WO2021129204A1 - 一种废线路板裂解焦炭提纯溴化钠的方法 - Google Patents

一种废线路板裂解焦炭提纯溴化钠的方法 Download PDF

Info

Publication number
WO2021129204A1
WO2021129204A1 PCT/CN2020/127972 CN2020127972W WO2021129204A1 WO 2021129204 A1 WO2021129204 A1 WO 2021129204A1 CN 2020127972 W CN2020127972 W CN 2020127972W WO 2021129204 A1 WO2021129204 A1 WO 2021129204A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium bromide
waste circuit
circuit boards
crude
purification
Prior art date
Application number
PCT/CN2020/127972
Other languages
English (en)
French (fr)
Inventor
吴玉锋
刘功起
潘德安
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US17/351,083 priority Critical patent/US20210309533A1/en
Publication of WO2021129204A1 publication Critical patent/WO2021129204A1/zh
Priority to US17/867,618 priority patent/US20220356067A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/10Bromides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • C01D3/18Purification with selective solvents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/06Sulfating roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a recovery technology for the co-processing and high-value utilization of waste circuit board smelting and thermal cracking residues, and in particular to the use of coke in waste circuit board cracking slag to reduce crude bromide salt enriched from waste circuit board smelting soot A new approach.
  • Waste circuit boards are the most valuable and most difficult-to-dispose components in waste electronic appliances, and their disposal is the core of the high-value utilization of electronic appliances.
  • the current mainstream treatment methods are physical separation, fire treatment and wet treatment, as well as the gradual development of biological treatment technologies.
  • the respective treatment characteristics of these recycling technologies are shown in Table 1.
  • physical separation can obtain metal and non-metal enrichments.
  • Hydrometallurgy and biometallurgy mostly focus on the recovery of metals in circuit boards.
  • smelting and cracking technology can quickly obtain metal alloys.
  • the non-metal resources can be used, which has a good volume reduction effect.
  • Pyro-smelting and pyrolysis technologies are considered to be the most effective technologies for the high-value utilization of waste circuit boards, which can effectively recover metals, resins and glass fibers.
  • 201711490199.0 proposes a method to enrich the bromine in the smelting soot by using a sulfated roasting-alkali washing spray method To obtain crude bromide salt, this method has a good effect on the removal and enrichment of bromide in circuit board smelting soot, but the obtained crude bromide salt has not been further purified, and its high-value utilization needs further study.
  • the waste circuit board cracking technology heats the waste circuit board to a certain temperature under aerobic or anaerobic conditions, so that the organic matter such as epoxy resin is decomposed into gas and liquid pyrolysis oil, while the metal and glass fiber are basically unchanged.
  • the process of solid residue and recycling For the residues produced by cracking, the current research mainly focuses on the comprehensive recovery of gas and oil and the recovery and utilization of metals in the cracking slag, but there is less research on the recovery of non-metals in the cracking slag.
  • the application number is CN201010529818.4.
  • the method for preparing polypropylene composite material from fiber glass in the pyrolysis slag of circuit board is proposed. Although the high-value utilization of the glass fiber in the pyrolysis slag is realized, the coke is directly calcined in the recycling process. Disposal, not recycling it.
  • Bromine salt a by-product obtained in the process of smelting and recycling waste circuit boards, has high impurity content and different valence states of bromine.
  • the traditional treatment method is to add pure reducing agent for heating and reduction to obtain sodium bromide solution, and then use electrodialysis membrane
  • the process or the chlorination process to obtain the elemental bromine has the disadvantages of high cost and complicated operating environment.
  • the recycling of waste circuit board cracking slag often focuses on recycling the metal and glass fiber in it, and the coke in it is often directly calcined, which wastes the value of resources.
  • the present invention proposes a new method of using the coke in the waste circuit board cracking slag to reduce the crude bromide salt enriched from the waste circuit board smelting soot, and obtain pure sodium bromide crystals through carbonization reduction, purification filtration and vacuum desolvation. It realizes the resource coupling and integrated utilization of the two kinds of wastes, and has the characteristics of simple process, high resource utilization, and environmental friendliness.
  • the purpose of the present invention is mainly to solve the problem of high-value utilization of waste circuit board smelting and thermal cracking residues, and propose a new method of using the coke in the waste circuit board cracking slag to reduce the crude bromine salt enriched in the waste circuit board smelting soot , Realizes the resource coupling and integrated utilization of the two kinds of wastes, and has the characteristics of simple process, high resource utilization, and environmental friendliness.
