WO2021129102A1 - 杂环化合物及其合成方法和有机电致发光器件和电子设备 - Google Patents

杂环化合物及其合成方法和有机电致发光器件和电子设备 Download PDF

Info

Publication number
WO2021129102A1
WO2021129102A1 PCT/CN2020/123321 CN2020123321W WO2021129102A1 WO 2021129102 A1 WO2021129102 A1 WO 2021129102A1 CN 2020123321 W CN2020123321 W CN 2020123321W WO 2021129102 A1 WO2021129102 A1 WO 2021129102A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
heterocyclic compound
formula
substituted
unsubstituted
Prior art date
Application number
PCT/CN2020/123321
Other languages
English (en)
French (fr)
Inventor
王金平
薛震
陈志伟
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2021129102A1 publication Critical patent/WO2021129102A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the invention relates to organic materials and devices, in particular to a heterocyclic compound and a synthesis method thereof, an organic electroluminescence device and an electronic device.
  • OLEDs are self-emissive devices that have advantages such as wide viewing angles, excellent contrast, fast response, high brightness, and excellent driving voltage characteristics, and can provide color images.
  • the basic structure of OLED is a thin, transparent, semiconductor-like indium tin oxide (ITO) connected to the positive electrode of electricity, plus another metal cathode, wrapped in a sandwich structure.
  • the entire structure layer includes the hole transport layer (HTL), the light emitting layer (EL) and the electron transport layer (ETL).
  • HTL hole transport layer
  • EL light emitting layer
  • ETL electron transport layer
  • the existing hole transport material N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1-biphenyl-
  • the hole transport ability of 4,1-A diamine (NPB) is 10-1000 times stronger than the electron transport ability, but this will lead to a decrease in the efficiency and lifetime of the device.
  • currently commonly used hole transport materials generally have poor thermal stability. The above-mentioned factors will accelerate the attenuation of the device and have a shorter life span, thereby affecting the application of OLED devices in the industry.
  • the present invention provides a heterocyclic compound and a synthesis method thereof, an organic electroluminescent device and electronic equipment.
  • the heterocyclic compound is used as the host material of the electron transport layer/light emitting layer of the OLED device, so that the OLED material has higher efficiency and brightness, as well as low driving voltage and long service life.
  • the present invention provides a heterocyclic compound, the chemical structure of which is as follows:
  • R 1 to R 8 are each independently selected from hydrogen or C1-C10 alkyl
  • Y 1 is selected from O, S or N (R 11 ), R 11 is selected from deuterium, halogen group, cyano, substituted or unsubstituted C6-C18 aryl;
  • M is selected from the group shown in formula 1-A:
  • X 1 , X 2 , and X 3 are N, and the rest are N or CH;
  • L is selected from a substituted or unsubstituted C18-C60 arylene group, a substituted or unsubstituted C6-C60 heteroarylene group;
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from a substituted or unsubstituted C6-C40 aryl group, and a substituted or unsubstituted C3-C40 heteroaryl group.
  • the present invention provides a method for synthesizing the above heterocyclic compound, which includes the following steps:
  • the present invention provides an organic electroluminescent device, including an anode, a cathode, and an organic layer deposited between the anode and the cathode, the organic layer including a hole transport layer, a light emitting layer, and an electron transport layer; Wherein the electron transport layer or the light-emitting layer comprises the heterocyclic compound according to the present invention.
  • the present invention provides an electronic device including the electromechanical light-emitting device according to the third aspect of the present invention.
  • the present invention has the following beneficial effects:
  • the heterocyclic compound material of the present invention includes a heterocyclic nucleus represented by Formula 1, and the heterocyclic compound is introduced through an oxygen or sulfur or nitrogen heterocycle, and their planar structure improves the HOMO energy level of the material and increases the charge transfer efficiency.
  • the connection of the special ortho-position substitution ie, the structure shown in formula 1-A
  • the corresponding compound is not easy to crystallize.
  • the heterocyclic compound of the present invention is successfully applied to organic electroluminescent devices, which can effectively transfer electrons to one side of the light-emitting layer, thereby improving the recombination efficiency of holes and electrons in the light-emitting layer, thereby improving the luminous efficiency and service life of the OLED device. Therefore, it may have improved heat resistance of Joule heat generated in the organic layer of the organic light emitting device and between the organic layer and the electrode.
  • the organic electroluminescent device containing the material of the present invention has higher efficiency and brightness, and low driving voltage.
  • FIG. 1 is a schematic diagram of the structure of an organic electroluminescent device according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of an electronic device according to an embodiment of the present invention.
  • Anode; 200 cathode; 300, functional layer; 310, hole injection layer; 320, hole transport layer; 321, first hole transport layer; 322, second hole transport layer; 330, organic electro-induced Light-emitting layer; 340, hole blocking layer; 350, electron transport layer; 360, electron injection layer; 370, electron blocking layer; 500: mobile phone screen.
  • the present invention provides a heterocyclic compound represented by formula 1:
  • R 1 to R 8 are the same or different, and are each independently selected from hydrogen or C1-C10 alkyl
  • Y 1 is selected from O, S or N (R 11 ), R 11 is selected from hydrogen, deuterium, halogen group, cyano, substituted or unsubstituted C6-C18 aryl;
  • M is selected from the group shown in formula 1-A:
  • X 1 , X 2 , and X 3 are N, and the rest are N or CH;
  • L is selected from a substituted or unsubstituted C18-C60 arylene group, a substituted or unsubstituted C6-C60 heteroarylene group;
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from a substituted or unsubstituted C6-C40 aryl group, and a substituted or unsubstituted C3-C40 heteroaryl group.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group can be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group can be a monocyclic aryl group, a condensed ring aryl group, two or more monocyclic aryl groups conjugated by a carbon-carbon bond, through A monocyclic aryl group and a fused ring aryl group conjugated by carbon-carbon bonds, and two or more fused ring aryl groups conjugated by a carbon-carbon bond. That is, two or more aromatic groups conjugated through carbon-carbon bonds can also be regarded as aryl groups in the present application.
  • the aryl group does not contain heteroatoms such as B, N, O, S, P, and Si.
  • biphenyl, terphenyl, etc. are aryl groups.
  • Specific examples of aryl groups include, but are not limited to, phenyl, naphthyl, fluorenyl, spiro-fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, hexaphenyl Phenyl, benzo[9,10]phenanthryl, pyrenyl, benzofluoranthene, Base and so on.
  • a substituted aryl group refers to one or more hydrogen atoms in the aryl group being replaced by other groups (i.e. substituents), for example, at least one hydrogen atom is replaced by a deuterium atom, a halogen group, -CN, a hydroxyl group, a nitro group , Amino, alkyl (e.g. C1-C10 alkyl), cycloalkyl (e.g. C3-C10 cycloalkyl), alkoxy (e.g. C1-C10 alkoxy), silyl (e.g. C3-C10 The silyl group) or other groups.
  • substituents for example, at least one hydrogen atom is replaced by a deuterium atom, a halogen group, -CN, a hydroxyl group, a nitro group , Amino, alkyl (e.g. C1-C10 alkyl), cycloalkyl (e.g. C3-C10
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituent on the aryl group; for example, the substituted C6-C40 aryl group refers to the aryl group and the aryl group.
  • the total number of carbon atoms of the substituents on the group is 6-40.
  • the heteroaryl group may be a heteroaryl group including at least one of B, O, N, P, Si, and S as a hetero atom.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups include, but are not limited to, thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, three Azinyl, acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyridine Azinopyrazinyl, isoquinolyl, indolyl, carbazolyl, N-arylcarbazolyl (e.g.
  • thienyl, furanyl, phenanthrolinyl, etc. are heteroaryl groups of a single aromatic ring system
  • N-arylcarbazolyl, N-heteroarylcarbazolyl, phenyl-substituted dibenzofuranyl, Dibenzofuranyl-substituted phenyl groups and the like are heteroaryl groups of multiple aromatic ring systems conjugated through carbon-carbon bonds.
  • a substituted heteroaryl group means that one or more hydrogen atoms in the heteroaryl group are replaced by other groups (ie, substituents) other than heteroaryl groups, for example, at least one hydrogen atom is replaced by a deuterium atom, a halogen group, -CN, hydroxy, nitro, amino, alkyl (e.g. C1-C10 alkyl), cycloalkyl (e.g. C3-C10 cycloalkyl), alkoxy (e.g. C1-C10 alkoxy), It is substituted by a silyl group (such as a C3-C10 silyl group) or other substituents.
  • substituents such as a C3-C10 silyl group
  • the number of carbon atoms of the substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituent on the heteroaryl group.
  • the substituted C3-C40 heteroaryl group means that the total number of carbon atoms of the heteroaryl group and the substituent on the heteroaryl group is 3-40.
  • C1-C10 alkyl groups include C1-C10 straight chain alkyl groups and C3-C10 branched chain alkyl groups; the number of carbon atoms of the alkyl group is, for example, 1, 2, 3, 4, 5, 6, and 7. , 8, 9, 10, specific examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, n-hexyl, octyl and the like.
  • a cycloalkyl group can be used as a substituent of an aryl group and a heteroaryl group.
  • Specific examples include, but are not limited to, cyclohexyl, adamantyl and the like.
  • the halogen group may include -F, -Cl, -Br, and -I.
  • R 11 , L, Ar 1 and Ar 2 have substituents
  • the substituents on R 11 , L, Ar 1 and Ar 2 are each independently selected from deuterium , Halogen, -CN, C1-C10 alkyl group, C3-C10 silyl group, C3-C10 cycloalkyl group.
  • the structure of the heterocyclic compound is at least one of formula I to formula III:
  • R 1 to R 8 are each independently selected from hydrogen or C1-C6 alkyl. Further, R 1 to R 8 may each independently be selected from hydrogen, methyl, n-propyl, n-butyl, tert-butyl, n-pentyl, and n-hexyl.
  • R 1 to R 8 may all be selected from hydrogen, or one or two or more of R 1 to R 8 are selected from C1-C6 alkyl groups.
  • R 11 is selected from deuterium, substituted or unsubstituted C6-C10 aryl groups.
  • the substituted or unsubstituted C6-C10 aryl group may be, for example, a phenyl group, an alkyl-substituted phenyl group, or a halogen-substituted phenyl group.
  • X 1 , X 2 , and X 3 are all N.
  • L is selected from a substituted or unsubstituted C18-C40 arylene group, a substituted or unsubstituted C12-C40 heteroarylene group.
  • the structure of L may include at least 3 benzene rings; when L is selected from substituted Or in the case of an unsubstituted C15-C40 heteroarylene group, the structure of L may include at least two benzene rings.
  • L is selected from the group consisting of groups represented by formulas 1-A1 to 1-A26:
  • Z 1 to Z 3 are each independently selected from hydrogen, deuterium, halogen groups, cyano groups, alkyl groups (such as C1-C4 alkyl groups), cycloalkyl groups (such as C3- C10 cycloalkyl); or selected from substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, wherein the substituents are halogen, cyano, alkyl, and cycloalkyl.
  • the substituent is deuterium, halogen group, cyano group, methyl group, tert-butyl group, cyclohexyl group, adamantyl group.
  • Z 1 to Z 3 are selected from aryl groups, optionally, at least one of Z 1 to Z 3 is fused with the connected benzene ring (ie, at least one of Z 1 to Z 3 is fused with the connected benzene ring Can be thick or not thick);
  • the aryl group is phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, fluorenyl, spiro-fluorenyl (for example, spirobifluorenyl), 9 ,9-Diphenylfluorenyl;
  • the heteroaryl group is represented by: R-Ar 3 -L 2 -, wherein,
  • R is phenyl or hydrogen
  • L 2 represents a single bond or a phenylene group
  • Ar 3 is selected from pyridinylene, pyrazinylene, pyrimidinylene, benzothiazolyl, pyridazinylene, quinolinylene, isoquinolinylene, quinoxalinylene, quinazolinylene , Carbazolylidene, triazinylene, dibenzothienylene, dibenzofuranyl, thienylene, phenanthrolinylene, benzimidazolylidene.
  • Y 2 is selected from O, S, N(R 12 ) or C(R 13 R 14 ), R 12 to R 14 are the same or different, and are each independently selected from C6-C12 aryl and C1-C10 alkyl; preferably , R 12 is phenyl, R 13 and R 14 are both methyl;
  • L 1 represents a single bond, a phenylene group or a naphthylene group
  • a 3 is an integer selected from 1 to 3
  • a 4 is an integer selected from 1 to 4
  • a 5 is an integer selected from 1 to 5
  • a 6 is an integer selected from 1 to 6
  • a 8 is an integer selected from 1.
  • An integer from to 8, and * represents the binding site to the adjacent atom.
  • L is selected from the group represented by formula 1-A2 or 1-A23.
  • At least one of Z 1 to Z 3 is fused with the connected benzene ring, which means that at least one of Z 1 to Z 3 shares one side of the benzene ring with the connected benzene ring;
  • Z 2 is a phenyl group
  • the structure formed by Z 2 and the connected benzene ring is a naphthylene group
  • Z 2 is a pyridyl group
  • the structure formed by Z 2 and the connected benzene ring may include Quinolinylene.
  • L is selected from the group represented by formula 1-A27, formula 1-A28, formula 1-A29 or formula 1-30:
  • Z 1 and Z 2 , a 3 and a 4 are as shown above.
  • L is a group represented by formula 1-A2:
  • L 1 represents a single bond, phenylene or naphthylene
  • Z 1 and Z 2 are hydrogen
  • both a 3 are 3
  • Y 2 is selected from O, S, N (R 12 ) Or C(R 13 R 14 )
  • R 12 is a phenyl group
  • R 13 and R 14 are both methyl groups.
  • L is a group represented by formula 1-A23:
  • Z 1 is selected from substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl; wherein the substituent is deuterium, halogen group (such as F), cyano, methyl, tert-butyl Group, cyclohexyl, adamantyl;
  • the aryl group is phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, fluorenyl, spirobifluorenyl, 9,9-diphenylfluorenyl;
  • the heteroaryl group is represented by: R-Ar 3 -L 2 -, where,
  • L 2 represents a single bond or a phenylene group
  • Ar 3 is selected from pyridinylene, pyrazinylene, pyrimidinylene, benzothiazolyl, pyridazinylene, quinolinylene, isoquinolinylene, quinoxalinylene, quinazolinylene , Carbazolylidene, triazinylene, dibenzothienylene, dibenzofuranylene, thienylene, phenanthrolinylene, benzimidazolylidene;
  • R is phenyl or hydrogen
  • Z 2 is selected from hydrogen or aryl; the aryl is phenyl or naphthyl, optionally, Z 2 is fused with the connected benzene ring;
