管可轴向移动地设置于推送管件21的内腔中,在球囊311处于未充盈状态,也即收缩状态时,球囊导管的远端能够将球囊311从管孔111a伸入密封部11的内部。这种结构设置,可以在需要对左心耳101进行冷冻消融时,灵活地将球囊311置入密封部11内,且在完成冷冻消融的操作后,将球囊311从密封部11内移出。这种操作方式既便捷、安全可靠,且对左心耳封堵器10的结构改进较少。
下面将以向球囊311内注入冷冻剂N 2O为例,对球囊导管配合左心耳封堵器10进行冷冻消融的作用机理作进一步说明。
首先,在左心耳封堵器10植入过程中,球囊导管远端处的球囊311处于未充盈状态,在该状态下,球囊导管的设置球囊311的部分被置于左心耳封堵器10的密封部11内,且球囊 导管与密封部11的近端连接件111连接。随后,球囊导管与左心耳封堵器10一同输送至左心耳101。当左心耳封堵器10在左心耳101处展开后,也即,密封部11自膨胀展开并封堵在左心耳101的口部后,球囊311位于密封部11的近端盘面11a和远端盘面11b之间。
然后,在冷冻装置与球囊导管的近端连接后,通过导管部23向球囊311内注入冷冻剂N 2O。球囊311将逐渐被冷冻剂N 2O充盈,而在密封部11的近端盘面11a和远端盘面11b之间膨胀,继而球囊311的外壁将逐步靠近左心耳101的口部或颈部附近的内壁,并在冷冻剂N 2O的作用下,使得左心耳101的口部或颈部周围的心肌细胞因温度骤降而坏死,形成环形隔离带,从而中断左心耳101与左心房之间异常电信号的传递,达到左心耳101与左心房之间电隔离的效果。
最后,在利用冷冻剂N 2O对左心耳101的口部或颈部周围细胞冷冻完成后,利用球囊导管将球囊311内的冷冻剂N 2O抽出,使得球囊311的体积收缩,直至可以将球囊311随导管部23一起朝近端回撤,以在穿出近端连接件111后,继续朝近端回撤并最终移出体外。
需要说明的是,由于球囊导管通过导管部23远端的充泄口23a与球囊311连通。从而通过导管部23向球囊311内注入冷冻剂N 2O时,从冷冻装置内输出的液态冷冻剂经由导管部23和充泄口23a朝向球囊311内喷出并迅速气化,气化的冷冻剂N 2O快速充盈球囊311。在液态冷冻剂N 2O朝向球囊311内喷出并气化时,由于液态冷冻剂N 2O气化会吸收周围组织的热量,从而使得与球囊311贴靠的心肌组织的温度迅速下降,例如心肌组织稳定下降至-30℃以下。这种方式下,由于左心耳101的口部或颈部的心肌细胞经冷冻剂N 2O气化冷冻而温度急速降低(下称为“冷冻阶段”),并在球囊311随导管部23撤离后,该左心耳101的口部或颈部的冷冻部位的温度逐渐回升(下称为“回温阶段”)。在冷冻阶段,心肌组织中形成冰晶,使心肌细胞脱水发生坏死、细胞结构被破坏。而在回温阶段,冰晶融化,导致微循环受阻,产生二次损伤,最终导致心肌组织不可逆性损伤,从而在左心耳101的内壁上形成环形隔离带,阻止了左心耳101至左心房之间异常电信号的传递,实现电隔离效果。
实施例3
实施例3与实施例2的相同或相似之处在此不再赘述,两者的主要区别在于,实施例2中的消融部31为由高分子材料制成的球囊311,而实施例3中的消融部31为由金属制成的多个弯管。结合图8(a)、图8(b)和图9所示,本实施例中采用消融件1200与左心耳封堵器10配合,对左心耳101的内壁进行消融,从而实现左心耳101与左心房之间的电隔离。在左心耳封堵器10的植入过程中,该消融件1200的消融部31折叠后收容于密封部11内,且消融件1200与左心耳封堵器10一同被输送至左心耳101。该消融件1200包括消融部31和导管部32,消融部31与导管部32相连,消融部31位于导管部32的远端。冷冻装置能够通过导管部32向消融部31输送冷冻剂。消融件1200与密封部11彼此独立设置,在消融完成后,可以将消融件1200整体撤出体外。
消融件1200具有一定的弹性变形能力,也即能够被压缩和自膨胀展开,使得消融件1200可收容在输送鞘管22内,呈长条形。消融件1200的消融部31可以被折叠并收容在输送鞘管22内,当消融件1200从输送鞘管22内释放后,消融件1200的消融部31自动展开,例如图8(a)和图8(b)所示的形态。
消融件1200可采用回弹性能较好的高分子材料制成,高分子材料可选自聚苯二甲酸乙二醇酯(PET:Polyethylene Terephthalate)、聚乳酸(PLA:Poly-L-lactide Acid)、聚乙醇酸(PGA:Poly-glycolide)、聚羟基脂肪酸脂(PHA:Poly-hydroxyalkanoate)、聚二氧环己酮(PDO:Poly-dioxanone)和聚己内酯(PCL:Poly-caprolactone)中的一种或者几种。
在一些实施例中,消融件1200可由具有弹性的合金管制成,例如镍钛合金管。消融件1200也可以由高分子管包裹具有弹性的弹簧管制成,高分子管可以包裹在弹簧管的外部,也可以内置在弹簧管的内部,在此不做限定。
