WO2021129395A1 - 一种连续化处理高浓度有机废水的工艺及装置 - Google Patents

一种连续化处理高浓度有机废水的工艺及装置 Download PDF

Info

Publication number
WO2021129395A1
WO2021129395A1 PCT/CN2020/134918 CN2020134918W WO2021129395A1 WO 2021129395 A1 WO2021129395 A1 WO 2021129395A1 CN 2020134918 W CN2020134918 W CN 2020134918W WO 2021129395 A1 WO2021129395 A1 WO 2021129395A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
desulfurizer
heating
concentration organic
organic wastewater
Prior art date
Application number
PCT/CN2020/134918
Other languages
English (en)
French (fr)
Inventor
聂勇
于尚志
梁晓江
解庆龙
吴振宇
白剑峰
Original Assignee
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学 filed Critical 浙江工业大学
Priority to JP2022527708A priority Critical patent/JP7283833B2/ja
Publication of WO2021129395A1 publication Critical patent/WO2021129395A1/zh
Priority to US17/367,642 priority patent/US11767232B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/008Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for liquid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/11Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/904Multiple catalysts
    • B01D2255/9045Multiple catalysts in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/60Combustion in a catalytic combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/10Liquid waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Definitions

  • the invention belongs to the technical field of industrial sewage treatment, and specifically relates to a process and a device for continuously treating high-concentration organic wastewater.
  • Wastewater treatment processes mainly include physical treatment, biodegradation and chemical oxidation.
  • the physical treatment method uses physical action to separate the insoluble substances in the wastewater, and its chemical properties do not change.
  • This treatment method is suitable for industrial wastewater with lower concentration.
  • Biological method is a method that uses microorganisms to decompose organic matter into stable inorganic components. It has the characteristics of strong economy, high safety and low residual amount, but its treatment cycle is long, the amount of biological treatment is limited, and it occupies a large area. The area is large, and it is difficult to treat part of the higher-concentration industrial wastewater.
  • the chemical oxidation method is a currently widely used high-concentration organic wastewater treatment technology. There are two main treatment technologies currently used: one is the treatment method of strong oxidants at room temperature.
  • the cost of this technology is mainly in the consumption of oxidants, and the consumption of oxidants is basically The above is directly proportional to the concentration of organic wastewater, and the cost of treating high-concentration organic wastewater is higher; the other method is thermal incineration, which usually blows high-concentration organic wastewater into an incinerator for combustion.
  • This method usually requires The high temperature above 800°C and the need to mix part of the fuel to burn may cause flash explosion during the incineration process, which is not conducive to wastewater treatment, and it is easy to produce nitrogen oxides and pollute the environment. Therefore, there is an urgent need to further develop processes and devices for the continuous treatment of high-concentration organic wastewater.
  • the present invention provides a process and device for continuous treatment of high-concentration organic wastewater with simple, efficient and stable process flow.
  • the waste water steam containing light components flows through the cold fluid channel of the heat exchanger and the first preheater in turn for heating, and then passes into the first desulfurizer together with air for heating Desulfurization reaction. After desulfurization, the tail gas is discharged from the bottom of the first desulfurizer and enters the first catalytic combustor for purification reaction.
  • the purified high-temperature steam flows into the hot fluid channel of the heat exchanger for heat exchange, and then serves as a heat source to evaporate the multilayer The device is heated and discharged as purified water after heat exchange and condensation;
  • the purified high-temperature steam passes through the hot fluid passage of the heat exchanger, it is used as a heat source to heat the multilayer evaporator;
  • the first desulfurizer and the first catalytic combustor are respectively fed with air and regenerated and activated at 500-600°C, and the regenerated tail gas discharged by the two is combined and then centrally purified.
  • the process for continuously treating high-concentration organic wastewater is characterized in that the vacuum in the multilayer evaporator is maintained under the operation of the heat pump, and the absolute pressure for evaporation and separation in the multilayer evaporator is 80-100kPa .
  • the process for continuously treating high-concentration organic wastewater is characterized in that the first preheater is heated by electric heating or electromagnetic heating, and the heating temperature is 200-400°C.
  • the described process for the continuous treatment of high-concentration organic wastewater is characterized in that the first desulfurizer or the second desulfurizer is heated by electric heating or electromagnetic heating, and the temperature for the desulfurization reaction is 200-400°C,
  • the desulfurizing agent filled inside is zinc oxide, magnesium oxide, iron oxide or calcium oxide.
  • the process for the continuous treatment of high-concentration organic wastewater is characterized in that the first catalytic burner or the second catalytic burner is heated by electric heating or electromagnetic heating, and the purification reaction temperature is 200-400 °C, the catalyst filled inside is platinum alumina catalyst, platinum rare earth catalyst, platinum silica catalyst or platinum barium sulfate catalyst.
  • the device used in the process for the continuous treatment of high-concentration organic wastewater is characterized in that it includes a feed pump, a liquid flow meter, a multilayer evaporator, a heat pump, a heat exchanger, a first preheater, and a parallel set
  • the upper inlet of the multilayer evaporator is connected to the feed pump through the liquid flow meter pipe, and the top outlet of the multilayer evaporator passes through
  • the cold fluid passage of the heat pump and the heat exchanger is connected with the inlet of the first preheater by pipelines, and the outlet of the first preheater is divided into two ways, one way is connected with the top of the first desulfurizer through the fifth valve by the pipeline, and the other way
  • the top of the second desulfurizer is connected by a pipeline through the sixth valve; the bottom outlet of the first desul
  • the high-temperature steam flowing out of the hot fluid channel outlet of the heat exchanger is used as a heat source to heat the multilayer evaporator;
  • the pipeline between the bottom outlet of the first catalytic combustor and the eleventh valve is also connected with a first branch pipe.
  • a twelfth valve is provided on the branch pipe;
  • a second branch pipe is also connected to the pipeline between the bottom outlet of the second catalytic burner and the fourteenth valve, and a thirteenth valve is provided on the second branch pipe.