  • the two a 4 are the same or different, and are each independently selected from an integer of 1 to 4.
  • L is selected from the group represented by formula 1-A28, formula 1-A29 or formula 1-30:
  • Z 2 is selected from hydrogen, phenyl, pyridyl, dibenzofuranyl or dibenzothienyl, a 4 is selected from an integer of 1 to 4, and a 3 is selected from 1. Integer up to 3.
  • Z 2 is selected from phenyl or pyridyl, optionally, Z 2 is fused with the attached benzene ring.
  • L is selected from the group consisting of the following groups:
  • Ar 1 and Ar 2 are each independently selected from a substituted or unsubstituted C6-C25 aryl group, and a substituted or unsubstituted C6-C25 heteroaryl group.
  • Ar 1 and Ar 2 are each independently selected from the group consisting of the following groups:
  • heterocyclic compound may be selected from the group consisting of the following compounds:
  • the present invention provides a method for synthesizing the heterocyclic compound, which includes the following steps:
  • step S1 the molar ratio of the amount of the raw material Ia, the raw material Ib, potassium carbonate, cuprous bromide and 18-crown ether 6 may be 1:(1-1.3):(4-5):(0.2- 0.4): (0.1-0.3);
  • step S2 the molar ratio of the amount of intermediate Id, pinacol diborate, potassium acetate and [1,1'-bis(diphenylphosphino)ferrocene] palladium dichloride can be 1: (1.2-1.5): (5-8): (0.01-0.05);
  • step S3 the molar ratio of the amount of raw material Ic, intermediate Ie, potassium carbonate, tetrabutylammonium bromide, and palladium tetrakistriphenylphosphine may be 1:(1-1.5):(10-20):( 0.125-0.25): (0.62-1).
  • heating to reflux state means that the heating temperature of the heating device (such as a heating jacket) used in the reaction is greater than the boiling point of the solvent, for example, the heating temperature can be 5-10°C higher than the boiling temperature.
  • the raw materials of the present invention are all commercially available, and can also be synthesized by methods well known in the art.
  • the method for synthesizing the heterocyclic compound includes the following steps:
  • the present invention provides an organic electroluminescent device, including an anode, a cathode, and an organic layer deposited between the anode and the cathode, the organic layer including a hole transport layer, a light emitting layer, and an electron transport layer,
  • the electron transport layer or the light-emitting layer includes the heterocyclic compound according to the present invention.
  • the heterocyclic compound can be used to form an organic thin layer in the electron transport layer or the light-emitting layer to improve the life characteristics, efficiency characteristics, electrochemical stability and thermal stability of the electroluminescent device and reduce the driving voltage.
  • the host material of the light-emitting layer includes the aforementioned heterocyclic compound.
  • the electron transport layer includes the aforementioned heterocyclic compound.
  • the organic electroluminescent device includes an anode 100 and a cathode 200 disposed opposite to each other, and a functional layer 300 (ie, an organic layer) disposed between the anode 100 and the cathode 200.
  • a functional layer 300 ie, an organic layer
  • the organic electroluminescence device includes an anode 100, a hole transport layer 320, an organic electroluminescence layer 330 (ie, a light-emitting layer), an electron transport layer 350, and a cathode 200 that are sequentially stacked.
  • the hole transport layer 320 may include one layer or two layers.
  • a hole injection layer 310 is provided between the anode 100 and the hole transport layer 320.
  • an electron injection layer 360 is further provided between the cathode 200 and the electron transport layer 350.
  • a hole blocking layer 340 is further provided between the organic electroluminescent layer 330 and the electron transport layer 350.
  • an electron blocking layer 370 is provided between the organic electroluminescent layer 330 and the hole transport layer 320.
  • the hole transport layer 320 may be composed of a first hole transport layer 321 and a second hole transport layer 322, and the first hole transport layer 321 is relatively close to the anode.
  • the electron transport layer 350 includes the heterocyclic compound provided by the present invention.
  • the electron transport layer 350 may be formed of the heterocyclic compound provided by the present invention, or may be formed of the heterocyclic compound and other materials together.
  • the heterocyclic compound provided by the present invention is applied to the electron transport layer 350 of an organic electroluminescent device, which can effectively improve the electronic characteristics of the organic electroluminescent device.
  • the light-emitting layer comprises the fused ring compound provided by the present invention.
  • the light-emitting layer can be formed by the heterocyclic compound provided by the present invention, or can be formed by the heterocyclic compound provided by the present invention and other materials together.
  • the heterocyclic compound provided by the present invention is applied to the light-emitting layer of an organic electroluminescent device, which can effectively improve the light-emitting characteristics of the organic electroluminescent device.
  • the anode 100 includes an anode material
  • the anode material can be selected with reference to the prior art, and is preferably a material with a large work function (work function) that facilitates injection of holes into the functional layer.
  • the anode material include, but are not limited to: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and oxide Indium zinc (IZO); combined metals and oxides, such as ZnO:Al or SnO 2 :Sb; or conductive polymers, such as poly(3-methylthiophene), poly[3,1-A(ethylene- 1,2-Dioxy)thiophene] (PEDT), polypyrrole and polyaniline. It is preferable to include a transparent electrode containing indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the cathode 200 includes a cathode material
  • the cathode material can be selected with reference to the prior art, which is a material with a small work function that facilitates the injection of electrons into the functional layer.
  • specific examples of cathode materials but not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or their alloys; or multilayer materials such as LiF/Al, Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al, and BaF 2 /Ca, but not limited thereto.
  • the present invention provides an electronic device including the organic electroluminescent device described in the third aspect.
  • the electronic device may be any electronic device including the organic electroluminescence device, such as a mobile phone (as shown in FIG. 2), a computer, and the like.
  • the organic electroluminescent device can be applied to the screen of the electronic device.
  • raw materials and intermediates correspond to the numbers of the compounds to be prepared.
  • raw material 2a “raw material 2b”, and “raw material 2c” respectively refer to the specific raw material Ia and raw material used in the preparation of compound 2.
  • raw material Ib, raw material Ic; "raw material 18a”, “raw material 18b”, “intermediate 18d”, “raw material 18c”, and “intermediate 18e” respectively refer to the specific raw material Ia, raw material Ib, and intermediate materials used to prepare compound 18 Body Id, raw material Ic, intermediate Ie; in addition, the present invention also describes the preparation method of part of raw material Ib, wherein the compounds involved in the preparation of raw material Ib are represented in the form of Ib-numbers, for example, 5b-1, 5b-2 are Refers to the two compounds used in the preparation of raw material 5b.
  • the preparation examples are used to illustrate the synthesis of raw material Ib.
  • the raw material 162b was synthesized according to the method of the raw material 40b, except that the raw material 40b-1 was replaced with an equimolar amount of the raw material 162b-1, and the crude product obtained by filtration was further recrystallized with n-hexane to synthesize the raw material 162b with a yield 55%.
  • Example 1 Compound 2 and its synthesis method
  • Compound 2 element content (%) calculated value C 57 H 36 N 4 O; where C: 86.34; H: 4.58; N: 7.07; O: 2.02; measured value C 57 H 36 N 4 O: where C: 86.31; H: 4.54; N: 7.09; O: 2.06.
  • Example 2 Compound 18 and its synthesis method
  • Example 3 Compound 47 and its synthesis method
  • the method of manufacturing an organic electroluminescent device includes the following steps:
  • ITO Indium tin oxide
  • the hole injection layer compound 2-TNATA (structure shown in formula A) is vacuum deposited on the ITO electrode to form a hole injection layer HIL with a thickness of 50 nm, and then NPB (N,N'-diphenyl-N ,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine) is vacuum deposited on the hole injection layer to form a hole transport layer HTL with a thickness of 60nm.
  • TCTA (structure shown in formula B) is vapor-deposited on the layer to form Thickness of the electron blocking layer EBL.
  • the host luminescent material BPO (structure shown in formula C) and dopant EM (structure shown in formula D) are co-deposited on the hole transport region at a mass ratio of 96:4 to form a 30nm thick light emitting layer EML;
  • a hole blocking layer DPVBi (structure shown in formula E) with a thickness of 20 nm is vacuum deposited on the light-emitting layer to form a hole blocking layer;
  • the organic electroluminescent device was manufactured by the same method as the application example 1, except that the compound 2 as the electron transport layer was replaced with compound A (Alq 3 ) to manufacture the organic electroluminescent device D1.
  • the structure of Alq 3 is as follows:
  • the organic electroluminescence device was manufactured by the same method as in Application Example 1, except that Compound 2 as the electron transport layer was replaced with compound B, thereby manufacturing the organic electroluminescence device D2.
  • the structural formula of compound B is as follows:
  • the organic electroluminescent device was manufactured by the same method as in Application Example 1, except that in Application Examples 2-10, Compound 4, Compound 5, Compound 18, Compound 40, and Compound 74 were used as the electron transport layer of Compound 2, respectively. , Compound 85, Compound 96, Compound 111, Compound 155 were substituted to prepare organic electroluminescent devices A2 to A10.
  • the driving voltages of the organic electroluminescent devices A1 to A10 prepared in application examples 1 to 10 are between 3.83 and 4.02V, which are lower than the driving voltages of the organic electroluminescent devices D1 and D2 of Comparative Example 1 and Comparative Example 2, respectively About 15%-18%, 2.7%-7.3%; the luminous efficiency of the organic electroluminescent devices A1 to A10 is between 6.1-6.8Cd/A, which is higher than the organic electroluminescent device D1 of Comparative Example 1 and Comparative Example 2.
  • the luminous efficiency of D2 is increased by about 48% to 66% and 7% to 19%, respectively.
  • the external quantum efficiencies of A1 to A10 are 12.3% to 13.8%, which are about 45% to 62% and 10% to 23% higher than the external quantum efficiencies of D1 and D2, respectively.
  • the T95 lifespan of A1 to A10 is 193-223h, which is increased by 89% to 118% and 20% to 28% compared with the T95 life of D1 and D2 of Comparative Example 1.
  • the organic electroluminescent devices A1 to A10 of Application Examples 1 to 10 have lower driving voltage, higher luminous efficiency, and higher external appearance. Quantum efficiency and brightness. That is, as an electron transport layer, compared with Alq 3 and compound B, the heterocyclic compound of the present invention has better luminous efficiency, better electrical stability and longer life, and is used in organic electroluminescent devices. The electron transport layer can significantly improve the performance of the organic electroluminescent device.
  • the method of manufacturing an organic electroluminescent device includes the following steps:
  • the organic electroluminescent device was manufactured by the same method as Application Example 11, except that Compound 7 as the luminescent host material was used as Compound 12, Compound 47, Compound 78, Compound 101, Compound 115, Compound 134, Compound 142, Compound 161 and Compound 162 were substituted to prepare organic electroluminescent devices B2 to B10.
  • the organic electroluminescent device was fabricated by the same method as in Application Example 11, except that Compound 7 as the luminescent host material was replaced with Compound C, thereby fabricating the organic electroluminescent device D3.
  • the structural formula of compound C is shown below:
  • the electroluminescent devices B1 to B10 prepared as above were tested for performance. Among them, the driving voltage, efficiency, and color coordinates were tested at a constant current density of 10 mA/cm 2 and the lifetime of the T95 device was tested at a constant current density of 15 mA/cm 2 Test and analyze the performance of the device, and the results are shown in Table 6. In addition, for ease of comparison, Table 6 also shows the electroluminescence characteristics of the organic light-emitting device of Comparative Example 1 (the difference between Comparative Example 1 and Application Examples 10 to 20 is that the light-emitting host material is BPO).
  • the driving voltage of the organic electroluminescent devices B1 to B10 prepared in application examples 11 to 20 is between 3.82 ⁇ 4.04V, which is 14 lower than the driving voltage of the organic electroluminescent devices D1 and D3 of Comparative Example 1 and Comparative Example 3. % ⁇ 19%, 3.3% ⁇ 8.6%.
  • the luminous efficiencies of the organic electroluminescent devices B1 to B10 are between 6.1 and 6.8 Cd/A, which are 48%-65% and 5%-17% higher than the luminous efficiencies of the devices D1 and D3, respectively.
  • the external quantum efficiencies of B1 to B10 are between 12.1% and 13.8%, which are 42% to 62% and 14% to 30% higher than the external quantum efficiencies of devices D1 and D3.
  • the T95 lifetimes of B1 to B10 range from 182 to 193 hours, which are 78% to 89% and 14% to 21% longer than the T95 lifetimes of devices D1 and D3.
  • the organic electroluminescent devices prepared in Application Examples 11-20 have lower driving voltage, higher luminous efficiency, higher external quantum efficiency and brightness. That is, compared with BPO and compound C, the compound provided by the present invention has better luminous efficiency, better electrical stability and longer life, and can significantly improve the efficiency when used in the light-emitting layer of an organic electroluminescent device. The performance of electroluminescent devices.
  • the heterocyclic compound of the present invention has excellent charge mobility, and this type of material used as an organic layer has excellent electron mobility in organic electroluminescent devices.
  • the heterocyclic compound of the present invention has high stability and good film-forming properties.
  • the organic electroluminescent device prepared from the compound shows the characteristics of high efficiency, low driving voltage and long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