结合图8(a)和图8(b)所示,消融件1200的消融部31包括多个弯管1201,多个弯管1201配合形成盘状,使得消融部31在展开时,最大程度地朝径向展开,以便消融部31的 边缘与左心耳101的内壁相贴合,从而保证消融效果。
该消融件1200可以采用焦耳汤姆森原理,即当气体通过一个狭小的微孔从较高压力区域喷入较低压力区域时,将被节流。大多数气体在节流后温度骤然下降。例如,在一些实施例中,通过设置在与消融部31连接的输气管(图未示)远端的微孔向消融件1200的弯管1201中喷入气体,使弯管1201周围温度骤然下降,进而对左心耳101的内壁进行局部冷冻消融。
结合图8(a)和图8(b),消融件1200的导管部32包括多个轴向设置的进气管1201a和排气管1201b。一个弯管1201的两端分别连接一个进气管1201a和一个排气管1201b,冷冻装置通过进气管1201a向弯管1201内输入冷冻气体,从而冷冻气体流经弯管1201的过程中,对与弯管1201接触的左心耳101的内壁进行局部冷冻消融,之后,弯管1201内的气体经由排气管1201b排出体外。
弯管1201、进气管1201a和排气管1201b可以是由一个管件通过热定型方式形成的一体结构,也可以是分别形成弯管1201、进气管1201a和排气管1201b后,将进气管1201a和排气管1201b连接于弯管1201的两端,且进气管1201a和排气管1201b与弯管1201连通。
进一步地,弯管1201呈花瓣状,参阅图8(a)所示出的消融件1200中,消融件1200的消融部31包括6个弯管1201,6个弯管1201以消融件的中轴线为中心呈辐射状均匀排布,形成一个具有6个类似花瓣结构且相互不干涉的消融部31。该结构的消融部31借助焦耳汤姆森原理,能够快速地进行冷冻消融,且能够保证冷冻的效果理想。
结合图8(b)和图9所示,与弯管1201相连通的进气管1201a和排气管1201b束缚在一起。从而便于将进气管1201a和排气管1201b所构成的导管部32收容于推送管件21内。多个进气管1201a和多个排气管1201b可以通过套管1202束缚在一起,以使得多个进气管1201a和多个排气管1201b更为紧凑,能够便捷地收容于推送管件21内。
在一些实施例中,多个进气管1201a靠近消融件1200的中心轴设置,多个排气管1201b沿着消融件1200的中心轴围成管状,且位于多个进气管1201a的外侧。通过这种结构设置,多个进气管1201a和多个排气管1201b能够更为紧凑束缚在一起,且便于集中且同步地往多个进气管1201a内注入冷冻剂。
结合图9所示,在密封部11内设有阻流膜13的实施例中,多个弯管1201构成的盘状消融部31可预先放置在密封部11的内部,且位于阻流膜13的近端所在一侧,以维持阻流膜13良好的封堵效果。
消融部31可在折叠后,经由密封部11的近端连接件111的管孔111a而收容于密封部11内。消融件1200随着左心耳封堵器10一起被收容在输送鞘管22内,并输送至左心耳101内。在左心耳封堵器10释放时,弯管1201随着密封部11的释放而自膨胀展开。多个弯管1201展开后整体呈盘状,其边缘抵接在左心耳101的口部或颈部附近。从而在冷冻装置通过进气管1201a向弯管1201内输送冷冻气体时,弯管1201内的冷冻气体对与弯管1201的边缘接触或贴近的左心耳101的内壁进行冷冻,从而在左心耳101的口部或颈部附近形成环形隔离带,阻断左心耳101与左心房之间的电信号传导,实现电隔离。
实施例4
实施例4与实施例3的相同或相似之处在此不再赘述,两者的区别主要在于,包括多个呈花瓣状的弯管1201的消融部31,与导管部32不是一体设置的,而是两个独立的组件。本实施例中的导管部32为一个内部中空的管状件,由此可以简化输送过程,降低输送器械经过弯曲血管时的难度,同时不会对左心耳封堵器10释放后的位置造成太大影响。
消融部31与密封部11的近端连接件111固定连接,导管部32与近端连接件111可拆卸连接。消融部31在密封部11内展开后,抵接密封部11的周向边缘,且在注入冷冻剂后在左心耳101的内壁上形成环形隔离带。具体地,每一个弯管1201的端部均位于近端连接件111的腔体内,例如,多个弯管1201各自的第一端部均靠近近端连接件111的中心轴设置,多个弯管1201各自的第二端部均固定在近端连接件111的内壁上。每一个弯管1201的第一端部均与导管部32的腔体连通,每一个弯管1201的第二端部均与推送管件21的腔体连通,因而 冷冻装置可通过导管部32并经由各个第一端部向每一个弯管1201内注入冷冻剂,冷冻剂通过弯管1201后经由第二端部进入到推送管件21的腔体内,并通过推送管件21将冷冻剂排出到体外。多个弯管1201的第一端部聚拢并固定在一起,通过焊接、卡接、捆绑或粘结等方式。多个弯管1201的第一端部固定在一起后,可在其近端的外表面上设置外螺纹,在导管部32的远端设置内螺纹,由此导管部32可与消融部31的近端通过螺纹进行可拆卸连接,由于消融部31与近端连接件111固定连接,进而实现导管部32与近端连接件111之间的可拆卸连接。
