WO2021129386A1 - 一种冰箱 - Google Patents

一种冰箱 Download PDF

Info

Publication number
WO2021129386A1
WO2021129386A1 PCT/CN2020/134690 CN2020134690W WO2021129386A1 WO 2021129386 A1 WO2021129386 A1 WO 2021129386A1 CN 2020134690 W CN2020134690 W CN 2020134690W WO 2021129386 A1 WO2021129386 A1 WO 2021129386A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption tower
air
fresh
valve
keeping
Prior art date
Application number
PCT/CN2020/134690
Other languages
English (en)
French (fr)
Inventor
业明坤
杨伸其
任相华
周新
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to EP20904758.8A priority Critical patent/EP4063767A4/en
Priority to JP2022537804A priority patent/JP7533988B2/ja
Publication of WO2021129386A1 publication Critical patent/WO2021129386A1/zh
Priority to US17/843,905 priority patent/US20220357090A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0415Treating air flowing to refrigeration compartments by purification by deodorizing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers

Definitions

  • This application relates to the field of household appliances, and in particular to a refrigerator.
  • the present application provides a refrigerator to solve the technical problem that the oxygen content of the first fresh-keeping compartment in the refrigerator is not significantly reduced in the prior art.
  • a technical solution adopted in this application is to provide a refrigerator.
  • the refrigerator includes a first fresh-keeping chamber, an adsorption tower, a valve and an air pump; the air inlet of the air pump is connected to the first fresh-keeping chamber, and the air outlet of the air pump passes through
  • the inlet passage of the valve is connected to the inlet of the adsorption tower, and the inlet of the adsorption tower is connected to the first fresh-keeping chamber through the outlet passage of the valve;
  • the valve intake passage is opened, so that the air pump will pressurize the air in the first fresh-keeping chamber to the adsorption tower.
  • the adsorption tower filters out oxygen in the air, which is discharged from the outlet of the adsorption tower and adsorbs the remaining gas; the valve's intake passage is closed , Stop the air pump from transferring air to the adsorption tower under pressure, and the adsorption tower releases the remaining air, which is discharged to the first fresh-keeping chamber through the air inlet of the adsorption tower and the air outlet channel of the valve.
  • the number of adsorption towers is at least two, and the at least two adsorption towers are divided into a first adsorption tower and a second adsorption tower; the valve corresponding to each first adsorption tower has a first inlet passage and a first outlet passage, Each second adsorption tower has a second inlet passage and a second outlet passage; the first inlet passage is opened and the second inlet passage is closed in the alternate control valve, or the first outlet passage is closed and the second inlet passage is closed.
  • the channel is open.
  • the number of adsorption towers is two, and the valve is a two-position five-way solenoid valve.
  • At least two adsorption towers are arranged side by side, and the air inlets of all the adsorption towers are arranged in the same direction.
  • the adsorption tower is provided with zeolite molecular sieve particles, and the size of the zeolite molecular sieve particles is 0.4 mm to 0.8 mm; the air pump pressurizes the air to 0.12 MPa to 0.2 MPa.
  • the ratio of the transmission flow rate of the air pump per second to the volume of the adsorption tower is 1.2 to 2.2.
  • the adsorption tower is cylindrical, the diameter of the adsorption tower is 20mm-30mm, the height is 150mm-300mm; the transmission flow of the air pump is 5L/min-15L/min.
  • the refrigerator includes a second fresh-keeping compartment, and the air outlet of the adsorption tower is connected to the second fresh-keeping compartment.
  • the first fresh-keeping compartment is provided with a first sensor for detecting the oxygen content of the first fresh-keeping compartment, and the first sensor is connected to an air pump.
  • the first fresh-keeping compartment is provided with a second sensor for detecting whether the first fresh-keeping compartment is open, and the second sensor is connected to an air pump.
  • This application controls the adsorption or desorption state of the adsorption tower through the operation of valves and air pumps.
  • the adsorption tower filters out oxygen in the air, exhausts it from the outlet of the adsorption tower, and absorbs the remaining gas.
  • the adsorption tower is in the desorption state, the adsorption tower releases residual gas, which is discharged to the first fresh-keeping chamber through the air inlet of the adsorption tower and the air outlet channel of the valve. In this embodiment, the air in the first fresh-keeping chamber is filtered and discharged.
  • Oxygen and return to the residual gas, thereby reducing the oxygen content in the first fresh-keeping chamber that is, in this embodiment, the air pump, valve, and adsorption tower can effectively reduce the oxygen content in the first fresh-keeping chamber, so as to achieve oxygen control and fresh-keeping and improve the fresh-keeping effect;
  • the total content of the air in the first fresh-keeping room can be reduced, and the air in the first fresh-keeping room can be in a negative pressure state, and the negative pressure freshness can be realized, that is, the double freshness keeping effects of oxygen control and negative pressure can be realized.
  • Fig. 1 is a schematic structural diagram of a refrigerator according to an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a refrigerator according to another embodiment of the present application.
  • FIG. 3 is a schematic diagram of a working state of a refrigerator according to another embodiment of the present application.
  • FIG. 4 is a schematic diagram of another working state of a refrigerator according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a valve in a refrigerator according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a three-dimensional structure of a refrigerator according to another embodiment of the present application.
  • Fig. 7 is a partial schematic view of the refrigerator shown in Fig. 6.
  • the refrigerator 100 includes a first fresh-keeping compartment 110, an adsorption tower 120, a valve 130 and an air pump 140.
  • the air inlet of the air pump 140 is connected to the first fresh-keeping compartment 110.
  • the air outlet of the air pump 140 is connected to the air inlet of the adsorption tower 120 through the air inlet passage of the valve 130.