一种杂环化合物及其合成方法,有机电致发光器件和电子设备。杂环化合物的化学结构式如式1所示,M选自式1-A所示的基团。化合物能够提升有机电致发光器件的性能。

Description

杂环化合物及其合成方法和有机电致发光器件和电子设备
相关申请的交叉引用
本申请要求于2019年12月27日递交的、申请号为CN201911379364.4的中国专利申请,以及于2020年4月28日递交的、申请号为CN202010352148.7的中国专利申请的优先权,在此引用上述中国专利申请公开的内容全文以作为本申请的一部分。
技术领域
本发明涉及有机材料及器件,具体涉及一种杂环化合物及其合成方法和有机电致发光器件和电子设备。
背景技术
有机发光二极管(OLED)是自发射装置,具有诸如视角宽、对比度优异、响应快、亮度高和驱动电压特性优异的优点,并且可以提供彩色图像。
OLED的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了空穴传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极空穴与阴极电荷就会在发光层中结合,产生光亮,依其配方不同产生红、绿和蓝RGB三基色,构成基本色彩。
在传统的双层或多层结构器件中,现有的空穴传输材料N,N’-二-(1-萘基)-N,N’-二苯基-1,1-联苯基-4,1-A二胺(NPB)的空穴传输的能力要强于电子传输能力10-1000倍,但这会导致器件的效率下降和寿命减小。另外,目前常用的空穴传输材料通常热稳定性较差。上述这些因素都会加速器件的衰减,寿命较短,从而影响OLED器件在产业中的应用。
针对当前OLED器件的产业应用要求,以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合,具有高性能的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。KR1020110108313A公开了一种电荷传输材料。
发明内容
为解决现有技术中器件材料的电荷传输效率低造成器件电效率下降和寿命减小等问题,本发明提供一种杂环化合物及其合成方法和有机电致发光器件及电子设备。所述杂环化合物作为OLED器件的电子传输层/发光层主体材料,使OLED材料具有较高的效率和亮度,以及低的驱动电压和高的使用寿命。
第一方面,本发明提供一种杂环化合物,其化学结构式如下:
Figure PCTCN2020123321-appb-000001
式1中,R 1至R 8各自独立地选自氢或C1-C10烷基;
Y 1选自O、S或N(R 11),R 11选自氘、卤素基团、氰基、取代或未取代的C6-C18芳基;
M选自式1-A所示的基团:
Figure PCTCN2020123321-appb-000002
式1-A中,X 1、X 2、X 3中至少2个为N,其余为N或CH;
L选自取代或未取代的C18-C60的亚芳基、取代或未取代的C6-C60的亚杂芳基;
Ar 1和Ar 2相同或不同,各自独自地选自取代或未取代的C6-C40芳基、取代或未取代的C3-C40杂芳基。
第二方面,本发明提供一种上述杂环化合物的合成方法,包括如下步骤:
S1,加入原料Ia、二甲苯、原料Ib、碳酸钾、溴化亚铜和18-冠醚-6,然后升温至回流状态反应,直至液相监测反应完全后将反应液冷却,然后水洗反应中的无机盐,分液,所得有机相用无水硫酸钠干燥,过滤,滤液浓干,用甲苯重结晶,得到中间体Id;
Figure PCTCN2020123321-appb-000003
S2,在氮气保护下,加入中间体Id、联硼酸频那醇酯、乙酸钾和1,4-二氧六环,在30~80℃加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯,继续加热至回流状态反应3~9小时;将反应液冷却,搅拌下倒入水和甲苯萃取,静置后分液,水相再用甲苯萃取一次,分液,合并有机相,有机相加入无水硫酸钠搅拌并干燥,得中间体Ie;
Figure PCTCN2020123321-appb-000004
S3,在氮气保护下,加入甲苯、原料Ic、中间体Ie、碳酸钾、四丁基溴化铵、乙醇和水,在30~100℃加入四三苯基膦钯,继续加热至回流状态反应,直至液相监测反应完全后,将反应液冷却,搅拌下倒入水中,静置分液,水相再用甲苯萃取,合并有机相,用无水硫酸钠干燥并过滤,滤液浓缩至无溶剂蒸出,再用甲苯重结晶,得到所述杂环化合物;
Figure PCTCN2020123321-appb-000005
第三方面,本发明提供一种有机电致发光器件,包括阳极、阴极及沉积在所述阳极和阴极之间的有机层,所述有机层包括空穴传输层、发光层和电子传输层;其中所述电子传输层或所述发光层包含本发明所述的杂环化合物。
第四方面,本发明提供一种电子设备,包括本发明第三方面所述的机电致发光器件。
与现有技术相比,本发明具有以下有益效果:
本发明的杂环化合物材料包括由式1表示的杂环核,通过氧或硫或氮杂环引入所述杂环化合物,它们的平面结构提升了材料的HOMO能级,增加电荷传输效率。同时通过特殊的邻位取代(即式1-A所示结构)的连接,可使其三线态能级符合激子束缚的要求,同时由于位阻的作用,使相应的化合物不容易结晶。本发明的杂环化合物成功应用于有机电致发光器件,可有效将电子传递至发光层一侧,从而提升空穴和电子在发光层的复合效率,进而提升OLED器件的发光效率和使用寿命,因此,其可具有改善有机发光装置的有机层中以及有机层和电极之间产生的焦耳热的耐热性。本发明的包含该材料的有机电致发光器件具有较高的效率和亮度,以及低的驱动电压。
附图说明
图1是本发明一种实施方式的有机电致发光器件的结构示意图。
图2是本发明一种实施方式的电子设备的示意图。
附图标记说明
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输层;322、第二空穴传输层;330、有机电致发光层;340、空穴阻挡层;350、电子传输层;360、电子注入层;370、电子阻挡层;500:手机屏幕。
具体实施方式
第一方面,本发明提供一种由式1所示的杂环化合物:
Figure PCTCN2020123321-appb-000006
式1中,R 1至R 8相同或不同,各自独立地选自氢或C1-C10烷基;
Y 1选自O、S或N(R 11),R 11选自氢、氘、卤素基团、氰基、取代或未取代的C6-C18芳基;
M选自式1-A所示的基团:
Figure PCTCN2020123321-appb-000007
式1-A中,X 1、X 2、X 3中至少2个为N,其余为N或CH;
L选自取代或未取代的C18-C60的亚芳基、取代或未取代的C6-C60的亚杂芳基;
Ar 1和Ar 2相同或不同,各自独自地选自取代或未取代的C6-C40芳基、取代或未取代的C3-C40杂芳基。
本发明中,芳基指的是衍生自芳香烃环的任选官能团或取代基。芳基可以是单环芳基或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,通过碳碳键共轭连接的两个或者多个芳香基团也可以视为本申请的芳基。其中,芳基中不含有B、N、O、S、P、Si等杂原子。举例而言,联苯基、三联苯基等为芳基。芳基的具体实例包括但不限于,苯基、萘基、芴基、螺-芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、六联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2020123321-appb-000008
基等。
取代的芳基,指的是芳基中的一个或者多个氢原子被其他基团(即取代基)所取代,例如至少一个氢原子被氘原子、卤素基团、-CN、羟基、硝基、氨基、烷基(例如C1-C10的烷基)、环烷基(例如C3-C10的环烷基)、烷氧基(例如C1-C10的烷氧基)、硅烷基(例如C3-C10的硅烷基)或者其他基团取代。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上取代基的碳原子总数;举例来讲,取代的C6-C40的芳基,指的是芳基和芳基上取代基的碳原子总数为6-40个。
本发明中,杂芳基可以是包括B、O、N、P、Si和S中的至少一个作为杂原子的杂芳基。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。杂芳基的具体实例包括但不限于,噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、恶唑基、恶二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩恶嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、N-芳基咔唑基(例如N-苯基咔唑基)、N-杂芳基咔唑基、N-烷基咔唑基、苯并恶唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异恶唑基、噻二唑基、苯并噻唑基、吩噻嗪基、二苯并甲硅烷基、二苯并呋喃基、苯基取代的 二苯并呋喃基、二苯并呋喃基取代的苯基等。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系的杂芳基,N-芳基咔唑基、N-杂芳基咔唑基、苯基取代的二苯并呋喃基、二苯并呋喃基取代的苯基等为通过碳碳键共轭连接的多个芳香环体系的杂芳基。
取代的杂芳基,指的是杂芳基中的一个或者多个氢原子被非杂芳基的其他基团(即取代基)所取代,例如至少一个氢原子被氘原子、卤素基团、-CN、羟基、硝基、氨基、烷基(例如C1-C10的烷基)、环烷基(例如C3-C10的环烷基)、烷氧基(例如C1-C10的烷氧基)、硅烷基(例如C3-C10的硅烷基)或者其他取代基所取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上取代基的碳原子总数。举例来讲,取代的C3-C40的杂芳基,指的是杂芳基和杂芳基上的取代基的碳原子总数为3-40个。
本发明中,C1-C10烷基包括C1-C10的直链烷基和C3-C10的支链烷基;烷基的碳原子个数例如为1、2、3、4、5、6、7、8、9、10,烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、叔丁基、正戊基、正己基、辛基等。
本发明中,环烷基可以作为芳基、杂芳基的取代基,具体实例包括但不限于环己基、金刚烷基等。
本发明中,卤素基团可以包括-F、-Cl、-Br、-I。
本发明中,当R 11、L、Ar 1和Ar 2上具有取代基时,按照一种示例性的实施方式,R 11、L、Ar 1和Ar 2上的取代基各自独立地选自氘、卤素、-CN、C1-C10的烷基、C3-C10的硅烷基、C3-C10的环烷基。
本发明中,具体地,所述杂环化合物的结构为式I至式III中的至少一种:
Figure PCTCN2020123321-appb-000009
可选地,R 1至R 8各自独立地选自氢或C1-C6烷基。进一步地,R 1至R 8可以各自独立地选自氢、甲基、正丙基、正丁基、叔丁基、正戊基、正己基。