进一步地,多个弯管1201各自的第一端部均收容在一个套管内。也即,通过套管将多个弯管1201各自的第一端部固定在一起。可在套管上设置外螺纹,在导管部32的远端设置内螺纹,由此导管部32可与套管通过螺纹连接,以实现导管部32与消融部31的近端的可拆卸连接,由于消融部31与近端连接件111固定连接,进而实现导管部32与近端连接件111之间的可拆卸连接。
在输送左心耳封堵器10时,导管部32可与密封部11的近端连接件111连接,并收容于推送管件21的腔体内,在推送管件21与近端连接件111也连接起来后,导管部32随着左心耳封堵器10一起在输送鞘管22内被输送至左心耳101处。在另一实施例中,导管部32不是随着左心耳封堵器10一起在输送鞘管22内被输送至左心耳101处,而是在左心耳封堵器10在左心耳101内展开后,导管部32的远端从输送管件的近端伸入输送管件的腔体内,然后导管部32沿着输送管件被输送至左心耳101处。在导管部32的远端与近端连接件111连接,冷冻装置与导管部32的近端连接后,冷冻装置通过导管部32向消融部31内注入冷冻剂。
实施例5
实施例5与实施例4的相同或相似之处在此不再赘述,两者的区别主要在于,请参考图10和图11,实施例5中,消融部31包括一个双腔的弯管1203,弯管1203在展开后呈环状并抵接密封部11的周向边缘,以在注入冷冻剂后在左心耳101的内壁上形成环形隔离带。弯管1203的第一端部1203a具有两个开口,其中一个用于与导管部32连接后注入冷冻剂,另一个用于排出沿着弯管1203流通后的冷冻剂。消融部31只包括一个弯管,因而当消融部31在密封部11内折叠后,不会过于增大密封部11处于压缩状态时的外径,且更易于折叠。
在其中一种实现方式中,弯管1203的内部设有沿其长度方向延伸的隔板(图未示出),由此将弯管1203的内部划分出两个腔体。请继续参考图10和图11,弯管1203的两个腔体沿着弯管1203的长度方向并列设置,且弯管1203的第二端部1203b为密闭的,靠近第二端部1203b的位置处,弯管1203的两个腔体是连通的。弯管1203的第一端部1203a固定在近端连接件111的内壁上。弯管1203的第一开口的位置处可设有内螺纹,导管部32可设有外螺纹,导管部32与弯管1203的第一端部1203a通过螺纹连接。弯管1203的第二端部1203b可以是自由端,也可以固定在密封部11的远端,只要弯管1203的总长度不大于密封部11在压缩状态下的长度即可。弯管1203的第二端部1203b固定在密封部11的远端,当密封部11需要被收容于输送鞘管22内时,弯管1203能够随着密封部11的压缩而快速折叠,不会影响密封部11从展开状态向压缩状态的转换。当密封部11收容于输送鞘管22内时,弯管1203可随着密封部11的压缩而折叠呈近似直线状。
具体地,导管部32的近端与冷冻装置连接后,冷冻装置通过导管部32将冷冻剂注入至弯管1203的第一端部1203a的第一开口。冷冻剂从第一开口处沿着弯管1203的其中一个腔体朝向弯管1203的第二端部1203b移动,并在两个腔体连通处进入另一个腔体内,之后沿着弯管1203朝向弯管1203的第一端部1203a移动,并从第二开口处排出到推送管件21内,并经由推送管件21最终排出到体外。其中,图10和图11中的箭头表示冷冻剂的移动方向。
在另一种实现方式中,请参考图12和图13,弯管1203包括套设的内管1203c和外管1203d,内管1203c和外管1203d通过隔板(图未示出)连接。内管1203c的内部中空并定义弯管1203的第一腔体,外管1203d和内管1203c之间的腔体为弯管1203的第二腔体。请参考图13,弯管1203的第一端部1203a处,在内管1203c内设有内螺纹,内管1203c在弯管1203的第 一端部1203a处可与导管部32通过螺纹实现可拆卸连接。弯管1203的第二端部1203b处,外管1203d的端部封闭并构成弯管1203的第二端部1203b,内管1203c的端部位于外管1203d的内部,由此,第一腔体与第二腔体在弯管1203的第二端部1203b处连通。当内管1203c与导管部32连接后,通过导管部32注入到第一腔体内的冷冻剂沿着内管1203c移动,并在弯管1203的第二端部1203b处进入第二腔体,之后沿着外管1203d朝向弯管1203的第一端部1203a移动,并经由弯管1203的第一端部1203a处的内管1203c和外管1203d之间的开口,排出到推送管件21内,最终沿着推送管件21排出到体外。
在另一个实施例中,消融部31包括一个两端开口的单腔弯管,弯管在展开后呈环状并抵接密封部11的周向边缘,以在注入冷冻剂后在左心耳101的内壁上形成环形隔离带。弯管的第一端部位于近端连接件111的腔体内,可悬空在近端连接件111的腔体内,也可固定在近端连接件111的内壁上。弯管的第二端部固定在近端连接件111的内壁上。弯管的第一端部可通过螺纹连接或卡接等方式,与导管部32的远端可拆卸连接。且在导管部32的近端与冷冻装置连接后,冷冻装置通过导管部32将冷冻剂注入到消融部31内,也即弯管内。冷冻剂沿着弯管朝向其第二端部移动,并通过位于第二端部的开口排出到推送管件21内,且由推送管件21最终排出到体外。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种左心耳封堵器,包括密封部,其特征在于,所述密封部包括设置在所述密封部内的消融部,以及设置在所述密封部的近端的中空的近端连接件,所述消融部与所述近端连接件连接,所述消融部用于在被注入冷冻剂后冷冻左心耳,以使左心耳的内壁上形成环形隔离带,所述环形隔离带用于阻断左心耳与左心房之间的电信号传导;所述密封部处于压缩状态时,所述消融部被折叠并收容于所述密封部内,且所述消融部在所述密封部内展开后,至少抵接所述密封部的周向边缘。