  • the air inlet of the adsorption tower 120 is connected to the first fresh-keeping chamber 110 through the air outlet passage of the valve 130.
  • the inlet passage of the valve 130 is opened, so that the air pump 140 pressurizes the air in the first fresh-keeping chamber 110 to transmit to the adsorption tower 120, the adsorption tower 120 filters out oxygen in the air, discharges it from the air outlet of the adsorption tower 120, and absorbs the remaining air;
  • the air inlet passage of the valve 130 is closed, so that the air pump 140 stops pressurizing air to the adsorption tower 120, and the adsorption tower 120 releases the remaining air, which is discharged to the first fresh-keeping chamber 110 through the air inlet of the adsorption tower 120 and the air outlet passage of the valve 130.
  • the air in the first fresh-keeping compartment 110 is extracted for deoxygenation and filtration, and then the remaining gas that excludes oxygen is returned to the first fresh-keeping compartment 110.
  • the first fresh-keeping compartment 110 The oxygen content inside is reduced, which can realize oxygen-controlled fresh-keeping; and can reduce the total air content in the first fresh-keeping compartment 110, so that the air in the first fresh-keeping compartment 110 is in a negative pressure state, and the negative pressure preservation can be realized, that is, oxygen control can be realized
  • the valve 130 includes independent air inlet and outlet channels, so the valve 130 includes at least 3 ports. As shown in FIG. 1, the three ports are at least divided into a first port 131, a second port 132, and a third port 133.
  • the first port 131 of the valve 130 communicates with the air inlet of the adsorption tower 120.
  • the second port 132 of the valve 130 communicates with the air outlet of the air pump 140.
  • Between the first port 131 and the second port 132 of the valve 130 is an air inlet passage, so that the air outlet of the air pump 140 can be connected to the air inlet of the adsorption tower 120 through the air inlet passage of the valve 130.
  • the third port 133 of the valve 130 communicates with the first fresh-keeping chamber 110, and the third port 133 of the valve 130 and the first port 131 of the valve 130 are an air outlet passage, so that the air inlet of the adsorption tower 120 can pass through the valve
  • the air outlet channel of 130 is connected to the first fresh-keeping compartment 110.
  • the gas flow direction can be switched through the valve 130.
  • the valve 130 may also include 4 ports.
  • the four ports can be divided into a first port 131, a second port 132, a third port 133, and a fourth port 134.
  • the air inlet of the adsorption tower 120 communicates with the first port 131 and the fourth port 134.
  • the second port 132 of the valve 130 communicates with the air outlet of the air pump 140, and the first port 131 of the valve 130 and the second port 132 of the valve 130 form an air inlet passage.
  • the third port 133 of the valve 130 communicates with the first fresh-keeping compartment 110, and the fourth port 134 of the valve 130 and the third port 133 of the valve 130 form an air outlet channel. Therefore, the valve 130 only needs to switch the opening and closing of the air inlet channel and the air outlet channel to switch the gas flow direction, thereby controlling the gas flow in and out of the first fresh-keeping chamber 110.
  • the at least two adsorption towers 120 may be divided into a first adsorption tower 121 and a second adsorption tower 122.
  • valve 130 has a first air inlet channel and a first air outlet channel corresponding to each first adsorption tower 121.
  • second adsorption tower 122 there is a second air inlet passage and a second air outlet passage.
  • At least a plurality of the first port 131 of the valve 130 and the third port 133 of the valve 130 may be provided.
  • the number of the first port 131 and the number of the third port 133 of the valve 130 may be the same as the number of the adsorption tower 120.
  • the air inlet of each adsorption tower 120 can be connected to a first port 131.
  • Each first port 131 and its corresponding third port 133 can form an air outlet channel. All the third ports 133 are connected to the first fresh-keeping compartment 110.
  • one second port 132 of the valve 130 can be provided, and an air inlet passage can be formed between each of the first port 131 and the second port 132.
  • the number of adsorption towers 120 is two.
  • the valve 130 is a two-position, five-way solenoid valve.
  • the first, second, and second air-inlet passages in the valve 130 can be opened and closed freely through the two-position and five-way solenoid valve.
  • the working state of the two adsorption towers 120 can be switched, so that when one of the first adsorption tower 121 and the second adsorption tower 122 is adsorbed, the other of the first adsorption tower 121 and the second adsorption tower 122 can be A desorbed residual air flows into the first fresh-keeping compartment 110 through the air outlet channel, so that the operation of the valve 130 and the air pump 140 can be controlled to continuously discharge oxygen from the air in the first fresh-keeping compartment 110, and can continuously
  • the residual gas adsorbed by the adsorption tower 120 is desorbed and transferred to the first fresh-keeping compartment 110, and the oxygen content in the first fresh-keeping compartment 110 is controlled efficiently and time-consuming.
  • the two-position five-way solenoid valve may include two first ports 131, one second port 132 and two third ports 133.
  • One of the first ports 131 communicates with the air inlet of the first adsorption tower 121, and the other first port 131 communicates with the air inlet of the second adsorption tower 122.
  • a first air outlet passage is formed between the first port 131 connected to the air inlet of the first adsorption tower 121 and the corresponding third port 133.
  • a second air outlet passage is formed between the first port 131 connected to the air inlet of the second adsorption tower 122 and the corresponding third port 133. All the third ports 133 are connected to the first fresh-keeping compartment 110.
  • a first air inlet passage is formed between the first port 131 and the second port 132 connected to the air inlet of the first adsorption tower 121.
  • a second air inlet passage is formed between the first port 131 and the second port 132 connected to the air inlet of the second adsorption tower 122.
  • the adsorption tower 120 may be provided with adsorption materials.
  • the adsorption capacity of the adsorption material for nitrogen is greater than the adsorption capacity for oxygen.