按照一种示例性实施方式,R 1至R 8可以均选自氢,或者R 1至R 8中的一个或两个以上选自C1-C6的烷基。
可选地,R 11选自氘、取代或未取代的C6-C10的芳基。取代或未取代的C6-C10的芳基例如可以为苯基、烷基取代的苯基或卤素取代的苯基。
按照一种实施方式,X 1、X 2、X 3均为N。
可选地,L选自取代或未取代C18-C40的亚芳基、取代或未取代的C12-C40的亚杂芳基。按照一种更具体的示例性实施方式,当所述L选自取代或未取代的C18-C40的亚芳基时,L的结构上可以至少包括3个苯环;当所述L选自取代或未取代的C15-C40的亚杂芳基时,L的结构上可以至少包括2个苯环。
按照一种实施方式,L选自由式1-A1至1-A26所示基团所组成的组:
Figure PCTCN2020123321-appb-000010
式1-A1至1-A26中,Z 1至Z 3各自独立地选自氢、氘、卤素基团、氰基、烷基(例如C1-C4的烷 基)、环烷基(例如C3-C10的环烷基);或者选自取代或未取代的芳基、取代或未取代的杂芳基,其中的取代基为卤素、氰基、烷基、环烷基。优选地,该取代基为氘、卤素基团、氰基、甲基、叔丁基、环己基、金刚烷基。
当Z 1至Z 3选自芳基时,可选地,Z 1至Z 3中的至少一个与所连接的苯环稠合(即Z 1至Z 3中的至少一个与所连接的苯环可以稠和或不稠和);
可选地,在Z 1至Z 3中,所述芳基为苯基、联苯基、三联苯基、萘基、蒽基、芴基、螺-芴基(例如螺二芴基)、9,9-二苯基芴基;
可选地,在Z 1至Z 3中,所述杂芳基表示为:R-Ar 3-L 2-,其中,
R为苯基或氢;
L 2表示单键或亚苯基;
Ar 3选自亚吡啶基、亚吡嗪基、亚嘧啶基、亚苯并噻唑基、亚哒嗪基、亚喹啉基、亚异喹啉基、亚喹喔啉基、亚喹唑啉基、亚咔唑基、亚三嗪基、亚二苯并噻吩基、亚二苯并呋喃基、亚噻吩基、亚菲咯琳基、亚苯并咪唑基。
Y 2选自O、S、N(R 12)或C(R 13R 14),R 12至R 14相同或不同,各自独立地选自C6-C12芳基、C1-C10烷基;优选地,R 12为苯基,R 13和R 14均为甲基;
L 1表示单键、亚苯基或亚萘基;
a 3为选自1至3的整数,a 4为选自1至4的整数,a 5为选自1至5的整数,a 6为选自1至6的整数,a 8为选自1至8的整数,且*表示连接到相邻原子的结合位点。
可选地,L选自式1-A2或1-A23所示的基团。
在本申请中,Z 1至Z 3中的至少一个与所连接的苯环稠合,是指Z 1至Z 3中的至少一个与所连接的所连接的苯环共用苯环的一边;举例来讲,当Z 2为苯基时,Z 2与所连接的苯环所形成的结构为亚萘基,当Z 2为吡啶基时,Z 2与所连接的苯环所形成的结构可以包括亚喹啉基。
还可选地,L选自式1-A27、式1-A28、式1-A29或式1-30所示的基团:
Figure PCTCN2020123321-appb-000011
对Z 1和Z 2、a 3和a 4的定义如上文所示。
按照一种实施方式,L为式1-A2所示的基团:
Figure PCTCN2020123321-appb-000012
且式1-A2中,L 1表示单键、亚苯基或亚萘基,Z 1和Z 2为氢,两个a 3均为3,Y 2选自O、S、N(R 12)或C(R 13R 14),R 12为苯基,R 13和R 14均为甲基。
按照另一种实施方式,L为式1-A23所示的基团:
Figure PCTCN2020123321-appb-000013
式1-A23中,Z 1选自取代或未取代的芳基、取代或未取代的杂芳基;其中的取代基为氘、卤素基团(例如F)、氰基、甲基、叔丁基、环己基、金刚烷基;
Z 1中,所述芳基为苯基、联苯基、三联苯基、萘基、蒽基、芴基、螺二芴基、9,9-二苯基芴基;
Z 1中,所述杂芳基表示为:R-Ar 3-L 2-,其中,
L 2表示单键或亚苯基;
Ar 3选自亚吡啶基、亚吡嗪基、亚嘧啶基、亚苯并噻唑基、亚哒嗪基、亚喹啉基、亚异喹啉基、亚喹喔啉基、亚喹唑啉基、亚咔唑基、亚三嗪基、亚二苯并噻吩基、亚二苯并呋喃基、亚噻吩基、亚菲咯琳基、亚苯并咪唑基;
R为苯基或氢;
Z 2选自氢或者芳基;所述芳基为苯基或萘基,任选地,Z 2与所连接的苯环稠合;
两个a 4相同或不同,各自独立地选自1至4的整数。
按照又一种实施方式,L选自式1-A28、式1-A29或式1-30所示的基团:
Figure PCTCN2020123321-appb-000014
式1-A28至式1-A30中,Z 2选自氢、苯基、吡啶基、二苯并呋喃基或二苯并噻吩基,a 4选自1至4的整数,a 3选自1至3的整数。当Z 2选自苯基或吡啶基时,任选地,Z 2与所连接的苯环稠合。
按照一种具体的实施方式,L选自以下基团所组成的组:
Figure PCTCN2020123321-appb-000015
Figure PCTCN2020123321-appb-000016
可选地,Ar 1、Ar 2各自独立地选自取代或未取代的C6-C25的芳基、取代或未取代的C6-C25的杂芳基。
按照一种实施方式,Ar 1、Ar 2各自独立地选自下述基团组成的组:
Figure PCTCN2020123321-appb-000017
可选地,所述杂环化合物可以选自由以下化合物所组成的组:
Figure PCTCN2020123321-appb-000018
Figure PCTCN2020123321-appb-000019
Figure PCTCN2020123321-appb-000020
Figure PCTCN2020123321-appb-000021
Figure PCTCN2020123321-appb-000022
Figure PCTCN2020123321-appb-000023
Figure PCTCN2020123321-appb-000024
Figure PCTCN2020123321-appb-000025
Figure PCTCN2020123321-appb-000026
第二方面,本发明提供所述杂环化合物的合成方法,包括如下步骤:
S1,加入原料Ia、二甲苯、原料Ib、碳酸钾、溴化亚铜和18-冠醚-6,然后升温至回流状态反应,直至液相监测反应完全后将反应液冷却,然后水洗反应中的无机盐,分液,所得有机相用无水硫酸钠干燥,过滤,滤液浓干,用甲苯重结晶,得到中间体Id;
Figure PCTCN2020123321-appb-000027
S2,在氮气保护下,加入中间体Id、联硼酸频那醇酯、乙酸钾和1,4-二氧六环,在30~80℃加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯,继续加热至回流状态反应3~9小时,将反应液冷却,搅拌下倒入水和甲苯萃取,静置后分液,水相再用甲苯萃取一次,分液,合并有机相,有机相加入无水硫酸钠搅拌并干燥,得中间体Ie;
Figure PCTCN2020123321-appb-000028
Figure PCTCN2020123321-appb-000029
S3,在氮气保护下,加入甲苯、原料Ic、中间体Ie、碳酸钾、四丁基溴化铵、乙醇和水,在30~100℃加入四三苯基膦钯,继续加热至回流状态反应,直至液相监测反应完全后将反应液冷却,搅拌下倒入水中,静置分液,水相再用甲苯萃取,合并有机相,用无水硫酸钠干燥并过滤,滤液浓缩至无溶剂蒸出,再用甲苯重结晶,得到所述杂环化合物;
Figure PCTCN2020123321-appb-000030
步骤S1中,所述原料Ia、所述原料Ib、碳酸钾、溴化亚铜及18-冠醚6用量的摩尔比可以为1∶(1-1.3)∶(4-5)∶(0.2-0.4)∶(0.1-0.3);
步骤S2中,所述中间体Id、联硼酸频那醇酯、乙酸钾和[1,1'-双(二苯基膦基)二茂铁]二氯化钯用量的摩尔比可以为1∶(1.2-1.5)∶(5-8)∶(0.01-0.05);
步骤S3中,所述原料Ic、中间体Ie、碳酸钾、四丁基溴化铵、四三苯基膦钯用量的摩尔比可以为1∶(1-1.5)∶(10-20)∶(0.125-0.25)∶(0.62-1)。
各步骤中,加热至回流状态是指反应所采用的加热设备(例如加热套)的加热温度大于溶剂的沸点,例如加热温度可以比沸点温度高5-10℃。本发明的原料均可通过商购获得,也可通过本领域熟知的方法合成。
按照一种具体的实施方式,合成所述杂环化合物的方法包括以下步骤:
(1)氮气保护下,搅拌下,向三口烧瓶中依次加入原料Ia、二甲苯,再加入原料Ib,碳酸钾,溴化亚铜,18-冠醚-6,加毕,电热套加热反应体系至回流状态,直至液相监测反应完全后,将反应液冷却至室温(15-30℃),然后水洗反应中的无机盐,分液,所得的有机相用无水硫酸钠干燥,过滤。滤液浓干,甲苯重结晶得到中间体Id。
Figure PCTCN2020123321-appb-000031
(2)向装有机械搅拌、温度计、冷凝管的三口玻璃瓶通氮气,依次加入中间体Id,联硼酸频那醇酯,乙酸钾,1,4-二氧六环。开启搅拌,升温至30~80℃,快速加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯,继续加热至回流状态反应3~9小时。将反应液快速降至室温,搅拌下倒入水和甲苯萃取,静置30min,分液,水相再用甲苯萃取一次,分液,合并有机相。有机相加入无水硫酸钠搅拌5min,干燥0.5h,得中间体Ie。
Figure PCTCN2020123321-appb-000032
(3)向装有机械搅拌、温度计、冷凝管的三口烧瓶通氮气,依次加入甲苯,原料Ic,中间体Ie,碳酸钾,四丁基溴化铵,乙醇,水。开启搅拌,升温至30~100℃,快速加入四三苯基膦钯,继续加热至回流状态反应,直至液相监测反应完全后,将反应液快速降至室温,搅拌下倒入水中,静置30min,分液,水相再用甲苯萃取,合并有机相,用无水硫酸钠干燥0.5h,过滤,滤液浓缩(65~70℃;-0.08~-0.09MPa,约8h),浓缩至无溶剂蒸出,用甲苯重结晶,得到杂环化合物(即化合物I)。
Figure PCTCN2020123321-appb-000033
第三方面,本发明提供一种有机电致发光器件,包括阳极、阴极及沉积在所述阳极和阴极之间的有机层,所述有机层包括空穴传输层、发光层和电子传输层,所述电子传输层或所述发光层包含本发明所述的杂环化合物。所述杂环化合物可以用于形成电子传输层或者发光层中一个有机薄层,以改善机电致发光器件的寿命特性、效率特性、电化学稳定性和热稳定性并且降低驱动电压。
按照一种实施方式,所述发光层的主体材料包含上述杂环化合物。
按照另一种实施方式,所述电子传输层包含上述杂环化合物。
如图1所示,有机电致发光器件包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300(即有机层)。
具体地,所述有机电致发光器件包括依次层叠设置的阳极100、空穴传输层320、有机电致发光层330(即发光层)、电子传输层350和阴极200。所述空穴传输层320可以包括一层或两层。
可选地,在阳极100和空穴传输层320之间设有空穴注入层310。
可选地,在阴极200和电子传输层350之间还设置有电子注入层360。
可选地,在有机电致发光层330和电子传输层350之间还设置有空穴阻挡层340。
可选地,在有机电致发光层330与空穴传输层320之间设有电子阻挡层370。
