WO2021129432A1 - 丙烯聚合方法及装置 - Google Patents

丙烯聚合方法及装置 Download PDF

Info

Publication number
WO2021129432A1
WO2021129432A1 PCT/CN2020/135910 CN2020135910W WO2021129432A1 WO 2021129432 A1 WO2021129432 A1 WO 2021129432A1 CN 2020135910 W CN2020135910 W CN 2020135910W WO 2021129432 A1 WO2021129432 A1 WO 2021129432A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
polymerization
liquid
phase
reactor
Prior art date
Application number
PCT/CN2020/135910
Other languages
English (en)
French (fr)
Inventor
郑碧磊
高军
杨卫东
范昌海
陈秀平
洪日
周轶
Original Assignee
浙江卫星能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江卫星能源有限公司 filed Critical 浙江卫星能源有限公司
Publication of WO2021129432A1 publication Critical patent/WO2021129432A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers

Definitions

  • the invention relates to a compound polymerization method, in particular to a propylene polymerization method and device, and belongs to the technical field of polymer materials.
  • the loop reactor In the existing propylene polymerization process, the structure, operation and control of different reactors are quite different, and the advantages and disadvantages are also obvious. Among them, compared with the tank type liquid phase reactor, the loop reactor has a simple structure, strong heat removal capacity, high space-time yield, high propylene conversion rate, uniform polymer dispersion, full tube operation, and stable temperature control. Similarly, like the tank type liquid phase reactor, because the loop reactor discharge is a liquid mixture material, it cannot directly enter the gas phase fluidized bed reactor. It needs additional steam to vaporize the liquid phase propylene before it can enter the gas phase fluidized bed reaction. The steam consumption is large and the process is more complicated.
  • a gas-phase horizontal stirred reactor can carry out all-liquid phase feeding, the polymer is stirred uniformly, and local overheating will not cause the reaction to run out of control.
  • the gas-phase horizontal stirred reactor can control the temperature in different zones, and the hydrocarbon content in the discharged polymer is low.
  • the purpose of the present invention is to provide a propylene polymerization method, which adopts a loop reactor as a liquid phase polymerization method and a horizontal stirred reactor as a gas phase polymerization method.
  • the series operation of the two reactors not only simplifies the production process, but also Can produce propylene homopolymer or random copolymer polypropylene.
  • the present invention also provides a device for realizing the above-mentioned propylene polymerization method.
  • a propylene polymerization method includes the following steps:
  • the catalyst and the liquid phase propylene cooled to 5-10°C are mixed and stirred in the pre-polymerization reaction zone, and the pre-polymerization reaction is carried out.
  • the pre-polymerization reaction time is 12-17 min and the pressure is 3.5-4.0MPag;
  • the temperature of the liquid phase polymerization is controlled at 67-77°C and the pressure is 3.0-3.9MPag.
  • the mixture material from the liquid phase polymerization reaction zone enters the gas phase polymerization reaction zone for gas phase polymerization reaction, the reaction temperature is 65-100°C, and the pressure is 2.4-2.8MPag;
  • the gas phase propylene is discharged from the upper part of the reactor. After the gas flow rate is reduced by expansion, the polymer with a particle size of less than 50 microns is separated, the remaining gas phase is subjected to cyclone separation, and the polymer with a particle size of less than 15 microns is further separated, and the remaining gas phase is then condensed. Separate the liquid, remove the heat of polymerization, and send the obtained liquid phase propylene back to the reactor in the gas phase polymerization reaction zone. The temperature is controlled to 65-100°C. Butene and new liquid phase propylene are also added to the liquid phase propylene. To the reactor; the separated non-condensable gas is mixed with hydrogen and then returned to the reactor in the gas phase polymerization reaction zone, and the mixture is discharged from the lower part of the reactor, and the mass fraction of the polymer in the mixture is 75-85%;
  • the unreacted propylene that balances the pressure in the gas phase polymerization reaction zone is removed from the circulation system.
  • the propylene polymerization method of the present invention is to first carry out a liquid phase pre-polymerization reaction, then enter a loop reactor for liquid phase polymerization, and finally carry out a gas phase polymerization reaction in a horizontal stirred reactor.
  • the loop reactor has strong heat removal capacity, high space-time yield, high propylene conversion rate, uniform polymer dispersion, full tube operation, and stable temperature control.
  • the reaction temperature of the gas-phase horizontal stirred reactor is high, the polymer does not need to be fluidized, the equipment is small, the energy consumption is low, and the hydrocarbon content in the polymer output is small.
  • the temperature of the pre-polymerization reaction zone is controlled at 22-28°C.
  • step 2) the mixed material in the liquid phase polymerization reactor is in a circulating state, and the flow rate of the material is controlled at 6-8 m/s to prevent the polymer in the mixed material from settling.
  • step 2) when producing homopolypropylene, add liquid-phase propylene and hydrogen to the bottom of the loop reactor; when producing ethylene-propylene binary random copolymer polypropylene, add liquid-phase propylene to the bottom of the loop reactor , Ethylene, hydrogen; when producing propylene and butyl binary random copolymer polypropylene, add liquid propylene, butene, and hydrogen to the bottom of the loop reactor; when producing ternary random copolymer polypropylene, add liquid to the bottom of the loop reactor Phase propylene, ethylene, butene, hydrogen.
  • step 2) the loop reactor adopts full-tube operation without controlling the liquid level; the polymerization heat is withdrawn through the jacket cooling water.
  • step 3 when the homopolypropylene is produced, after the vapor phase propylene is condensed, hydrogen is returned to the reaction zone with the non-condensable gas; in the production of ethylene-propylene random copolymer polypropylene, the vapor phase propylene is condensed and then the non-condensable When the gas returns to the reaction zone, there are hydrogen and ethylene; in the production of homopolypropylene, the newly added liquid phase propylene is returned to the reaction zone with the liquid phase propylene; in the production of propylene-butadiene random copolymer polypropylene, it is returned to the reaction zone with the liquid phase propylene.
  • liquid-phase propylene and butene there are also newly added liquid-phase propylene and butene in the zone; when producing ternary random copolymer polypropylene, after the gas-phase propylene is condensed, hydrogen and ethylene are returned to the reaction zone with the non-condensable gas, and return to the reaction zone with the liquid-phase propylene. There are also newly added liquid phase propylene and butene.
  • a propylene polymerization device which comprises a pre-polymerization reaction zone, a liquid-phase polymerization reaction zone and a gas-phase polymerization reaction zone connected by pipelines in sequence,
