WO2021128802A1 - 高Cu高Al的钕铁硼磁体及其制备方法 - Google Patents

高Cu高Al的钕铁硼磁体及其制备方法 Download PDF

Info

Publication number
WO2021128802A1
WO2021128802A1 PCT/CN2020/100582 CN2020100582W WO2021128802A1 WO 2021128802 A1 WO2021128802 A1 WO 2021128802A1 CN 2020100582 W CN2020100582 W CN 2020100582W WO 2021128802 A1 WO2021128802 A1 WO 2021128802A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
percentage
iron boron
neodymium iron
boron magnet
Prior art date
Application number
PCT/CN2020/100582
Other languages
English (en)
French (fr)
Inventor
牟维国
谢志兴
黄佳莹
黄清芳
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Priority to KR1020227006985A priority Critical patent/KR102589813B1/ko
Priority to EP20908416.9A priority patent/EP4016561A4/en
Priority to JP2022510789A priority patent/JP7214041B2/ja
Priority to US17/635,407 priority patent/US20220325391A1/en
Publication of WO2021128802A1 publication Critical patent/WO2021128802A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Definitions

  • the invention relates to a neodymium iron boron magnet with high Cu and Al and a preparation method thereof.
  • NdFeB permanent magnet material is currently the most widely used rare earth permanent magnet material. It is widely used in electronics, electrical machinery, medical equipment, toys, packaging, hardware machinery, aerospace and other fields. The more common ones are Permanent magnet motors, speakers, magnetic separators, computer disk drives, magnetic resonance imaging equipment, meters, etc.
  • Adding Cu element to the NdFeB magnet can effectively improve the coercivity of the NdFeB magnet, but when the Cu addition exceeds 0.35wt.%, the enrichment of Cu at the grain boundary will cause the magnet to form microcracks after sintering. The compactness and strength of the magnet are reduced, thereby affecting the magnetic properties of the neodymium iron boron magnet and limiting the availability of the high Cu process in the neodymium iron boron magnet.
  • the technical problem to be solved by the present invention is to overcome the defect in the prior art that the sintered neodymium iron boron magnets have poor mechanical properties by increasing the Cu content, and to provide high Cu and high Al neodymium iron boron magnets and ⁇ The method of preparation.
  • the invention can effectively solve the problems of low mechanical strength and low intrinsic coercivity (Hcj) of high Cu neodymium iron boron magnets by jointly adding a certain proportion of Al, RH, and high melting point metal elements.
  • the present invention solves the above technical problems through the following technical solutions.
  • the present invention discloses a neodymium iron boron magnet with high Cu and Al, which is characterized in that it contains: 29.5% to 33.5% of R, 0.985% or more of B, 0.50% or more of Al, 0.35% or more of Cu, and 1% or more of R RH and 0.1-0.4% of high melting point elements N and Fe; wherein, the percentage is the mass percentage of the element in the total amount of elements;
  • the mass percentage of the element content must satisfy the following relationship: (1) 1 ⁇ RH ⁇ 0.11R ⁇ 3.54B; (2) 0.12RH ⁇ Al;
  • Cu is copper; Al is aluminum; R is praseodymium Pr and/or neodymium Nd; B is boron; RH is dysprosium Dy and/or terbium Tb; high melting point metal element N is niobium Nb, zirconium Zr, titanium Ti and hafnium One or more of Hf; Fe is iron.
  • the present invention also discloses a neodymium iron boron magnet with high Cu and Al, which is characterized in that it is prepared from the following raw materials, the raw materials include: 29.5% to 33.5% of R, 0.985% or more of B, 0.50% or more of Al, 0.35% or more of Cu, 1% or more of RH, and 0.1 to 0.4% of high melting point elements N and Fe; wherein, the percentage is the mass percentage of the element in the total amount of elements;
  • the mass percentage of the element content must satisfy the following relationship: (1) 1 ⁇ RH ⁇ 0.11R ⁇ 3.54B; (2) 0.12RH ⁇ Al;
  • Cu is copper; Al is aluminum; R is praseodymium Pr and/or neodymium Nd; B is boron; RH is dysprosium Dy and/or terbium Tb; high melting point metal element N is niobium Nb, zirconium Zr, titanium Ti and hafnium One or more of Hf; Fe is iron.
  • the content of R is 29.5%-30.8%, for example, the content of R is 29.5%, 29.8%, 30%, 30.2%, 30.4% or 30.8%; wherein, the percentage is the element The mass percentage of the total element.
  • the content of B is 0.985% to 1.100%; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the content of B is 0.985%-1%, for example, the content of B is 0.985%, 0.99%, or 1%; wherein, the percentage is the mass percentage of the element in the total element.
  • the content of Al is 0.50% to 1.25%, for example, the content of Al is 0.5%, 0.6%, 0.8%, or 1.25%; wherein, the percentage is the mass of the element in the total amount of the element. percentage.
  • the content of Cu is 0.35% to 0.7%; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the content of Cu is 0.39% to 0.6%, for example, the content of Cu is 0.39%, 0.4%, 0.41%, 0.42%, 0.48%, or 0.6%; wherein, the percentage is the element The mass percentage of the total element.
  • the content of Cu is 0.35% ⁇ Cu ⁇ 0.5%, or 0.5% ⁇ Cu ⁇ 0.7%; wherein, the percentage is the mass percentage of the element in the total element.
  • the content of the RH is 1.0% to 2.5%; wherein the percentage is the mass percentage of the element in the total amount of the element.
  • the RH content is 1.1% to 2.3%, for example, the RH content is 1.1%, 1.5%, 1.7%, 1.9%, 2.1%, 2.2% or 2.3%; wherein, the percentage is The element accounts for the mass percentage of the total element.
  • the content of the high melting point element N is 0.15% to 0.35%; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the content of the high melting point element N is 0.2% to 0.3%, for example, the content of the high melting point element N is 0.2%, 0.25%, or 0.3%; wherein, the percentage is that the element accounts for the total number of elements. The mass percentage of the quantity.