  • the method for purifying sodium bromide by cracking coke from waste circuit boards according to the present invention is carried out in the following steps:
  • Carbonization conversion the crude bromine salt enriched from waste circuit board smelting soot is mixed with coke separated from waste circuit board cracking residue, mixed evenly, and heated to react to obtain carbon monoxide, crude sodium bromide, and carbon monoxide Collected as raw material for water gas, the mass of coke added per kilogram of crude bromine salt is 0.1-1.0 kg, the reaction temperature is 250-450°C, and the reaction time is 1.0-2.0h;
  • step (2) Purification and filtration: The crude sodium bromide obtained in step (1) is added to distilled water for purification and filtration to obtain impurity slag and sodium bromide solution.
  • the impurity slag is processed in a centralized manner, and the liquid-to-solid mass ratio is 8:1 ⁇ 3: 1 (liter/kg), reaction temperature is 50 ⁇ 80°C, reaction time is 20 ⁇ 60min;
  • step (3) Vacuum desolventization: the sodium bromide solution obtained in step (2) is vacuum desolventized to obtain sodium bromide crystals and desolventizing mother liquor.
  • the desolventizing mother liquor is returned to the purification and filtration process, wherein the reaction time is 30-60min, and the reaction The temperature is 60 ⁇ 150°C.
  • the present invention adopts one waste generated in the waste circuit board recycling process to process another waste
  • the coke in the cracking residue of the waste circuit board is used as a reducing agent to reduce the waste circuit board.
  • the crude bromide enriched in the smelting soot can reduce the high-valent bromate in the crude bromide to obtain pure sodium bromide crystals.
  • no additional reducing agent is added, and other impurities are not introduced, thus realizing two kinds of wastes.
  • Resource coupling and integrated utilization have the characteristics of simple process, high resource utilization, and environmental friendliness.
  • Figure 1 shows the process flow diagram of waste circuit board smelting soot enrichment of crude bromide
  • Figure 2 shows the process flow diagram of separating waste circuit board cracking coke
  • FIG. 3 shows the process flow chart for purifying sodium bromide by cracking coke from waste circuit boards
  • Carbonization conversion the crude bromine salt enriched from waste circuit board smelting soot is mixed with coke separated from waste circuit board cracking residue, mixed evenly, and heated to react to obtain carbon monoxide, crude sodium bromide, and carbon monoxide Collected as raw material for water gas, where the weight of coke added per kg of crude bromide salt is 0.1 kg, the reaction temperature is 250°C, and the reaction time is 1.0h;
  • Step (2) Purification and filtration: add the crude sodium bromide obtained in step (1) to distilled water for purification and filtration to obtain impurity slag and sodium bromide solution.
  • the impurity slag is processed in a centralized manner.
  • the mass ratio of liquid to solid is 8:1 (L/L). Kg), the reaction temperature is 50°C, and the reaction time is 20min;
  • step (3) Vacuum desolventization: the sodium bromide solution obtained in step (2) is vacuum desolventized to obtain sodium bromide crystals and desolventizing mother liquor, and the desolventizing mother liquor is returned to the purification and filtration process, wherein the reaction time is 60min, and the reaction temperature It is 60°C.
  • the purity of the obtained sodium bromide crystals is 98.6%, which meets the standard of first-class sodium bromide (NaBr ⁇ 98.5%) in the national Ministry of Chemical Industry standard HG/T 3809-2006.
  • Carbonization conversion The crude bromine salt enriched from waste circuit board smelting soot is mixed with the coke separated from the waste circuit board cracking slag, and the mixture is evenly mixed and heated to react to obtain carbon monoxide, crude sodium bromide, and carbon monoxide. Collected as raw material for water gas, where the weight of coke added per kg of crude bromide salt is 1.0 kg, the reaction temperature is 450°C, and the reaction time is 2.0h;
  • Step (2) Purification and filtration: add the crude sodium bromide obtained in step (1) to distilled water for purification and filtration to obtain impurity slag and sodium bromide solution.
  • the impurity slag is processed in a centralized manner.
  • the mass ratio of liquid to solid is 3:1 (L/L).
  • Kg) the reaction temperature is 80°C, and the reaction time is 60min;
  • step (3) Vacuum desolventization: the sodium bromide solution obtained in step (2) is vacuum desolventized to obtain sodium bromide crystals and desolventizing mother liquor, and the desolventizing mother liquor is returned to the purification and filtration process, wherein the reaction time is 30 min and the reaction temperature is 150°C.
  • the purity of the obtained sodium bromide crystals is 99.4%, which meets the standard of superior sodium bromide (NaBr ⁇ 99.0%) in the National Ministry of Chemical Industry standard HG/T 3809-2006.