  • the pre-polymerization reaction zone includes a propylene cooler and a pre-polymerization reactor, and the propylene cooler is connected to the material inlet of the pre-polymerization reactor;
  • the liquid phase polymerization reaction zone includes a liquid phase polymerization reactor, the liquid phase polymerization reactor is a loop reactor, and a cooling water jacket is provided outside the loop reactor;
  • the gas phase polymerization reaction zone includes a horizontal reactor, a cyclone separator and a liquid separation tank connected in sequence; wherein the horizontal reactor is provided with a material inlet, a gas phase outlet, a liquid phase propylene inlet, a gas phase propylene inlet, and a mixture outlet;
  • the cyclone separator is provided with a gas phase inlet, a gas phase outlet and a polymer outlet;
  • the liquid separation tank is provided with a material inlet, a liquid phase outlet and a gas phase outlet.
  • a material circulation pump is arranged at the bottom of the loop reactor to make the mixed material in the loop reactor in a circulating state.
  • the gas phase outlet of the horizontal reactor is connected to the gas phase inlet of the cyclone separator, and the gas phase outlet of the cyclone separator is connected to the material inlet of the liquid separation tank.
  • the pipeline is provided with a condenser; the gas phase outlet of the liquid separation tank is connected to the gas phase.
  • the propylene inlet is connected, and the pipeline is provided with a circulating air fan; the liquid phase outlet of the liquid separation tank is connected with the liquid phase propylene inlet, and the pipeline is provided with a propylene condensate pump.
  • the polymer obtained from the mixture outlet and the polymer outlet of the cyclone separator is subjected to solid phase separation, and the unreacted propylene of the cyclone separator is removed to the circulation system.
  • the beneficial effects of the present invention are: using the method of the present invention, it can produce homopolypropylene, ethylene-propylene binary random copolymer polypropylene, and ethylene-propylene-butylene ternary copolymer polypropylene.
  • the prepared polymer has stable performance, uniform particle size distribution, and Low volatile organic content, wide molecular weight distribution and excellent mechanical properties and processing properties.
  • Figure 1 is a schematic diagram of the structure of the propylene polymerization device of the present invention.
  • Pre-polymerization reaction zone 1 propylene cooler 10, pre-polymerization reactor 11,
  • Liquid phase polymerization reaction zone 2 loop reactor 20, material circulation pump 21, cooling water jacket 22.
  • Gas phase polymerization reaction zone 3 horizontal reactor 31, cyclone separator 32, condenser 33, liquid separation tank 34, propylene condensate pump 35, circulating gas fan 36.
  • a propylene polymerization device includes a pre-polymerization reaction zone 1, a liquid-phase polymerization reaction zone 2 and a gas-phase polymerization reaction zone 3 connected by pipelines in sequence, wherein,
  • the pre-polymerization reaction zone 1 is composed of a propylene cooler 10 and a pre-polymerization reactor 11.
  • the pre-polymerization reactor 11 is provided with a material inlet and an outlet, and the propylene cooler 10 is connected to the material inlet of the pre-polymerization reactor 11;
  • the liquid phase polymerization reaction zone 2 includes a loop reactor 20, the material outlet of the pre-polymerization reactor 11 is connected to the loop reactor 20, and a cooling water jacket 22 is provided outside the loop reactor.
  • a material circulation pump 21 is arranged at the bottom of the loop reactor to keep the mixture in the loop reactor in a circulating state, and the flow rate of the material is controlled at 6-8 m/s to prevent the polymer in the mixture from settling.
  • the gas phase polymerization reaction zone 3 includes a horizontal reactor 31, a cyclone separator 32, and a liquid separation tank 34 connected in sequence; wherein, the horizontal reactor 31 is provided with a material inlet 311, a gas phase outlet 314, and a liquid phase propylene inlet 312, Gas phase propylene inlet 313 and mixture material outlet 315;
  • the cyclone separator 32 is provided with a gas phase inlet, a gas phase outlet and a polymer outlet;
  • the liquid separation tank 34 is provided with a material inlet, a liquid phase outlet and a gas phase outlet;
  • the gas phase outlet 314 of the horizontal reactor 31 communicates with the gas phase inlet of the cyclone separator 32, and the gas phase outlet of the cyclone separator 32 communicates with the material inlet of the liquid separation tank 34.
  • the pipeline is provided with a condenser 33;
  • the gas phase outlet is connected with the gas phase propylene inlet 313, and the pipeline is provided with a circulating gas fan 36;
  • the liquid phase outlet of the liquid separation tank 34 is connected with the liquid phase propylene inlet 312, and the pipeline is provided with a propylene condensate pump 35;
  • the polymer obtained from the mixture outlet 315 and the polymer outlet of the cyclone separator 32 is subjected to solid phase separation.
  • the unreacted propylene of the cyclone separator 32 goes to the circulation system.
  • a process for producing ethylene-propylene-butylene ternary random copolymer polypropylene using the above-mentioned device is as follows:
  • the room temperature liquid phase propylene (25° C., 3.5-4.5 MPag) is cooled to 5-10° C. through the propylene cooler 10, enters the pre-polymerization reactor 11, and the pre-polymerization reaction is carried out in the pre-polymerization reactor 11.
  • the residence time of the catalyst in the pre-polymerization reactor is 12-17 min.
  • the pre-polymerization reactor adopts full tank operation.
  • the stirrer ensures that the catalyst and propylene are evenly mixed.
  • the reaction temperature is 22-28° C., and the pressure is 3.5-4.0 Mpag.
  • the catalyst and unreacted propylene that have passed through the prepolymerization reactor enter the loop reactor 20 together with the newly added liquid phase propylene.
  • the mole percentage of ethylene and propylene in the feed is 1.0-4.0%, and the ethylene content in the polymer is 2.0-4.8% wt.
  • the molar percentage of butene to propylene is 1.0-12.0%, and the content of butene in the polymer is 0.5-8.8%wt.
  • the mole percentage of hydrogen and propylene is 0.05-1.5%, and the mass flow rate of the polymer melt is 2-20 g/10 min.
  • the temperature of the liquid phase polymerization is controlled at 67-77°C, and the polymerization heat is withdrawn through the jacket cooling water of the loop reactor.
  • the loop reactor 20 adopts a full-tube operation, and there is no need to control the liquid level.
  • the material leaving the loop reactor 20 contains 45-60% wt polymer, and the rest is propylene, hydrogen, ethylene and butene.
  • the loop reactor 20 maintains the liquid phase mixture in the loop reactor at a flow rate of 6-8 m/s through the material circulation pump 21 provided at the bottom to ensure that the polymer and propylene are uniformly mixed.