  • the neodymium iron boron magnet or the raw material of the neodymium iron boron magnet further contains Co in a mass percentage of 0.9 to 2 wt.%, for example, the content of Co is 1%; wherein, the percentage is The mass percentage of the said element to the total amount of the element.
  • the content of Fe is conventional in the art.
  • the content of Fe is the balance of 100% by mass.
  • the content of Fe is 64% to 66%; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the high-Cu high-Al neodymium iron boron magnet includes: Nd content of 30.2%, Dy of 1.7%, Al of 0.6%, Cu of 0.4%, and Co of 1% , Nb is 0.2%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the high-Cu high-Al neodymium-iron-boron magnet includes: Nd content is 30.8%, Dy is 1.1%, Al is 0.8%, Cu is 0.6%, and Co is 1% , Nb is 0.2%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the high-Cu high-Al neodymium iron boron magnet includes: Nd content is 30.2%, Dy is 1.7%, Al is 0.6%, Cu is 0.48%, and Co is 1% , Zr is 0.3%, B is 1%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the high-Cu high-Al neodymium-iron-boron magnet includes: Nd content is 30.2%, Tb is 1.1%, Al is 0.6%, Cu is 0.4%, and Co is 1% , Zr is 0.3%, B is 0.985%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total element.
  • the high-Cu high-Al neodymium iron boron magnet comprises: Nd content is 30.4%, Dy is 1.5%, Al is 1.25%, Cu is 0.39%, and Co is 1% , Zr is 0.2%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total element.
  • the high-Cu high-Al neodymium-iron-boron magnet includes: Nd content is 30%, Dy is 2.2%, Al is 0.8%, Cu is 0.42%, and Co is 1% , Zr is 0.2%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total element.
  • the high-Cu high-Al neodymium iron boron magnet includes: Nd content is 30%, Dy is 2.3%, Al is 0.6%, Cu is 0.4%, and Co is 1% , Nb is 0.2%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the high-Cu high-Al neodymium-iron-boron magnet contains: Nd content is 29.8%, Dy is 2.3%, Al is 0.6%, Cu is 0.4%, and Co is 1% , Nb is 0.2%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the high-Cu high-Al neodymium iron boron magnet includes: Nd content is 30.2%, Dy is 2.1%, Al is 0.6%, Cu is 0.4%, and Co is 1% , Nb is 0.2%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the high-Cu high-Al neodymium iron boron magnet includes: Nd content is 30.2%, Dy is 1.9%, Al is 0.6%, Cu is 0.41%, and Co is 1% , Nb is 0.2%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the high-Cu high-Al neodymium iron boron magnet includes: Nd content is 30.2%, Dy is 2.3%, Al is 0.5%, Cu is 0.4%, and Co is 1% , Nb is 0.25%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the high-Cu high-Al neodymium iron boron magnet comprises: Nd content is 29.5%, Dy is 1.5%, Al is 0.6%, Cu is 0.41%, and Co is 1% , Nb is 0.2%, B is 0.99%, and Fe is the balance; wherein, the percentage is the mass percentage of the element in the total amount of the element.
  • the present invention also discloses a method for preparing the high Cu and Al NdFeB magnets as described above, which is characterized in that it comprises the following steps: the raw materials of the high Cu and Al NdFeB magnets are sequentially processed Smelting, hydrogen breaking, jet milling, forming, sintering and aging are all that is needed.
  • the raw material of the high-Cu and high-Al neodymium-iron-boron magnet is known to those skilled in the art to satisfy the relationship between the element content mass percentage and the element content mass percentage of the high-Cu high-Al neodymium iron boron magnet as described above Raw materials.
  • the smelting can be what is conventionally said in the art.
  • the smelting adopts a rapid-setting casting method to obtain a neodymium iron boron alloy cast piece.
  • the average thickness of the neodymium iron boron alloy cast piece is preferably 0.25 to 0.35 mm, more preferably 0.28 to 0.3 mm, such as 0.28 mm, 0.29 mm or 0.30 mm.
  • the hydrogen breaker can be conventionally mentioned in the art.
  • the hydrogen breaking includes a hydrogen adsorption process and a dehydrogenation process, and the neodymium iron boron alloy cast piece can be subjected to hydrogen breaking treatment to obtain neodymium iron boron powder.
  • the hydrogen pressure in the hydrogen adsorption process is preferably 0.067 to 0.098 MPa, more preferably 0.08 to 0.085 MPa, for example, 0.081 MPa.
  • the temperature of the dehydrogenation process is preferably 480-530°C, more preferably 500-510°C, for example 500°C.
  • the jet mill can be what is conventionally said in the art.
  • the jet mill is to send the neodymium iron boron powder into the jet mill for jet milling to continue crushing to obtain fine powder.
  • the particle size of the fine powder is preferably 3.8 to 4.1 ⁇ m, more preferably 3.9 to 4.0 ⁇ m, for example, 3.95 ⁇ m.
  • the oxygen content in the grinding chamber of the jet mill in the jet mill is preferably below 50 ppm.
  • the rotation speed of the separation wheel in the jet mill is preferably 3500-4300 rpm/min, more preferably 3900-4100 rpm/min, for example 4000 rpm/min.
  • the molding can be as conventional in the art.
  • the fine powder is oriented and molded under a certain magnetic field strength to obtain a compact.
  • the molding is preferably performed under the protection of a magnetic field strength above 1.8T and a nitrogen atmosphere.
  • the molding is more preferably performed under a magnetic field strength of 1.8 to 2.5 T, for example, 1.9 T.
  • the sintering can be conventionally mentioned in the art.
  • the sintering temperature is preferably 1030 to 1080°C, more preferably 1040 to 1050°C, for example, 1040°C or 1050°C.
  • the sintering time is preferably 4-7 hours, more preferably 6h.
  • the aging can be conventionally mentioned in the art.
  • the temperature of the aging treatment is preferably 460-520°C, more preferably 500°C.
  • the time of the aging treatment is preferably 4-10h, more preferably 6h.
  • the present invention also discloses a neodymium iron boron magnet with high Cu and Al, which is characterized in that it comprises: a main phase and a grain boundary phase;
  • composition of the main phase is: R 23-29 RH 0.1 ⁇ 3.1 Fe 66 ⁇ 73.5 Al 0.45 ⁇ 1.53 B 0.9 ⁇ 1.1 ;