可选地,所述空穴传输层320可以由第一空穴传输层321和第二空穴传输层322组成,所述第一空穴传输层321相对靠近所述阳极。
按照一种实施方式,电子传输层350包含本发明所提供的杂环化合物。其中,电子传输层350既可以由本发明所提供的杂环化合物形成,也可以由所述杂环化合物和其他材料共同形成。如此,本发明提供的杂环化合物应用于有机电致发光器件的电子传输层350,可以有效改善有机电致发光器件的电子特性。
按照另一种实施方式,发光层包含本发明所提供的稠环化合物。其中,发光层既可以由本发明所提供的杂环化合物形成,也可以由本发明所提供的杂环化合物和其他材料共同形成。如此,本发明提供的杂环化合物应用于有机电致发光器件的发光层,可以有效改善有机电致发光器件的发光特性。
本发明中,所述阳极100包括阳极材料,所述阳极材料可参照现有技术选择,优选为有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。所述阳极材料的具体实例包括但不限于:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物,如ZnO:Al或SnO 2:Sb;或导电聚合物,如聚(3-甲基噻吩)、聚[3,1-A(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺。优选包括包含氧化铟锡(铟锡氧化物,indiumtin oxide)(ITO)作为阳极的透明电极。
本发明中,所述阴极200包括阴极材料,所述阴极材料可参照现有技术选择,其是助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca,但不限于此。
第四方面,本发明提供了一种电子设备,包括第三方面所述的有机电致发光器件。所述电子设备可以是包括所述有机电致发光器件的任何电子设备,例如为手机(如图2所示)、电脑等。所述有机电致发光器件可以应用在所述电子设备的屏幕中。
下面结合实施例对本发明做进一步说明。
为了便于理解本发明,下述原料、中间体与所制备的化合物的编号对应,例如“原料2a”、“原料2b”、“原料2c”分别是指制备化合物2时具体选用的原料Ia、原料Ib、原料Ic;“原料18a”、“原料18b”、“中间体18d”、“原料18c”、“中间体18e”分别是指用于制备化合物18时具体选用的原料Ia、原料Ib、中间体Id、原料Ic、中间体Ie;另外,本发明还描述了部分原料Ib的制备方法,其中,制备原料Ib所涉及的化合物以Ib-数字编号形式表示,例如5b-1、5b-2是指制备原料5b采用的两种化合物。
制备例
制备例用于说明原料Ib的合成。
1、原料5b的合成
(1)
Figure PCTCN2020123321-appb-000034
在氮气保护下,向装有机械搅拌、温度计、冷凝管的三口反应瓶中依次加入化合物5b-1(50mmol)和化合物5b-2(55mmol),醋酸460.0ml,升温至80~90℃,滴加浓硫酸(1mmol),保温反应5h。加600.0ml水,降温到25℃下搅拌析出大量固体,过滤,滤饼用乙醇淋洗,得化合物5b-3(32mmol),收率64%。
(2)
Figure PCTCN2020123321-appb-000035
向装有机械搅拌、温度计、恒压滴加漏斗的三口瓶中通氮气(0.100L/min)置换15min,加入化合物5b-3(30mmol),四氢呋喃120.8ml,开启搅拌,液氮降温至-80℃至-90℃,滴加2mol/L正丁基锂(32mmol),滴毕保温1h,滴加硼酸三丁酯(35mmol),滴毕保温1h后向反应液中加入200.0ml水、40.0ml石油醚、5ml浓盐酸,搅拌充分后分液,有机相再水洗4次,过滤所得粗品,再用50.0mL甲苯打浆0.5h,过滤,甲苯淋洗,得到化合物5b-4(25mmol),收率83.3%。
(3)
Figure PCTCN2020123321-appb-000036
向装有机械搅拌、温度计、冷凝管的三口烧瓶通氮气,依次加入100.0mL甲苯,化合物5b-4(20mmol),原料3-氯-5-溴碘苯(即化合物5b-5,21mmol),碳酸钾(40mmol),20mL乙醇,20mL水。开启搅拌,升温至50℃,快速加入四三苯基膦钯(0.2mmol),继续加热至回流状态反应6h,搅拌下倒入100mL水中,静置,分液,水相再用50mL甲苯萃取,合并有机相,用10g无水硫酸钠干燥,过滤,滤液浓缩(70℃,-0.09MPa),浓缩至无溶剂蒸出,加入50ml正庚烷,过滤,得化合物5b-6(17mmol),收率85%。
(4)
Figure PCTCN2020123321-appb-000037
向装有机械搅拌、温度计、恒压滴加漏斗的三口瓶中通氮气(0.100L/min)置换15min,加入化合物5b-6(15mmol),四氢呋喃80.1ml,开启搅拌,液氮降温至-80℃至-90℃,滴加2mol/L正丁基锂(17mmol),滴毕保温1h,滴加硼酸三丁酯(19mmol),滴毕保温1h后向反应液中加入100.0mL水、20.0ml石油醚、3mL浓盐酸,搅拌充分后分液,有机相再水洗4次,过滤所得粗品,再用20.0mL甲苯打浆0.5h,过滤,甲苯淋洗,得到化合物5b-7(13mmol),收率86.6%。
(5)
Figure PCTCN2020123321-appb-000038
向装有机械搅拌、温度计、冷凝管的三口烧瓶通氮气,依次加入70.0mL甲苯,化合物5b-7(13mmol),化合物5b-8(15mmol),碳酸钾(26mmol),15mL乙醇,15mL水。开启搅拌,升温至50℃,快速加入四三苯基膦钯(0.1mmol),继续加热至回流状态反应8h,搅拌下倒入90mL水中,静置30min,分液,水相再用35mL甲苯萃取,合并有机相,用5g无水硫酸钠干燥0.5h,过滤,滤液浓缩(70℃,-0.09MPa,约8h),浓缩至无溶剂蒸出,加入50ml乙醇,过滤,得原料5b(10mmol),收率77%。
2、原料2b、4b、12b、101b、111b、134b和142b的合成
分别按照原料5b的步骤(2)至步骤(5)合成上述原料,不同的是,将化合物Ib-3进行替换,所采用的主要原料以及相应制备的化合物具体如下表1所示:
表1
Figure PCTCN2020123321-appb-000039
Figure PCTCN2020123321-appb-000040
3、原料7b、74b的合成
参照原料5b的方法分别合成原料7b和74b,不同的是,将化合物进行替换,所采用的主要原料以及相应制备的化合物具体如下表2所示:
表2
Figure PCTCN2020123321-appb-000041
*:原料74b的合成依次参照步骤(3)、(4)、(5)和(1)
4、原料78b的合成
按照原料5b的步骤(3)、步骤(4)和步骤(5)合成原料78b,不同的是,将化合物Ib-4、Ib-5和Ib-8分别进行替换,所采用的原料以及相应制备的化合物具体如下表3所示:
表3
Figure PCTCN2020123321-appb-000042
5、原料40b的合成
Figure PCTCN2020123321-appb-000043
向装有机械搅拌、温度计的反应瓶,加入原料40b-1(50mmol),二氯甲烷80.1ml,开启搅拌,液氮降温至-15℃至-10℃,分4批总共加入NCS(51mmol),加毕保温1h后向反应液中加入100.0mL 水,分液,水相再用35mL二氯甲烷萃取,合并有机相水洗2次,有机相用5g无水硫酸钠干燥,过滤,滤液浓缩(40℃,-0.06MPa),浓缩至无溶剂蒸出,加入20ml乙醇,过滤,得原料40b(45mmol),收率90%。
6、原料162b的合成
按照原料40b的方法合成原料162b,不同的是,将原料40b-1替换为等摩尔量的原料162b-1,并将过滤得到的粗品进一步用正己烷重结晶,从而合成原料162b,收率为55%。
Figure PCTCN2020123321-appb-000044
实施例1:化合物2及其合成方法
包括如下步骤:
(1)氮气保护下,搅拌下,向三口烧瓶中依次加入1mmol原料2a,40mL二甲苯,再加入1.3mmol原料2b,4mmol碳酸钾,0.2mmol溴化亚铜,0.1mmol 18-冠醚-6,加毕,将反应体系升温至回流状态进行反应,直至液相监测反应完全后将反应液冷却至室温,然后水洗反应中的无机盐,分液,所得的有机相用无水硫酸钠干燥,过滤。滤液浓干,甲苯重结晶,得到中间体2d。
Figure PCTCN2020123321-appb-000045
(2)向装有机械搅拌、温度计、冷凝管的三口玻璃瓶通氮气,依次加入1mmol中间体2d,1.5mmol联硼酸频那醇酯,5mmol乙酸钾,1,4-二氧六环40mL。开启搅拌,升温至30℃,快速加入0.01mmol[1,1'-双(二苯基膦基)二茂铁]二氯化钯,继续加热至回流状态反应3小时。将反应液快速降至20℃,搅拌下倒入50mL水和50mL甲苯萃取,静置30min,分液,水相再用50mL甲苯萃取一次,分液,合并有机相。有机相加入10g无水硫酸钠搅拌5min,干燥0.5h,过滤,浓缩至无溶剂蒸出,得中间体2e。
Figure PCTCN2020123321-appb-000046
(3)向装有机械搅拌、温度计、冷凝管的三口烧瓶通氮气,依次加入50mL甲苯,0.4mmol原料2c,0.5mmol中间体2e,5mmol碳酸钾,0.05mmol四丁基溴化铵,10mL乙醇,5mL水。开启搅拌,升温至50℃,快速加入0.25mmol四三苯基膦钯,继续加热至回流状态反应,直至液相监测反应完全后,将反应液降温至20℃,搅拌下倒入100mL水中,静置30min,分液,水相再用50mL甲苯萃取,合并有机相,用10g无水硫酸钠干燥0.5h,过滤,滤液浓缩(70℃,-0.09MPa,约8h),浓缩至无溶剂蒸出。用20mL甲苯重结晶,得0.28g化合物2(0.35mmol,收率69%)。m/z=793.3[M+H] +
Figure PCTCN2020123321-appb-000047
化合物2元素含量(%)的计算值C 57H 36N 4O;其中C:86.34;H:4.58;N:7.07;O:2.02;实测值C 57H 36N 4O:其中C:86.31;H:4.54;N:7.09;O:2.06。
实施例2:化合物18及其合成方法
包括如下步骤:
(1)氮气保护下,搅拌下,向三口烧瓶中依次加入1mmol原料18a,60mL的二甲苯,再加入1.2mmol原料18b,4.5mmol碳酸钾,0.2mmol溴化亚铜,0.1mmol 18-冠醚-6,加毕,电热套加热至回流状态进行反应,直至液相监测反应完全后将反应液冷却至室温,然后水洗反应中的无机盐,分液,所得的有机相用无水硫酸钠干燥,过滤。滤液浓干,甲苯重结晶,得到中间体18d。
Figure PCTCN2020123321-appb-000048
(2)向装有机械搅拌、温度计、冷凝管的三口玻璃瓶通氮气,依次加入1mmol中间体18d,1.5mmol联硼酸频那醇酯,5mmol乙酸钾,1,4-二氧六环40mL。开启搅拌,升温至80℃,快速加入0.01mmol[1,1'-双(二苯基膦基)二茂铁]二氯化钯,继续加热至回流状态反应6小时。将反应液降温至20℃,搅拌下倒入50mL水和50mL甲苯萃取,静置30min,分液,水相再用50mL甲苯萃取一次,分液,合并有机相。有机相加入10g无水硫酸钠搅拌5min,干燥0.5h,过滤,浓缩至无溶剂蒸出,得中间体18e。