  • the material discharged from the loop reactor 20 enters the horizontal reactor 31 in the gas phase reaction zone with an operating temperature of 65-95° C. and an operating pressure of 2.4-2.8 Mpag.
  • the gas phase propylene on the top of the kettle passes through the cyclone separator 32 to remove the small particle size polymer and then enters the propylene condenser 33 to remove the polymerization heat.
  • the partially condensed liquid propylene and the supplementary liquid phase propylene and butene pass through the propylene condensate pump. 35 is returned to the horizontal reactor 31, and part of the uncondensed non-condensable gas, together with ethylene and hydrogen, enters the bottom of the horizontal reactor 31 through the circulating gas fan 36.
  • the molar percentage of ethylene and propylene in the gas phase of the tank top is controlled to be 0.5-3.0%, and the ethylene content in the binary random copolymer polypropylene is 1.8-4.5%wt.
  • the mole percentage of butene and propylene is 1.5-11.0%, and the butene content in the binary random copolymer polypropylene is 0.8-8.5%wt.
  • the mole percentage of hydrogen and propylene is 0.03-1.2%, and the mass flow rate of the binary random copolymer polypropylene melt is 2-20 g/10 min.
  • the material level in the horizontal reactor 31 is controlled at 50-70%, and the material level is controlled through the bottom discharge line.
  • the material leaving the horizontal reactor 31 contains 75-85% wt of polymer, and the rest is propylene and hydrogen.
  • the horizontal reactor 31 is a horizontal agitated reactor containing an expansion part to ensure that the polymer and propylene are evenly mixed.
  • the polymer that comes out of the horizontal reactor has a particle size of 95% by weight between 20 mesh and 60 mesh.
  • the polymer with a particle size larger than 40 mesh accounts for 60%, and the content of polymer with a particle size below 100 mesh is less than 1%.
  • the volatile organic content of the polymer after low-pressure flash evaporation and nitrogen replacement is less than 0.01%wt, and it can be used directly without further devolatilization.
  • the width of the polymer molecular weight distribution reaches 4-6. If the loop reactor 20 and the horizontal reactor 31 adopt different hydrogen addition and melt mass flow rate control, the final polymer molecular weight distribution width can be increased to 6 or more.
  • the ternary random copolymer polypropylene obtained by the above method has a xylene soluble content lower than 2.8%wt, which is better than the national standard, and can be used in the field of food packaging.
  • the ternary random copolymer polypropylene obtained by the above method has a polymer melting point lower than 120°C, which is 45°C lower than that of general homopolymer polypropylene, and the downstream processing temperature can also be lowered by at least 30°C. Due to the addition of ethylene and butene, the crystallinity of the polymer is less than half of that of homopolypropylene, and it has excellent barrier properties and compatibility. It is especially suitable as the intermediate layer of CPP cast film packaging materials.
  • the room temperature liquid phase propylene (25° C., 3.5-4.5 MPag) is cooled to 5-10° C. through the propylene cooler 10, enters the pre-polymerization reactor 11, and the pre-polymerization reaction is carried out in the pre-polymerization reactor 11.
  • the residence time of the catalyst in the pre-polymerization reactor is 12-17 min.
  • the pre-polymerization reactor adopts full tank operation.
  • the stirrer ensures that the catalyst and propylene are evenly mixed.
  • the reaction temperature is 22-28° C., and the pressure is 3.5-4.0 Mpag.
  • the catalyst and unreacted propylene that have passed through the prepolymerization reactor enter the loop reactor 20 together with the newly added liquid phase propylene.
  • the molar percentage of ethylene and propylene in the feed is 1.0-4.0%, and the ethylene content in the binary random copolymer polypropylene is 2.0-4.8% by weight.
  • the mole percentage of hydrogen and propylene is 0.05-1.5%, and the mass flow rate of the binary random copolymer polypropylene melt is 2-25 g/10 min.
  • the temperature of the liquid phase polymerization is controlled at 67-77°C, and the polymerization heat is withdrawn through the jacket cooling water of the loop reactor.
  • the loop reactor 20 adopts a full-tube operation, and there is no need to control the liquid level.
  • the material leaving the loop reactor 20 contains 45-60% wt polymer, and the rest is propylene, hydrogen, ethylene and butene.
  • the loop reactor 20 maintains the liquid phase mixture in the loop reactor at a flow rate of 6-8 m/s through the material circulation pump 21 provided at the bottom to ensure that the polymer and propylene are uniformly mixed.
  • the material discharged from the loop reactor 20 enters the horizontal reactor 31 in the gas phase reaction zone with an operating temperature of 65-95° C. and an operating pressure of 2.4-2.8 Mpag.
  • the gas phase propylene on the top of the kettle passes through the cyclone separator 32 to remove the small particle size polymer and then enters the propylene condenser 33 to remove the polymerization heat.
  • the partially condensed liquid phase propylene and the supplementary liquid phase propylene are returned to the horizontal through the propylene condensate pump 35.
  • the molar percentage of ethylene and propylene in the gas phase of the tank top is controlled to be 0.5-3.0%, and the ethylene content in the binary random copolymer polypropylene is 1.8-4.5%wt.
  • the mole percentage of hydrogen and propylene is 0.03-1.2%, and the mass flow rate of the binary random copolymer polypropylene melt is 2-25 g/10 min.
  • the material level in the horizontal reactor 31 is controlled at 50-70%, and the material level is controlled through the bottom discharge line.
  • the material leaving the horizontal reactor 31 contains 75-85% wt of polymer, and the rest is propylene and hydrogen.
  • the horizontal reactor 31 is a horizontal agitated reactor containing an expansion part to ensure that the polymer and propylene are evenly mixed.
  • the polymer that comes out of the horizontal reactor has a particle size of 95% by weight between 20 mesh and 60 mesh.
  • the polymer with a particle size larger than 40 mesh accounts for 60%, and the content of polymer with a particle size below 100 mesh is less than 1%.
  • the volatile organic content of the polymer after low-pressure flash evaporation and nitrogen replacement is less than 0.01%wt, and it can be used directly without further devolatilization.
  • the width of the polymer molecular weight distribution reaches 4-6. If the loop reactor 20 and the horizontal reactor 31 adopt different hydrogen addition and melt mass flow rate control, the final polymer molecular weight distribution width can be increased to 6 or more.
  • the binary random copolymer polypropylene obtained by the above method has a xylene soluble content of less than 2.5%wt, which is better than the national standard, and can be used in the field of food packaging.
  • the binary random copolymer polypropylene obtained by the above method has a polymer melting point lower than 147°C, which is 20°C lower than that of general homopolymer polypropylene, and the downstream processing temperature can also be lowered by 20°C.