  2. 根据权利要求1所述的左心耳封堵器,其特征在于,所述消融部为具有一个开口端的球囊,所述球囊的开口端套设在所述密封部的近端连接件上,并与所述近端连接件的腔体连通。
  3. 根据权利要求1所述的左心耳封堵器,其特征在于,所述消融部包括多个弯管,所述多个弯管在展开后配合形成盘状,且每一个所述弯管的端部均位于所述近端连接件的腔体内。
  4. 根据权利要求3所述的左心耳封堵器,其特征在于,所述弯管呈花瓣状,且所述弯管包括第一端部和第二端部,所述多个弯管各自的第一端部均靠近所述近端连接件的中心轴设置,所述多个弯管各自的第二端部均固定在所述近端连接件的内壁上。
  5. 根据权利要求4所述的左心耳封堵器,其特征在于,所述多个弯管各自的第一端部均收容在一个套管内。
  6. 根据权利要求1所述的左心耳封堵器,其特征在于,所述消融部包括一个单腔或双腔的弯管,所述弯管在展开后呈环状并抵接所述密封部的周向边缘,所述弯管的至少一个端部固定在所述近端连接件的内壁上。
  7. 根据权利要求1至6中任一项所述的左心耳封堵器,其特征在于,所述密封部内设有至少一层阻流膜,所述至少一层阻流膜位于所述消融部的远端所在一侧。
  8. 根据权利要求1至6中任一项所述的左心耳封堵器,其特征在于,所述左心耳封堵器还包括固定部,所述密封部位于所述固定部的一侧并与所述固定部连接,或者所述密封部与所述固定部一体设置。
  9. 一种封堵系统,其特征在于,包括上述权利要求1至8中任一项所述的左心耳封堵器,还包括推送管件、输送鞘管以及导管部,所述推送管件可移动地设于所述输送鞘管内,并与所述密封部的所述近端连接件可拆卸连接,所述导管部可移动地设于所述推送管件内,并与所述近端连接件可拆卸连接。
  10. 根据权利要求9所述的封堵系统,其特征在于,在输送所述左心耳封堵器时,所述导管部与所述近端连接件连接;或者,在所述左心耳封堵器展开后,所述导管部被输送至左心耳处,并与所述近端连接件连接。
  11. 一种封堵系统,其特征在于,包括左心耳封堵器、推送管件、输送鞘管以及消融件,所述左心耳封堵器包括内部中空且近端具有开口的密封部,所述推送管件可移动地设于所述输送鞘管内,并与所述密封部的近端可拆卸连接,所述消融件包括消融部;在输送状态下,所述消融件随所述左心耳封堵器收容至所述输送鞘管内,且所述消融部收容于所述密封部内;当所述左心耳封堵器在左心耳内展开后,所述消融部在被注入冷冻剂后用于冷冻左心耳,以使左心耳的内壁上形成环形隔离带,所述环形隔离带用于阻断左心耳与左心房之间的电信号传导。
  12. 根据权利要求11所述的封堵系统,其特征在于,所述消融件还包括导管部,所述导管部的一端与所述消融部连接;所述导管部与所述密封部的近端可拆卸连接,且所述导管部的内部与所述密封部的近端开口连通。
  13. 根据权利要求12所述的封堵系统,其特征在于,所述消融部为环形的球囊,所述球囊固定地套设于所述导管部的远端,且所述球囊的内部与所述导管部的内部连通。
  14. 根据权利要求12所述的封堵系统,其特征在于,所述推送管件的内部中空,所述导管部至少在消融时位于所述推送管件内;或者,所述导管部即为所述推送管件。
  15. 根据权利要求12所述的封堵系统,其特征在于,所述消融部为具有一个开口端的球囊,所述球囊的开口端套设在所述密封部的近端,并与所述密封部的近端开口连通。
  16. 根据权利要求11所述的封堵系统,其特征在于,所述消融部在所述密封部内展开后,至少抵接所述密封部的周向边缘。
  17. 根据权利要求11所述的封堵系统,其特征在于,所述密封部内设有至少一层阻流膜,所述至少一层阻流膜位于所述消融部的远端所在一侧。
  18. 根据权利要求15所述的封堵系统,其特征在于,所述导管部的远端所在一端具有锥形段,所述锥形段的远端的内径小于所述锥形段的近端的内径。
  19. 根据权利要求12所述的封堵系统,其特征在于,所述消融部包括多个弯管,所述多个弯管在展开后配合形成盘状,所述导管部包括多个轴向设置的进气管和排气管,一个所述弯管的两端分别连接一个所述进气管和一个所述排气管。
  20. 根据权利要求19所述的封堵系统,其特征在于,所述弯管呈花瓣状,所述多个进气管靠近所述消融件的中心轴设置,所述多个排气管沿着所述消融件的中心轴围绕成管状,且位于所述多个进气管的外侧。