  • the adsorption material provided in the adsorption tower 120 may be zeolite molecular sieve particles.
  • the polarity of nitrogen in the air is larger than that of oxygen.
  • Zeolite molecular sieves have different adsorption capacity for each composition of oxygen and nitrogen in the air. Nitrogen can be preferentially adsorbed from the air through zeolite molecular sieves, and the oxygen in the air can be filtered out.
  • the oxygen content in the gas desorbed from the zeolite molecular sieve is significantly lower than the oxygen content in the air, that is, the gas desorbed from the zeolite molecular sieve is a gas with low oxygen content, and the gas desorbed from the zeolite molecular sieve is transmitted to the first preservation In the chamber 110, the oxygen content in the first fresh-keeping chamber 110 can be reduced, and the fresh-keeping effect can be improved.
  • the size of the zeolite molecular sieve particles can be 0.4mm-0.8mm, specifically 0.5mm, 0.6mm, 0.7mm.
  • the adsorption material provided in the adsorption tower 120 may also be a silicoaluminophosphate molecular sieve.
  • this application controls the oxygen content of the first fresh-keeping compartment 110 through the adsorption and desorption of the adsorption tower 120. Since the adsorbed substance has the characteristic that the adsorption amount increases with the increase in the partial pressure of the adsorbed component, this embodiment is completed by pressure change The air separation is achieved by adsorption and desorption, that is, the adsorption tower 120 is placed in an adsorption or desorption state through pressure changes.
  • the air pump 140 is used to increase the pressure of the air to turn the air into compressed air, and then the compressed air is introduced into the adsorption tower 120, and the pressure in the adsorption tower 120 is increased in a disguised manner, so that the adsorption tower 120 is in adsorption.
  • the air pump 140 no longer transmits the compressed air into the adsorption tower 120, the pressure of the adsorption tower 120 will decrease, and the adsorption tower 120 will reduce the nitrogen and other substances it adsorbs.
  • the adsorption tower 120 will desorb the substances adsorbed in it, and flow into the first fresh-keeping compartment 110 through the air inlet of the adsorption tower 120 and the outlet channel of the valve 130, that is, the adsorption tower 120 will desorb the material from the adsorption tower 120.
  • the surplus air flows into the first fresh-keeping compartment 110 to reduce the oxygen content in the first fresh-keeping compartment 110, which can realize oxygen-controlled preservation; and can reduce the total air content in the first fresh-keeping compartment 110, so that the air in the first fresh-keeping compartment 110 can be reduced.
  • the negative pressure preservation can be realized, that is, the double preservation effect of oxygen control and negative pressure preservation can be realized.
  • the air pump 140 pressurizes the air to 0.12 MPa to 0.2 MPa.
  • the relationship between the particle size of the zeolite molecular sieve and the pressurization of the air by the air pump 140 can realize the miniaturization of the air pump 140, reduce the power consumption of the refrigerator 100, and reduce the noise. If the particle size of the zeolite molecular sieve is too small, the air flow resistance will be too large, and the pressure needs to be appropriately increased. Therefore, the particle size of the zeolite molecules filled in the adsorption tower 120 should be relatively uniform and moderate. For example, if the size of the zeolite molecular sieve particles is set to 0.4mm ⁇ 0.8mm, the air pump 140 does not need to increase the pressure of the air too much, and the air pump can be realized. The miniaturization of the 140 reduces the power consumption of the refrigerator 100 and reduces noise.
  • the adsorption tower 120 may be cylindrical.
  • the adsorption tower 120 may also have other regular or irregular shapes such as a cube, a rectangular parallelepiped, and the like.
  • the adsorption capacity of the adsorption tower 120 can be controlled by controlling the size of the adsorption tower 120. When the size of the adsorption tower 120 is controlled within an appropriate range, the adsorption capacity of the adsorption tower 120 can be ensured and the volume can be kept small.
  • the diameter of the adsorption tower 120 may range from 20 mm to 30 mm.
  • the height of the adsorption tower 120 can range from 150 mm to 300 mm.
  • the diameter of the adsorption tower 120 may be 20 mm, 22 mm, 24 mm, 25 mm, or 27 mm.
  • the height of the adsorption tower 120 may be 160 mm, 186 mm, 200 mm, 230 mm, or 250 mm.
  • the transmission flow rate of the air pump 140 is also designed correspondingly.
  • the contact time between the molecules in the compressed air and the adsorbed substances in the adsorption tower 120 can be changed by changing the transmission flow rate of the air pump 140, thereby changing the adsorption efficiency of the adsorption tower 120 on the compressed air. If the transmission speed is too fast, the contact time between the molecules in the compressed air and the adsorbed substance is too short, which is not conducive to gas adsorption and reduces the adsorption rate; if the transmission speed is too low, the volume of the adsorption tower 120 will increase. Therefore, the transmission flow rate should be controlled within a certain range.
  • the transmission flow rate of the air pump 140 is 5L/min-15L/min, specifically, 7L/min, 9L/min or 11L/min.
  • the ratio of the transmission flow rate of the air pump 140 per second to the volume of the adsorption tower 120 may be 1.2-2.2.
  • the first fresh-keeping compartment 110 may be a closed space, so that the air in the first fresh-keeping compartment 110 is not communicated with the atmosphere, so that at least part of the oxygen in the air inside the first fresh-keeping compartment 110 can be removed and the oxygen-depleted air can be returned again.
  • the oxygen content of the first fresh-keeping compartment 110 can be reduced, and oxygen-controlled preservation can be realized; and the total air content in the first fresh-keeping compartment 110 can be reduced, so that the air in the first fresh-keeping compartment 110 In the negative pressure state, the negative pressure preservation is realized, that is, the double preservation effect of oxygen control and negative pressure preservation can be realized, so as to achieve a better preservation effect.
  • the first fresh-keeping room 110 may be a fresh-keeping room for storing food materials such as vegetables and fruits.