Abstract

提供一种丙烯聚合方法,步骤是:1)预聚合反应:将催化剂及冷却至5-10℃的液相丙烯在预聚合反应区内混合、搅拌,并进行预聚合反应,预聚合反应时间12-17min,压力为3.5-4.0MPag;2)液相聚合反应:将来自预聚合反应区的反应物料和新补充的液相丙烯、氢气、乙烯、丁烯等单体送入液相聚合反应区,进行液相聚合反应;3)气相聚合反应:来自液相聚合反应区的混合物料进入气相聚合反应区,进行气相聚合反应。采用环管反应器作为液相聚合反应方式、卧式搅拌反应器作为气相聚合反应方式,通过两种反应器的串联操作,既简化生产流程,又可生产丙烯均聚或无规共聚聚丙烯。

Description

丙烯聚合方法及装置 技术领域
本发明涉及一种化合物聚合方法,特别涉及一种丙烯聚合方法及装置,属于高分子材料技术领域。
背景技术
现有丙烯聚合工艺,不同反应器的结构、操作和控制差别较大,优缺点也很明显。其中,相比釜式液相反应器,环管反应器具有结构简单、撤热能力强,时空产率高,丙烯转化率高,聚合物分散均匀,满管操作,温度控制稳定。同样,与釜式液相反应器一样,由于环管反应器出料为液相混合物料,不能直接进入气相流化床反应器,需要外加蒸汽汽化液相丙烯后,才能进入气相流化床反应器,蒸汽耗量较大,流程较复杂。
相比立式气相流化床反应器,气相卧式搅拌反应器可进行全液相进料,聚合物搅拌均匀,不会出现局部过热造成反应失控。且气相卧式搅拌反应器可分区控制温度,出料聚合物中烃含量少。
发明内容
本发明的目的在于提供一种丙烯聚合方法,采用环管反应器作为液相聚合反应方式、卧式搅拌反应器作为气相聚合反应方式,通过两种反应器的串联操作,既简化生产流程,又可生产丙烯均聚或无规共聚聚丙烯。
本发明还提供一种实现上述丙烯聚合方法的装置。
本发明解决其技术问题所采用的技术方案是:
一种丙烯聚合方法,该方法包括以下步骤:
1)预聚合反应
将催化剂及冷却至5-10℃的液相丙烯在预聚合反应区内混合、搅拌,并进行预聚合反应,预聚合反应时间12-17min,压力为3.5-4.0MPag;
2)液相聚合反应
将来自预聚合反应区的反应物料和新补充的液相丙烯、氢气、乙烯、丁烯等单体送入液相聚合反应区,进行液相聚合反应;
液相聚合反应温度控制在67-77℃,压力3.0-3.9MPag。
从液相聚合反应器下部排出混合物料,所述混合物料中聚合物的质量分数为45-60%;
3)气相聚合反应
来自液相聚合反应区的混合物料进入气相聚合反应区,进行气相聚合反应,反应温度为65-100℃,压力为2.4-2.8MPag;
气相丙烯从反应器上部排出,经膨胀降低气相流速后,分离出粒径小于50微米的聚合物,其余气相进行旋风分离,进一步分离出粒径小于15微米的聚合物,剩余气相再进行冷凝、分液,去除聚合反应热,将得到的液相丙烯送回至气相聚合反应区的反应器中,控制温度为65-100℃,丁烯和新的液相丙烯也加入至液相丙烯中回到反应器;分液后的不凝气与氢气混合后返回气相聚合反应区的反应器中,从该反应器下部排出混合物料,所述混合物料中聚合物的质量分数为75-85%;
出旋风分离后,平衡气相聚合反应区压力的未反应丙烯,去循环系统。
本发明所述的丙烯聚合方法是先进行液相预聚合反应,再进入环管反 应器进行液相聚合,最后在卧式搅拌反应器中进行气相聚合反应。其中,环管反应器具有撤热能力强,时空产率高,丙烯转化率高,聚合物分散均匀,满管操作,温度控制稳定。气相卧式搅拌反应器反应温度高,聚合物无须流化,设备少,能耗低,且聚合物出料中烃含量少。
作为优选,步骤1)中,预聚合反应区温度控制在22-28℃。
作为优选,步骤2)中,使液相聚合反应器内的混合物料处于循环状态,控制物料流速在6-8米/秒,防止混合物料中的聚合物沉降。
作为优选,步骤2)中,生产均聚聚丙烯时,向环管反应器底部加入液相丙烯、氢气;生产乙丙二元无规共聚聚丙烯时,向环管反应器底部加入液相丙烯、乙烯、氢气;生产丙丁二元无规共聚聚丙烯时,向环管反应器底部加入液相丙烯、丁烯、氢气;生产三元无规共聚聚丙烯时,向环管反应器底部加入液相丙烯、乙烯、丁烯、氢气。
作为优选,步骤2)中,环管反应器采用满管操作,无须控制液位;聚合热通过夹套冷却水撤出。
作为优选,步骤3)中,生产均聚聚丙烯时,气相丙烯冷凝后,随不凝气返回反应区的还有氢气;生产乙丙无规共聚聚丙烯时,气相丙烯冷凝后,随不凝气返回反应区的还有氢气、乙烯;生产均聚聚丙烯时,随液相丙烯返回反应区的还有新加入的液相丙烯;生产丙丁无规共聚聚丙烯时,随液相丙烯返回反应区的还有新加入的液相丙烯和丁烯;生产三元无规共聚聚丙烯时,气相丙烯冷凝后,随不凝气返回反应区的还有氢气、乙烯,随液相丙烯返回反应区的还有新加入的液相丙烯和丁烯。
一种丙烯聚合装置,该丙烯聚合装置包括依次管路连接的预聚合反应区、液相聚合反应区和气相聚合反应区,
预聚合反应区包括丙烯冷却器和预聚合反应器,丙烯冷却器与预聚合反应器的物料入口连接;
液相聚合反应区包括液相聚合反应器,液相聚合反应器为环管反应器,环管反应器外设有冷却水夹套;