PCT/CN2020/136418 2019-12-27 2020-12-15 左心耳封堵器及封堵系统 WO2021129455A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/779,694 US11963708B2 (en) 2019-12-27 2020-12-15 Left atrial appendage occluder and occlusion system
CA3161288A CA3161288A1 (en) 2019-12-27 2020-12-15 Left atrial appendage occluder and occluding system
EP20908246.0A EP4082459A4 (en) 2019-12-27 2020-12-15 LEFT ATRIAL APPENDIX OCCLUSION DEVICE AND OCCLUSION SYSTEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911376599.8A CN113040834B (zh) 2019-12-27 2019-12-27 封堵系统
CN201911376599.8 2019-12-27
CN201911379612.5A CN113040850B (zh) 2019-12-27 2019-12-27 左心耳封堵器及其封堵系统
CN201911379612.5 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021129455A1 true WO2021129455A1 (zh) 2021-07-01

Family

ID=76573654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136418 WO2021129455A1 (zh) 2019-12-27 2020-12-15 左心耳封堵器及封堵系统

Country Status (4)

Country Link
US (1) US11963708B2 (zh)
EP (1) EP4082459A4 (zh)
CA (1) CA3161288A1 (zh)
WO (1) WO2021129455A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021209523A1 (en) * 2020-04-14 2021-10-21 Aurigen Medical Limited A device for occlusion of a left atrial appendage of a heart
WO2023125866A1 (zh) * 2021-12-31 2023-07-06 杭州德诺电生理医疗科技有限公司 消融封堵系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014164572A1 (en) 2013-03-13 2014-10-09 Kaplan Aaron V Devices and methods for excluding the left atrial appendage
WO2018081466A2 (en) 2016-10-27 2018-05-03 Conformal Medical, Inc. Devices and methods for excluding the left atrial appendage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058033A1 (en) * 2016-09-26 2018-03-29 St. Jude Medical, Cardiology Division, Inc. Percutaneous catheter directed intravascular occlusion devices with retractable stabilizing wires
CN207785227U (zh) * 2017-03-17 2018-08-31 广州新诚生物科技有限公司 一种左心耳封堵器
CN208002885U (zh) * 2017-06-16 2018-10-26 诺芮医疗器械(上海)有限公司 左心耳封堵消融装置
CN109419548A (zh) * 2017-08-21 2019-03-05 上海普实医疗器械科技有限公司 左心耳封堵器及其制造方法
CN109475378A (zh) * 2016-05-19 2019-03-15 圣安娜技术有限公司 整合冷却的消融导管
CN209203496U (zh) * 2018-08-10 2019-08-06 诺芮医疗器械(上海)有限公司 左心耳消融封堵装置
CN110115608A (zh) * 2012-07-13 2019-08-13 波士顿科学国际有限公司 用于心耳的封堵器