  • Carbonization conversion The crude bromine salt enriched from waste circuit board smelting soot is mixed with the coke separated from the waste circuit board cracking slag, and the mixture is evenly mixed and heated to react to obtain carbon monoxide, crude sodium bromide, and carbon monoxide. Collected as water gas raw materials, of which the weight of coke added per kilogram of crude bromide salt is 0.4 kg, the reaction temperature is 300°C, and the reaction time is 1.2h;
  • step (2) Purification and filtration: The crude sodium bromide obtained in step (1) is added to distilled water for purification and filtration to obtain impurity slag and sodium bromide solution.
  • the impurity slag is treated in a centralized manner.
  • the liquid-to-solid mass ratio is 7:1 (L/L/ Kg), the reaction temperature is 60°C, and the reaction time is 25min;
  • step (3) Vacuum desolventization: the sodium bromide solution obtained in step (2) is vacuum desolventized to obtain sodium bromide crystals and desolventizing mother liquor, and the desolventizing mother liquor is returned to the purification and filtration process, wherein the reaction time is 50min, and the reaction temperature is 100°C.
  • the purity of the obtained sodium bromide crystals is 98.8%, which meets the standard of first-class sodium bromide (NaBr ⁇ 98.5%) in the standard HG/T 3809-2006 of the Ministry of Chemical Industry.
  • Carbonization conversion The crude bromine salt enriched from waste circuit board smelting soot is mixed with the coke separated from the waste circuit board cracking slag, and the mixture is evenly mixed and heated to react to obtain carbon monoxide, crude sodium bromide, and carbon monoxide. Collected as water gas raw materials, of which the weight of coke added per kilogram of crude bromine salt is 0.8 kg, the reaction temperature is 400 °C, and the reaction time is 1.8 h;
  • step (2) Purification and filtration: The crude sodium bromide obtained in step (1) is added to distilled water for purification and filtration to obtain impurity slag and sodium bromide solution.
  • the impurity slag is treated in a centralized manner.
  • the mass ratio of liquid to solid is 6:1 (L/L). Kg), the reaction temperature is 75°C, and the reaction time is 50min;
  • step (3) Vacuum desolventization: the sodium bromide solution obtained in step (2) is vacuum desolventized to obtain sodium bromide crystals and desolventizing mother liquor.
  • the desolventizing mother liquor is returned to the purification and filtration process, wherein the reaction time is 40min and the reaction temperature is 130°C.
  • the purity of the obtained sodium bromide crystals is 99.2%, which meets the standard of superior sodium bromide (NaBr ⁇ 99.0%) in the National Ministry of Chemical Industry standard HG/T 3809-2006.
  • Carbonization conversion The crude bromine salt enriched from waste circuit board smelting soot is mixed with the coke separated from the waste circuit board cracking slag, and the mixture is evenly mixed and heated to react to obtain carbon monoxide, crude sodium bromide, and carbon monoxide. Collected as water gas raw materials, of which the weight of coke added per kilogram of crude bromide salt is 0.5 kg, the reaction temperature is 350°C, and the reaction time is 1.5h;
  • Step (2) Purification and filtration: add the crude sodium bromide obtained in step (1) to distilled water for purification and filtration to obtain impurity slag and sodium bromide solution, and the impurity slag is processed in a centralized manner.
  • the mass ratio of liquid to solid is 4:1 (L/kg ), the reaction temperature is 70°C, and the reaction time is 40min;
  • step (3) Vacuum desolventization: the sodium bromide solution obtained in step (2) is vacuum desolventized to obtain sodium bromide crystals and desolventizing mother liquor, and the desolventizing mother liquor is returned to the purification and filtration process, wherein the reaction time is 45min, and the reaction temperature is 120°C.
  • the purity of the obtained sodium bromide crystals is 98.9%, which meets the standard of first-class sodium bromide (NaBr ⁇ 98.5%) in the standard HG/T 3809-2006 of the Ministry of Chemical Industry.
  • Carbonization conversion The crude bromine salt enriched from waste circuit board smelting soot is mixed with the coke separated from the waste circuit board cracking slag, and the mixture is evenly mixed and heated to react to obtain carbon monoxide, crude sodium bromide, and carbon monoxide. Collected as raw material for water gas, of which the weight of coke added per kg of crude bromide salt is 0.6 kg, the reaction temperature is 350°C, and the reaction time is 1.6h;
  • step (2) Purification and filtration: The crude sodium bromide obtained in step (1) is added to distilled water for purification and filtration to obtain impurity slag and sodium bromide solution, and the impurity slag is treated in a centralized manner.
  • the mass ratio of liquid to solid is 5:1 (L/kg ), the reaction temperature is 70°C, and the reaction time is 45min;
  • step (3) Vacuum desolventization: the sodium bromide solution obtained in step (2) is vacuum desolventized to obtain sodium bromide crystals and desolventizing mother liquor, and the desolventizing mother liquor is returned to the purification and filtration process, wherein the reaction time is 30 min and the reaction temperature is 80°C.
  • the purity of the obtained sodium bromide crystals is 99.1%, which meets the standard of superior sodium bromide (NaBr ⁇ 99.0%) in the National Ministry of Chemical Industry standard HG/T 3809-2006.