气相聚合反应区包括依次连接的卧式反应器、旋风分离器和分液罐;其中,所述卧式反应器设有物料入口、气相出口、液相丙烯入口、气相丙烯入口及混合物料出口;所述旋风分离器设气相入口、气相出口和聚合物出口;分液罐设有物料入口、液相出口和气相出口。
作为优选,环管反应器底部设置物料循环泵,使环管反应器内的混合物料处于循环状态。
作为优选,卧式反应器的气相出口与旋风分离器的气相入口连通,旋风分离器的气相出口与分液罐的物料入口连通,该管路上设有冷凝器;分液罐的气相出口与气相丙烯入口连通,该管路上设有循环气风机;分液罐的液相出口与液相丙烯入口连通,该管路上设有丙烯凝液泵。
作为优选,混合物料出口和旋风分离器的聚合物出口得到的聚合物去进行固相分离,旋风分离器的未反应完丙烯去循环系统。
本发明的有益效果是:利用本发明方法,可生产均聚聚丙烯、乙丙二元无规共聚聚丙烯、乙丙丁三元共聚聚丙烯,制备的聚合物性能稳定、粒径分布均匀、具有低挥发份有机物含量,宽分子量分布和优异的力学性能、 加工性能。
附图说明
图1为本发明丙烯聚合装置的结构示意图,
标号说明:
预聚合反应区1,丙烯冷却器10,预聚合反应器11,
液相聚合反应区2,环管反应器20,物料循环泵21,冷却水夹套22。
气相聚合反应区3,卧式反应器31,旋风分离器32,冷凝器33,分液罐34,丙烯凝液泵35,循环气风机36。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通和/或改变都将落入本发明保护范围。
在本发明中,若非特指,所有的份、百分比均为重量单位,所采用的设备和原料等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
实施例1 丙烯聚合的方法及装置
参见图1,一种丙烯聚合装置,包括依次管路连接的预聚合反应区1、液相聚合反应区2和气相聚合反应区3,其中,
预聚合反应区1由丙烯冷却器10和预聚合反应器11组成,预聚合反应器11设物料入口及出口,丙烯冷却器10与预聚合反应器11的物料入口连接;
液相聚合反应区2包括环管反应器20,所述预聚合反应器11的物料出口连接环管反应器20的,所述环管反应器外设有冷却水夹套22。环管反应器底部设置物料循环泵21,使环管反应器内的混合物料处于循环状态,控制物料流速在6-8米/秒,防止混合物料中的聚合物沉降。
气相聚合反应区3包括依次连接的卧式反应器31、旋风分离器32和分液罐34;其中,所述卧式反应器31设有物料入口311、气相出口314、液相丙烯入口312、气相丙烯入口313及混合物料出口315;所述旋风分离器32设气相入口、气相出口和聚合物出口;分液罐34设有物料入口、液相出口和气相出口;
卧式反应器31的气相出口314与旋风分离器32的气相入口连通,旋风分离器32的气相出口与分液罐34的物料入口连通,该管路上设有冷凝器33;分液罐34的气相出口与气相丙烯入口313连通,该管路上设有循环气风机36;分液罐34的液相出口与液相丙烯入口312连通,该管路上设有丙烯凝液泵35;
混合物料出口315和旋风分离器32的聚合物出口得到的聚合物去进行固相分离。旋风分离器32的未反应完丙烯去循环系统。
一种利用上述装置生产乙丙丁三元无规共聚聚丙烯的工艺过程如下:
1.预聚合反应:
室温液相丙烯(25℃,3.5-4.5MPag)经过丙烯冷却器10冷却至5-10℃,进入预聚合反应器11,在预聚合反应器11内进行预聚合反应。
催化剂在预聚合反应器的停留时间为12-17min,预聚合反应器采用满釜操作,通过搅拌器保证催化剂与丙烯混合均匀,反应温度为22-28℃,压力3.5-4.0MPag。
2.液相聚合反应:
经过预聚合反应器的催化剂和未反应完的丙烯,与新加入的液相丙烯一起进入环管反应器20。
同时,新液相丙烯、乙烯、氢气和丁烯也从底部加入到环管反应器中。
进料中乙烯与丙烯的摩尔百分比为1.0-4.0%,聚合物中乙烯含量在2.0-4.8%wt。丁烯与丙烯的摩尔百分比为1.0-12.0%,聚合物中丁烯含量在0.5-8.8%wt。氢气与丙烯的摩尔百分比为0.05-1.5%,聚合物熔体质量流动速率在2-20g/10min。
液相聚合反应温度控制在67-77℃,聚合热通过环管反应器的夹套冷却水撤出。
环管反应器20采用满管操作,无须控制液位。离开环管反应器20的物料中,含有45-60%wt的聚合物,其余为丙烯、氢气、乙烯和丁烯。
环管反应器20通过在底部设置的物料循环泵21,使环管反应器内的液相混合物料保持6-8米/秒的流速,保证聚合物和丙烯混合均匀。
3.气相聚合反应区:
环管反应器20排出的物料进入气相反应区中的卧式反应器31,操作温度65-95℃,操作压力2.4-2.8MPag。
釜顶的气相丙烯经过旋风分离器32去除小粒径聚合物后进入丙烯冷 凝器33,撤除聚合反应热,部分冷凝后的液相丙烯与补充的液相丙烯、丁烯一起经过丙烯凝液泵35返回卧式反应器31,部分未冷凝的不凝气与乙烯、氢气一起通过循环气风机36进入卧式反应器31底部。