  • the oxygen content of the first fresh-keeping compartment 110 can be reduced, the metabolism of the food materials can be inhibited, the preservation effect can be achieved, and the deterioration and the reproduction of bacteria can be inhibited.
  • the first fresh-keeping compartment 110 may be provided with a first sensor.
  • the first sensor can be used to detect the oxygen content of the first fresh-keeping compartment 110.
  • the air pump 140 and the valve 130 can be controlled. 140.
  • the valve 130 and the adsorption tower 120 jointly control the oxygen content in the first fresh-keeping compartment 110 to reduce the oxygen content in the first fresh-keeping compartment 110.
  • the air pump 140 can be controlled to stop running, that is, the air pump 140, the valve 130 and the adsorption tower 120 will no longer jointly control the oxygen content of the first fresh-keeping chamber 110.
  • the first sensor is connected to the air pump 140.
  • the first sensor can also be connected to the valve 130.
  • the first fresh-keeping compartment 110 may be provided with a second sensor.
  • the second sensor is used to detect whether the first fresh-keeping compartment 110 is opened.
  • the air pump 140 and the valve 130 can be controlled, and the oxygen content in the first fresh-keeping compartment 110 can be controlled through the joint action of the air pump 140, the valve 130 and the adsorption tower 120.
  • the oxygen content of the chamber 100 decreases.
  • the second sensor is connected to the air pump 140.
  • the first sensor can also be connected to the valve 130.
  • the refrigerator 100 may further include a controller.
  • the controller can be connected to the air pump 140 and the valve 130, and can control the operation of the air pump 140, and can also control the opening and closing of the air inlet channel and the air outlet channel in the valve 130.
  • the controller can also be connected to the first sensor for receiving data detected by the first sensor.
  • the controller can also analyze whether it is necessary to control the oxygen content of the first fresh-keeping chamber 110 through the air pump 140, the valve 130 and the adsorption tower 120 according to the detected data, and control the operation of the air pump 140 and the valve 130 according to the analysis result.
  • controller can also be connected to the second sensor for receiving data detected by the second sensor.
  • controller can also analyze whether it is necessary to control the oxygen content of the first fresh-keeping chamber 110 through the air pump 140, the valve 130, and the adsorption tower 120 according to the data detected by the second sensor, and control the operation of the air pump 140 and the valve 130 according to the analysis result. Running.
  • the gas outlet of the adsorption tower 120 is also provided with a gas outlet switch.
  • the gas outlet switch is turned on, so that the gas that is not adsorbed by the adsorbed substance in the adsorption tower 120 can be discharged through the gas outlet of the adsorption tower 120.
  • the gas outlet switch When the adsorption tower 120 is in the desorption state, the gas outlet switch is closed, so that the gas desorbed from the adsorption tower 120 can only flow into the first fresh-keeping chamber 110 through the air inlet of the adsorption tower 120 and the air inlet channel of the valve 130, and Avoid outside air entering the adsorption tower 120 through the air outlet of the adsorption tower 120, so as to prevent the outside air and the gas desorbed from the adsorption tower 120 from flowing into the first fresh-keeping compartment 110 together to ensure that the first fresh-keeping compartment 110 contains Oxygen reduction efficiency.
  • the refrigerator 100 further includes a second fresh-keeping compartment 150.
  • the air outlet of the adsorption tower 120 is connected to the second fresh-keeping chamber 150. That is, the second fresh-keeping compartment 150 can receive the oxygen-enriched gas discharged from the adsorption tower 120, so that the oxygen content of the second fresh-keeping compartment 150 increases.
  • the second fresh-keeping compartment 150 may store meat ingredients, and by increasing the oxygen content in the second fresh-keeping compartment 150, it can be ensured that the fresh-keeping color of the meat stored in the second fresh-keeping compartment 150 is more vivid.
  • the first fresh-keeping compartment 110 is arranged in the refrigerator 100 in the manner of a drawer, and the adsorption tower 120 and the valve 130 are arranged behind the first fresh-keeping compartment 110, that is, the adsorption tower 120 and the valve 130. It is arranged on the side of the first fresh-keeping compartment 110 away from the door of the refrigerator 100, so that when the first fresh-keeping compartment 110 is opened, the positions of the valve 130 and the adsorption tower 120 will not be affected, and the valve 130, the adsorption tower 120 and the air pump 140 will not be affected.
  • the air pump 140 is provided at the bottom of the refrigerator 100.
  • the first fresh-keeping chamber 110 and the air inlet of the air pump 140, the air outlet of the air pump 140 and the valve 130, and the adsorption tower 120 and the valve 130 can all be connected by air pipes, so that when the first fresh-keeping chamber 110 is opened , Does not interfere with the connection between the ports.
  • the trachea can be a soft rubber trachea or a hard trachea.
  • the adsorption towers 120 may be arranged side by side, and the air inlets of all the adsorption towers 120 are arranged in the same direction.
  • the air in the first fresh-keeping compartment 110 is extracted for deoxygenation and filtration, and then the remaining gas that excludes oxygen is returned to the first fresh-keeping compartment 110, and the first fresh-keeping compartment 110 is made through this process.
  • the oxygen inside is reduced, which can realize oxygen-controlled fresh-keeping; and can reduce the total air content in the first fresh-keeping compartment 110, so that the air in the first fresh-keeping compartment 110 is in a negative pressure state, and the negative pressure preservation can be realized, that is, the oxygen-controlled fresh-keeping can be realized Double preservation effect with negative pressure preservation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱(100),该冰箱(100)包括第一保鲜室(110)、吸附塔(120)、阀门(130)和气泵(140)。气泵(140)的进气口连通于第一保鲜室(110),气泵(140)的出气口通过阀门(130)的进气通道连通于吸附塔(120)的进气口,吸附塔(120)的进气口通过阀门(130)的出气通道连通于第一保鲜室(110);阀门(130)进气通道开启,使气泵(140)将第一保鲜室(110)的空气加压传输至吸附塔(120),吸附塔(120)过滤出空气中的氧气,由吸附塔(120)的出气口排出,并吸附余气;阀门(130)的进气通道关闭,使气泵(140)停止向吸附塔(120)加压传输空气,吸附塔(120)释放余气,经由吸附塔(120)的进气口及阀门(130)的出气通道排至第一保鲜室(110)。可以使第一保鲜室(110)的含氧量降低,提高保鲜效果。