Figure PCTCN2020123321-appb-000049
(3)向装有机械搅拌、温度计、冷凝管的三口烧瓶通氮气,依次加入50mL甲苯,0.4mmol原料18c,0.5mmol中间体18e,5mmol碳酸钾,0.05mmol四丁基溴化铵,10mL乙醇,5mL水。开启搅拌,升温至100℃,快速加入0.25mmol四三苯基膦钯,继续加热至回流状态反应,直至液相监测反应完全后,将反应液降温至20℃,搅拌下倒入100mL水中,静置30min,分液,水相再用50mL甲苯萃取,合并有机相,用10g无水硫酸钠干燥0.5h,过滤,滤液浓缩(65℃,-0.08MPa,约8h),浓缩至无溶剂蒸出。用20mL甲苯重结晶,得0.28g化合物18(0.31mmol,收率61%),m/z=891.3[M+H] +
Figure PCTCN2020123321-appb-000050
化合物18元素含量(%)计算值C 63H 46N 4S:其中,C:84.91;H:5.20;N:6.29;S:3.60;实测值C 63H 46N 4S:其中,C:84.87;H:5.22;N:6.28;S:3.63。该化合物的氢谱数据为, 1H NMR(CDCl 3,300MHz):δ(ppm)=9.15-9.08(d,2H),δ(ppm)=9.04-8.98(s,1H),δ(ppm)=8.94-8.86(d,1H),δ(ppm)=8.84-8.79(m,3H),δ(ppm)=8.52-8.44(m,3H),δ(ppm)=8.18-8.05(m,3H),δ(ppm)=7.98-7.87(m,7H),δ(ppm)=7.62-7.51(m,4H),δ(ppm)=7.45-7.30(m,8H),δ(ppm)=7.24-7.12(m,2H),δ(ppm)=1.81-1.69(s,12H)。
实施例3:化合物47及其合成方法
包括如下步骤:
(1)氮气保护下,搅拌下,向三口烧瓶中依次加入1mmol原料47a,50mL二甲苯,再加入1.3mmol原料47b,4mmol碳酸钾,0.2mmol溴化亚铜,0.1mmol 18-冠醚-6,加毕,将反应体系升温至回流状态进行反应,直至液相监测反应完全后将反应液冷却至室温,然后水洗反应中的无机盐,分液,所得的有机相用无水硫酸钠干燥,过滤。滤液浓干,甲苯重结晶得到中间体47d。
Figure PCTCN2020123321-appb-000051
(2)向装有机械搅拌、温度计、冷凝管的三口玻璃瓶通氮气,依次加入1mmol中间体47d,1.5mmol联硼酸频那醇酯,5mmol乙酸钾,1,4-二氧六环40mL。开启搅拌,升温至80℃,快速加入0.01mmol[1,1'-双(二苯基膦基)二茂铁]二氯化钯,继续加热至回流状态反应6小时。将反应液快速降至20℃,搅拌下倒入50mL水和50mL甲苯萃取,静置30min,分液,水相再用50mL甲苯萃取一次,分液,合并有机相。有机相加入10g无水硫酸钠搅拌5min,干燥0.5h,过滤,浓缩至无溶剂蒸出,得中间体47e。
Figure PCTCN2020123321-appb-000052
(3)向装有机械搅拌、温度计、冷凝管的三口烧瓶通氮气,依次加入50mL甲苯,0.4mmol原料47c,0.5mmol中间体47e,5mmol碳酸钾,0.05mmol四丁基溴化铵,10mL乙醇,5mL水。开启搅拌,升温至100℃,快速加入0.25mmol四三苯基膦钯,继续加热至回流状态反应,直至液相监测反应完全后,待反应完全后,将反应液快速降至20℃,搅拌下倒入100mL水中,静置30min,分液,水相再用50mL甲苯萃取,合并有机相,用10g无水硫酸钠干燥0.5h,过滤,滤液浓缩(70℃,-0.08MPa,约8h),浓缩至无溶剂蒸出。用20mL甲苯重结晶,得0.49g化合物47(0.27mmol,收率54%),m/z=978.5[M+H] +
Figure PCTCN2020123321-appb-000053
实施例4-7
分别按照实施例1的方法合成化合物4、化合物5、化合物7和化合物12,不同的是,将实施例1中的原料1a、原料1b、原料1c分别替换成相应原料,所采用的原料以及相应制备的化合物、质谱数据具体如表4所示。
实施例8-17
分别按照实施例2的方法合成化合物40、化合物74、化合物78、化合物96、化合物101、化合物111、化合物142、化合物155、化合物161、化合物162,不同的是,将实施例2中的原料18a、原料18b、原料18c分别替换成相应原料,所采用的原料以及相应制备的化合物、质谱数据具体如表4所示。
实施例18-20
分别按照实施例3的方法合成化合物85、化合物115和134,不同的是,将实施例3中的原料47a、 原料47b、原料47c分别替换成相应原料,所采用的原料以及相应制备的化合物、质谱数据具体如表4所示。
表4
Figure PCTCN2020123321-appb-000054
Figure PCTCN2020123321-appb-000055
Figure PCTCN2020123321-appb-000056
以下应用例1至10用于说明本发明的杂环化合物在有机电致发光器件中电子传输层中的应用。
应用例1
有机电致发光器件的制造方法,包括如下步骤:
(1)先依次用蒸馏水、甲醇超声清洗具有
Figure PCTCN2020123321-appb-000057
氧化铟锡(ITO)电极的玻璃底板,干燥;
(2)再用氧等离子体清洗5分钟,然后将清洗干净的阳极底板装载到真空沉积设备中;
(3)将空穴注入层化合物2-TNATA(结构如式A所示)真空沉积到ITO电极上形成50nm厚度的空穴注入层HIL,再将NPB(N,N’-二苯基-N,N’-二(1-萘基)-1,1’-联苯-4,4’-二胺)真空沉积到空穴注入层上形成60nm厚度的空穴传输层HTL,在空穴传输层上蒸镀TCTA(结构如式B所示),形成
Figure PCTCN2020123321-appb-000058
厚度的电子阻挡层EBL。然后将主体发光材料BPO(结构如式C所示)和掺杂剂EM(结构如式D所示)以96:4的质量比共沉积到空穴传输区域上形成30nm厚度的发光层EML;
(4)将20nm厚度的空穴阻挡层DPVBi(结构如式E所示)真空沉积在发光层上形成空穴阻挡层;
(5)将化合物2真空沉积在空穴阻挡层上至30nm厚度形成电子传输层及将LiQ(8-羟基喹啉-锂)蒸镀在电子传输层上以形成
Figure PCTCN2020123321-appb-000059
厚度的电子注入层EIL,然后将镁(Mg)和银(Ag)以1∶9的蒸镀速率混合,真空蒸镀在电子注入层上,形成
Figure PCTCN2020123321-appb-000060
厚度的阴极。此外,在上述阴极上蒸镀CP-1(结构如式F所示),形成
Figure PCTCN2020123321-appb-000061
厚度的覆盖层(CPL),由此完成有机发光器件的制造,所制备的有机发光器件记为A1。
Figure PCTCN2020123321-appb-000062
对比例1
采用与应用例1相同的方法制造有机电致发光器件,不同的是,将作为电子传输层的化合物2用化合物A(Alq 3)替代,从而制得有机电致发光器件D1。Alq 3的结构如下所示:
Figure PCTCN2020123321-appb-000063
对比例2
采用与应用例1相同的方法制造有机电致发光器件,不同的是,将作为电子传输层的化合物2用化合物B替代,从而制得有机电致发光器件D2。化合物B的结构式如下所示:
Figure PCTCN2020123321-appb-000064
应用例2-应用例10
采用与应用例1相同的方法制造有机电致发光器件,不同的是,应用例2-10中,分别将作为电子传输层的化合物2用化合物4、化合物5、化合物18、化合物40、化合物74、化合物85、化合物96、化合物111、化合物155替代,从而制得有机电致发光器件A2至A10。
对如上制得的有机电致发光器件A1至A10及D1、D2进行性能测试,其中,驱动电压、效率、色坐标是在恒定电流密度10mA/cm 2下进行测试,T95器件寿命在恒定电流密度15mA/cm 2下进行测 试分析其电子发光特性,结果如表5所示。
表5
Figure PCTCN2020123321-appb-000065
结合表5的结果,将作为电子传输层的本发明的杂环化合物与使用电子传输材料Alq 3的对比例1、使用化合物B的对比例2相比:
应用例1至10所制备的有机电致发光器件A1至A10的驱动电压在3.83~4.02V之间,比对比例1和对比例2的有机电致发光器件D1、D2的驱动电压分别降低了约15%~18%、2.7%~7.3%;有机电致发光器件A1至A10的发光效率在6.1~6.8Cd/A之间,比对比例1和对比例2的有机电致发光器件D1、D2的发光效率分别提高了约48%~66%、7%~19%。A1至A10的外量子效率在12.3%~13.8%,比D1和D2的外量子效率分别提高了约45%~62%、10%~23%。A1至A10的T95寿命在193~223h,比对比例1的D1、D2的T95寿命提高了89%~118%、20%~28%。
可见,与相较于对比例1和对比例2的器件D1、D2,应用例1~10的有机电致发光器件A1至A10具有更低的驱动电压、更高的发光效率、更高的外量子效率和亮度。即,作为电子传输层,相较于Alq 3和化合物B,本发明的杂环化合物具有更好地发光效率、更好的电稳定性和更长的寿命,在用于有机电致发光器件的电子传输层时可以显著改善有机电致发光器件的性能。
以下应用例11至20用于说明本发明的稠环化合物在有机电致发光器件的发光层中的应用。
应用例11
有机电致发光器件的制造方法,包括如下步骤:
(1)先依次用蒸馏水、甲醇超声清洗具有
Figure PCTCN2020123321-appb-000066
厚度的氧化铟锡(ITO)电极的玻璃底板,干燥;
(2)再用氧等离子体清洗5分钟,然后将清洗干净的阳极底板装载到真空沉积设备中;
(3)将空穴注入层化合物2-TNATA真空沉积到ITO电极上形成50nm厚度的空穴注入层HIL,再将NPB真空沉积到空穴注入层上形成60nm厚度的空穴传输层HTL,在空穴传输层上蒸镀TCTA,形成
Figure PCTCN2020123321-appb-000067
厚度的电子阻挡层EBL。然后将主体发光材料即化合物7和掺杂剂EM以96∶4的质量比共沉积到空穴传输区域上形成30nm厚度的发光层EML;
(4)将DPVBi真空沉积在发光层上以形成
Figure PCTCN2020123321-appb-000068
厚度的空穴阻挡层;
(5)将Alq 3真空沉积在空穴阻挡层上至30nm厚度形成电子传输层及将LiQ蒸镀在电子传输层 上以形成
Figure PCTCN2020123321-appb-000069
厚度的电子注入层EIL,然后将镁(Mg)和银(Ag)以1∶9的蒸镀速率混合,真空蒸镀在电子注入层上,形成
Figure PCTCN2020123321-appb-000070