Abstract

一种废线路板裂解焦炭提纯溴化钠的方法,属于溴化钠净化提纯及高值化利用领域,特别涉及废线路板裂解焦炭还原提纯从废线路板冶炼烟灰得到的粗溴盐的方法。主要步骤如下:碳化转化、净化过滤和真空脱溶。采用废线路板裂解渣中的焦炭还原从废线路板冶炼烟灰富集到的粗溴盐的方法,得到了纯净溴化钠晶体,实现了两种废弃物的资源耦合及高值化利用,避免了废线路板回收过程的二次污染问题。具有工艺简单易行、资源利用率高及无尾液排放等特点。

Description

一种废线路板裂解焦炭提纯溴化钠的方法 技术领域
本发明涉及废线路板冶炼与热裂解残余物协同处置及高值化利用的回收技术,特别是涉及利用废线路板裂解渣中的焦炭还原从废线路板冶炼烟灰富集得到的粗溴盐的全新方法。
背景技术
废线路板是废电子电器中价值最高、最难处置的部件,其处置是电子电器高值化利用的核心。目前主流的处理方式是物理分选、火法处理和湿法处理,以及逐渐发展的生物处理技术,这些回收技术各自的处理特点如表1所示。其中物理分选可以获得金属和非金属的富集物,湿法冶金及生物冶金多是侧重于线路板中金属的回收,而火法冶炼技术中,冶炼和裂解技术可快速的得到金属合金,同时可以利用其中的非金属资源,具有较好的减容效果。火法冶炼、热解技术被认为是废线路板高值化利用最有效的技术,可以有效的回收其中的金属、树脂和玻璃纤维。
表1废线路板主要处理技术对比
Figure PCTCN2020127972-appb-000001
随着技术的进步,先进环保的熔池熔炼技术被应用于处理废线路板,欧美、日本等发达国家已作为处理废线路板的主流技术,典型的如优美科采用艾萨顶吹熔炼技术处理废线路板和铜精矿,波立登采用卡尔多炉和奥斯麦特顶吹熔炼技术处理手机和计算机线路板等 整体利用的成功案例。该技术的成功实施,有利于从根本上改变传统的焚烧模式,有利于减少因焚烧而产生的环境问题。由于线路板中含有大量的溴化阻燃剂,使得在废线路板冶炼烟灰中存在大量的溴化物,申请号201711490199.0提出了一种采用硫酸化焙烧-碱洗喷淋方法富集冶炼烟灰中溴化物的方法,得到粗溴盐,该方法对线路板冶炼烟灰中溴化物脱除和富集效果较好,但是对得到的粗溴盐没有进一步提纯,其高值化利用有待进一步研究。
废线路板裂解技术在有氧或无氧条件下,把废线路板加热到一定温度,使其中的环氧树脂等有机物分解成气体和液态裂解油,而金属和玻璃纤维等基本不发生变化生产固相残渣并加以回收的过程。对于裂解产生的残余物,目前的研究主要集中在气体和油的综合回收以及裂解渣中金属的回收利用,而对于裂解渣中非金属回收研究较少。申请号为CN201010529818.4提出的利用线路板裂解渣中纤维玻璃制备聚丙烯复合材料的方法,虽然实现了裂解渣中玻璃纤维的高值化利用,但在回收过程中,对其中的焦炭直接煅烧处理,没有对其进行回收利用。
废线路板冶炼回收过程中得到的副产物溴盐,杂质含量高,且溴的价态不一,传统的处理方式是加入纯净的还原剂进行加热还原得到溴化钠溶液,然后采用电渗析膜工艺或氯化工艺得到溴单质,存在成本较高,操作环境复杂的缺点。而废线路板裂解渣的回收往往注重回收其中的金属及玻璃纤维,而其中的焦炭往往直接煅烧浪费了其中的资源价值。综上所述,针对我国废线路板冶炼、裂解处理技术的特点,以及回收过程产生二次废弃物的处理现状,急需开发废线路板冶炼、裂解残余物全组分回收利用的技术。本发明提出一种利用废线路板裂解渣中的焦炭还原从废线路板冶炼烟灰富集到的粗溴盐的全新方法,通过碳化还原、净化过滤及真空脱溶得到了纯净溴化钠晶体,实现了两种废弃物的资源耦合及集成利用,具有工艺简单易行、资源利用率高、环境友好等特点。
发明内容