Description

一种冰箱
本申请要求于2019年12月23日发文的申请号为2019113396404,发明名称为“一种冰箱”的中国专利申请的优先权,其通过引用方式全部并入本申请。
【技术领域】
本申请涉及家电领域,特别涉及一种冰箱。
【背景技术】
长途运输中、仓储中的果蔬保鲜中,减少氧气充氮保鲜一直以来在国内外都得于广泛运用。但是,在家电领域,由于技术的局限性,例如氧含量降低不明显,未能具体有效运用。
【发明内容】
本申请提供一种冰箱,以解决现有技术中冰箱内第一保鲜室氧含量降低不明显的技术问题。
为解决上述技术问题,本申请采用的一个技术方案是提供一种冰箱,冰箱包括第一保鲜室、吸附塔、阀门和气泵;气泵的进气口连通于第一保鲜室,气泵的出气口通过阀门的进气通道连通于吸附塔的进气口,吸附塔的进气口通过阀门的出气通道连通于第一保鲜室;
阀门进气通道开启,使气泵将第一保鲜室的空气加压传输至吸附塔,吸附塔过滤出空气中的氧气,由吸附塔的出气口排出,并吸附余气;阀门的进气通道关闭,使气泵停止向吸附塔加压传输空气,吸附塔释放余气,经由吸附塔的进气口及阀门的出气通道排至第一保鲜室。
其中,吸附塔的数量为至少两个,至少两个吸附塔分为第一吸附塔和第二吸附塔;阀门对应每一第一吸附塔具有一第一进气通道和一第一出气通道,对应每一第二吸附塔具有一第二进气通道和一第二出气通道;交替控制阀门中第一进气通道开启和第二进气通道关闭,或者第一出气通道关闭和第二进气通道开启。
其中,吸附塔的数量为两个,阀门为两位五通电磁阀。
其中,至少两个吸附塔并排设置,且所有吸附塔的进气口均朝向同一方向 设置。
其中,吸附塔中设置有沸石分子筛颗粒,沸石分子筛颗粒的尺寸为0.4mm~0.8mm;气泵将空气加压至0.12MPa~0.2MPa。
其中,气泵每秒的传输流量与吸附塔的容积的比值为1.2~2.2。
其中,吸附塔为圆柱形,吸附塔的直径为20mm~30mm,高度为150mm~300mm;气泵的传输流量为5L/min~15L/min。
其中,冰箱包括第二保鲜室,吸附塔的出气口连通至第二保鲜室。
其中,第一保鲜室设置有第一传感器,用于检测第一保鲜室的含氧量,第一传感器连接气泵。
其中,第一保鲜室上设置有第二传感器,用于检测第一保鲜室是否打开,第二传感器连接气泵。
本申请通过阀门和气泵的运转,控制吸附塔处于吸附或解附状态,在吸附塔处于吸附状态时,吸附塔过滤出空气中的氧气,由吸附塔的出气口排出,并吸附余气,在吸附塔处于解附状态时,吸附塔释放余气,经由吸附塔的进气口及阀门的出气通道排至第一保鲜室,本实施例将第一保鲜室中的空气抽出过滤,排出其中的氧气,并返回余气,从而降低第一保鲜室内的氧含量,即本实施例通过气泵、阀门和吸附塔可以有效降低第一保鲜室的含氧量,可以实现控氧保鲜,提高保鲜效果;并可使第一保鲜室内空气总含量降低,使第一保鲜室内空气处于负压状态,实现负压保鲜,即可以实现控氧保鲜和负压保鲜的双重保鲜效果。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本申请一实施例冰箱的结构示意图;
图2是本申请另一实施例冰箱的结构示意图;
图3是本申请又一实施例冰箱的一工作状态示意图;
图4是本申请又一实施例冰箱的另一工作状态示意图;
图5是本申请又一实施例冰箱中阀门的结构示意图;
图6是本申请又一实施例冰箱的立体结构示意图;
图7是图6所示的冰箱的局部示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本申请保护的范围。
请参阅图1所示,冰箱100包括第一保鲜室110、吸附塔120、阀门130和气泵140。气泵140的进气口连通于第一保鲜室110。气泵140的出气口通过阀门130的进气通道连通于吸附塔120的进气口。吸附塔120的进气口通过阀门130的出气通道连通于第一保鲜室110。阀门130进气通道开启,使气泵140将第一保鲜室110的空气加压传输至吸附塔120,吸附塔120过滤出空气中的氧气,由吸附塔120的出气口排出,并吸附余气;阀门130的进气通道关闭,使气泵140停止向吸附塔120加压传输空气,吸附塔120释放余气,经由吸附塔120的进气口及阀门130的出气通道排至第一保鲜室110。
在本实施例冰箱实现保鲜的过程中,将第一保鲜室110中的空气抽出进行去氧过滤,然后将排除氧气的剩余气体返还至第一保鲜室110,通过该过程使得第一保鲜室110内的氧气含量减小,可以实现控氧保鲜;并可使第一保鲜室110内空气总含量降低,使第一保鲜室110内空气处于负压状态,实现负压保鲜,即可以实现控氧保鲜和负压保鲜的双重保鲜效果。
在本实施例中,阀门130中包括独立的进气通道和出气通道,因此阀门130中至少包括3个端口。如图1所示,3个端口至少分为第一端口131、第二端口132和第三端口133。阀门130的第一端口131与吸附塔120的进气口相连通。阀门130的第二端口132与气泵140的出气口相连通。阀门130的第一端口131和第二端口132之间为进气通道,从而气泵140的出气口可通过阀门130的进气通道连通于吸附塔120的进气口。另外,阀门130的第三端口133与第一保鲜室110相连通,阀门130的第三端口133和阀门130的第一端口131之间为出气通道,从而吸附塔120的进气口可通过阀门130的出气通道连通于第一保鲜室110。通过阀门130可以实现气体流动方向的切换。
在另一实施例中,如图2所示,阀门130也可以包括4个端口。4个端口可 以分为第一端口131、第二端口132、第三端口133和第四端口134。吸附塔120的进气口与第一端口131和第四端口134相连通。阀门130的第二端口132与气泵140的出气口相连通,阀门130的第一端口131与阀门130的第二端口132之间构成进气通道。阀门130的第三端口133与第一保鲜室110相连通,阀门130的第四端口134与阀门130的第三端口133之间构成出气通道。从而阀门130只需要切换进气通道和出气通道的启闭,就可以切换气体流动方向,从而控制第一保鲜室110气体的流进流出。
吸附塔120可以至少设置有两个,通过至少两个吸附塔120可以持续地对第一保鲜室110内的空气进行氧气排出,并可以持续地将吸附塔120吸附的余气脱附到第一保鲜室110内,高效低耗时地控制第一保鲜室110内的氧含量。具体地,至少两个吸附塔120可分为第一吸附塔121和第二吸附塔122。
相应地,阀门130对应每一第一吸附塔121具有一第一进气通道和一第一出气通道。对应每一第二吸附塔122具有一第二进气通道和一第二出气通道。交替控制阀门130中第一进气通道开启和第二进气通道关闭,或者第一出气通道关闭和第二进气通道开启,从而可以做到在第一吸附塔121和第二吸附塔122中的一个吸附时,将从第一吸附塔121和第二吸附塔122中的另一个脱附出的余气通过出气通道流入到第一保鲜室110内,高效低耗时地控制第一保鲜室110内的氧含量。