CN110573093A (zh) * 2017-04-05 2019-12-13 爱尔兰国立高威大学 植入式医疗装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106518A (en) * 1998-04-09 2000-08-22 Cryocath Technologies, Inc. Variable geometry tip for a cryosurgical ablation device
US6673066B2 (en) * 2000-11-10 2004-01-06 Cardiostream, Inc. Apparatus and method to diagnose and treat vulnerable plaque
US20050273095A1 (en) * 2004-06-07 2005-12-08 Scimed Life Systems, Inc. Ablation catheters having anchoring capability and methods of using same
US20060069385A1 (en) * 2004-09-28 2006-03-30 Scimed Life Systems, Inc. Methods and apparatus for tissue cryotherapy
US7674256B2 (en) * 2005-03-17 2010-03-09 Boston Scientific Scimed, Inc. Treating internal body tissue
US8652201B2 (en) 2006-04-26 2014-02-18 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
WO2008079828A2 (en) * 2006-12-20 2008-07-03 Onset Medical Corporation Expandable trans-septal sheath
US20090143640A1 (en) * 2007-11-26 2009-06-04 Voyage Medical, Inc. Combination imaging and treatment assemblies
US9033965B2 (en) * 2010-02-01 2015-05-19 Boston Scientific Scimed, Inc. Nested balloon cryotherapy
US20130274712A1 (en) * 2011-11-02 2013-10-17 Stuart O. Schecter Haptic system for balloon tipped catheter interventions
CN104427949A (zh) * 2012-04-27 2015-03-18 Dgs计算机株式会社 用在冷冻手术设备中的探头用外筒及治疗装置单元
JP6607938B2 (ja) * 2014-11-13 2019-11-20 アダージョ メディカル インコーポレイテッド 圧力調整型冷凍アブレーションシステム及び関連方法
AU2015353464B2 (en) * 2014-11-25 2020-07-16 460Medical, Inc. Visualization catheters
US10136945B2 (en) * 2015-12-09 2018-11-27 Biosense Webster (Israel) Ltd. Ablation catheter with light-based contact sensors
CN109124755A (zh) 2017-06-16 2019-01-04 诺芮医疗器械(上海)有限公司 左心耳封堵消融装置
CN110215253A (zh) * 2018-03-02 2019-09-10 诺芮医疗器械(上海)有限公司 左心耳封堵消融装置
CN109350220A (zh) * 2018-07-23 2019-02-19 山前(珠海)医疗科技有限公司 一种制冷设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115608A (zh) * 2012-07-13 2019-08-13 波士顿科学国际有限公司 用于心耳的封堵器
CN109475378A (zh) * 2016-05-19 2019-03-15 圣安娜技术有限公司 整合冷却的消融导管
WO2018058033A1 (en) * 2016-09-26 2018-03-29 St. Jude Medical, Cardiology Division, Inc. Percutaneous catheter directed intravascular occlusion devices with retractable stabilizing wires
CN207785227U (zh) * 2017-03-17 2018-08-31 广州新诚生物科技有限公司 一种左心耳封堵器