  • the device used in the process for the continuous treatment of high-concentration organic wastewater is characterized in that it also includes a second preheater, the inlet of the second preheater is fed with air, and the outlet of the second preheater is divided into four Through the fifteenth valve, sixteenth valve, seventeenth valve and eighteenth valve and the top inlet of the first catalytic combustor, the top inlet of the first desulfurizer, the top inlet of the second desulfurizer, and the second catalytic combustion
  • the top inlet of the device is connected by pipelines.
  • the device used in the process for the continuous treatment of high-concentration organic wastewater is characterized in that a multi-layer evaporation heating tray is arranged from top to bottom in the multi-layer evaporator, and the multi-layer evaporation heating tray in the multi-layer evaporator
  • the heating tubes inside are all U-shaped heating tubes, and the number of layers of the evaporation heating tray is 4-10 layers.
  • the device used in the process for the continuous treatment of high-concentration organic wastewater is characterized in that the number of layers of the evaporation heating tray in the multi-layer evaporator is marked as n layers; the hot fluid channel outlet pipe of the heat exchanger is connected with the first There are n-1 branch liquid pipes connected to the pipeline between the fourth valve and the third valve; starting from top to bottom, the n-1 branch liquid pipes are connected to the previous n-
  • the heating pipes in the first-layer evaporation heating tray are connected by pipelines to divide the high-temperature steam flowing out of the heat exchanger into n-1 strands, and respectively pass them into the heating pipes in the first n-1 layer evaporation heating tray for heating ;
  • the heating tube in the n-th evaporative heating tray is filled with fresh water vapor for heating.
  • the present invention adopts multi-layer evaporation technology to efficiently separate high-concentration organic wastewater, that is, to remove organic light components and most of the water, and the light-component-containing wastewater vapor generated after separation can be directly transported to the gas phase by a heat pump
  • the form enters the subsequent device for reaction, avoiding the condensation of waste water vapor and re-gasification of waste water.
  • the newly generated waste water vapor and purified high-temperature steam are countercurrently heat exchanged, and the purified high-temperature steam is used as a multi-layer
  • the heating source of the evaporator greatly reduces energy consumption.
  • the present invention uses high-temperature desulfurization technology for desulfurization, and the sulfur content of wastewater can reach the first-level discharge standard of industrial wastewater.
  • the metal oxide desulfurizer can also remove 50% COD of the light component wastewater steam; adopts catalytic combustion technology It can effectively reduce the COD of high-concentration organic wastewater, and at the same time can reduce the combustion temperature of organic matter and reduce energy consumption.
  • the COD of the purified wastewater can reach the third-level emission standard.
  • the organic combination of high-temperature desulfurization technology and catalytic combustion technology can avoid sulfur poisoning of the catalyst and enable the catalyst to maintain its catalytic activity.
  • the present invention adopts the in-situ regeneration mode of the desulfurizing agent and the catalyst to ensure the continuous and stable operation of the device.
  • the present invention has the advantages of simple process flow, high efficiency, stability, and continuity.
  • Figure 1 is a device for continuous treatment of high-concentration organic wastewater according to the application
  • a device for continuously treating high-concentration organic wastewater including a feed pump 1, a liquid flow meter 3, a multi-layer evaporator 4, a heat pump 5, a heat exchanger 6, a first preheater 7, and a first desulfurization device arranged in parallel
  • the inlet of the feed pump 1 is fed with high-concentration organic wastewater, and the outlet of the feed pump 1 is connected to the upper inlet pipeline of the multilayer evaporator 4 through the first valve 21 and the liquid flow meter 3.
  • the top outlet of the multilayer evaporator 4 is connected to the inlet of the first preheater 7 through the heat pump 5 and the cold fluid passage of the heat exchanger 6 by pipes.
  • the outlet of the first preheater 7 is divided into two ways, one way through the fifth valve 25
  • the top of the first desulfurizer 8 is connected by a pipeline, and the other path is connected to the top of the second desulfurizer 10 by a pipeline through a sixth valve 26.
  • the first desulfurizer 8 and the second desulfurizer 10 alternately perform desulfurization reaction and regeneration. Into the air for heating regeneration.
  • the bottom outlet of the first desulfurizer 8 is divided into two paths, one path is used to discharge the regeneration tail gas through the eighth valve 28, and the other path is connected to the top of the first catalytic combustor 9 by a pipeline through the seventh valve 27; the second desulfurizer The bottom outlet of 10 is divided into two ways, one way is to discharge the regeneration tail gas through the ninth valve 29, and the other way is connected to the second catalytic combustor 11 by a pipeline through the tenth valve 210.
  • the first catalytic combustor 9 and the second catalytic combustor 11 alternately perform catalytic combustion reaction and regeneration. Blow in air for heating and regeneration.
  • the hot fluid channel inlet of the heat exchanger 6 is divided into two paths, one path is connected to the bottom outlet of the first catalytic combustor 9 through the eleventh valve 211, and the other path is connected to the second catalytic combustor 11 through the fourteenth valve 214
  • the bottom outlet is connected by a pipeline, and the high-temperature steam flowing out of the hot fluid channel outlet of the heat exchanger 6 is used as a heat source to heat the multilayer evaporator 4; between the bottom outlet of the first catalytic combustor 9 and the eleventh valve 211
  • the pipeline is also connected to a first branch, and the first branch is provided with a twelfth valve 212; the pipeline between the bottom outlet of the second catalytic combustor 11 and the fourteenth valve 214 is also connected to a second Branch pipe, a thirteenth valve 213 is provided on the second branch pipe.
  • the device of the present application further includes a second preheater 12, the inlet of the second preheater 12 is fed with air, and the outlet of the second preheater 12 is divided into four paths, which respectively pass through the fifteenth valve 215 , Sixteenth valve 216, Seventeenth valve 217 and Eighteenth valve 218 with the top inlet of the first catalytic combustor 9, the top inlet of the first desulfurizer 8, the top inlet of the second desulfurizer 10, and the second catalytic combustor 11.
  • the top inlets are connected by pipelines, so that the hot air preheated by the second preheater 12 is respectively introduced.
  • the multilayer evaporator 4 is provided with a multilayer evaporation heating tray from top to bottom, and the heating tubes in the multilayer evaporation heating tray in the multilayer evaporator 4 are all U-shaped heating tubes.
  • the number of layers of the pallet is 4-10 layers.
  • the number of layers of the evaporation heating tray in the multi-layer evaporator 4 is marked as n layers;
  • the outlet pipeline of the hot fluid channel of the device 6 is connected with the fourth valve 24 and the third valve 23, and the pipeline between the fourth valve 24 and the third valve 23 is connected with n-1 branch liquid pipes; from top to bottom