阀门130的第一端口131和阀门130的第三端口133也可至少设置多个。阀门130的第一端口131的数目和第三端口133的数目可与吸附塔120的数目相同。每一吸附塔120的进气口可与一第一端口131相连。每一第一端口131与其对应的第三端口133之间可构成出气通道。所有第三端口133均连通于第一保鲜室110。另外,阀门130的第二端口132可设置一个,每一第一端口131和第二端口132之间可构成一进气通道。
在又一个实施例中,如图3和图4所示,吸附塔120的数目为两个。阀门130为两位五通电磁阀,通过两位五通电磁阀可以自如地切换阀门130内部的第一出气通道、第二出气通道、第一进气通道和第二进气通道的启闭,从而实现切换两个吸附塔120的工作状态,从而可以做到在第一吸附塔121和第二吸附塔122中的一个吸附时,将从第一吸附塔121和第二吸附塔122中的另一个脱附出的余气通过出气通道流入到第一保鲜室110内,从而可以控制阀门130和 气泵140的运行可以实现持续地对第一保鲜室110内的空气进行氧气排出,并可以持续地将吸附塔120吸附的余气脱附并传输到第一保鲜室110内,高效低耗时地控制第一保鲜室110内的氧含量。
如图5所示,两位五通电磁阀可包括两个第一端口131,一个第二端口132和两个第三端口133。其中一个第一端口131与第一吸附塔121的进气口相连通,另一个第一端口131与第二吸附塔122的进气口相连通。与第一吸附塔121的进气口连接的第一端口131与其对应的第三端口133之间构成第一出气通道。与第二吸附塔122的进气口连接的第一端口131与其对应的第三端口133之间构成第二出气通道。所有第三端口133均连通于第一保鲜室110。与第一吸附塔121的进气口连接的第一端口131与第二端口132之间构成第一进气通道。与第二吸附塔122的进气口连接的第一端口131与第二端口132之间构成第二进气通道。
在本实施例中,吸附塔120中可设置有吸附物质。吸附塔120内设置的吸附物质处于吸附状态时,吸附物质对氮的吸附能力大于对氧的吸附能力。吸附塔120内设置的吸附物质可以是沸石分子筛颗粒。空气中的氮气的极性较氧气的大,沸石分子筛具有对空气中的氧氮各组成具有不同的吸附能力,可以通过沸石分子筛从空气中优先吸附氮气,可以将空气中的氧气过滤出去,从而空气从吸附塔120的进气口进入,经过沸石分子筛的吸附,从吸附塔120流出的空气中的氧气含量超过空气内的氧气含量。进而从沸石分子筛脱附出的气体中的氧气含量明显低于空气内的氧气含量,即沸石分子筛脱附出的气体为低氧含量气体,通过将沸石分子筛脱附出的气体传输到第一保鲜室110内,可以降低第一保鲜室110内氧气的含量,提高保鲜效果。沸石分子筛颗粒的尺寸可为0.4mm~0.8mm,具体可为0.5mm、0.6mm、0.7mm。当然,在其他实施例中,吸附塔120内设置的吸附物质还可以是磷酸硅铝分子筛。
即本申请是通过吸附塔120的吸附和脱附控制第一保鲜室110氧含量的,由于吸附物质具有吸附量随被吸附组分分压的增加而增加的特性,本实施例通过压力变化完成吸附和解附而实现空气分离,即通过压力变化使吸附塔120处于吸附或脱附状态。具体地,本实施例通过气泵140增加空气的压力,使空气变为压缩空气,进而将压缩空气传入到吸附塔120中,变相地增加吸附塔120内的压力,从而使吸附塔120处于吸附阶段,即使吸附塔120将压缩空气中的 至少部分氧气过滤出去,在气泵140不再将压缩空气传输到吸附塔120内时,吸附塔120压力降低,吸附塔120对其吸附的氮气等物质的吸附能力降低,吸附塔120会将其内吸附的物质解附出来,并通过吸附塔120的进气口、阀门130的出气通道流入到第一保鲜室110内,即将吸附塔120脱附出来的余气流入到第一保鲜室110内,使第一保鲜室110内氧气含量降低,可以实现控氧保鲜;并可使第一保鲜室110内空气总含量降低,使第一保鲜室110内空气处于负压状态,实现负压保鲜,即可以实现控氧保鲜和负压保鲜的双重保鲜效果。对应于沸石分子的颗粒大小,在本实施例中,气泵140将空气加压至0.12MPa~0.2MPa。
沸石分子筛的颗粒大小和气泵140对空气的加压对应关系,可实现气泵140的小型化,减小冰箱100的功率消耗,减小噪声。沸石分子筛的粒径若过小,则气流传输阻力过大,就需要适当增加压力。从而吸附塔120内填充的沸石分子的粒径应当较均匀且较适中,例如将沸石分子筛颗粒的尺寸设置为0.4mm~0.8mm,就可以不需要气泵140对空气增加过多压力,可以实现气泵140的小型化,减小冰箱100的功率消耗,减小噪声。
在本实施例中,吸附塔120可为圆柱形。当然吸附塔120也可呈正方体、长方体等其他规则或不规则形状。
可以通过控制吸附塔120的尺寸控制吸附塔120的吸附容量,将吸附塔120的尺寸控制在一个恰当的范围内时既可以保证吸附塔120的吸附容量又可以保持较小体积。具体地,吸附塔120的直径范围可为20mm-30mm。吸附塔120的高度范围可为150mm-300mm。可选地,吸附塔120的直径可为20mm、22mm、24mm、25mm或27mm。吸附塔120的高度可为160mm、186mm、200mm、230mm或250mm。
对应于吸附塔120的小尺寸设计,气泵140的传输流量也做对应的设计。可以通过改变气泵140的传输流量改变压缩空气中的分子与吸附塔120内的吸附物质的接触时间,从而改变吸附塔120对压缩空气的吸附效率。传输速度过快,会使压缩空气中的分子与吸附物质接触时间过短,不利于气体的吸附,降低吸附速率;传输速度过低,又会使吸附塔120容积增大。因此,传输流量要控制在一定的范围之内,在本实施例中,气泵140的传输流量为5L/min~15L/min,具体可为7L/min、9L/min或11L/min。当然,为保持吸附塔120的吸附效率, 气泵140每秒的传输流量与吸附塔120的容积的比值可为1.2~2.2。
第一保鲜室110可以是密闭空间,从而第一保鲜室110内空气不与大气相连通,进而可以通过去除第一保鲜室110内部的空气中的至少部分氧气且重新将去除氧气后的空气返还到第一保鲜室110内,可以使第一保鲜室110的含氧量降低,可以实现控氧保鲜;并可使第一保鲜室110内空气总含量降低,使第一保鲜室110内空气处于负压状态,实现负压保鲜,即可以实现控氧保鲜和负压保鲜的双重保鲜效果,从而实现更好的保鲜效果。
第一保鲜室110可以设置一个或多个。第一保鲜室110可以是存储蔬菜、水果类等食材的保鲜室。通过将第一保鲜室110的含氧量控制在较低水平,可以降低其内储存的食材的呼吸速率,抑制食材的新陈代谢,达到保鲜作用,并可以抑制变质、细菌的繁殖。
第一保鲜室110可设置有第一传感器。第一传感器可以用于检测第一保鲜室110的含氧量,在第一传感器检测到的第一保鲜室110的含氧量高于第一阈值时,可以控制气泵140和阀门130,通过气泵140、阀门130和吸附塔120共同控制第一保鲜室110内含氧量,使第一保鲜室110含氧量降低。在第二传感器检测到的含氧量低于第二阈值时,可以控制气泵140停止运行,即不再通过气泵140、阀门130和吸附塔120共同控制第一保鲜室110的含氧量。第一传感器连接气泵140。第一传感器还可以连接阀门130。