  • composition of the grain boundary phase is: R 35 ⁇ 48 RH 0.5 ⁇ 5.9 Fe 46 ⁇ 56.5 Al 0.05 ⁇ 0.25 N 1.5 ⁇ 6.2 B 0.8 ⁇ 1.1 Cu 6 ⁇ 15 ;
  • Cu is copper; Al is aluminum; R is praseodymium Pr and/or neodymium Nd; B is boron; RH is dysprosium Dy and/or terbium Tb; high melting point metal element N is niobium Nb, zirconium Zr, titanium Ti and hafnium One or more of Hf; Fe is iron;
  • the mass ratio of the main phase to the magnet is 86-94 wt.%, and the mass ratio of the grain boundary phase to the magnet is 5 to 14 wt.%;
  • the composition of the main phase is: R 23-29 RH 0.1 ⁇ 3.1 Fe 65 ⁇ 71 Al 0.45 ⁇ 1.53 Co 1 ⁇ 2.5 B 0.9 ⁇ 1.1 ;
  • the composition of the grain boundary phase is: R 35 ⁇ 48 RH 0.5 ⁇ 5.9 Fe 45 ⁇ 51 Al 0.05 ⁇ 0.25 N 1.5 ⁇ 6.2 B 0.8 ⁇ 1.1 Cu 6 ⁇ 15 Co 1 ⁇ 5.5 ;
  • Co is cobalt.
  • the invention also discloses the application of the aforementioned high Cu and high Al neodymium iron boron magnet in a motor as a motor rotor magnet.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the invention can effectively solve the problem of insufficient strength of high Cu magnets by jointly adding a certain proportion of Al, RH, and high melting point metal elements, while ensuring the magnetic properties of the magnet material.
  • the neodymium iron boron magnet of the present invention can meet the following conditions: Br is greater than 12.5 kGs, Hcj is greater than 23 kOe, Hk/Hcj is greater than 0.97, and the bending strength is greater than 430 MPa.
  • FIG. 1 is the SEM spectrum of the neodymium iron boron magnet of Example 1.
  • FIG. 2 is the EPMA spectrum of the neodymium iron boron magnet of Example 1.
  • FIG. 2 is the EPMA spectrum of the neodymium iron boron magnet of Example 1.
  • Bal refers to the margin
  • the preparation method of neodymium iron boron magnet is as follows:
  • the average thickness of the NdFeB alloy cast piece is 0.28mm.
  • Jet mill Send the neodymium iron boron powder to the jet mill for jet mill to continue to be crushed to obtain fine powder.
  • the oxygen content in the grinding chamber of the jet mill is below 50 ppm.
  • the rotation speed of the sorting wheel in the jet milling process is 4000 rpm/min.
  • the particle size of the fine powder is 3.95 ⁇ m.
  • the molding is carried out under the protection of a magnetic field strength of 1.9T and a nitrogen atmosphere.
  • the sintering temperature is 1050°C.
  • the sintering time is 6h.
  • the temperature of the aging treatment is 500°C.
  • the aging treatment time is 6h.
  • the preparation method of neodymium iron boron magnet is as follows:
  • Comparative Examples 18-21 is the same as the preparation process of Example 2 except that the selected raw material formulas are different, and the parameters of the preparation process are the same.
  • the preparation method of neodymium iron boron magnet is as follows:
  • the parameters in the other preparation process are the same as the preparation process of Example 1.
  • the preparation method of neodymium iron boron magnet is as follows:
  • the preparation method of neodymium iron boron magnet is as follows:
  • the preparation method of neodymium iron boron magnet is as follows:
  • the preparation method of neodymium iron boron magnet is as follows:
  • the magnetic properties and bending strength of the neodymium iron boron magnets prepared in each example and comparative example were measured, as shown in Table 2 below.
  • the Br, Hcj, and Hk/Hcj in the embodiments of the present invention and the comparative examples are tested using the NIM-62000 type rare earth permanent magnet measurement system of the Chinese Institute of Metrology; the bending strength uses the three-point bending equipment and the GB/Hcj Test under T 14452-93 (three-point bending) standard.
  • the embodiment of the present invention can effectively solve the problem of insufficient strength of the high Cu magnet while ensuring the magnetic properties of the magnet material.
  • the grain boundary phase region in the magnet is enriched with Cu and high melting point elements such as Nb.
  • the heavy rare earth elements Dy and Al at the grain boundary are It is in a barren state; more specifically, the grain boundary phase is enriched with Cu and high melting point elements such as Nb.
  • the existence of Cu and high melting point element enrichment regions in the grain boundary phase helps prevent abnormal grains during sintering. Growing up reduces the sensitivity of the magnet to the sintering temperature, which is beneficial to increase the sintering temperature. The increase of the sintering temperature is beneficial to increase the coercivity and mechanical strength of the magnet.
  • the content of Al and Dy in the grain boundary phase is relatively low.
  • the poorness of Al and Dy in the grain boundary phase means that more Al and Dy exist in the phase interface with the main phase and grain boundary phase of the NdFeB magnet.
  • the Al in the phase interface is beneficial to improve the fluidity of the intergranular phase during the high-temperature heat treatment process, thereby forming a more stable phase interface and reducing the interface energy, thereby improving the mechanical strength of the magnet.
  • the Dy present in the phase interface is beneficial to increase the magnetocrystalline anisotropy field at the phase interface, thereby increasing the coercivity of the magnet.
  • Example 1 it can be seen from the SEM spectrum ( Figure 1) that the magnet of Example 1 is composed of the main phase of Nd 2 Fe 14 B (reference number 1, gray area) and the intergranular Nd-rich phase (reference number 2. Silver-white area) composition.
  • the EPMA microanalysis of Example 1 is shown in Figure 2.
  • the composition of the main phase of the magnet is: Nd 25 ⁇ 28 Dy 0.1 ⁇ 2.1 Fe 65 ⁇ 71 Al 0.55 ⁇ 1.2 Co 1 ⁇ 2.5 B 0.9 ⁇ 1.1
  • the composition of the grain boundary phase is: Nd 35 ⁇ 48 Dy 0.5 ⁇ 4.5 Fe 45 ⁇ 51 Al 0.05 ⁇ 0.25 Nb 1.5 ⁇ 6 B 0.8 ⁇ 1.1 Cu 6 ⁇ 15 Co 1 ⁇ 5.5
  • the main phase accounts for 88 ⁇ 93wt.%
  • the grain boundary phase accounts for 7 ⁇ 12wt.%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