  • the n-1 branch liquid pipes are respectively connected to the heating pipes in the first n-1 layer of the evaporation heating tray by pipes to divide the high-temperature steam flowing out of the heat exchanger 6 into n-1 strands equally, and
  • the heating pipes in the first n-1 layer evaporative heating tray are respectively passed through for heating; the heating pipes in the nth layer evaporative heating tray are passed into the heating
  • the waste water steam containing light components flows through the cold fluid channel of heat exchanger 6 and the first preheater 7 in two steps after being heated to 200-400°C, and then passes through the fifth valve 25 Passed into the first desulfurizer 8, and at the same time, the hot air preheated from the second preheater 12 is passed into the first desulfurizer 8 through the sixteenth valve 216 for desulfurization reaction. After desulfurization, the tail gas is discharged from the first desulfurizer. 8 is discharged from the bottom and enters the first catalytic combustor 9 through the seventh valve 27 for purification reaction.
  • the purified high-temperature steam flows into the hot fluid channel of the heat exchanger 6 for heat exchange, and then acts as a heat source for the multilayer evaporator 4 It is heated and discharged as purified water after heat exchange and condensation;
  • step 3 during the regeneration of the desulfurizer and catalyst, the eighteenth valve 218 is closed and the fifteenth valve 215, the sixteenth valve 216 and the seventeenth valve 217 are opened, thereby passing through the second preheater 12 Exhaust three preheated hot air, two of which are used for regeneration of the desulfurizer and catalyst, which are respectively passed into the first desulfurizer 8 and the first catalytic combustor 9 and both are at a temperature of 500-600°C Perform regeneration activation.
  • the seventh valve 27 connected to the bottom outlet of the first desulfurizer 8 and the eleventh valve 211 connected to the bottom outlet of the first catalytic combustor 9 are both closed, and the bottom outlet of the first desulfurizer 8 passes through the first Eight valves 28 discharge the regeneration tail gas.
  • the bottom outlet of the first catalytic burner 9 discharges the regeneration tail gas through the twelfth valve 212.
  • the regeneration tail gas discharged from the first desulfurizer 8 and the first catalytic burner 9 can be combined for centralized purification treatment. For example: Absorbing liquid is used to absorb the regenerated tail gas.
  • the third hot air discharged from the second preheater 12 sequentially flows through the second desulfurizer 10 and the second catalytic combustor 11 for reaction.
  • the first desulfurizer 8 and the second desulfurizer 10 are both filled with zinc oxide desulfurizer, and the first catalytic combustor 9 and the second catalytic combustor 11 are both filled with platinum alumina catalyst, the composition of which is 0.5wt%Pt/ Al 2 O 3 .
  • the temperature of the first preheater 7, the second preheater 12, the first desulfurizer 8 and the first catalytic combustor 9 are all raised to 300°C by electric heating, and firstly, fresh steam is used as the heat source.
  • the layer evaporator 4 is heated, the heat pump 5 is turned on, and the absolute pressure in the layer evaporator 4 is 85 kPa. After the device is stabilized, it is transported by the feed pump 1.
  • the biodiesel production wastewater enters the multi-layer evaporator 4 through the first valve 21 and the liquid flow meter 3 in turn for evaporation and separation, and the light-component-containing wastewater vapor at 95°C is generated from the multi-layer evaporator.
  • the top outlet of the evaporator 4 is pumped and transported by the heat pump 5, and is heated to 300°C in two steps through the cold fluid passage of the heat exchanger 6 and the preheater 7, and then is passed into the first desulfurizer 8 through the fifth valve 25.
  • the hot air preheated from the second preheater 12 passes through the sixteenth valve 216 into the first desulfurizer 8 for desulfurization reaction.
  • the tail gas is discharged from the bottom of the first desulfurizer 8 and enters the second desulfurizer through the seventh valve 27. Purification reaction is carried out in a catalytic combustor 9.
  • the purified high temperature steam at 300°C is discharged from the bottom of the first catalytic combustor 9 and enters the hot fluid channel of the heat exchanger 6 through the eleventh valve 211.
  • the purified high temperature 300°C The steam and the light component-containing waste water steam at 95°C exchange heat in the heat exchanger 6. After the heat exchange, the temperature of the light component-containing waste water steam flowing out of the cold fluid passage of the heat exchanger 6 rises to 250°C. The temperature of the high-temperature steam flowing out of the hot fluid passage of the heater 6 drops to 145°C.
  • the 145°C steam flowing out of the hot fluid passage of the heat exchanger 6 is used as a heat source to heat the multilayer evaporator 4, and is discharged as purified water after being condensed by heat exchange.
  • the heavy components of the wastewater after the multilayer evaporation are discharged from the second valve 22 through the bottom outlet of the multilayer evaporator 4, and can be recycled.
  • the fifth valve 25, the seventh valve 27, and the eleventh valve 211 are closed, and the sixth valve 26, the tenth valve 210, and the sixth valve are closed.
  • the fourteenth valve 214, the fifteenth valve 215, the sixteenth valve 216 and the seventeenth valve 217 are opened, and three preheated hot air is discharged through the second preheater 12, of which two hot air is used for the desulfurization agent and For the regeneration of the catalyst, the third hot air is used for the reaction.
  • the two hot air for regeneration discharged from the second preheater 12 are respectively passed into the first desulfurizer 8 and the first catalytic combustor 9 and both are regenerated and activated at 550°C, and the regeneration tail gas passes through
  • the eighth valve 28 and the twelfth valve 212 are then combined and discharged, and then subjected to a centralized purification process to realize the continuous operation of the device.
  • the chemical oxygen demand (COD) of biodiesel production wastewater can be reduced from the initial 200,000mg/L to below 500mg/L, and the removal rate is as high as 99.75%, reaching the third-level discharge standard of industrial wastewater; the sulfur content of the wastewater is reduced Below 1mg/L, it reaches the first-level discharge standard for industrial wastewater.
  • COD chemical oxygen demand
  • the desulfurizers of the first desulfurizer 8 and the second desulfurizer 10 are replaced with iron oxide desulfurizers
  • the chemical oxygen demand (COD) of the grease epoxy reaction wastewater can be reduced from the initial 5000mg/L to less than 50mg/L, and the removal rate is as high as 99%, reaching the first-level discharge standard for industrial wastewater; the sulfur content of the wastewater Reduce to less than 1mg/L and reach the first-level discharge standard for industrial wastewater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treating Waste Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种连续化处理高浓度有机废水的工艺及装置,其工艺为:通过多层蒸发器(4)与热泵(5)协同作用以连续分离高浓度有机废水,产生的含轻组分废水蒸汽以气态形式与空气混合后连续进行脱硫与催化燃烧,处理后废水可达标排放,产生的废水重组分可回收利用。第一脱硫器(8)中的脱硫剂和第一催化燃烧器(9)中的催化剂失活后,可切换到第二脱硫器(10)和第二催化燃烧器(11)反应,失活后的催化剂和脱硫剂可通入空气在高温下原位再生。实现废水的连续化处理,解决高浓度有机废水处理占地面积大、易产生氮氧化物等缺点,废水的硫含量和化学需氧量可分别达到工业污水一级排放标准和三级排放标准。