厚度的阴极。此外,在上述阴极上蒸镀CP-1,形成厚度为
Figure PCTCN2020123321-appb-000071
的覆盖层(CPL),由此完成有机发光器件的制造。所制备的有机电致发光器件记为B1。
应用例12-应用例20
采用与应用例11相同的方法制造有机电致发光器件,不同的是,将作为发光主体材料的化合物7分别用化合物12、化合物47、化合物78、化合物101、化合物115、化合物134、化合物142、化合物161、化合物162替代,从而制得有机电致发光器件B2至B10。
对比例3
采用与应用例11相同的方法制造有机电致发光器件,不同的是,将作为发光主体材料的化合物7用化合物C替代,从而制得有机电致发光器件D3。化合物C的结构式如下所示:
Figure PCTCN2020123321-appb-000072
对如上制得的机电致发光器件B1至B10进行性能测试,其中,驱动电压、效率、色坐标是在恒定电流密度10mA/cm 2下进行测试,T95器件寿命在恒定电流密度15mA/cm 2下进行测试分析了器件的性能,其结果如表6所示。另外,为了便于比较,表6也示出了对比例1的有机发光器件的电子发光特性(对比例1与应用例10至20的区别在于,发光主体材料为BPO)。
表6
Figure PCTCN2020123321-appb-000073
结合表6的结果,将作为发光主体材料的本发明的杂环化合物与使用已发光主体材料BPO、化合物C的对比例1、对比例3相比:
应用例11至20所制备的有机电致发光器件B1至B10的驱动电压在3.82~4.04V之间,比对比例1、对比例3的有机电致发光器件D1、D3的驱动电压降低了14%~19%、3.3%~8.6%。有机电致发光器件B1至B10的发光效率在6.1~6.8Cd/A之间,比器件D1、D3的发光效率分别提高了48%~65%、5%~17%。B1至B10的外量子效率在12.1%~13.8%之间,比器件D1、D3的外量子效率提高了42%~62%、 14%~30%。B1至B10的T95寿命在182~193h,比器件D1、D3的T95寿命提高了78%~89%、14%~21%。
可见,相较于对比例1和对比例3,应用例11-20所制备的有机电致发光器件具有更低的驱动电压、更高的发光效率、更高的外量子效率和亮度。即,相较于BPO和化合物C,本发明提供的化合物具有更好地发光效率、更好的电稳定性和更长的寿命,在用于有机电致发光器件的发光层时可以显著改善有机电致发光器件的性能。
综上,本发明的杂环化合物的电荷迁移率优异,其作为有机物层的这类材料在有机电致发光器件具有优良的电子迁移率,本发明的杂环化合物稳定性能高、成膜性能好,由该化合物制备的有机电致发光器件,表现出高效率、低驱动电压和寿命长的特点。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种杂环化合物,其特征在于,其化学结构式如下:
    Figure PCTCN2020123321-appb-100001
    式1中,R 1至R 8相同或不同,各自独立地选自氢或C1-C10烷基;
    Y 1选自O、S或N(R 11),R 11选自氘、卤素基团、氰基、取代或未取代的C6-C18芳基;
    M选自式1-A所示的基团:
    Figure PCTCN2020123321-appb-100002
    式1-A中,X 1、X 2、X 3中至少2个为N,其余为N或CH;
    L选自取代或未取代的C18-C60的亚芳基、取代或未取代的C6-C60的亚杂芳基;
    Ar 1和Ar 2相同或不同,各自独自地选自取代或未取代的C6-C40芳基、取代或未取代的C3-C40杂芳基。
  2. 根据权利要求1所述的杂环化合物,其特征在于,R 11、L、Ar 1和Ar 2上的取代基各自独立地选自氘、卤素、-CN、C1-C10的烷基、C3-C10的硅烷基、C3-C10的环烷基。
  3. 根据权利要求1或2所述的杂环化合物,其特征在于,式1中,R 1至R 8各自独立地选自氢或C1-C6烷基;优选地,R 11选自氘、取代或未取代的C6-C10的芳基。
  4. 根据权利要求1-3任意一项所述的杂环化合物,其特征在于,式1-A中,X 1、X 2、X 3均为N。
  5. 根据权利要求1-4任意一项所述的杂环化合物,其特征在于,式1-A中,L选自取代或未取代C18-C40的亚芳基、取代或未取代的C12-C40的亚杂芳基。
  6. 根据权利要求1-5任意一项所述的杂环化合物,其特征在于,式1-A中,L选自由式1-A1至1-A26所示基团所组成的组:
    Figure PCTCN2020123321-appb-100003
    Figure PCTCN2020123321-appb-100004
    式1-A1至1-A26中,Z 1至Z 3各自独立地选自氢、氘、卤素基团、氰基、烷基、环烷基,或者选自取代或未取代的芳基或杂芳基,其中的取代基为卤素、氰基、烷基、环烷基,优选为氘、卤素基团、氰基、甲基、叔丁基、环己基、金刚烷基;
    当Z 1至Z 3选自芳基时,可选地,Z 1至Z 3中的至少一个与所连接的苯环稠合;
    Y 2选自O、S、N(R 12)或C(R 13R 14),R 12至R 14相同或不同,各自独立地选自C6-C12芳基、C1-C10烷基;优选地,R 12为苯基,R 13和R 14均为甲基;
    L 1表示单键、亚苯基或亚萘基;
    a 3为选自1至3的整数,a 4为选自1至4的整数,a 5为选自1至5的整数,a 6为选自1至6的整数,a 8为选自1至8的整数,且*表示连接到相邻原子的结合位点。
  7. 根据权利要求6所述的杂环化合物,其特征在于,Z 1至Z 3中,所述芳基为苯基、联苯基、三联苯基、萘基、蒽基、芴基、螺-芴基、9,9-二苯基芴基;
    Z 1至Z 3中,所述杂芳基为:R-Ar 3-L 2-,其中,
    L 2表示单键或亚苯基,R为苯基或氢,
    Ar 3选自亚吡啶基、亚吡嗪基、亚嘧啶基、亚苯并嘧啶基、亚苯并噻唑基、亚哒嗪基、亚喹啉基、亚异喹啉基、亚喹喔啉基、亚喹唑啉基、亚咔唑基、亚三嗪基、亚哌嗪基、亚二苯并噻吩基、亚二苯并呋喃基、亚噻吩基、亚菲咯琳基、亚苯并咪唑基。
  8. 根据权利要求1所述的杂环化合物,其特征在于,L为式1-A28、式1-A29或式1-30所示的结构:
    Figure PCTCN2020123321-appb-100005
    式1-A28至式1-A30中,Z 2选自氢、苯基、吡啶基、二苯并呋喃基或二苯并噻吩基,a 4选自1至4的整数;a 3选自1至3的整数;当Z 2选自苯基或吡啶基时,任选地,Z 2与所连接的苯环稠合。
  9. 根据权利要求1-8任意一项所述的杂环化合物,其特征在于,Ar 1、Ar 2各自独立地选自取代或未取代的C6-C25的芳基、取代或未取代的C6-C25的杂芳基。
  10. 根据权利要求1-9任意一项所述的杂环化合物,其特征在于,Ar 1、Ar 2各自独立地选自下述基团组成的组:
    Figure PCTCN2020123321-appb-100006
  11. 根据权利要求1-10任意一项所述的杂环化合物,其特征在于,所述杂环化合物选自由以下化合物所组成的组:
    Figure PCTCN2020123321-appb-100007
    Figure PCTCN2020123321-appb-100008
    Figure PCTCN2020123321-appb-100009
    Figure PCTCN2020123321-appb-100010
    Figure PCTCN2020123321-appb-100011
    Figure PCTCN2020123321-appb-100012
    Figure PCTCN2020123321-appb-100013
    Figure PCTCN2020123321-appb-100014
  12. 权利要求1-11任意一项所述杂环化合物的合成方法,其特征在于,包括如下步骤:
    S1,加入原料Ia、二甲苯、原料Ib、碳酸钾、溴化亚铜和18-冠醚-6,然后升温至回流状态反应,直至液相监测反应完全后将反应液冷却,然后水洗反应中的无机盐,分液,所得有机相用无水硫酸钠干燥,过滤,滤液浓干,用甲苯重结晶,得到中间体Id;
    Figure PCTCN2020123321-appb-100015
    S2,在氮气保护下,加入中间体Id、联硼酸频那醇酯、乙酸钾和1,4-二氧六环,在30~80℃加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯,继续加热至回流状态反应3~9小时;将反应液冷却,搅拌下倒入水和甲苯萃取,静置后分液,水相再用甲苯萃取一次,分液,合并有机相,有机相加入无水硫酸钠搅拌并干燥,得中间体Ie;
    Figure PCTCN2020123321-appb-100016
    S3,在氮气保护下,加入甲苯、原料Ic、中间体Ie、碳酸钾、四丁基溴化铵、乙醇和水,在30~100℃加入四三苯基膦钯,继续加热至回流状态反应,直至液相监测反应完全后将反应液冷却,搅拌下倒入水中,静置分液,水相再用甲苯萃取,合并有机相,用无水硫酸钠干燥并过滤,滤液浓缩至无溶剂蒸出,再用甲苯重结晶,得到所述杂环化合物;
    Figure PCTCN2020123321-appb-100017
    优选地,步骤S1中,所述原料Ia、所述原料Ib、碳酸钾、溴化亚铜及18-冠醚-6用量的摩尔比为1∶(1-1.3)∶(4-5)∶(0.2-0.4)∶(0.1-0.3);
    优选地,步骤S2中,所述中间体Id、联硼酸频那醇酯、乙酸钾和[1,1'-双(二苯基膦基)二茂铁]二氯化钯用量的摩尔比为1∶(1.2-1.5)∶(5-8)∶(0.01-0.05);
    优选地,步骤S3中,所述原料Ic、中间体Ie、碳酸钾、四丁基溴化铵、四三苯基膦钯用量的摩尔比为1∶(1-1.5)∶(10-20)∶(0.125-0.25)∶(0.62-1)。
  13. 一种有机电致发光器件,其特征在于,包括阳极、阴极及沉积在所述阳极和阴极之间的有机层,所述有机层包括空穴传输层、发光层和电子传输层;其中,所述电子传输层或所述发光层包含权利要求1-11中任意一项所述的杂环化合物。
  14. 一种电子设备,其特征在于,包括权利要求13所述的有机电致发光器件。
PCT/CN2020/123321 2019-12-27 2020-10-23 杂环化合物及其合成方法和有机电致发光器件和电子设备 WO2021129102A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911379364.4 2019-12-27
CN201911379364.4A CN110981860A (zh) 2019-12-27 2019-12-27 杂环化合物及其合成方法和有机电致发光器件和电子设备
CN202010352148.7 2020-04-28
CN202010352148.7A CN111320608A (zh) 2019-12-27 2020-04-28 杂环化合物及其合成方法和有机电致发光器件和电子设备