高Cu高Al的钕铁硼磁体及其制备方法。高Cu高Al的钕铁硼磁体包含:29.5~33.5%的R、0.985%以上的B、0.50%以上的Al、0.35%以上的Cu、1%以上的RH和0.1~0.4%的高熔点元素N和Fe;其中,所述百分比为所述元素占元素总量的质量百分比;其中,所述元素含量的质量百分比需满足如下关系:(1)1<RH<0.11R<3.54B;(2)0.12RH<Al。通过联合添加一定比例的Al、RH、以及高熔点金属元素,能够有效解决高Cu磁体强度不足的问题,同时保证了磁体材料的磁学性能。

Description

高Cu高Al的钕铁硼磁体及其制备方法 技术领域
本发明涉及高Cu高Al的钕铁硼磁体及其制备方法。
背景技术
钕铁硼永磁材料以优异的性能,是目前使用量最大的稀土永磁材料,被广泛应用于电子、电力机械、医疗器械、玩具、包装、五金机械、航天航空等领域,较常见的有永磁电机、扬声器、磁选机、计算机磁盘驱动器、磁共振成像设备仪表等。
在钕铁硼磁体中加入Cu元素可以有效提高钕铁硼磁体的矫顽力,但Cu添加量超过0.35wt.%以上后,由于Cu在晶界的富集会导致磁体烧结后形成微裂纹从而降低磁体的致密性及强度,进而影响了钕铁硼磁体的磁学性能,限制了高Cu工艺在钕铁硼磁体中的可用性。
发明内容
本发明所要解决的技术问题在于克服了现有技术中想要通过增加Cu含量则会导致烧结后的钕铁硼磁体力学性能较差的缺陷,而提供了高Cu高Al的钕铁硼磁体及其制备方法。本发明通过联合添加一定数量配比的Al、RH、以及高熔点金属元素,能够有效解决高Cu钕铁硼磁体机械强度低、内禀矫顽力(intrinsic coercivity,简称Hcj)低的问题。
本发明通过以下技术方案解决上述技术问题。
本发明公开了高Cu高Al的钕铁硼磁体,其特征在于,其包含:29.5~33.5%的R、0.985%以上的B、0.50%以上的Al、0.35%以上的Cu、1%以上的RH和0.1~0.4%的高熔点元素N和Fe;其中,所述百分比为所述元素占元素总量的质量百分比;
其中,所述元素含量的质量百分比需满足如下关系:(1)1<RH<0.11R<3.54B;(2)0.12RH<Al;
其中,Cu为铜;Al为铝;R为镨Pr和/或钕Nd;B为硼;RH为镝Dy和/或铽Tb;高熔点金属元素N为铌Nb、锆Zr、钛Ti和铪Hf的一种或多种;Fe为铁。
本发明还公开了高Cu高Al的钕铁硼磁体,其特征在于,由下述原料制得,所述原料包含:29.5~33.5%的R、0.985%以上的B、0.50%以上的Al、0.35%以上的Cu、1%以上的RH和0.1~0.4%的高熔点元素N和Fe;其中,所述百分比为所述元素占元素总量的质量百分比;
其中,所述元素含量的质量百分比需满足如下关系:(1)1<RH<0.11R<3.54B;(2)0.12RH<Al;
其中,Cu为铜;Al为铝;R为镨Pr和/或钕Nd;B为硼;RH为镝Dy和/或铽Tb;高熔点金属元素N为铌Nb、锆Zr、钛Ti和铪Hf的一种或多种;Fe为铁。
较佳地,所述R的含量为29.5%~30.8%,例如所述R的含量为29.5%、29.8%、30%、30.2%、30.4%或30.8%;其中,所述百分比为所述元素占元素总量的质量百分比。
较佳地,所述B的含量为0.985%~1.100%;其中,所述百分比为所述元素占元素总量的质量百分比。
更佳地,所述B的含量为0.985%~1%,例如所述B的含量为0.985%、0.99%或1%;其中,所述百分比为所述元素占元素总量的质量百分比。
较佳地,所述Al的含量为0.50%~1.25%,例如所述Al的含量为0.5%、0.6%、0.8%或1.25%;其中,所述百分比为所述元素占元素总量的质量百分比。
较佳地,所述Cu的含量为0.35%~0.7%;其中,所述百分比为所述元素占元素总量的质量百分比。
更佳地,所述Cu的含量为0.39%~0.6%,例如所述Cu的含量为0.39%、0.4%、0.41%、0.42%、0.48%或0.6%;其中,所述百分比为所述元素占元素总量的质量百分比。
更佳地,所述Cu的含量为0.35%≤Cu<0.5%,或0.5%<Cu<0.7%;其中,所述百分比为所述元素占元素总量的质量百分比。
较佳地,所述RH的含量为1.0%~2.5%;其中,所述百分比为所述元素占元素总量的质量百分比。
更佳地,所述RH的含量为1.1%~2.3%,例如所述RH的含量为1.1%、1.5%、1.7%、 1.9%、2.1%、2.2%或2.3%;其中,所述百分比为所述元素占元素总量的质量百分比。
较佳地,所述高熔点元素N的含量为0.15%~0.35%;其中,所述百分比为所述元素占元素总量的质量百分比。
更佳地,所述高熔点元素N的含量为0.2%~0.3%,例如所述高熔点元素N的含量为0.2%、0.25%或0.3%;其中,所述百分比为所述元素占元素总量的质量百分比。
较佳地,所述钕铁硼磁体或所述钕铁硼磁体的原料,还包含质量百分比为0.9~2wt.%的Co,例如所述Co的含量为1%;其中,所述百分比为所述元素占元素总量的质量百分比。
本发明中,所述Fe的含量为本领域常规。
较佳地,所述Fe的含量为占100%质量百分比的余量。