本发明的目的主要解决废线路板冶炼与热裂解残余物高值化利用的问题,提出一种利用废线路板裂解渣中的焦炭还原废线路板冶炼烟灰富集到的粗溴盐的全新方法,实现了两种废弃物的资源耦合及集成利用,具有工艺简单易行、资源利用率高、环境友好等特点。
本发明所述的一种废线路板裂解焦炭提纯溴化钠的方法如下步骤进行:
(1)碳化转化:将从废线路板冶炼烟灰中富集得到的粗溴盐与从废线路板裂解渣中分离出的焦炭混合,混合均匀后加热反应,得到一氧化碳和粗溴化钠,一氧化碳收集做水煤气原料,其中每公斤粗溴盐加入焦炭质量为0.1~1.0公斤,反应温度为250~450℃,反应时间为1.0~2.0h;
(2)净化过滤:将步骤(1)得到的粗溴化钠加入蒸馏水进行净化过滤,得到杂质渣和溴化钠溶液,杂质渣集中处理,其中液固体积质量比为8:1~3:1(升/公斤),反应温度为50~80℃,反应时间为20~60min;
(3)真空脱溶:将步骤(2)得到的溴化钠溶液进行真空脱溶,得到溴化钠晶体和脱溶母液,脱溶母液返净化过滤工序,其中反应时间为30~60min,反应温度为60~150℃。
与现有技术相比,由于本发明采用废线路板回收过程产生的一种废弃物处理另一种废弃物的方式,把废线路板裂解残渣中的焦炭做还原剂,用于还原废线路板冶炼烟灰富集到的粗溴盐,使粗溴盐中高价溴酸盐还原制得纯净溴化钠晶体,实施过程中不用额外添加还原剂,不会引进其他杂质,实现了两种废弃物的资源耦合及集成利用,具有工艺简单易行、资源利用率高、环境友好等特点。
附图说明
图1表示废线路板冶炼烟灰富集粗溴盐的工艺流程图
图2表示分离废线路板裂解焦炭的工艺流程图
图3表示废线路板裂解焦炭提纯溴化钠的工艺流程图
具体实施方式
以下结合实例旨在进一步说明本发明,而非限制本发明。
实施例1
按照如下步骤进行回收:
(1)碳化转化:将从废线路板冶炼烟灰中富集得到的粗溴盐与从废线路板裂解渣中分离出的焦炭混合,混合均匀后加热反应,得到一氧化碳和粗溴化钠,一氧化碳收集做水煤气原料,其中每公斤粗溴盐加入焦炭质量为0.1公斤,反应温度为250℃,反应时间为1.0h;
(2)净化过滤:将步骤(1)得到的粗溴化钠加入蒸馏水进行净化过滤,得到杂质渣 和溴化钠溶液,杂质渣集中处理,其中液固体积质量比为8:1(升/公斤),反应温度为50℃,反应时间为20min;
(3)真空脱溶:将步骤(2)得到的溴化钠溶液进行真空脱溶,得到溴化钠晶体和脱溶母液,脱溶母液返净化过滤工序,其中,反应时间为60min,反应温度为60℃。
得到的溴化钠晶体纯度为98.6%,达到国家化工部标准HG/T 3809-2006中溴化钠一等品(NaBr≥98.5%)的标准。
实施例2
按照如下步骤进行回收:
(1)碳化转化:将从废线路板冶炼烟灰中富集得到的粗溴盐与从废线路板裂解渣中分离出的焦炭混合,混合均匀后加热反应,得到一氧化碳和粗溴化钠,一氧化碳收集做水煤气原料,其中每公斤粗溴盐加入焦炭质量为1.0公斤,反应温度为450℃,反应时间为2.0h;
(2)净化过滤:将步骤(1)得到的粗溴化钠加入蒸馏水进行净化过滤,得到杂质渣和溴化钠溶液,杂质渣集中处理,其中液固体积质量比为3:1(升/公斤),反应温度为80℃,反应时间为60min;
(3)真空脱溶:将步骤(2)得到的溴化钠溶液进行真空脱溶,得到溴化钠晶体和脱溶母液,脱溶母液返净化过滤工序,其中反应时间为30min,反应温度为150℃。
得到的溴化钠晶体纯度为99.4%,达到国家化工部标准HG/T 3809-2006中溴化钠优等品(NaBr≥99.0%)的标准。
实施例3
按照如下步骤进行回收:
(1)碳化转化:将从废线路板冶炼烟灰中富集得到的粗溴盐与从废线路板裂解渣中分离出的焦炭混合,混合均匀后加热反应,得到一氧化碳和粗溴化钠,一氧化碳收集做水煤气原料,其中每公斤粗溴盐加入焦炭质量为0.4公斤,反应温度为300℃,反应时间为1.2h;
(2)净化过滤:将步骤(1)得到的粗溴化钠加入蒸馏水进行净化过滤,得到杂质渣和溴化钠溶液,杂质渣集中处理,其中液固体积质量比为7:1(升/公斤),反应温度60℃, 反应时间为25min;
(3)真空脱溶:将步骤(2)得到的溴化钠溶液进行真空脱溶,得到溴化钠晶体和脱溶母液,脱溶母液返净化过滤工序,其中反应时间为50min,反应温度为100℃。
得到的溴化钠晶体纯度为98.8%,达到国家化工部标准HG/T 3809-2006中溴化钠一等品(NaBr≥98.5%)的标准。
实施例4
按照如下步骤进行回收:
(1)碳化转化:将从废线路板冶炼烟灰中富集得到的粗溴盐与从废线路板裂解渣中分离出的焦炭混合,混合均匀后加热反应,得到一氧化碳和粗溴化钠,一氧化碳收集做水煤气原料,其中每公斤粗溴盐加入焦炭质量为0.8公斤,反应温度为400℃,反应时间为1.8h;
(2)净化过滤:将步骤(1)得到的粗溴化钠加入蒸馏水进行净化过滤,得到杂质渣和溴化钠溶液,杂质渣集中处理,其中液固体积质量比为6:1(升/公斤),反应温度为75℃,反应时间为50min;
(3)真空脱溶:将步骤(2)得到的溴化钠溶液进行真空脱溶,得到溴化钠晶体和脱溶母液,脱溶母液返净化过滤工序,其中反应时间为40min,反应温度为130℃。
得到的溴化钠晶体纯度为99.2%,达到国家化工部标准HG/T 3809-2006中溴化钠优等品(NaBr≥99.0%)的标准。
实施例5
按照如下步骤进行回收:
(1)碳化转化:将从废线路板冶炼烟灰中富集得到的粗溴盐与从废线路板裂解渣中分离出的焦炭混合,混合均匀后加热反应,得到一氧化碳和粗溴化钠,一氧化碳收集做水煤气原料,其中每公斤粗溴盐加入焦炭质量为0.5公斤,反应温度为350℃,反应时间为1.5h;
(2)净化过滤:将步骤(1)得到的粗溴化钠加入蒸馏水进行净化过滤,得到杂质渣和溴化钠溶液,杂质渣集中处理,其中液固体积质量比4:1(升/公斤),反应温度为70℃,反应时间为40min;
(3)真空脱溶:将步骤(2)得到的溴化钠溶液进行真空脱溶,得到溴化钠晶体和脱溶母液,脱溶母液返净化过滤工序,其中反应时间为45min,反应温度为120℃。
得到的溴化钠晶体纯度为98.9%,达到国家化工部标准HG/T 3809-2006中溴化钠一等品(NaBr≥98.5%)的标准。
实施例6
按照如下步骤进行回收:
(1)碳化转化:将从废线路板冶炼烟灰中富集得到的粗溴盐与从废线路板裂解渣中分离出的焦炭混合,混合均匀后加热反应,得到一氧化碳和粗溴化钠,一氧化碳收集做水煤气原料,其中每公斤粗溴盐加入焦炭质量为0.6公斤,反应温度为350℃,反应时间为1.6h;
(2)净化过滤:将步骤(1)得到的粗溴化钠加入蒸馏水进行净化过滤,得到杂质渣和溴化钠溶液,杂质渣集中处理,其中液固体积质量比5:1(升/公斤),反应温度为70℃,反应时间为45min;
(3)真空脱溶:将步骤(2)得到的溴化钠溶液进行真空脱溶,得到溴化钠晶体和脱溶母液,脱溶母液返净化过滤工序,其中反应时间为30min,反应温度为80℃。
得到的溴化钠晶体纯度为99.1%,达到国家化工部标准HG/T 3809-2006中溴化钠优等品(NaBr≥99.0%)的标准。
以上实施例仅用于说明本发明的优选实施方式,但本发明并不限于上述实施方式,在所述领域技术人员所具备的知识范围,在不违背科学及本发明思想情况下,在本发明的精神和原则之内所作的修改、等同替代及改进等,均应视为本申请的保护范围。