第一保鲜室110可设置有第二传感器。第二传感器用于检测第一保鲜室110是否打开。可以在第二传感器检测到第一保鲜室110打开时,可以控制气泵140和阀门130,通过气泵140、阀门130和吸附塔120共同作用控制第一保鲜室110内的含氧量,第一保鲜室100含氧量降低。第二传感器连接气泵140。第一传感器还可以连接阀门130。
在本实施例中,冰箱100还可进一步包括控制器。控制器可与气泵140和阀门130连接,可以控制气泵140的运行,还可以控制阀门130内进气通道和出气通道的启闭。
进一步地,控制器还可与第一传感器连接,用于接收第一传感器检测到的数据。当然,控制器还可以根据检测到的数据分析是否需要通过气泵140、阀门130和吸附塔120控制第一保鲜室110的含氧量,并根据分析的结果控制气泵140和阀门130的运转。
进一步地,控制器还可与第二传感器连接,用于接收第二传感器检测到的数据。当然,控制器还可以根据第二传感器检测到的数据分析是否需要通过气泵140、阀门130和吸附塔120控制第一保鲜室110的含氧量,并根据分析的结果控制气泵140和阀门130的运转。
在本实施例中,吸附塔120的出气口还设有出气开关。吸附塔120处于吸附状态时,出气开关开启,从而未被吸附塔120内吸附物质吸附的气体可以通过吸附塔120的出气口排出。吸附塔120处于解附状态时,出气开关关闭,从而吸附塔120脱附出来的气体只能通过吸附塔120的进气口和阀门130的进气通道流入到第一保鲜室110内,并且可以避免外界的空气通过吸附塔120的出气口进入到吸附塔120内,进而以防外界的空气与吸附塔120脱附出来的气体一同流入到第一保鲜室110内,保证第一保鲜室110含氧量的降低效率。
在本实施例中,冰箱100还进一步包括第二保鲜室150。吸附塔120的出气口连通至第二保鲜室150。即第二保鲜室150可以接收吸附塔120排出的富氧气体,从而第二保鲜室150的氧含量增加。第二保鲜室150可以存储有肉类食材,通过增加第二保鲜室150内的氧含量可以保证实现其内存储的肉类保鲜颜色更鲜艳。
如图6和图7所示,具体来说,第一保鲜室110以抽屉的方式设置在冰箱100中,吸附塔120和阀门130设置在第一保鲜室110后面,即吸附塔120和阀门130设置在第一保鲜室110远离冰箱100门的一侧,使得在拉开第一保鲜室110时,不会影响阀门130和吸附塔120的位置,避免影响阀门130、吸附塔120和气泵140之间的连接关系。气泵140设置在冰箱100底部。第一保鲜室110与气泵140的进气口之间、气泵140的出气口与阀门130之间、吸附塔120与阀门130之间均可通过气管连接,从而在拉开第一保鲜室110时,不干扰气口之间的连接。气管可为软胶气管或硬质气管。
进一步地,在吸附塔120的数目为两个时,为了使整个冰箱100的结构布局更为紧凑,吸附塔120可以并排设置,且所有吸附塔120的进气口均朝向同一方向设置。
总而言之,在冰箱100实现保鲜的过程中,将第一保鲜室110中的空气抽出进行去氧过滤,然后将排除氧气的剩余气体返还至第一保鲜室110,通过该过程使得第一保鲜室110内的氧气减小,可以实现控氧保鲜;并可使第一保鲜室 110内空气总含量降低,使第一保鲜室110内空气处于负压状态,实现负压保鲜,即可以实现控氧保鲜和负压保鲜的双重保鲜效果。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种冰箱,其特征在于,所述冰箱包括第一保鲜室、吸附塔、阀门和气泵;所述气泵的进气口连通于所述第一保鲜室,所述气泵的出气口通过所述阀门的进气通道连通于所述吸附塔的进气口,所述吸附塔的进气口通过所述阀门的出气通道连通于所述第一保鲜室;
    所述阀门进气通道开启,使所述气泵将所述第一保鲜室的空气加压传输至所述吸附塔,所述吸附塔过滤出所述空气中的氧气,由所述吸附塔的出气口排出,并吸附余气;所述阀门的进气通道关闭,使所述气泵停止向所述吸附塔加压传输所述空气,所述吸附塔释放所述余气,经由所述吸附塔的进气口及所述阀门的出气通道排至所述第一保鲜室。
  2. 根据权利要求1所述的冰箱,其特征在于,所述吸附塔的数量为至少两个,所述至少两个吸附塔分为第一吸附塔和第二吸附塔;所述阀门对应每一第一吸附塔具有一第一进气通道和一第一出气通道,对应每一第二吸附塔具有一第二进气通道和一第二出气通道;交替控制所述阀门中第一进气通道开启和第二进气通道关闭,或者第一出气通道关闭和第二进气通道开启。
  3. 根据权利要求2所述的冰箱,其特征在于,所述吸附塔的数量为两个,所述阀门为两位五通电磁阀。
  4. 根据权利要求2所述的冰箱,其特征在于,所述至少两个吸附塔并排设置,且所有吸附塔的进气口均朝向同一方向设置。
  5. 根据权利要求1所述的冰箱,其特征在于,所述吸附塔中设置有沸石分子筛颗粒,所述沸石分子筛颗粒的尺寸为0.4mm~0.8mm;所述气泵将所述空气加压至0.12MPa~0.2MPa。
  6. 根据权利要求5所述的冰箱,其特征在于,所述气泵每秒的传输流量与所述吸附塔的容积的比值为1.2~2.2。
  7. 根据权利要求6所述的冰箱,其特征在于,所述吸附塔为圆柱形,所述吸附塔的直径为20mm~30mm,高度为150mm~300mm;所述气泵的传输流量为5L/min~15L/min。
  8. 根据权利要求1所述的冰箱,其特征在于,所述冰箱包括第二保鲜室,所述吸附塔的出气口连通至所述第二保鲜室。
  9. 根据权利要求1所述的冰箱,其特征在于,所述第一保鲜室设置有第一 传感器,用于检测所述第一保鲜室的含氧量,所述第一传感器连接所述气泵。
  10. 根据权利要求1所述的冰箱,其特征在于,所述第一保鲜室上设置有第二传感器,用于检测所述第一保鲜室是否打开,所述第二传感器连接所述气泵。
PCT/CN2020/134690 2019-12-23 2020-12-08 一种冰箱 WO2021129386A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20904758.8A EP4063767A4 (en) 2019-12-23 2020-12-08 FRIDGE
JP2022537804A JP7533988B2 (ja) 2019-12-23 2020-12-08 冷蔵庫
US17/843,905 US20220357090A1 (en) 2019-12-23 2022-06-17 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911339640.4A CN113091362A (zh) 2019-12-23 2019-12-23 一种冰箱
CN201911339640.4 2019-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/843,905 Continuation US20220357090A1 (en) 2019-12-23 2022-06-17 Refrigerator