更佳地,所述Fe的含量为64%~66%;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为1.7%,Al为0.6%,Cu为0.4%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.8%,Dy为1.1%,Al为0.8%,Cu为0.6%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为1.7%,Al为0.6%,Cu为0.48%,Co为1%,Zr为0.3%,B为1%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Tb为1.1%,Al为0.6%,Cu为0.4%,Co为1%,Zr为0.3%,B为0.985%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.4%,Dy为1.5%,Al为1.25%,Cu为0.39%,Co为1%,Zr为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30%,Dy为2.2%,Al为0.8%,Cu为0.42%,Co为1%,Zr为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30%,Dy为2.3%,Al为0.6%,Cu为0.4%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为29.8%,Dy为2.3%,Al为0.6%,Cu为0.4%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为2.1%,Al为0.6%,Cu为0.4%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为1.9%,Al为0.6%,Cu为0.41%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为2.3%,Al为0.5%,Cu为0.4%,Co为1%,Nb为0.25%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
在本发明一优选实施方式中,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为29.5%,Dy为1.5%,Al为0.6%,Cu为0.41%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
本发明还公开了一种如前所述的高Cu高Al的钕铁硼磁体的制备方法,其特征在于,其包括如下步骤:将所述高Cu高Al的钕铁硼磁体的原料依次进行熔炼、氢破、气流磨、成型、烧结和时效,即可。
本发明中,所述高Cu高Al的钕铁硼磁体的原料,本领域技术人员知晓为满足如前所述高Cu高Al的钕铁硼磁体的元素含量质量百分比以及元素含量质量百分比的关系的原料。
本发明中,所述熔炼可为本领域常规所说,较佳地,所述熔炼为采用速凝铸片法,获 得钕铁硼合金铸片。
其中,所述钕铁硼合金铸片平均厚度较佳地为0.25~0.35mm,更佳地为0.28~0.3mm,例如为0.28mm、0.29mm或0.30mm。
本发明中,所述氢破可为本领域常规所说。较佳地,所述氢破包括氢吸附过程和脱氢过程,可将所述钕铁硼合金铸片进行氢破处理,获得钕铁硼粉体。
其中,所述氢吸附过程的氢气压力较佳地为0.067~0.098MPa,更佳地为0.08~0.085MPa,例如为0.081MPa。
其中,所述脱氢过程的温度较佳地为480~530℃,更佳地为500~510℃,例如为500℃。
本发明中,所述气流磨可为本领域常规所说,较佳地,所述气流磨为将所述钕铁硼粉体送入气流磨机进行气流磨继续破碎,得到细粉。
其中,所述细粉的粒径较佳地为3.8~4.1μm,更佳地为3.9~4.0μm,例如为3.95μm。
其中,所述气流磨中气流磨机的磨室中含氧量较佳地在50ppm以下。
其中,所述气流磨中分选轮的转速较佳地为3500~4300rpm/min,更佳地为3900~4100rpm/min,例如为4000rpm/min。
本发明中,所述成型可为本领域常规所说,较佳地,所述细粉在一定磁场强度下经取向成型得到压坯。
其中,所述成型较佳地在1.8T以上的磁场强度和氮气气氛保护下进行。
其中,所述成型更佳地在1.8~2.5T,例如为1.9T的磁场强度下进行。
本发明中,所述烧结可为本领域常规所说。
其中,所述烧结的温度较佳地为1030~1080℃,更佳地为1040℃~1050℃,例如为1040℃或1050℃。
其中,所述烧结的时间较佳地为4~7小时,更佳地为6h。
本发明中,所述时效可为本领域常规所说。
其中,所述时效处理的温度较佳地为460~520℃,更佳地为500℃。
其中,所述时效处理的时间较佳地为4~10h,更佳地为6h。
本发明还公开了高Cu高Al的钕铁硼磁体,其特征在于,其包含:主相和晶界相;
其中,所述主相的成分为:R 23-29RH 0.1~3.1Fe 66~73.5Al 0.45~1.53B 0.9~1.1;所述晶界相的成分 为:R 35~48RH 0.5~5.9Fe 46~56.5Al 0.05~0.25N 1.5~6.2B 0.8~1.1Cu 6~15
其中,Cu为铜;Al为铝;R为镨Pr和/或钕Nd;B为硼;RH为镝Dy和/或铽Tb;高熔点金属元素N为铌Nb、锆Zr、钛Ti和铪Hf的一种或多种;Fe为铁;
其中,所述主相占所述磁体的质量比为86~94wt.%,所述晶界相占所述磁体的质量比为5~14wt.%;
较佳地,所述主相的成分为:R 23-29RH 0.1~3.1Fe 65~71Al 0.45~1.53Co 1~2.5B 0.9~1.1;所述晶界相的成分为:R 35~48RH 0.5~5.9Fe 45~51Al 0.05~0.25N 1.5~6.2B 0.8~1.1Cu 6~15Co 1~5.5
其中,Co为钴。
本发明还公开了一种如前所述的高Cu高Al的钕铁硼磁体在电机中作为电机转子磁钢的应用。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