Claims (3)

  1. 一种废线路板裂解焦炭提纯溴化钠的方法,其特征在于,具体步骤如下:
    (1)碳化转化:将从废线路板冶炼烟灰中富集得到的粗溴盐与从废线路板裂解渣中分离出的焦炭混合,混合均匀后加热反应,得到一氧化碳气体和粗溴化钠,一氧化碳气体收集做水煤气原料;每公斤粗溴盐加入废线路板裂解焦炭质量为0.1~1.0公斤,反应温度为250~450℃,反应时间为1.0~2.0h;
    (2)净化过滤:将步骤(1)得到的粗溴化钠加入蒸馏水进行净化过滤,得到杂质渣和溴化钠溶液,杂质渣集中处理;
    (3)真空脱溶:将步骤(2)得到的溴化钠溶液进行真空脱溶,得到溴化钠晶体和脱溶母液,脱溶母液返净化过滤工序。
  2. 如权利要求1所述的一种废线路板裂解焦炭提纯溴化钠的方法,其特征在于,在净化过滤过程,液固体积质量比8:1~3:1(升/公斤),反应温度为50~85℃,反应时间为20~60min。
  3. 如权利要求1所述的一种废线路板裂解焦炭提纯溴化钠的方法,其特征在于,在真空脱溶过程,反应时间为30~60min,反应温度为60~150℃。
PCT/CN2020/127972 2019-12-25 2020-11-11 一种废线路板裂解焦炭提纯溴化钠的方法 WO2021129204A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/351,083 US20210309533A1 (en) 2019-12-25 2021-06-17 Method of purifying sodium bromide from waste circuit boards pyrolysis coke
US17/867,618 US20220356067A1 (en) 2019-12-25 2022-07-18 Method of purifying sodium bromide from waste circuit boards pyrolysis coke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911359343.6 2019-12-25
CN201911359343.6A CN110980771A (zh) 2019-12-25 2019-12-25 一种废线路板裂解焦炭提纯溴化钠的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/351,083 Continuation US20210309533A1 (en) 2019-12-25 2021-06-17 Method of purifying sodium bromide from waste circuit boards pyrolysis coke

Publications (1)

Publication Number Publication Date
WO2021129204A1 true WO2021129204A1 (zh) 2021-07-01

Family

ID=70076900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127972 WO2021129204A1 (zh) 2019-12-25 2020-11-11 一种废线路板裂解焦炭提纯溴化钠的方法

Country Status (3)