控制釜顶气相中乙烯与丙烯的摩尔百分比为0.5-3.0%,二元无规共聚聚丙烯中乙烯含量在1.8-4.5%wt。丁烯与丙烯的摩尔百分比为1.5-11.0%,二元无规共聚聚丙烯中丁烯含量在0.8-8.5%wt。氢气与丙烯的摩尔百分比为0.03-1.2%,二元无规共聚聚丙烯熔体质量流动速率在2-20g/10min。
卧式反应器31中料位控制在50-70%,通过釜底出料线控制料位。离开卧式反应器31的物料中,含有75-85%wt的聚合物,其余为丙烯、氢气。
卧式反应器31为含膨胀部的卧式搅拌反应器,保证聚合物和丙烯混合均匀。
经过卧式反应器出来的聚合物,95%wt的聚合物粒径在20目至60目。其中,粒径大于40目的聚合物占60%,粒径在100目以下的聚合物含量小于1%。
聚合物经过低压闪蒸和氮气置换后挥发份有机物含量小于0.01%wt,可以直接使用而不必进一步脱挥发份。
聚合物分子量分布宽度达到4-6。若环管反应器20和卧式反应器31采用有差别的氢气加入和熔体质量流动速率控制,最终得到的聚合物分子量分布宽度可提高到6以上。
在使用特殊催化剂体系时,可以生产熔体质量流动速率在20-30g/10min的高流动三元无规共聚聚丙烯。用于快速注塑或者薄壁注塑 领域。
经以上方法得到的三元无规共聚聚丙烯,二甲苯可溶物含量低于2.8%wt,优于国家标准,可用于食品包装领域。
经以上方法得到的三元无规共聚聚丙烯,聚合物熔点低于120℃,比一般均聚聚丙烯低45℃,下游加工温度也可降低至少30℃。因乙烯、丁烯的加入,聚合物结晶度只有不到均聚聚丙烯的一半,且具有优异阻隔性和相容性,特别适合作为CPP流延膜包装材料中间层。
实施例2
采用实施例1所述的装置生产乙丙二元无规共聚聚丙烯的过程如下:
1.预聚合反应:
室温液相丙烯(25℃,3.5-4.5MPag)经过丙烯冷却器10冷却至5-10℃,进入预聚合反应器11,在预聚合反应器11内进行预聚合反应。
催化剂在预聚合反应器的停留时间为12-17min,预聚合反应器采用满釜操作,通过搅拌器保证催化剂与丙烯混合均匀,反应温度为22-28℃,压力3.5-4.0MPag。
2.液相聚合反应:
经过预聚合反应器的催化剂和未反应完的丙烯,与新加入的液相丙烯一起进入环管反应器20。
同时,新液相丙烯、乙烯、氢气也从底部加入到环管反应器中。
进料中乙烯与丙烯的摩尔百分比为1.0-4.0%,二元无规共聚聚丙烯中 乙烯含量在2.0-4.8%wt。氢气与丙烯的摩尔百分比为0.05-1.5%,二元无规共聚聚丙烯熔体质量流动速率在2-25g/10min。
液相聚合反应温度控制在67-77℃,聚合热通过环管反应器的夹套冷却水撤出。
环管反应器20采用满管操作,无须控制液位。离开环管反应器20的物料中,含有45-60%wt的聚合物,其余为丙烯、氢气、乙烯和丁烯。
环管反应器20通过在底部设置的物料循环泵21,使环管反应器内的液相混合物料保持6-8米/秒的流速,保证聚合物和丙烯混合均匀。
3.气相聚合反应区:
环管反应器20排出的物料进入气相反应区中的卧式反应器31,操作温度65-95℃,操作压力2.4-2.8MPag。
釜顶的气相丙烯经过旋风分离器32去除小粒径聚合物后进入丙烯冷凝器33,撤除聚合反应热,部分冷凝后的液相丙烯与补充的液相丙烯一起经过丙烯凝液泵35返回卧式反应器31,部分未冷凝的不凝气与乙烯、氢气一起通过循环气风机36进入卧式反应器31底部。
控制釜顶气相中乙烯与丙烯的摩尔百分比为0.5-3.0%,二元无规共聚聚丙烯中乙烯含量在1.8-4.5%wt。氢气与丙烯的摩尔百分比为0.03-1.2%,二元无规共聚聚丙烯熔体质量流动速率在2-25g/10min。
卧式反应器31中料位控制在50-70%,通过釜底出料线控制料位。离开卧式反应器31的物料中,含有75-85%wt的聚合物,其余为丙烯、氢气。
卧式反应器31为含膨胀部的卧式搅拌反应器,保证聚合物和丙烯混合 均匀。
经过卧式反应器出来的聚合物,95%wt的聚合物粒径在20目至60目。其中,粒径大于40目的聚合物占60%,粒径在100目以下的聚合物含量小于1%。
聚合物经过低压闪蒸和氮气置换后挥发份有机物含量小于0.01%wt,可以直接使用而不必进一步脱挥发份。
聚合物分子量分布宽度达到4-6。若环管反应器20和卧式反应器31采用有差别的氢气加入和熔体质量流动速率控制,最终得到的聚合物分子量分布宽度可提高到6以上。
在使用特殊催化剂体系时,可以生产熔体质量流动速率在25-45g/10min的高流动二元无规共聚聚丙烯。用于快速注塑或者薄壁注塑领域。
在使用特殊催化剂体系时,还可以生产熔体质量流动速率在1.5g/10min以下的低流动二元无规共聚聚丙烯。用于PPR管材,或者是热成型领域。
经以上方法得到的二元无规共聚聚丙烯,二甲苯可溶物含量低于2.5%wt,优于国家标准,可用于食品包装领域。
经以上方法得到的二元无规共聚聚丙烯,聚合物熔点低于147℃,比一般均聚聚丙烯低20℃,下游加工温度也可降低20℃。
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (10)