本发明通过联合添加一定比例的Al、RH、以及高熔点金属元素,能够有效解决高Cu磁体强度不足的问题,同时保证了磁体材料的磁学性能。
本发明的钕铁硼磁体能够满足以下条件:Br大于12.5kGs,Hcj大于23kOe,Hk/Hcj大于0.97,抗弯强度大于430MPa。
附图说明
图1为实施例1的钕铁硼磁体的SEM图谱。
图2为实施例1的钕铁硼磁体的EPMA图谱。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照产品说明书选择。
各实施例1~12和对比例13~24中的钕铁硼磁体中的元素质量百分比如下表1所示。 下表中,wt.%是指元素占元素总量的质量百分比,“/”表示未添加该元素。“Br”为剩余磁通密度(remanence),“Hcj”为内禀矫顽力,“Hk/Hcj”为方形度(squareness ratio)。
表1钕铁硼磁体中的元素质量百分比
Figure PCTCN2020100582-appb-000001
注:Bal指余量。
实施例1
钕铁硼磁体制备方法如下:
(1)熔炼:按表1所示的各实施例和对比例的元素质量百分比,配置满足该元素质量百分比的原料配方。将原料进行熔炼,采用速凝铸片法,获得钕铁硼合金铸片。
钕铁硼合金铸片平均厚度为0.28mm。
(2)氢破:钕铁硼合金铸片的氢吸附过程的氢气压力为0.081MPa;脱氢过程的温度为500℃,得到钕铁硼粉体。
(3)气流磨:将所述钕铁硼粉体送入气流磨机进行气流磨继续破碎,得到细粉。
气流磨机的磨室中含氧量在在50ppm以下。
气流磨处理中分选轮的转速为4000rpm/min。
细粉的粒径为3.95μm。
(4)成型:细粉在一定磁场强度下经取向成型得到压坯。
成型在1.9T的磁场强度和氮气气氛保护下进行。
(5)烧结
烧结的温度为1050℃。烧结的时间为6h。
(6)时效
时效处理的温度为500℃。时效处理的时间为6h。
实施例5~12、对比例13~17制备工艺除选用的原料配方不同以外,制备工艺中的参数与实施例1的制备工艺相同。
实施例2
钕铁硼磁体制备方法如下:
除了选用的原料配方不同以及步骤(1)熔炼中的钕铁硼合金铸片平均厚度为0.30mm外,其余制备工艺中的参数与实施例1的制备工艺相同。
对比例18~21制备工艺除选用的原料配方不同以外,制备工艺中的参数与实施例2的制备工艺相同。
实施例3
钕铁硼磁体制备方法如下:
除了选用的原料配方不同以及步骤(5)烧结中的烧结的温度为1040℃外,其余制备工艺中的参数与实施例1的制备工艺相同。
实施例4
钕铁硼磁体制备方法如下:
除了选用的原料配方不同以及步骤(1)熔炼中的钕铁硼合金铸片平均厚度为0.29mm外,其余制备工艺中的参数与实施例1的制备工艺相同。
对比例22
钕铁硼磁体制备方法如下:
除了选用的原料配方不同以及步骤(1)熔炼中的钕铁硼合金铸片平均厚度为0.38mm外,其余制备工艺中的参数与实施例3的制备工艺相同。
对比例23
钕铁硼磁体制备方法如下:
除了选用的原料配方不同以及步骤(5)烧结中的烧结的温度为1080℃外,其余制备工艺中的参数与实施例3的制备工艺相同。
对比例24
钕铁硼磁体制备方法如下:
除了选用的原料配方不同以及步骤(3)气流磨中的细粉的粒径为4.25μm外,其余制备工艺中的参数与实施例3的制备工艺相同。
效果实施例1
测定各实施例和对比例制得的钕铁硼磁体的磁性能和抗弯强度,如下表2所示。
本发明各实施例和对比例中的Br、Hcj和Hk/Hcj使用中国计量院的NIM-62000型稀土永磁测量系统进行磁性能检测;抗弯强度使用三点抗弯折设备并在GB/T 14452-93(三点弯曲)标准下进行测试。
表2钕铁硼磁体的磁性能和抗弯强度
Figure PCTCN2020100582-appb-000002
可以看出,本发明实施例在保证了磁体材料的磁学性能的同时,能够有效解决高Cu 磁体强度不足的问题。
效果实施例2
通过联合添加一定量的Cu、Al、Dy、Nb可以发现磁体中大部分晶界相区域存在Cu、高熔点元素如Nb的富集,与此同时晶界处的重稀土元素Dy、Al元素则呈贫瘠状态;更具体来说,晶界相出现Cu和高熔点元素如Nb的富集,Cu和高熔点元素富集区在晶界相中的存在有助于阻碍晶粒在烧结过程中异常长大,降低了磁体对烧结温度的敏感性,有利于提高烧结温度,烧结温度的提高有利于提高磁体的矫顽力及机械强度。同时,Al和Dy元素在晶界相的含量较低,Al和Dy在晶界相的贫瘠意味着更多的Al和Dy存在与钕铁硼磁体主相和晶界相的相界面中,存在于相界面中的Al有利于提高晶间相在高温热处理过程中的流动性,从而形成更加稳定的相界面,降低界面能,以此提高磁体的机械强度。存在于相界面中的Dy有利于提高相界面的磁晶各向异性场,从而提高磁体的矫顽力。
以实施例1为例,通过SEM图谱(图1)可以看出实施例1的磁体由Nd 2Fe 14B主相(附图标记1,灰色区域)和晶间富Nd相组成(附图标记2,银白色区域)组成。实施例1的EPMA微观分析如图2所示。
从图2可得EPMA微观分析结果:
磁体主相的成分为:Nd 25~28Dy 0.1~2.1Fe 65~71Al 0.55~1.2Co 1~2.5B 0.9~1.1,晶界相的成分为:Nd 35~48Dy 0.5~4.5Fe 45~51Al 0.05~0.25Nb 1.5~6B 0.8~1.1Cu 6~15Co 1~5.5;其中,主相占比为88~93wt.%,晶界相占比为7~12wt.%。
以上为本发明所述高Cu含量磁体机械强度及矫顽力不因Cu含量较高而产生恶化的主要原因。
Figure PCTCN2020100582-appb-000003
Figure PCTCN2020100582-appb-000004