Description

一种连续化处理高浓度有机废水的工艺及装置 技术领域
本发明属于工业污水处理技术领域,具体涉及一种连续化处理高浓度有机废水的工艺及装置。
背景技术
随着我国经济及工业化的快速发展,越来越多的工业废水被排放到自然环境中,其中就包含了部分较难处理的高浓度有机废水。这些高浓度有机废水化学需氧量(COD)通常都在20000mg/L以上,部分废水COD可达到几十万mg/L,而且其成分复杂,色度强,异味大,对环境污染严重。因此处理高浓度有机废水已成为当今社会的必然需求。
废水处理工艺主要有物理处理法、生物降解法和化学氧化法。物理处理法采用物理作用分离废水中的非溶解性物质,其化学性质不发生改变,该种处理方法适用于较低浓度的工业废水。生物法是采用微生物的作用将有机物分解为稳定无机组分的方法,其具有经济性强、安全度高和残留量少等特点,但其处理周期较长,生物处理量有限,而且其占地面积大,难以处理部分更高浓度的工业废水。化学氧化法是目前普遍应用的高浓度有机废水处理技术,当前所应用的处理技术主要有两种:一是常温下的强氧化剂处理方法,该技术的成本主要在氧化剂的消耗,氧化剂的消耗基本上和有机废水 的浓度成正比,处理高浓度的有机废水成本较高;另外一种方法是热力焚烧法,该种方法通常将高浓度有机废水打入焚烧炉内进行燃烧,这种方法通常需要800℃以上的高温,而且需要混合部分燃料燃烧,在焚烧过程中可能会发生闪爆现象,不利于废水处理,而且容易产生氮氧化物,污染环境。因此急需进一步开发用于连续化处理高浓度有机废水的工艺及装置。
发明内容
为了克服现有技术的不足,本发明提供工艺流程简单、高效、稳定的一种连续化处理高浓度有机废水的工艺及装置。
所述的一种连续化处理高浓度有机废水的工艺,其特征在于,包括以下步骤:
1)高浓度有机废水的分离:在进料泵的输送作用下,高浓度有机废水通过液体流量计进入多层蒸发器进行蒸发分离,使高浓度有机废水中的有机轻组分及水分汽化形成含轻组分废水蒸汽,产生的含轻组分废水蒸汽通过多层蒸发器顶部出口由热泵抽出,经多层蒸发后的废水重组分通过多层蒸发器底部出口由第二阀门排出;
2)含轻组分废水蒸汽的净化:含轻组分废水蒸汽依次流过换热器的冷流体通道和第一预热器进行加热后,与空气一并通入到第一脱硫器内进行脱硫反应,脱硫后尾气从第一脱硫器底部排出并进入第一催化燃烧器内进行净化反应,净 化后的高温蒸汽流入换热器的热流体通道内进行换热后,作为热源对多层蒸发器进行加热,并经换热冷凝后作为净化水分排出;
3)脱硫剂与催化剂的再生:待第一脱硫器内的脱硫剂和第一催化燃烧器内的催化剂失活后,将产生的含轻组分废水蒸汽切换至第二条反应路线,即与空气一并先进入第二脱硫器进行脱硫反应,再进入第二催化燃烧器进行净化反应,净化后的高温蒸汽通过换热器的热流体通道后,作为热源对多层蒸发器进行加热;第一脱硫器和第一催化燃烧器内分别通入空气并均于500-600℃下进行再生活化,两者排出的再生尾气经合并后集中净化处理。
所述的一种连续化处理高浓度有机废水的工艺,其特征在于,多层蒸发器内的真空在热泵的运行作用下进行维持,多层蒸发器内进行蒸发分离的绝压为80-100kPa。
所述的一种连续化处理高浓度有机废水的工艺,其特征在于,第一预热器采用电加热或电磁加热的方式进行加热,其加热温度为200-400℃。
所述的一种连续化处理高浓度有机废水的工艺,其特征在于,第一脱硫器或第二脱硫器采用电加热或电磁加热的方式进行加热,进行脱硫反应的温度为200-400℃,其内部填充的脱硫剂为氧化锌、氧化镁、氧化铁或氧化钙。
所述的一种连续化处理高浓度有机废水的工艺,其特征 在于,第一催化燃烧器或第二催化燃烧器采用电加热或电磁加热的方式进行加热,进行净化反应的温度为200-400℃,其内部填充的催化剂为铂氧化铝催化剂、铂稀土催化剂、铂氧化硅催化剂或铂硫酸钡催化剂。
中所述的连续化处理高浓度有机废水工艺所使用的装置,其特征在于,包括进料泵、液体流量计、多层蒸发器、热泵、换热器、第一预热器、并联设置的第一脱硫器和第二脱硫器以及并联设置的第一催化燃烧器和第二催化燃烧器;多层蒸发器的上部进口通过液体流量计管路连接进料泵,多层蒸发器顶部出口通过热泵、换热器的冷流体通道与第一预热器进口由管路连接,第一预热器出口分为两路,一路通过第五阀门与第一脱硫器顶部由管路连接,另一路通过第六阀门与第二脱硫器顶部由管路连接;所述第一脱硫器底部出口分为两路,一路通过第八阀门排出再生尾气,另一路通过第七阀门与第一催化燃烧器顶部由管路连接;所述第二脱硫器底部出口分为两路,一路通过第九阀门排出再生尾气,另一路通过第十阀门与第二催化燃烧器顶部由管路连接;所述换热器的热流体通道进口分为两路,一路通过第十一阀门与第一催化燃烧器底部出口由管路连接,另一路通过第十四阀门与第二催化燃烧器底部出口由管路连接,换热器的热流体通道出口流出的高温蒸汽用于作为热源对多层蒸发器加热;所述第一催化燃烧器底部出口与第十一阀门之间的管路上还 通接有第一支管,第一支管上设有第十二阀门;所述第二催化燃烧器底部出口与第十四阀门之间的管路上还通接有第二支管,第二支管上设有第十三阀门。
所述的连续化处理高浓度有机废水工艺所使用的装置,其特征在于,还包括第二预热器,第二预热器的进口端通入空气,第二预热器的出口分为四路,分别通过第十五阀门、第十六阀门、第十七阀门和第十八阀门与第一催化燃烧器顶部进口、第一脱硫器顶部进口、第二脱硫器顶部进口和第二催化燃烧器顶部进口由管路连接。
所述的连续化处理高浓度有机废水工艺所使用的装置,其特征在于,所述多层蒸发器内自上而下设有多层蒸发加热托盘,多层蒸发器内的多层蒸发加热托盘内的加热管均为U型加热管,所述蒸发加热托盘的层数为4-10层。