Country Link
US (1) US20210309533A1 (zh)
CN (1) CN110980771A (zh)
WO (1) WO2021129204A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110980771A (zh) * 2019-12-25 2020-04-10 北京工业大学 一种废线路板裂解焦炭提纯溴化钠的方法
CN112457871A (zh) * 2020-10-28 2021-03-09 北京工业大学 一种废线路板树脂粉末裂解焦炭制备气化型焦的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969491A (en) * 1973-04-16 1976-07-13 Hughes Aircraft Company Purification of alkali metal chlorides and bromides
CN1354125A (zh) * 2001-12-26 2002-06-19 周群领 用溴素和碱生产溴化钠、溴酸钠、溴化钾和溴酸钾
CN101659426A (zh) * 2009-09-02 2010-03-03 达州市恒成能源(集团)有限责任公司 一种连续多段空吹制备溴化钠的方法
CN105858686A (zh) * 2016-06-26 2016-08-17 潍坊天福化学科技有限公司 一种利用副产氢溴酸制备工业溴化钠的工艺
CN106166473A (zh) * 2016-08-08 2016-11-30 中山大学 一种利用废线路板中非金属分离物制备吸附剂的方法
CN109095496A (zh) * 2018-09-17 2018-12-28 北京工业大学 一种从含溴冶炼烟灰中回收溴盐的方法
CN109112313A (zh) * 2018-09-17 2019-01-01 北京工业大学 两步法分离回收线路板焚烧烟灰中溴的方法
CN110592385A (zh) * 2019-09-27 2019-12-20 广东省资源综合利用研究所 一种废弃电路板熔炼烟灰无害化回收方法
CN110980771A (zh) * 2019-12-25 2020-04-10 北京工业大学 一种废线路板裂解焦炭提纯溴化钠的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002185B (zh) * 2010-10-29 2012-12-26 广东工业大学 用废线路板中回收的玻璃纤维制备聚丙烯复合材料的方法
CN106185995B (zh) * 2016-07-07 2018-02-27 山东海王化工股份有限公司 溴化钠制备方法
CN108118157B (zh) * 2017-12-30 2019-04-12 北京工业大学 线路板焚烧烟灰预处理及溴的回收方法
CN109055722A (zh) * 2018-09-17 2018-12-21 北京工业大学 一种线路板协同冶炼烟灰硝酸钠焙烧分离溴的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969491A (en) * 1973-04-16 1976-07-13 Hughes Aircraft Company Purification of alkali metal chlorides and bromides
CN1354125A (zh) * 2001-12-26 2002-06-19 周群领 用溴素和碱生产溴化钠、溴酸钠、溴化钾和溴酸钾
CN101659426A (zh) * 2009-09-02 2010-03-03 达州市恒成能源(集团)有限责任公司 一种连续多段空吹制备溴化钠的方法
CN105858686A (zh) * 2016-06-26 2016-08-17 潍坊天福化学科技有限公司 一种利用副产氢溴酸制备工业溴化钠的工艺
CN106166473A (zh) * 2016-08-08 2016-11-30 中山大学 一种利用废线路板中非金属分离物制备吸附剂的方法
CN109095496A (zh) * 2018-09-17 2018-12-28 北京工业大学 一种从含溴冶炼烟灰中回收溴盐的方法
CN109112313A (zh) * 2018-09-17 2019-01-01 北京工业大学 两步法分离回收线路板焚烧烟灰中溴的方法
CN110592385A (zh) * 2019-09-27 2019-12-20 广东省资源综合利用研究所 一种废弃电路板熔炼烟灰无害化回收方法
CN110980771A (zh) * 2019-12-25 2020-04-10 北京工业大学 一种废线路板裂解焦炭提纯溴化钠的方法

Also Published As

Publication number Publication date
US20210309533A1 (en) 2021-10-07
CN110980771A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
US11198615B2 (en) Method of pretreatment and bromine recovery of PCB incineration ash
WO2021129204A1 (zh) 一种废线路板裂解焦炭提纯溴化钠的方法
JP2019530795A (ja) 電池廃棄物による硫酸ニッケル、硫酸マンガン、硫酸リチウム、硫酸コバルト及び四酸化三コバルトの製造方法
CN105779770B (zh) 一种回收废电路板中有价金属的方法
CN110964915B (zh) 一种废线路板裂解渣与冶炼烟灰协同处置的方法
WO2020233526A1 (zh) 一种废旧轮胎热解焦经熔盐热处理制备炭黑的方法及产品
WO2011147151A1 (zh) 一种无氰回收废旧电路板的方法
CN102199705B (zh) 一种从废旧电池中回收锂金属的方法
CN101307385A (zh) 一种铟锡烟尘原料的处理方法
WO2016086521A1 (zh) 微波加热真空二次富集回收低品位褐煤锗精矿中锗的方法及设备
CN108046248B (zh) 一种用石墨烯生产废水制备石墨烯的方法
CN106399715A (zh) 高氯锌灰物料氨浸离子交换联合工艺生产电解锌的方法
CN101942567A (zh) 一种含多价态复合型砷锑化合物阳极泥脱除砷和锑的方法
CN109081409A (zh) 一种选冶联合清洁处理污酸的方法
CN106381397A (zh) 锌灰物料氨浸离子交换联合工艺脱除氯的方法
CN103397190B (zh) 用含金铜污泥生产高纯金及硫酸铜的方法
WO2020224053A1 (zh) 一种废集成线路板热解多金属产物综合回收的方法
CN103936048B (zh) 一种粉煤灰酸法提取氧化铝技术污水的回收利用方法
CN109244582B (zh) 一种废铅蓄电池无害化处理和资源化利用的工艺
WO2022134467A1 (zh) 一种连续炼铜工艺处理废电路板的方法
CN110116991A (zh) 一种冶炼烟气制酸净化污酸的回收工艺
KR101244632B1 (ko) 폐휴대용기기로부터 유가금속을 회수하는 방법
CN106745416B (zh) 一种高温熔融铜渣处理污酸中砷和氟的应用及其应用方法
CN108970308B (zh) 一种高温氯化含金烟气处理方法
CN114959277B (zh) 一种锡精炼硫渣中分离提纯锡和铜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908222

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20908222

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20908222

Country of ref document: EP

Kind code of ref document: A1