Publications (1)

Publication Number Publication Date
WO2021129386A1 true WO2021129386A1 (zh) 2021-07-01

Family

ID=76573646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134690 WO2021129386A1 (zh) 2019-12-23 2020-12-08 一种冰箱

Country Status (5)

Country Link
US (1) US20220357090A1 (zh)
EP (1) EP4063767A4 (zh)
JP (1) JP7533988B2 (zh)
CN (1) CN113091362A (zh)
WO (1) WO2021129386A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217876676U (zh) * 2022-01-29 2022-11-22 青岛海尔电冰箱有限公司 冰箱

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008778A (ko) * 2014-07-15 2016-01-25 김영선 자동차 자가발전 에어컨시스템
CN206291580U (zh) * 2016-12-02 2017-06-30 青岛海尔股份有限公司 具有生鲜保活储藏功能的储物装置
CN206352919U (zh) * 2016-12-02 2017-07-25 青岛海尔股份有限公司 冷藏冷冻设备
CN107076497A (zh) * 2014-09-16 2017-08-18 大金工业株式会社 集装箱用制冷装置
CN107076494A (zh) * 2014-09-16 2017-08-18 大金工业株式会社 集装箱用制冷装置
CN107250693A (zh) * 2015-02-27 2017-10-13 大金工业株式会社 集装箱用制冷装置
CN107923692A (zh) * 2015-08-28 2018-04-17 大金工业株式会社 集装箱用制冷装置
CN207849867U (zh) * 2018-02-11 2018-09-11 宁夏大学 一种保鲜装置及系统
CN211876472U (zh) * 2019-12-23 2020-11-06 广东美的白色家电技术创新中心有限公司 一种冰箱

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914749A (ja) * 1982-07-15 1984-01-25 Hitachi Ltd 貯蔵庫の雰囲気調整方法
JPH0282083A (ja) * 1988-09-19 1990-03-22 Ryuhei Fukuda 窒素富化の雰囲気状態を維持する容器
JPH02203185A (ja) * 1989-01-31 1990-08-13 Toshiba Corp 冷蔵庫
US5451248A (en) * 1990-07-19 1995-09-19 The Boc Group Plc Storage and transportation of goods under controlled atmospheres
JPH1121107A (ja) * 1997-07-01 1999-01-26 Sanyo Electric Co Ltd 空気質活性装置
CN2312064Y (zh) * 1997-10-24 1999-03-31 殷小平 单吸附压力控制式制氮机
CN100523655C (zh) * 2001-02-21 2009-08-05 三菱化学株式会社 吸附热泵、其吸附材料的使用和使用方法及车辆空调装置
US8258137B2 (en) * 2008-01-29 2012-09-04 Katholieke Universiteit Leuven Process for release of biologically active species from mesoporous oxide systems
CN102679616B (zh) * 2012-02-17 2014-07-16 南京工业大学 双级吸附制冷循环系统
US9982927B2 (en) * 2013-11-04 2018-05-29 Lg Electronics Inc. Refrigerator and method of controlling the same
US9841224B2 (en) * 2016-01-18 2017-12-12 Haier Us Appliance Solutions, Inc. Refrigerator appliances with passive storage compartments
CN106091519A (zh) * 2016-05-31 2016-11-09 青岛海尔股份有限公司 冰箱
CN106115637B (zh) * 2016-06-20 2018-04-20 青岛海尔股份有限公司 冷藏冷冻设备
CN106642968A (zh) * 2016-11-11 2017-05-10 青岛海尔股份有限公司 用于冷藏冷冻设备的制氮控制方法以及冷藏冷冻设备
US11779029B2 (en) * 2016-12-05 2023-10-10 Pace International Llc Method and system for the treatment of agricultural products
JP6917045B2 (ja) * 2016-12-12 2021-08-11 アクア株式会社 冷蔵庫
CN109464877A (zh) * 2017-09-08 2019-03-15 霍尼韦尔特性材料和技术(中国)有限公司 改变气体氮氧浓度的方法、降氧装置和方法以及冰箱
CN109613859B (zh) * 2018-12-06 2021-12-28 深圳市德达医疗科技集团有限公司 一种分子筛制氧机及其控制系统、方法
CN113446800B (zh) * 2020-03-24 2022-05-31 合肥华凌股份有限公司 保鲜装置及冰箱

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008778A (ko) * 2014-07-15 2016-01-25 김영선 자동차 자가발전 에어컨시스템
CN107076497A (zh) * 2014-09-16 2017-08-18 大金工业株式会社 集装箱用制冷装置
CN107076494A (zh) * 2014-09-16 2017-08-18 大金工业株式会社 集装箱用制冷装置
CN107250693A (zh) * 2015-02-27 2017-10-13 大金工业株式会社 集装箱用制冷装置
CN107923692A (zh) * 2015-08-28 2018-04-17 大金工业株式会社 集装箱用制冷装置
CN206291580U (zh) * 2016-12-02 2017-06-30 青岛海尔股份有限公司 具有生鲜保活储藏功能的储物装置
CN206352919U (zh) * 2016-12-02 2017-07-25 青岛海尔股份有限公司 冷藏冷冻设备
CN207849867U (zh) * 2018-02-11 2018-09-11 宁夏大学 一种保鲜装置及系统
CN211876472U (zh) * 2019-12-23 2020-11-06 广东美的白色家电技术创新中心有限公司 一种冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063767A4 *

Also Published As

Publication number Publication date
JP7533988B2 (ja) 2024-08-14
EP4063767A4 (en) 2022-12-21
JP2023506564A (ja) 2023-02-16
CN113091362A (zh) 2021-07-09
EP4063767A1 (en) 2022-09-28
US20220357090A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
CN211876472U (zh) 一种冰箱
KR20180130101A (ko) 냉장고
US20200253227A1 (en) Internal air adjustment device
WO2021129386A1 (zh) 一种冰箱
CN215305120U (zh) 一种控氧装置和厨房电器
CN109464877A (zh) 改变气体氮氧浓度的方法、降氧装置和方法以及冰箱
CN215138351U (zh) 循环排氧装置和厨房电器
JP2019150812A (ja) 空気組成調節装置
EP3473956B1 (en) Refrigeration and freezing device
JP6662427B2 (ja) 庫内空気調節装置
WO2022111299A1 (zh) 循环排氧装置和厨房电器
CN210352988U (zh) 便携式保鲜装置及保鲜系统
CN207462922U (zh) 降氧装置和冰箱
CN114532867A (zh) 一种控氧装置和厨房电器
CN114532866A (zh) 一种控氧装置和厨房电器
CN107875802A (zh) 二氧化碳吸附系统及包括其的气调装置
CN111846631A (zh) 一种分离氧气的保鲜装置及其保鲜方法
CN105923613B (zh) 制氮装置与冰箱
CN218908391U (zh) 自动投递调料瓶及应用其的自动投料装置
CN111408235A (zh) 降氧装置及冰箱
CN112265971A (zh) 一种密闭仓间快速机械脱氧富氮的方法
KR20040092095A (ko) 기체 분리 시스템
KR20060025723A (ko) 기체 분리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537804

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020904758

Country of ref document: EP

Effective date: 20220620

NENP Non-entry into the national phase

Ref country code: DE