所述的连续化处理高浓度有机废水工艺所使用的装置,其特征在于,将多层蒸发器内蒸发加热托盘的层数标记为n层;换热器的热流体通道出口管路连接有第四阀门和第三阀门,第四阀门和第三阀门之间的管路上通接有n-1路支液管;自上而下开始,所述n-1路支液管分别与前n-1层蒸发加热托盘内的加热管由管路连接,以将换热器内流出的高温蒸汽平均分为n-1股,并分别通入前n-1层蒸发加热托盘内的加热管内进行加热;第n层蒸发加热托盘内的加热管内通入新鲜水蒸气进行加热。
本发明有益的效果:
1)本发明采用多层蒸发技术可对高浓度有机废水进行高效分离,即脱除其中的有机轻组分及大部分水分,分离后产生的含轻组分废水蒸汽可直接通过热泵输送以气相形式进入后续的装置进行反应,避免了废水蒸汽的冷凝与废水的重新气化,同时将刚产生的废水蒸汽和经过净化后的高温蒸汽进行逆流换热,并且利用净化后的高温蒸汽作为多层蒸发器的加热热源,极大降低了能耗。
2)本发明采用高温脱硫技术进行脱硫,废水的硫含量可达到工业污水一级排放标准,同时,金属氧化物脱硫剂也可脱除含轻组分废水蒸汽的50%COD;采用催化燃烧技术可高效降低高浓度有机废水的COD,同时可降低有机物燃烧温度,降低了能耗,净化处理后废水的COD可达到三级排放标准。将高温脱硫技术和催化燃烧技术有机结合可避免催化剂硫中毒,使催化剂能够维持催化活性。
3)本发明采用脱硫剂和催化剂原位再生方式,保证了装置的连续稳定运行。
4)本发明相对于目前常用的生物降解与直接燃烧法,具有工艺流程简单、高效、稳定、可连续化等优点。
附图说明
图1为本申请的连续化处理高浓度有机废水的装置;
图1中:1-进料泵,21-第一阀门,22-第二阀门,23-第 三阀门,24-第四阀门,25-第五阀门,26-第六阀门,27-第七阀门,28-第八阀门,29-第九阀门,210-第十阀门,211-第十一阀门,212-第十二阀门,213-第十三阀门,214-第十四阀门,215-第十五阀门,216-第十六阀门,217-第十七阀门,218-第十八阀门,3-液体流量计,4-多层蒸发器,5-热泵,6-换热器,7-第一预热器,8-第一脱硫器,9-第一催化燃烧器,10-第二脱硫器,11-第二催化燃烧器,12-第二预热器。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
实施例:对照图1
一种连续化处理高浓度有机废水的装置,包括进料泵1、液体流量计3、多层蒸发器4、热泵5、换热器6、第一预热器7、并联设置的第一脱硫器8和第二脱硫器10以及并联设置的第一催化燃烧器9和第二催化燃烧器11。
进料泵1的进口通入高浓度有机废水,进料泵1的出口通过第一阀门21和液体流量计3与多层蒸发器4的上部进口管路连接。多层蒸发器4顶部出口通过热泵5、换热器6的冷流体通道与第一预热器7进口由管路连接,第一预热器7出口分为两路,一路通过第五阀门25与第一脱硫器8顶部由管路连接,另一路通过第六阀门26与第二脱硫器10顶部由管路连接。在实际应用过程中,第一脱硫器8与第二脱硫 器10交替进行脱硫反应和再生,一台处于反应状态用于脱除含轻组分废水蒸汽中的含硫化合物时,另一台通入空气进行加热再生。
所述第一脱硫器8底部出口分为两路,一路通过第八阀门28排出再生尾气,另一路通过第七阀门27与第一催化燃烧器9顶部由管路连接;所述第二脱硫器10底部出口分为两路,一路通过第九阀门29排出再生尾气,另一路通过第十阀门210与第二催化燃烧器11由管路连接。在实际应用过程中,第一催化燃烧器9与第二催化燃烧器11交替进行催化燃烧反应和再生,一台处于反应状态用于脱除含轻组分废水蒸汽中的有机物时,另一台通入空气进行加热再生。
换热器6的热流体通道进口分为两路,一路通过第十一阀门211与第一催化燃烧器9底部出口由管路连接,另一路通过第十四阀门214与第二催化燃烧器11底部出口由管路连接,换热器6的热流体通道出口流出的高温蒸汽用于作为热源对多层蒸发器4加热;所述第一催化燃烧器9底部出口与第十一阀门211之间的管路上还通接有第一支管,第一支管上设有第十二阀门212;所述第二催化燃烧器11底部出口与第十四阀门214之间的管路上还通接有第二支管,第二支管上设有第十三阀门213。
对照图1,本申请的装置还包括第二预热器12,第二预热器12的进口端通入空气,第二预热器12的出口分为四路, 分别通过第十五阀门215、第十六阀门216、第十七阀门217和第十八阀门218与第一催化燃烧器9顶部进口、第一脱硫器8顶部进口、第二脱硫器10顶部进口和第二催化燃烧器11顶部进口由管路连接,以便分别通入经第二预热器12预热后的热空气。
在本申请中,多层蒸发器4内自上而下设有多层蒸发加热托盘,多层蒸发器4内的多层蒸发加热托盘内的加热管均为U型加热管,所述蒸发加热托盘的层数为4-10层。
在装置开始运行阶段,采用新鲜水蒸气作为多层蒸发器4的加热热源。在装置运行稳定后,为了对换热器6的热流体通道出口流出的高温蒸汽进行热量回收,采用以下设计方式:将多层蒸发器4内蒸发加热托盘的层数标记为n层;换热器6的热流体通道出口管路连接有第四阀门24和第三阀门23,第四阀门24和第三阀门23之间的管路上通接有n-1路支液管;自上而下开始,所述n-1路支液管分别与前n-1层蒸发加热托盘内的加热管由管路连接,以将换热器6内流出的高温蒸汽平均分为n-1股,并分别通入前n-1层蒸发加热托盘内的加热管内进行加热;第n层蒸发加热托盘内的加热管内通入新鲜水蒸气进行加热。
采用本申请的装置,进行连续化处理高浓度有机废水的工艺步骤如下:
1)高浓度有机废水的分离:在进料泵1的输送作用下, 高浓度有机废水依次通过第一阀门21和液体流量计3进入多层蒸发器4进行蒸发分离,使高浓度有机废水中的有机轻组分及大部分水分汽化形成含轻组分废水蒸汽,产生的含轻组分废水蒸汽通过多层蒸发器4顶部出口由热泵5抽出(热泵5运行使得多层蒸发器4内的绝压保持80-100kPa),经多层蒸发后的废水重组分通过多层蒸发器4底部出口由第二阀门22排出;
2)含轻组分废水蒸汽的净化:含轻组分废水蒸汽依次流过换热器6的冷流体通道和第一预热器7两步加热至200-400℃后,通过第五阀门25通入到第一脱硫器8内,同时自第二预热器12预热后的热空气通过第十六阀门216通入第一脱硫器8内进行脱硫反应,脱硫后尾气从第一脱硫器8底部排出并通过第七阀门27进入第一催化燃烧器9内进行净化反应,净化后的高温蒸汽流入换热器6的热流体通道内进行换热后,作为热源对多层蒸发器4进行加热,并经换热冷凝后作为净化水分排出;
3)脱硫剂与催化剂的再生:待第一脱硫器8内的脱硫剂和第一催化燃烧器9内的催化剂失活后,将产生的含轻组分废水蒸汽切换至第二条反应路线,即打开第六阀门26并关闭第五阀门25以控制含轻组分废水蒸汽先进入第二脱硫器10进行脱硫反应,打开第十阀门210并关闭第九阀门29以控制脱硫后的反应气再进入第二催化燃烧器11进行净化 反应,净化后的高温蒸汽通过换热器6的热流体通道后,作为热源对多层蒸发器4进行加热;
同时,上述步骤3)脱硫剂与催化剂的再生过程中,关闭第十八阀门218并打开第十五阀门215、第十六阀门216和第十七阀门217,由此经第二预热器12排出三股预热后的热空气,其中两股热空气用于脱硫剂与催化剂的再生,即分别通入到第一脱硫器8和第一催化燃烧器9内并均于500-600℃温度下进行再生活化,此时第一脱硫器8底部出口通接的第七阀门27和第一催化燃烧器9底部出口通接的第十一阀门211均关闭,第一脱硫器8底部出口通过第八阀门28排出再生尾气,第一催化燃烧器9底部出口通过第十二阀门212排出再生尾气,第一脱硫器8和第一催化燃烧器9排出的再生尾气经合并后可进行集中净化处理,例如:利用吸收液对再生尾气进行吸收处理。第二预热器12排出的第三股热空气依次流过第二脱硫器10和第二催化燃烧器11用于反应。
实施例1:
按照如图1所示的装置,进行连续化处理高浓度有机废水的工艺:
首先第一脱硫器8和第二脱硫器10内均填充氧化锌脱硫剂,且第一催化燃烧器9和第二催化燃烧器11内均填充铂氧化铝催化剂,其组成为0.5wt%Pt/Al 2O 3
将第一预热器7、第二预热器12、第一脱硫器8和第一催化燃烧器9的温度均以电加热方式升至300℃,并首先均采用新鲜水蒸汽作为热源对多层蒸发器4进行加热,开启热泵5,使多层蒸发器4内绝压为85kPa。待装置稳定后,通过进料泵1输送,生物柴油生产废水依次通过第一阀门21和液体流量计3进入多层蒸发器4进行蒸发分离,产生95℃的含轻组分废水蒸汽从多层蒸发器4顶部出口由热泵5抽出输送,并经换热器6的冷流体通道和预热器7两步加热至300℃后,通过第五阀门25通入到第一脱硫器8内,同时自第二预热器12预热后的热空气通过第十六阀门216通入第一脱硫器8内进行脱硫反应,脱硫后尾气从第一脱硫器8底部排出并通过第七阀门27进入第一催化燃烧器9内进行净化反应,净化后的300℃高温蒸汽从第一催化燃烧器9底部排出并通过第十一阀门211进入到换热器6的热流体通道,净化后的300℃高温蒸汽与95℃的含轻组分废水蒸汽在换热器6内进行换热,换热后,从换热器6冷流体通道流出的含轻组分废水蒸汽的温度升至250℃,从换热器6热流体通道流出的高温蒸汽的温度降至145℃。从换热器6热流体通道流出的145℃蒸汽作为热源加热多层蒸发器4,经换热冷凝后作为净化水分排出。装置运行稳定后,只利用145℃新鲜水蒸气对多层蒸发器4的最后一层蒸发加热托盘进行加热;多层蒸发器4的其余蒸发加热托盘,采用从换热器6热流体 通道流出的145℃蒸汽作为热源进行加热。经多层蒸发后的废水重组分通过多层蒸发器4底部出口由第二阀门22排出,可回收利用。
待脱硫器8内的脱硫剂和催化燃烧器9的催化剂失活后,将第五阀门25、第七阀门27和第十一阀门211关闭,并将第六阀门26、第十阀门210、第十四阀门214、第十五阀门215、第十六阀门216和第十七阀门217打开,经第二预热器12排出三股预热后的热空气,其中两股热空气用于脱硫剂与催化剂的再生,第三股热空气用于反应。含轻组分废水蒸汽,与第二预热器12排出的第三股热空气一并先进入第二脱硫器10进行脱硫反应,再进入第二催化燃烧器11进行净化反应。经第二预热器12排出的两股用于再生的热空气,分别通入到第一脱硫器8和第一催化燃烧器9内并均于550℃下进行再生活化,再生尾气分别通过第八阀门28和第十二阀门212后合并排出,再进行集中净化处理,以实现装置的连续化操作。
经过处理后,生物柴油生产废水的化学需氧量(COD)从初始的200000mg/L可降低到500mg/L以下,去除率高达99.75%以上,达到工业污水三级排放标准;废水的硫含量降低到1mg/L以下,达到工业污水一级排放标准。
实施例2:
按照如图1所示的装置,进行连续化处理高浓度有机废 水的工艺,其操作步骤重复实施例1,不同之处在于以下两点:
1、第一脱硫器8和第二脱硫器10的脱硫剂均替换为氧化铁脱硫剂;
2、将废水原料替换为初始化学需氧量为5000mg/L左右的油脂环氧反应废水(即生物柴油、甲酸和双氧水进行环氧反应后产生的废水),其余操作步骤同实施例1。
经过处理后,油脂环氧反应废水的化学需氧量(COD)从初始的5000mg/L可降低到50mg/L以下,去除率高达99%以上,达到工业污水一级排放标准;废水的硫含量降低到1mg/L以下,达到工业污水一级排放标准。
本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。