Claims (10)

  1. 高Cu高Al的钕铁硼磁体,其特征在于,其包含:29.5~33.5%的R、0.985%以上的B、0.50%以上的Al、0.35%以上的Cu、1%以上的RH和0.1~0.4%的高熔点元素N和Fe;其中,所述百分比为所述元素占元素总量的质量百分比;
    其中,所述元素含量的质量百分比需满足如下关系:(1)1<RH<0.11R<3.54B;(2)0.12RH<Al;
    其中,Cu为铜;Al为铝;R为镨Pr和/或钕Nd;B为硼;RH为镝Dy和/或铽Tb;高熔点金属元素N为铌Nb、锆Zr、钛Ti和铪Hf的一种或多种;Fe为铁。
  2. 高Cu高Al的钕铁硼磁体,其特征在于,由下述原料制得,所述原料包含:29.5~33.5%的R、0.985%以上的B、0.50%以上的Al、0.35%以上的Cu、1%以上的RH和0.1~0.4%的高熔点元素N和Fe;其中,所述百分比为所述元素占元素总量的质量百分比;
    其中,所述元素含量的质量百分比需满足如下关系:(1)1<RH<0.11R<3.54B;(2)0.12RH<Al;
    其中,Cu为铜;Al为铝;R为镨Pr和/或钕Nd;B为硼;RH为镝Dy和/或铽Tb;高熔点金属元素N为铌Nb、锆Zr、钛Ti和铪Hf的一种或多种;Fe为铁。
  3. 如权利要求1或2所述的钕铁硼磁体,其特征在于,所述R的含量为29.5%~30.8%,例如所述R的含量为29.5%、29.8%、30%、30.2%、30.4%或30.8%;
    和/或,所述B的含量为0.985%~1.100%;较佳地,所述B的含量为0.985%~1%,例如所述B的含量为0.985%、0.99%或1%;
    和/或,所述Al的含量为0.50%~1.25%,例如所述Al的含量为0.5%、0.6%、0.8%或1.25%;
    和/或,所述Cu的含量为0.35%~0.7%;较佳地,所述Cu的含量为0.39%~0.6%,例如所述Cu的含量为0.39%、0.4%、0.41%、0.42%、0.48%或0.6%;较佳地,所述Cu的含量为0.35%≤Cu<0.5%,或0.5%<Cu<0.7%;
    和/或,所述RH的含量为1.0%~2.5%;较佳地,所述RH的含量为1.1%~2.3%,例如所述RH的含量为1.1%、1.5%、1.7%、1.9%、2.1%、2.2%或2.3%;
    和/或,所述高熔点元素N的含量为0.15%~0.35%;较佳地,所述高熔点元素N的含 量为0.2%~0.3%,例如所述高熔点元素N的含量为0.2%、0.25%或0.3%;
    和/或,所述Fe的含量为占100%质量百分比的余量;较佳地,所述Fe的含量为64%~66%;
    其中,所述百分比为所述元素占元素总量的质量百分比。
  4. 如权利要求1或2所述的钕铁硼磁体,其特征在于,所述钕铁硼磁体或所述钕铁硼磁体的原料,还包含质量百分比为0.9~2wt.%的Co,例如所述Co的含量为1%;其中,所述百分比为所述元素占元素总量的质量百分比。
  5. 如权利要求1或2所述的钕铁硼磁体,其特征在于,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为1.7%,Al为0.6%,Cu为0.4%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.8%,Dy为1.1%,Al为0.8%,Cu为0.6%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为1.7%,Al为0.6%,Cu为0.48%,Co为1%,Zr为0.3%,B为1%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Tb为1.1%,Al为0.6%,Cu为0.4%,Co为1%,Zr为0.3%,B为0.985%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.4%,Dy为1.5%,Al为1.25%,Cu为0.39%,Co为1%,Zr为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30%,Dy为2.2%,Al为0.8%,Cu为0.42%,Co为1%,Zr为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30%,Dy为2.3%,Al为0.6%,Cu为0.4%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分 比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为29.8%,Dy为2.3%,Al为0.6%,Cu为0.4%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为2.1%,Al为0.6%,Cu为0.4%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为1.9%,Al为0.6%,Cu为0.41%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为30.2%,Dy为2.3%,Al为0.5%,Cu为0.4%,Co为1%,Nb为0.25%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比;
    或者,所述高Cu高Al的钕铁硼磁体,其包含:Nd的含量为29.5%,Dy为1.5%,Al为0.6%,Cu为0.41%,Co为1%,Nb为0.2%,B为0.99%,Fe为余量;其中,所述百分比为所述元素占元素总量的质量百分比。
  6. 一种如权利要求2~5任一项所述的高Cu高Al的钕铁硼磁体的制备方法,其特征在于,其包括如下步骤:将所述高Cu高Al的钕铁硼磁体的原料依次进行熔炼、氢破、气流磨、成型、烧结和时效,即可。
  7. 如权利要求6所述的制备方法,其特征在于,所述熔炼为采用速凝铸片法,获得钕铁硼合金铸片;
    所述氢破包括氢吸附过程和脱氢过程;获得钕铁硼粉体;
    其中,所述氢吸附过程的氢气压力为0.067~0.098MPa,较佳地为0.08~0.085MPa,例如为0.081MPa;
    其中,所述脱氢过程的温度为480~530℃,更佳地为500~510℃,例如为500℃;
    所述气流磨为将所述钕铁硼粉体送入气流磨机进行气流磨继续破碎,得到细粉;
    其中,所述气流磨中气流磨机的磨室中含氧量在50ppm以下;
    其中,所述气流磨中分选轮的转速为3500~4300rpm/min,较佳地为3900~4100rpm/min,例如为4000rpm/min;
    所述成型在1.8T以上的磁场强度和氮气气氛保护下进行;所述成型的磁场强度较佳地为1.8~2.5T,例如为1.9T;
    所述烧结的时间为4~7小时,较佳地为6h;
    所述时效处理的温度为460~520℃,较佳地为500℃;
    所述时效处理的时间为4~10h,较佳地为6h。
  8. 如权利要求7所述的制备方法,其特征在于,所述钕铁硼合金铸片平均厚度为0.25~0.35mm,较佳地为0.28~0.3mm,例如为0.28mm、0.29mm或0.30mm;
    和/或,所述细粉的粒径为3.8~4.1μm,较佳地为3.9~4.0μm,例如为3.95μm;
    和/或,所述烧结的温度为1030~1080℃,较佳地为1040℃~1050℃,例如为1040℃或1050℃。
  9. 高Cu高Al的钕铁硼磁体,其特征在于,其包含:主相和晶界相;
    其中,所述主相的成分为:R 23-29RH 0.1~3.1Fe 66~73.5Al 0.45~1.53B 0.9~1.1;所述晶界相的成分为:R 35~48RH 0.5~5.9Fe 46~56.5Al 0.05~0.25N 1.5~6.2B 0.8~1.1Cu 6~15
    其中,Cu为铜;Al为铝;R为镨Pr和/或钕Nd;B为硼;RH为镝Dy和/或铽Tb;高熔点金属元素N为铌Nb、锆Zr、钛Ti和铪Hf的一种或多种;Fe为铁;
    其中,所述主相占所述磁体的质量比为86~94wt.%,所述晶界相占所述磁体的质量比为5~14wt.%;
    较佳地,所述主相的成分为:R 23-29RH 0.1~3.1Fe 65~71Al 0.45~1.53Co 1~2.5B 0.9~1.1;所述晶界相的成分为:R 35~48RH 0.5~5.9Fe 45~51Al 0.05~0.25N 1.5~6.2B 0.8~1.1Cu 6~15Co 1~5.5
    其中,Co为钴。
  10. 一种如权利要求1~5、9任一项所述的高Cu高Al的钕铁硼磁体在电机中作为电机转子磁钢的应用。
PCT/CN2020/100582 2019-12-24 2020-07-07 高Cu高Al的钕铁硼磁体及其制备方法 WO2021128802A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227006985A KR102589813B1 (ko) 2019-12-24 2020-07-07 고 Cu 고 Al의 네오디뮴철붕소 자성체 및 그 제조방법
EP20908416.9A EP4016561A4 (en) 2019-12-24 2020-07-07 NEODYMIUM-IRON-BORON MAGNET WITH HIGH CU AND AL CONTENT AND PROCESS FOR ITS MANUFACTURE
JP2022510789A JP7214041B2 (ja) 2019-12-24 2020-07-07 高Cu高Alネオジム鉄ホウ素磁石及びその製造方法
US17/635,407 US20220325391A1 (en) 2019-12-24 2020-07-07 High-cu and high-al neodymium iron boron magnet and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911348739.0 2019-12-24
CN201911348739.0A CN110993234B (zh) 2019-12-24 2019-12-24 高Cu高Al的钕铁硼磁体及其制备方法

Publications (1)

Publication Number Publication Date
WO2021128802A1 true WO2021128802A1 (zh) 2021-07-01

Family

ID=70074888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100582 WO2021128802A1 (zh) 2019-12-24 2020-07-07 高Cu高Al的钕铁硼磁体及其制备方法

Country Status (7)