  1. 一种丙烯聚合方法,其特征在于该方法包括以下步骤:
    1)预聚合反应
    将催化剂及冷却至5-10℃的液相丙烯在预聚合反应区内混合、搅拌,并进行预聚合反应,预聚合反应时间12-17min,压力为3.5-4.0MPag;
    2)液相聚合反应
    将来自预聚合反应区的反应物料和新补充的液相丙烯、氢气、乙烯、丁烯等单体送入液相聚合反应区,进行液相聚合反应;
    液相聚合反应温度控制在67-77℃,压力3.0-3.9MPag,
    从液相聚合反应器下部排出混合物料,所述混合物料中聚合物的质量分数为45-60%;
    3)气相聚合反应
    来自液相聚合反应区的混合物料进入气相聚合反应区,进行气相聚合反应,反应温度为65-100℃,压力为2.4-2.8MPag;
    气相丙烯从反应器上部排出,经膨胀降低气相流速后,分离出粒径小于50微米的聚合物,其余气相进行旋风分离,进一步分离出粒径小于15微米的聚合物,剩余气相再进行冷凝、分液,去除聚合反应热,将得到的液相丙烯送回至气相聚合反应区的反应器中,控制温度为65-100℃,丁烯和新的液相丙烯也加入至液相丙烯中回到反应器;分液后的不凝气与氢气混合后返回气相聚合反应区的反应器中,从该反应器下部排出混合物料,所述混合物料中聚合物的质量分数为75-85%;
    出旋风分离后,平衡气相聚合反应区压力的未反应丙烯,去循环系统。
  2. 根据权利要求1所述的丙烯聚合方法,其特征在于:步骤1)中,预聚合反应区温度控制在22-28℃。
  3. 根据权利要求1所述的丙烯聚合方法,其特征在于:步骤2)中,使液相聚合反应器内的混合物料处于循环状态,控制物料流速在6-8米/秒,防止混合物料中的聚合物沉降。
  4. 根据权利要求1所述的丙烯聚合方法,其特征在于:步骤2)中,生产均聚聚丙烯时,向环管反应器底部加入液相丙烯、氢气;生产乙丙二元无规共聚聚丙烯时,向环管反应器底部加入液相丙烯、乙烯、氢气;生产丙丁二元无规共聚聚丙烯时,向环管反应器底部加入液相丙烯、丁烯、氢气;生产三元无规共聚聚丙烯时,向环管反应器底部加入液相丙烯、乙烯、丁烯、氢气。
  5. 根据权利要求1所述的丙烯聚合方法,其特征在于:步骤2)中,环管反应器采用满管操作,无须控制液位;聚合热通过夹套冷却水撤出。
  6. 根据权利要求1所述的丙烯聚合方法,其特征在于:步骤3)中,生产均聚聚丙烯时,气相丙烯冷凝后,随不凝气返回反应区的还有氢气;生产乙丙无规共聚聚丙烯时,气相丙烯冷凝后,随不凝气返回反应区的还有氢气、乙烯;生产均聚聚丙烯时,随液相丙烯返回反应区的还有新加入的液相丙烯;生产丙丁无规共聚聚丙烯时,随液相丙烯返回反应区的还有新加入的液相丙烯和丁烯;生产三元无规共聚聚丙烯时,气相丙烯冷凝后,随不凝气返回反应区的还有氢气、乙烯,随液相丙烯返回反应区的还有新加入的液相丙烯和丁烯。
  7. 一种丙烯聚合装置,其特征在于:该丙烯聚合装置包括依次管路连接的预聚合反应区、液相聚合反应区和气相聚合反应区,
    预聚合反应区包括丙烯冷却器(10)和预聚合反应器(11),丙烯冷却器与预聚合反应器的物料入口连接;
    液相聚合反应区包括液相聚合反应器(20),液相聚合反应器为环管反应器,环管反应器外设有冷却水夹套;
    气相聚合反应区包括依次连接的卧式反应器(31)、旋风分离器(32)和分液罐(34);其中,所述卧式反应器设有物料入口(311)、气相出口(314)、液相丙烯入口(312)、气相丙烯入口(313)及混合物料出口(315);所述旋风分离器设气相入口、气相出口和聚合物出口;分液罐设有物料入口、液相出口和气相出口。
  8. 根据权利要求7所述的丙烯聚合装置,其特征在于:环管反应器底部设置物料循环泵,使环管反应器内的混合物料处于循环状态。
  9. 根据权利要求7所述的丙烯聚合装置,其特征在于:卧式反应器的气相出口与旋风分离器的气相入口连通,旋风分离器的气相出口与分液罐的物料入口连通,该管路上设有冷凝器(33);分液罐的气相出口与气相丙烯入口连通,该管路上设有循环气风机(36);分液罐的液相出口与液相丙烯入口连通,该管路上设有丙烯凝液泵(35)。
  10. 根据权利要求7所述的丙烯聚合装置,其特征在于:混合物料出口和旋风分离器的聚合物出口得到的聚合物去进行固相分离,旋风分离器的未反应完丙烯去循环系统。
PCT/CN2020/135910 2019-12-27 2020-12-11 丙烯聚合方法及装置 WO2021129432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911379654.9A CN111116785A (zh) 2019-12-27 2019-12-27 丙烯聚合方法及装置
CN201911379654.9 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021129432A1 true WO2021129432A1 (zh) 2021-07-01