Claims (9)

  1. 一种连续化处理高浓度有机废水的工艺,其特征在于,包括以下步骤:
    1)高浓度有机废水的分离:在进料泵(1)的输送作用下,高浓度有机废水通过液体流量计(3)进入多层蒸发器(4)进行蒸发分离,使高浓度有机废水中的有机轻组分及水分汽化形成含轻组分废水蒸汽,产生的含轻组分废水蒸汽通过多层蒸发器(4)顶部出口由热泵(5)抽出,经多层蒸发后的废水重组分通过多层蒸发器(4)底部出口由第二阀门(22)排出;
    2)含轻组分废水蒸汽的净化:含轻组分废水蒸汽依次流过换热器(6)的冷流体通道和第一预热器(7)进行加热后,与空气一并通入到第一脱硫器(8)内进行脱硫反应,脱硫后尾气从第一脱硫器(8)底部排出并进入第一催化燃烧器(9)内进行净化反应,净化后的高温蒸汽流入换热器(6)的热流体通道内进行换热后,作为热源对多层蒸发器(4)进行加热,并经换热冷凝后作为净化水分排出;
    3)脱硫剂与催化剂的再生:待第一脱硫器(8)内的脱硫剂和第一催化燃烧器(9)内的催化剂失活后,将产生的含轻组分废水蒸汽切换至第二条反应路线,即与空气一并先进入第二脱硫器(10)进行脱硫反应,再进入第二催化燃烧器(11)进行净化反应,净化后的高温蒸汽通过换热器(6)的热流体通道后,作为热源对多层蒸发器(4)进行加热;第一脱硫器(8)和第一催化燃烧器(9)内分别通入空气并均于500-600℃下进行再生活化,两者排出的再生尾气经合并后集 中净化处理。
  2. 如权利要求1所述的一种连续化处理高浓度有机废水的工艺,其特征在于,多层蒸发器(4)内的真空在热泵(5)的运行作用下进行维持,多层蒸发器(4)内进行蒸发分离的绝压为80-100kPa。
  3. 如权利要求1所述的一种连续化处理高浓度有机废水的工艺,其特征在于,第一预热器(7)采用电加热或电磁加热的方式进行加热,其加热温度为200-400℃。
  4. 如权利要求1所述的一种连续化处理高浓度有机废水的工艺,其特征在于,第一脱硫器(8)或第二脱硫器(10)采用电加热或电磁加热的方式进行加热,进行脱硫反应的温度为200-400℃,其内部填充的脱硫剂为氧化锌、氧化镁、氧化铁或氧化钙。
  5. 如权利要求1所述的一种连续化处理高浓度有机废水的工艺,其特征在于,第一催化燃烧器(9)或第二催化燃烧器(11)采用电加热或电磁加热的方式进行加热,进行净化反应的温度为200-400℃,其内部填充的催化剂为铂氧化铝催化剂、铂稀土催化剂、铂氧化硅催化剂或铂硫酸钡催化剂。
  6. 根据权利要求1中所述的连续化处理高浓度有机废水工艺所使用的装置,其特征在于,包括进料泵(1)、液体流量计(3)、多层蒸发器(4)、热泵(5)、换热器(6)、第一预热器(7)、并联设置的第一脱硫器(8)和第二脱硫器(10)以及并联设置的第一催化燃烧器(9)和第二催化燃烧器(11);多层蒸发器(4)的上部进口通过液体流量计(3)管路连接进料泵(1),多层蒸发器(4)顶部出口通 过热泵(5)、换热器(6)的冷流体通道与第一预热器(7)进口由管路连接,第一预热器(7)出口分为两路,一路通过第五阀门(25)与第一脱硫器(8)顶部由管路连接,另一路通过第六阀门(26)与第二脱硫器(10)顶部由管路连接;所述第一脱硫器(8)底部出口分为两路,一路通过第八阀门(28)排出再生尾气,另一路通过第七阀门(27)与第一催化燃烧器(9)顶部由管路连接;所述第二脱硫器(10)底部出口分为两路,一路通过第九阀门(29)排出再生尾气,另一路通过第十阀门(210)与第二催化燃烧器(11)顶部由管路连接;
    所述换热器(6)的热流体通道进口分为两路,一路通过第十一阀门(211)与第一催化燃烧器(9)底部出口由管路连接,另一路通过第十四阀门(214)与第二催化燃烧器(11)底部出口由管路连接,换热器(6)的热流体通道出口流出的高温蒸汽用于作为热源对多层蒸发器(4)加热;所述第一催化燃烧器(9)底部出口与第十一阀门(211)之间的管路上还通接有第一支管,第一支管上设有第十二阀门(212);所述第二催化燃烧器(11)底部出口与第十四阀门(214)之间的管路上还通接有第二支管,第二支管上设有第十三阀门(213)。
  7. 根据权利要求6所述的连续化处理高浓度有机废水工艺所使用的装置,其特征在于,还包括第二预热器(12),第二预热器(12)的进口端通入空气,第二预热器(12)的出口分为四路,分别通过第十五阀门(215)、第十六阀门(216)、第十七阀门(217)和第十八阀门(218)与第一催化燃烧器(9)顶部进口、第一脱硫器(8)顶 部进口、第二脱硫器(10)顶部进口和第二催化燃烧器(11)顶部进口由管路连接。
  8. 根据权利要求6所述的连续化处理高浓度有机废水工艺所使用的装置,其特征在于,所述多层蒸发器(4)内自上而下设有多层蒸发加热托盘,多层蒸发器(4)内的多层蒸发加热托盘内的加热管均为U型加热管,所述蒸发加热托盘的层数为4-10层。
  9. 根据权利要求6所述的连续化处理高浓度有机废水工艺所使用的装置,其特征在于,将多层蒸发器(4)内蒸发加热托盘的层数标记为n层;换热器(6)的热流体通道出口管路连接有第四阀门(24)和第三阀门(23),第四阀门(24)和第三阀门(23)之间的管路上通接有n-1路支液管;自上而下开始,所述n-1路支液管分别与前n-1层蒸发加热托盘内的加热管由管路连接,以将换热器(6)内流出的高温蒸汽平均分为n-1股,并分别通入前n-1层蒸发加热托盘内的加热管内进行加热;第n层蒸发加热托盘内的加热管内通入新鲜水蒸气进行加热。
PCT/CN2020/134918 2019-12-25 2020-12-09 一种连续化处理高浓度有机废水的工艺及装置 WO2021129395A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022527708A JP7283833B2 (ja) 2019-12-25 2020-12-09 高濃度有機廃水の連続処理プロセス及び装置
US17/367,642 US11767232B2 (en) 2019-12-25 2021-07-06 Process and device for continuous treatment of high-concentration organic wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911358921.4 2019-12-25
CN201911358921.4A CN110937648B (zh) 2019-12-25 2019-12-25 一种连续化处理高浓度有机废水的工艺及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/367,642 Continuation US11767232B2 (en) 2019-12-25 2021-07-06 Process and device for continuous treatment of high-concentration organic wastewater

Publications (1)

Publication Number Publication Date
WO2021129395A1 true WO2021129395A1 (zh) 2021-07-01

Family

ID=69912225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134918 WO2021129395A1 (zh) 2019-12-25 2020-12-09 一种连续化处理高浓度有机废水的工艺及装置

Country Status (4)