CN110573093A (zh) * 2017-04-05 2019-12-13 爱尔兰国立高威大学 植入式医疗装置
CN208002885U (zh) * 2017-06-16 2018-10-26 诺芮医疗器械(上海)有限公司 左心耳封堵消融装置
CN109419548A (zh) * 2017-08-21 2019-03-05 上海普实医疗器械科技有限公司 左心耳封堵器及其制造方法
CN209203496U (zh) * 2018-08-10 2019-08-06 诺芮医疗器械(上海)有限公司 左心耳消融封堵装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4082459A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021209523A1 (en) * 2020-04-14 2021-10-21 Aurigen Medical Limited A device for occlusion of a left atrial appendage of a heart
WO2023125866A1 (zh) * 2021-12-31 2023-07-06 杭州德诺电生理医疗科技有限公司 消融封堵系统

Also Published As

Publication number Publication date
CA3161288A1 (en) 2021-07-01
US20220409255A1 (en) 2022-12-29
US11963708B2 (en) 2024-04-23
EP4082459A1 (en) 2022-11-02
EP4082459A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2021129455A1 (zh) 左心耳封堵器及封堵系统
US20240081903A1 (en) Devices and methods for left atrial appendage closure
WO2021190547A1 (zh) 改进的房间隔造口装置
US20180168710A1 (en) Nested balloon cryotherapy
US8465481B2 (en) Providing cryotherapy with a balloon catheter having a non-uniform thermal profile
CN107837108B (zh) 冷冻治疗系统
JP2010540198A (ja) 経中隔心臓処置のためのシステムおよび方法
US9636172B2 (en) Compliant balloon with liquid injection
WO2019052342A1 (zh) 冷冻消融导管及系统
KR20110000654A (ko) 냉동절제 냉매 분배 카테터
RU2525020C2 (ru) Терапевтические доставочные устройства, системы и способы
BR112015029123B1 (pt) Sistema de tratamento de tecido para tratar uma superfície de tecido contornada
EP2259739A1 (en) Apparatus for uniformly distributing coolant within a cryo-ablation device
EP2840992A2 (en) Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
CN113040834B (zh) 封堵系统
CN104968289A (zh) 用于冷冻消融系统的吹扫阶段
JP2022501095A (ja) クライオプローブ
CN109480998A (zh) 一种可扩张冷冻消融导管
CN113040850B (zh) 左心耳封堵器及其封堵系统
CN110215253A (zh) 左心耳封堵消融装置
CN110215254A (zh) 一种左心耳封堵消融装置
CN212490124U (zh) 改进的房间隔造口装置
JP2004305735A (ja) 凍結切除カテーテル用の機械拡張型螺旋状凍結チップ
CN111329576A (zh) 消融封堵装置、消融封堵输送装置及消融封堵系统
JP7018501B2 (ja) 血管内カテーテルシステム用クライオバルーン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3161288

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020908246

Country of ref document: EP

Effective date: 20220727