Family

ID=70504263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135910 WO2021129432A1 (zh) 2019-12-27 2020-12-11 丙烯聚合方法及装置

Country Status (2)

Country Link
CN (1) CN111116785A (zh)
WO (1) WO2021129432A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116785A (zh) * 2019-12-27 2020-05-08 浙江卫星能源有限公司 丙烯聚合方法及装置
CN111995703A (zh) * 2020-08-18 2020-11-27 上海葛蓝化工科技有限公司 一种液相环管与卧式气相组成的多反应器烯烃聚合系统和聚合方法
CN115475581A (zh) * 2021-06-15 2022-12-16 中国石油化工股份有限公司 一种多反应器烯烃聚合系统和聚合方法
CN115703055A (zh) * 2021-08-17 2023-02-17 中国石油天然气股份有限公司 丙烯聚合催化剂的进料方法及进料系统、聚丙烯及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020733A (zh) * 2009-09-10 2011-04-20 中国石油化工股份有限公司 一种多相共聚聚丙烯生产工艺
EP2316863A1 (en) * 2009-10-30 2011-05-04 INEOS Manufacturing Belgium NV Slurry phase polymerisation process
CN102816269A (zh) * 2011-06-09 2012-12-12 中国石油化工股份有限公司 一种高熔体强度丙烯/乙烯共聚物及其制备方法
CN108586644A (zh) * 2018-06-13 2018-09-28 浙江卫星能源有限公司 一种丙烯的多段聚合方法及装置
CN108794669A (zh) * 2018-06-13 2018-11-13 浙江卫星能源有限公司 一种丙烯的多段聚合方法及装置
CN108976329A (zh) * 2018-06-13 2018-12-11 浙江卫星能源有限公司 一种丙烯的多段聚合方法及装置
CN111116785A (zh) * 2019-12-27 2020-05-08 浙江卫星能源有限公司 丙烯聚合方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107602739A (zh) * 2017-10-18 2018-01-19 浙江卫星能源有限公司 一种丙烯的多段聚合方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020733A (zh) * 2009-09-10 2011-04-20 中国石油化工股份有限公司 一种多相共聚聚丙烯生产工艺
EP2316863A1 (en) * 2009-10-30 2011-05-04 INEOS Manufacturing Belgium NV Slurry phase polymerisation process
CN102816269A (zh) * 2011-06-09 2012-12-12 中国石油化工股份有限公司 一种高熔体强度丙烯/乙烯共聚物及其制备方法
CN108586644A (zh) * 2018-06-13 2018-09-28 浙江卫星能源有限公司 一种丙烯的多段聚合方法及装置
CN108794669A (zh) * 2018-06-13 2018-11-13 浙江卫星能源有限公司 一种丙烯的多段聚合方法及装置
CN108976329A (zh) * 2018-06-13 2018-12-11 浙江卫星能源有限公司 一种丙烯的多段聚合方法及装置
CN111116785A (zh) * 2019-12-27 2020-05-08 浙江卫星能源有限公司 丙烯聚合方法及装置

Also Published As

Publication number Publication date
CN111116785A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021129432A1 (zh) 丙烯聚合方法及装置
JP3190041B2 (ja) オレフィンの気相重合方法
RU2610541C2 (ru) Способ дегазации и придания промежуточных свойств частичкам полиолефина, полученным при полимеризации олефинов
JP2010539307A (ja) オレフィンを重合するための多段階プロセス
CN105579516B (zh) 用于生产聚丙烯组合物的两阶段法
CN102030841A (zh) 一种丙烯气相聚合方法
WO2019090883A1 (zh) 聚丙烯或丙烯乙烯共聚物的制备方法
CN107303478A (zh) 流化床反应器、烯烃聚合装置以及烯烃聚合方法
WO2019090884A1 (zh) 抗冲聚丙烯的聚合方法
CN105164164A (zh) 用于生产聚丙烯组合物的两阶段法
CN105143275A (zh) 用于生产耐低温聚丙烯组合物的多阶段法
CN112625155B (zh) 一种聚丙烯的制备方法
RU2466144C2 (ru) Способ полимеризации олефинов
CN100497404C (zh) 丙烯多段聚合工艺及聚合反应器
CN108794669A (zh) 一种丙烯的多段聚合方法及装置
CN216764762U (zh) 基于脱氢仓-脱丙烯塔的抗冲聚丙烯的生产装置
CN111995703A (zh) 一种液相环管与卧式气相组成的多反应器烯烃聚合系统和聚合方法
WO2020178010A1 (en) Polymerization process
CN112759684B (zh) 一种聚丁烯-1的制备方法及装置
WO2019090882A1 (zh) 丙烯均聚或无规共聚的方法
CN115073634B (zh) 聚1-丁烯的制备方法以及聚1-丁烯
CN112300312B (zh) 一种聚乙烯的合成方法
CN218620666U (zh) 丙烯聚合装置
CN111269491B (zh) 一种烯烃气相聚合方法
CN218609322U (zh) 丙烯多段聚合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905270

Country of ref document: EP

Kind code of ref document: A1