Country Link
US (1) US11767232B2 (zh)
JP (1) JP7283833B2 (zh)
CN (1) CN110937648B (zh)
WO (1) WO2021129395A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020001587A1 (de) * 2019-03-12 2020-09-17 Semiconductor Components Industries, Llc Hüllkurvenregelung in einem frequenzmodulierten Dauerstrich-Radarsystem
US11487003B2 (en) * 2019-03-12 2022-11-01 Ay Dee Kay Llc Envelope regulation in a frequency-modulated continuous-wave radar system
CN110937648B (zh) * 2019-12-25 2021-03-30 浙江工业大学 一种连续化处理高浓度有机废水的工艺及装置
CN113413740B (zh) * 2021-06-30 2022-10-14 福建省利邦环境工程有限公司 塑胶再生废气净化处理装置及其工作方法
CN114873870A (zh) * 2022-06-15 2022-08-09 江苏奥尼斯环保科技有限公司 一种制药废水处理工艺
CN115465964A (zh) * 2022-08-19 2022-12-13 湖南诺睿信生物科技有限公司 一种生物柴油酶法工艺污水循环利用方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389789A (zh) * 2011-10-25 2012-03-28 太原理工大学 一种降解脱硫废液蒸汽中cod和硫化物的催化剂及其制备方法和应用
CN102503031A (zh) * 2011-11-08 2012-06-20 太原理工大学 一种焦化脱硫废液处理工艺
CN102557321A (zh) * 2012-01-18 2012-07-11 东莞市珠江海咸水淡化研究所 一种低成本实现高浓废水零排放的方法
WO2014153570A9 (en) * 2013-03-15 2015-08-06 Transtar Group, Ltd New and improved system for processing various chemicals and materials
WO2016170000A1 (en) * 2015-04-22 2016-10-27 Convecom S.R.L. Method of thermochemical decomposition of waste
CN106582272A (zh) * 2016-12-14 2017-04-26 山东迅达化工集团有限公司 酸性污水汽提氨气的脱硫净化工艺
CN107098415A (zh) * 2017-05-31 2017-08-29 南京工业大学 一种含盐有机废水的处理方法及系统
CN109019730A (zh) * 2018-08-30 2018-12-18 上海超惠通风环保设备有限公司 废水废气处理系统
US20190145310A1 (en) * 2016-11-16 2019-05-16 Dr. Herng Shinn Hwang Catalytic Biogas Combined Heat and Power Generator
CN109943375A (zh) * 2019-03-07 2019-06-28 四川迅升油气工程技术有限公司 一种用于含硫天然气单井脱硫制酸的装置及其工艺
CN110937648A (zh) * 2019-12-25 2020-03-31 浙江工业大学 一种连续化处理高浓度有机废水的工艺及装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330479A (en) * 1976-09-02 1978-03-22 Kurita Water Ind Ltd Treating apparatus of waste liquid contained volatile organic matter
DE3236787A1 (de) * 1982-10-05 1984-08-16 Hans-Peter 4600 Dortmund Jenau Anlage zur gewinnung von kohlenwasserstoffprodukten aus altoelen oe.ae..
JPH0631359B2 (ja) * 1987-07-21 1994-04-27 株式会社日立製作所 高温乾式脱硫方法
JPH05317845A (ja) * 1992-05-15 1993-12-03 Ogawa Kankyo Kenkyusho:Kk 廃液処理方法及び装置
JP2655800B2 (ja) * 1993-06-02 1997-09-24 工業技術院長 ガス脱硫剤及び硫化水素含有ガスの脱硫方法
JP2000343074A (ja) * 1999-06-03 2000-12-12 Hitachi Ltd 廃液または廃水の処理方法及び装置
WO2006049149A1 (ja) * 2004-11-05 2006-05-11 Hitachi, Ltd. 油田随伴水中の有機物の除去方法および除去装置
JP4724032B2 (ja) * 2006-03-28 2011-07-13 株式会社東芝 有機性廃棄物処理システム
JP5317845B2 (ja) 2009-06-23 2013-10-16 株式会社トクヤマデンタル ペースト注出器
JP2011067786A (ja) * 2009-09-28 2011-04-07 Hiroaki Mochizuki 有害物質含有廃液処理方法
CN102533309B (zh) * 2012-01-18 2014-05-21 浙江工业大学 一种设有多层汽化的生物柴油精馏塔
FR2995162B1 (fr) 2012-08-31 2015-09-04 Thales Sa Methode d'optimisation de l'efficacite spectrale d'une transmission de donnees et dispositif mettant en oeuvre la methode
CN103045298B (zh) * 2012-12-27 2016-03-16 宜昌升华新能源科技有限公司 一种用于废油回收裂解馏分燃油的系统
CN104436988A (zh) * 2013-09-13 2015-03-25 中国科学院兰州化学物理研究所 一种工业有机废气处理清洁工艺
KR20170023801A (ko) 2014-06-26 2017-03-06 스미토모 긴조쿠 고잔 가부시키가이샤 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막
ES2711612T3 (es) * 2015-03-12 2019-05-06 Prosernat Proceso de eliminación de compuestos de azufre a partir de un gas con etapas de hidrogenación y oxidación directa
CN105126573B (zh) * 2015-07-22 2017-10-13 江苏新世纪江南环保股份有限公司 一种炼油装置多种酸性气一体化氨法脱硫方法
US20180079672A1 (en) * 2016-09-19 2018-03-22 J.S. Meyer Engineering, P.C. Systems and Methods for Processing Biogas
CN106348371B (zh) * 2016-11-17 2019-04-12 山东大学 一种难降解水中挥发性有机物的去除方法
CN107381698A (zh) * 2017-08-09 2017-11-24 中国大唐集团科学技术研究院有限公司 利用烟气余热处理脱硫废水的系统及方法
CN107857321B (zh) * 2017-11-07 2021-01-08 西安协力动力科技有限公司 一种用于火力发电厂废水零排放处理的工艺
CN108570335B (zh) * 2018-05-08 2020-07-14 华东理工大学 轻石脑油脱硫脱胺的方法和装置
CN108910829B (zh) * 2018-07-26 2020-05-08 国家能源投资集团有限责任公司 酸性气硫回收系统及酸性气的硫回收方法
CN109336200A (zh) * 2018-11-03 2019-02-15 上海发电设备成套设计研究院有限责任公司 一种脱硫废水蒸发浓缩及热量回收系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389789A (zh) * 2011-10-25 2012-03-28 太原理工大学 一种降解脱硫废液蒸汽中cod和硫化物的催化剂及其制备方法和应用
CN102503031A (zh) * 2011-11-08 2012-06-20 太原理工大学 一种焦化脱硫废液处理工艺
CN102557321A (zh) * 2012-01-18 2012-07-11 东莞市珠江海咸水淡化研究所 一种低成本实现高浓废水零排放的方法
WO2014153570A9 (en) * 2013-03-15 2015-08-06 Transtar Group, Ltd New and improved system for processing various chemicals and materials
WO2016170000A1 (en) * 2015-04-22 2016-10-27 Convecom S.R.L. Method of thermochemical decomposition of waste
US20190145310A1 (en) * 2016-11-16 2019-05-16 Dr. Herng Shinn Hwang Catalytic Biogas Combined Heat and Power Generator
CN106582272A (zh) * 2016-12-14 2017-04-26 山东迅达化工集团有限公司 酸性污水汽提氨气的脱硫净化工艺
CN107098415A (zh) * 2017-05-31 2017-08-29 南京工业大学 一种含盐有机废水的处理方法及系统
CN109019730A (zh) * 2018-08-30 2018-12-18 上海超惠通风环保设备有限公司 废水废气处理系统
CN109943375A (zh) * 2019-03-07 2019-06-28 四川迅升油气工程技术有限公司 一种用于含硫天然气单井脱硫制酸的装置及其工艺
CN110937648A (zh) * 2019-12-25 2020-03-31 浙江工业大学 一种连续化处理高浓度有机废水的工艺及装置

Also Published As

Publication number Publication date
CN110937648A (zh) 2020-03-31
CN110937648B (zh) 2021-03-30
JP7283833B2 (ja) 2023-05-30
US11767232B2 (en) 2023-09-26
JP2023502028A (ja) 2023-01-20
US20210331943A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2021129395A1 (zh) 一种连续化处理高浓度有机废水的工艺及装置
CN102626590B (zh) 一种低浓度有机可燃气体催化氧化装置及热量利用系统
RU2442819C1 (ru) Способ работы устройства для переработки попутных нефтяных газов
WO2021227489A1 (zh) 一种轧钢退火炉的氮氢保护气分离系统及方法
CN102351361B (zh) 一种高盐油田污水处理和稠油开采相结合的装置及工艺
CN102688671A (zh) 烟气脱氮氧化物综合法
CN203549850U (zh) 一种有机废气综合处理系统
CN210398945U (zh) 一种凹印有机废气的减排系统
CN205381962U (zh) 液硫脱气系统
CN214456966U (zh) 一种高浓度有机污水汽化、催化焚烧设备
RU2414282C1 (ru) Способ утилизации биогаза метантенков
RU2460575C1 (ru) Способ разделения биогаза и очистки его составляющих
RU2624160C1 (ru) Способ и установка очистки природного газа от диоксида углерода и сероводорода
CN111617754A (zh) 应用于高浓难降解废水处理中的活性炭原位吸附再生方法
CN209791257U (zh) 一种增塑剂VOCs光解系统
JP2018052768A (ja) 水素製造システム起動方法及び水素製造システム
CN110732242A (zh) 一种废水与废气综合处理装置及方法
CN219922592U (zh) 一种液硫池废气的回收系统
CN211921180U (zh) 一种液体危险废物的无害化无选择性达标排放处理设备
RU2813542C2 (ru) Установка комплексной подготовки углеводородного газа
CN218421903U (zh) 一种含卤代烃废气处理设备
CN214501888U (zh) 一种无精馏式化工尾气的提纯装置
CN212283472U (zh) 一种有机废气处理系统
CN220861054U (zh) 氰化钠含氢尾气净化装置
CN116161778A (zh) 一种高级氧化法耦合生物法处理高浓度有机废水的工艺及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907159

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/01/2023)