Country Link
US (1) US20220325391A1 (zh)
EP (1) EP4016561A4 (zh)
JP (1) JP7214041B2 (zh)
KR (1) KR102589813B1 (zh)
CN (1) CN110993234B (zh)
TW (1) TWI741909B (zh)
WO (1) WO2021128802A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993234B (zh) * 2019-12-24 2021-06-25 厦门钨业股份有限公司 高Cu高Al的钕铁硼磁体及其制备方法
CN111180159B (zh) * 2019-12-31 2021-12-17 厦门钨业股份有限公司 一种钕铁硼永磁材料、制备方法、应用
CN111524675B (zh) * 2020-04-30 2022-02-08 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111599562B (zh) * 2020-05-29 2024-03-29 福建省金龙稀土股份有限公司 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
CN113674944B (zh) 2021-07-29 2023-10-20 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料及其制备方法和应用
CN113674943B (zh) 2021-07-29 2023-01-24 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料及其制备方法和应用
KR102511700B1 (ko) * 2022-10-13 2023-03-21 귀네테르 주식회사 치료 용도의 자기 에너지를 방출하는 자성체의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552062A (zh) * 2008-12-09 2009-10-07 宁波同创强磁材料有限公司 钆钬复合添加的中高牌号钕铁硼磁体
WO2015129861A1 (ja) * 2014-02-28 2015-09-03 日立金属株式会社 R-t-b系焼結磁石およびその製造方法
CN105513737A (zh) * 2016-01-21 2016-04-20 烟台首钢磁性材料股份有限公司 一种不含重稀土元素烧结钕铁硼磁体的制备方法
CN105575651A (zh) * 2016-03-01 2016-05-11 京磁材料科技股份有限公司 一种钕铁硼磁体的压制成型工艺
CN106098279A (zh) * 2016-05-26 2016-11-09 安徽宁磁电子科技有限公司 一种机器人用钕铁硼永磁材料及其制备方法
CN110310795A (zh) * 2019-06-25 2019-10-08 宁波合力磁材技术有限公司 一种防腐钕铁硼磁体及其制备方法
CN110993234A (zh) * 2019-12-24 2020-04-10 厦门钨业股份有限公司 高Cu高Al的钕铁硼磁体及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005123974A1 (ja) * 2004-06-22 2008-04-10 信越化学工業株式会社 R−Fe−B系希土類永久磁石材料
KR20070023643A (ko) * 2004-06-22 2007-02-28 신에쓰 가가꾸 고교 가부시끼가이샤 R-Fe-B계 희토류 영구 자석 재료
US9324485B2 (en) * 2008-02-29 2016-04-26 Daido Steel Co., Ltd. Material for anisotropic magnet and method of manufacturing the same
CN101552063A (zh) * 2008-12-09 2009-10-07 宁波同创强磁材料有限公司 钛锆复合添加的高性能钕铁硼磁体
JP6274215B2 (ja) * 2013-08-09 2018-02-07 Tdk株式会社 R−t−b系焼結磁石、および、モータ
CN103996475B (zh) * 2014-05-11 2016-05-25 沈阳中北通磁科技股份有限公司 一种具有复合主相的高性能钕铁硼稀土永磁体及制造方法
JP6493138B2 (ja) * 2015-10-07 2019-04-03 Tdk株式会社 R−t−b系焼結磁石
JP6624455B2 (ja) * 2016-08-17 2019-12-25 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2018056188A (ja) * 2016-09-26 2018-04-05 信越化学工業株式会社 R−Fe−B系焼結磁石
US10748685B2 (en) * 2017-03-30 2020-08-18 Tdk Corporation R-T-B based sintered magnet
CN107887091A (zh) * 2017-11-15 2018-04-06 宁德市星宇科技有限公司 一种含镝钕铁硼磁体及其制备的方法
CN108281246B (zh) * 2018-02-23 2020-08-25 金力永磁(宁波)科技有限公司 一种高性能烧结钕铁硼磁体及其制备方法
JP7180095B2 (ja) * 2018-03-23 2022-11-30 Tdk株式会社 R‐t‐b系焼結磁石
JP7314513B2 (ja) * 2018-07-09 2023-07-26 大同特殊鋼株式会社 RFeB系焼結磁石
CN110556223B (zh) * 2019-09-30 2021-07-02 厦门钨业股份有限公司 一种钕铁硼磁体材料及其制备方法和应用
CN110797157B (zh) * 2019-11-21 2021-06-04 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552062A (zh) * 2008-12-09 2009-10-07 宁波同创强磁材料有限公司 钆钬复合添加的中高牌号钕铁硼磁体
WO2015129861A1 (ja) * 2014-02-28 2015-09-03 日立金属株式会社 R-t-b系焼結磁石およびその製造方法
CN105513737A (zh) * 2016-01-21 2016-04-20 烟台首钢磁性材料股份有限公司 一种不含重稀土元素烧结钕铁硼磁体的制备方法
CN105575651A (zh) * 2016-03-01 2016-05-11 京磁材料科技股份有限公司 一种钕铁硼磁体的压制成型工艺
CN106098279A (zh) * 2016-05-26 2016-11-09 安徽宁磁电子科技有限公司 一种机器人用钕铁硼永磁材料及其制备方法
CN110310795A (zh) * 2019-06-25 2019-10-08 宁波合力磁材技术有限公司 一种防腐钕铁硼磁体及其制备方法
CN110993234A (zh) * 2019-12-24 2020-04-10 厦门钨业股份有限公司 高Cu高Al的钕铁硼磁体及其制备方法

Also Published As

Publication number Publication date
US20220325391A1 (en) 2022-10-13
JP7214041B2 (ja) 2023-01-27
CN110993234B (zh) 2021-06-25
TW202125543A (zh) 2021-07-01
EP4016561A1 (en) 2022-06-22
KR102589813B1 (ko) 2023-10-13
KR20220041192A (ko) 2022-03-31
TWI741909B (zh) 2021-10-01
EP4016561A4 (en) 2022-10-19
CN110993234A (zh) 2020-04-10
JP2022543487A (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2021128802A1 (zh) 高Cu高Al的钕铁硼磁体及其制备方法
CN108831650B (zh) 一种钕铁硼磁体及其制备方法
CN102956336B (zh) 一种制备复合添加钆、钬和钇的烧结钕铁硼永磁材料的方法
CN111243809B (zh) 一种钕铁硼材料及其制备方法和应用
JP7418598B2 (ja) 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
JP7470804B2 (ja) ネオジム鉄ホウ素磁石材料、原料組成物、及び製造方法
JP7470805B2 (ja) ネオジム鉄ホウ素磁石材料
WO2010113371A1 (ja) R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター
TWI738592B (zh) R-t-b系燒結磁體及其製備方法
WO2021031724A1 (zh) 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
JP4951703B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
WO2021169896A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
TW202305841A (zh) 一種釹鐵硼磁體材料及其製備方法和應用
JP2024519244A (ja) ネオジム鉄ホウ素磁石材料及びその製造方法並びに応用
WO2023174430A1 (zh) 一种r-t-b磁体及其制备方法
JP5743458B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
WO2001024201A1 (en) Cu ADDITIONS TO Nd-Fe-B ALLOYS TO REDUCE OXYGEN CONTENT IN THE INGOT AND RAPIDLY SOLIDIFIED RIBBON
CN110289161B (zh) 一种低稀土含量的钕铁硼磁体的制备方法
WO2014059772A1 (zh) 高抗腐蚀性Re-(Fe, TM)-B磁体及其制备方法
CN101499342A (zh) 提高永磁体矫顽力的方法
JP6828623B2 (ja) R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金
TW202342781A (zh) 釹鐵硼磁體材料及其製備方法、應用、電機
CN113643872A (zh) 一种含铈钕铁硼磁钢及其制备方法
CN115985611A (zh) R-t-b系永磁材料及其制备方法
CN113205939A (zh) 一种含锆烧结钕铁硼磁体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510789

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227006985

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020908416

Country of ref document: EP

Effective date: 20220315

NENP Non-entry into the national phase

Ref country code: DE