Publications (1)

Publication Number Publication Date
WO2021129102A1 true WO2021129102A1 (zh) 2021-07-01

Family

ID=70078141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123321 WO2021129102A1 (zh) 2019-12-27 2020-10-23 杂环化合物及其合成方法和有机电致发光器件和电子设备

Country Status (2)

Country Link
CN (2) CN110981860A (zh)
WO (1) WO2021129102A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109265A (zh) * 2022-06-29 2022-09-27 昆山工研院新型平板显示技术中心有限公司 超分子聚合物、有机电致发光器件及显示装置
CN117800851A (zh) * 2024-02-29 2024-04-02 吉林奥来德光电材料股份有限公司 一种发光辅助材料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022034421A1 (zh) * 2020-08-12 2022-02-17

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140070450A (ko) * 2012-11-30 2014-06-10 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
WO2014148493A1 (ja) * 2013-03-18 2014-09-25 出光興産株式会社 発光装置
CN105541824A (zh) * 2015-12-25 2016-05-04 上海天马有机发光显示技术有限公司 有机电致发光化合物及其有机光电装置
WO2016089080A1 (ko) * 2014-12-02 2016-06-09 주식회사 두산 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
JP2016117730A (ja) * 2014-12-19 2016-06-30 東ソー株式会社 新規カルバゾール化合物及びその用途
WO2017179809A1 (ko) * 2016-04-11 2017-10-19 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20180057522A (ko) * 2016-11-21 2018-05-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
CN108218860A (zh) * 2018-01-18 2018-06-29 长春海谱润斯科技有限公司 一种杂蒽衍生物及其制备方法和有机发光器件
EP3247769B1 (de) * 2015-01-20 2018-12-19 cynora GmbH Phenylether-substituierte organische moleküle, insbesondere zur verwendung in optoelektronischen bauelementen
CN109535064A (zh) * 2018-12-26 2019-03-29 武汉天马微电子有限公司 化合物、显示面板以及显示装置
CN109928965A (zh) * 2017-12-15 2019-06-25 北京鼎材科技有限公司 化合物及其在有机电致发光领域的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414595B2 (ja) * 2010-03-26 2014-02-12 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子及び電荷輸送材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140070450A (ko) * 2012-11-30 2014-06-10 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
WO2014148493A1 (ja) * 2013-03-18 2014-09-25 出光興産株式会社 発光装置
WO2016089080A1 (ko) * 2014-12-02 2016-06-09 주식회사 두산 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
JP2016117730A (ja) * 2014-12-19 2016-06-30 東ソー株式会社 新規カルバゾール化合物及びその用途
EP3247769B1 (de) * 2015-01-20 2018-12-19 cynora GmbH Phenylether-substituierte organische moleküle, insbesondere zur verwendung in optoelektronischen bauelementen
CN105541824A (zh) * 2015-12-25 2016-05-04 上海天马有机发光显示技术有限公司 有机电致发光化合物及其有机光电装置
WO2017179809A1 (ko) * 2016-04-11 2017-10-19 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20180057522A (ko) * 2016-11-21 2018-05-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
CN109928965A (zh) * 2017-12-15 2019-06-25 北京鼎材科技有限公司 化合物及其在有机电致发光领域的应用
CN108218860A (zh) * 2018-01-18 2018-06-29 长春海谱润斯科技有限公司 一种杂蒽衍生物及其制备方法和有机发光器件
CN109535064A (zh) * 2018-12-26 2019-03-29 武汉天马微电子有限公司 化合物、显示面板以及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YE JIN-TING, WANG LI, WANG HONG-QIANG, PAN XIU-MEI, XIE HAI-MING, QIU YONG-QING: "Effective Impact of Dielectric Constant on Thermally Activated Delayed Fluorescence and Nonlinear Optical Properties: Through-Bond/-Space Charge Transfer Architectures", THE JOURNAL OF PHYSICAL CHEMISTRY C, AMERICAN CHEMICAL SOCIETY, US, vol. 122, no. 33, 23 August 2018 (2018-08-23), US, pages 18850 - 18859, XP055824394, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.8b05411 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109265A (zh) * 2022-06-29 2022-09-27 昆山工研院新型平板显示技术中心有限公司 超分子聚合物、有机电致发光器件及显示装置
CN115109265B (zh) * 2022-06-29 2023-06-30 昆山工研院新型平板显示技术中心有限公司 超分子聚合物、有机电致发光器件及显示装置
CN117800851A (zh) * 2024-02-29 2024-04-02 吉林奥来德光电材料股份有限公司 一种发光辅助材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111320608A (zh) 2020-06-23
CN110981860A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021135207A1 (zh) 含氮化合物、电子元件和电子装置
TWI549331B (zh) 用於有機光電裝置的有機合金及有機光電裝置及顯示裝置
TWI500604B (zh) 有機光電元件用組成物及有機光電元件及顯示元件
WO2021057550A1 (zh) 有机化合物和电子装置
EP3575296B1 (en) Triazine compound, composition and organic optoelectronic device and display device
CN110785863B (zh) 有机光电二极管和显示设备
WO2021213109A1 (zh) 一种芳胺化合物、使用其的电子元件及电子装置
TWI594989B (zh) 有機光電裝置用組成物、有機光電裝置及顯示裝置
WO2021129102A1 (zh) 杂环化合物及其合成方法和有机电致发光器件和电子设备
WO2021223688A1 (zh) 一种有机化合物和应用以及使用其的有机电致发光器件和电子装置
WO2021082714A1 (zh) 含氮化合物、电子元件和电子装置
WO2021233311A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021244442A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021136197A1 (zh) 含氮化合物、电子元件和电子装置
CN112094226B (zh) 含氮化合物、电子元件和电子装置
WO2023207375A1 (zh) 含氮化合物和电子元件及电子装置
CN113285038A (zh) 一种有机电致发光器件及电子装置
CN113045558A (zh) 稠环化合物及其制备方法和有机电致发光器件及电子设备
TWI715363B (zh) 用於有機光電裝置的化合物和組成物及有機光電裝置和顯示裝置
JP2022189817A (ja) トリアリールアミン誘導体及びその有機電界発光素子
WO2021136006A1 (zh) 含氮化合物、电子元件和电子装置
WO2021136064A1 (zh) 含氮化合物、有机电致发光器件以及电子装置
WO2021120838A1 (zh) 有机化合物、电子器件及电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2024037073A1 (zh) 含氮化合物、电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907244

Country of ref document: EP

Kind code of ref document: A1