WO2021125282A1 - 電力装置、表示装置、充電率算出方法、プログラム及び記憶媒体 - Google Patents

電力装置、表示装置、充電率算出方法、プログラム及び記憶媒体 Download PDF

Info

Publication number
WO2021125282A1
WO2021125282A1 PCT/JP2020/047216 JP2020047216W WO2021125282A1 WO 2021125282 A1 WO2021125282 A1 WO 2021125282A1 JP 2020047216 W JP2020047216 W JP 2020047216W WO 2021125282 A1 WO2021125282 A1 WO 2021125282A1
Authority
WO
WIPO (PCT)
Prior art keywords
total
power storage
power device
storage units
charge capacity
Prior art date
Application number
PCT/JP2020/047216
Other languages
English (en)
French (fr)
Inventor
長谷部学
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN202080088043.3A priority Critical patent/CN114829960A/zh
Priority to JP2021565649A priority patent/JPWO2021125282A1/ja
Priority to EP20902262.3A priority patent/EP4079556B1/en
Priority to US17/785,073 priority patent/US20230010424A1/en
Publication of WO2021125282A1 publication Critical patent/WO2021125282A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention includes a power device having a plurality of power storage units capable of charging and discharging, a display device for displaying the total charge rate of the plurality of power storage units, a charge rate calculation method for calculating the total charge rate of the plurality of power storage units, and a plurality of methods.
  • the present invention relates to a program for calculating the overall charge rate of the power storage unit and a storage medium in which the program is stored.
  • Japanese Patent Application Laid-Open No. 2000-92604 discloses that the remaining capacity of a battery (storage unit) mounted on an electric vehicle (electric vehicle) is detected in real time and the detection result is displayed on a remaining capacity display. ing.
  • the present invention has been made in consideration of such a problem, and provides a power device, a charge rate calculation method, a program, and a storage medium capable of accurately obtaining the overall charge rate of a plurality of power storage units.
  • the purpose is.
  • Another object of the present invention is to provide a display device capable of displaying the total charge rate of the plurality of power storage units thus determined.
  • the first aspect of the present invention is a power device having a plurality of power storage units capable of charging and discharging, the total of the full charge capacity of each of the plurality of power storage units and the current charge of each of the plurality of power storage units. It has a charge rate calculation unit that calculates the total charge rate of the plurality of power storage units based on the total capacity.
  • a second aspect of the present invention is a display device, wherein the display device has a receiving unit that receives the entire charging rate of the plurality of the power storage units from the power device, and the plurality of received units. The charge rate of the entire power storage unit is displayed.
  • a third aspect of the present invention is a method for calculating the charge rate of a power device having a plurality of power storage units capable of charging and discharging, the step of acquiring the full charge capacity of each of the plurality of power storage units, and the plurality of the above-mentioned.
  • a step of calculating the total of the full charge capacity a step of acquiring the current charge capacity of each of the plurality of power storage units, a step of calculating the total of the plurality of the current charge capacities, the total of the full charge capacity, and the step. It has a step of calculating the total charge rate of the plurality of power storage units based on the total of the current charge capacities.
  • a fourth aspect of the present invention is a program, wherein the program includes a step of acquiring the full charge capacity of each of the plurality of power storage units, a step of calculating the total of the plurality of full charge capacities, and a plurality of steps. Based on the step of acquiring the current charge capacity of each of the power storage units, the step of calculating the total of the plurality of current charge capacities, the total of the full charge capacity, and the total of the current charge capacity, the plurality of said devices. Have the computer perform the steps of calculating the overall charge rate of the power storage unit.
  • a fifth aspect of the present invention is a storage medium, in which the above program is stored.
  • the present invention by using the total of the full charge capacity of each of the plurality of power storage units and the total of the current charge capacities of each of the plurality of power storage units, the overall charge rate of the plurality of power storage units can be accurately measured. It becomes possible to calculate. Further, in the present invention, it is possible to display the total charge rate of the plurality of power storage units thus obtained.
  • FIG. 5A is a diagram showing a display example of a fully charged state
  • FIG. 5B is a diagram showing a display example when the SOC is lowered
  • FIG. 6A is a diagram showing a display example of battery replacement
  • FIG. 6B is a diagram showing a display example when the lid member is opened.
  • FIG. 7A is a diagram showing a display example in a state where the removable battery is removed
  • FIG. 7B is a diagram showing a display example when the removable battery is loaded. It is a flowchart which shows 1st Example of the operation (charge rate calculation method) of the electric power apparatus which concerns on this Embodiment. It is a flowchart which shows 2nd Example and 3rd Example.
  • FIG. 10A is a diagram showing the relationship between the output voltage and the dischargeable capacity of the standard type removable battery
  • FIG. 10B is a diagram showing the relationship between the output voltage and the dischargeable capacity of the high output removable battery. is there.
  • FIG. 1 is a configuration diagram showing an embodiment of the electric power device 10 according to the present embodiment.
  • FIG. 1 illustrates a case where the electric power device 10 according to the present embodiment is applied to a power supply system 15 (electric power supply system) for supplying electric power to a drive motor 14 which is a drive source (load) of a vehicle 12. There is.
  • a power supply system 15 electric power supply system
  • the vehicle 12 is a four-wheel electric vehicle to which four removable batteries 16a to 16d (storage units) constituting the electric power device 10 are detachably mounted.
  • the four removable batteries 16a to 16d supply electric power to the drive motor 14 of FIG.
  • the removable battery 16 when the plurality of removable batteries 16a to 16d are not particularly distinguished, they may be referred to as the removable battery 16.
  • the removable battery 16 is charged by an external charger (not shown) in a state of being removed from the vehicle 12. That is, the removable battery 16 is a power storage device that can be charged and discharged.
  • the vehicle 12 may be a vehicle on which the drive motor 14 is mounted, such as an electric vehicle such as an electric vehicle or a hybrid vehicle. Therefore, the electric power device 10 according to the present embodiment is not limited to the four-wheel electric vehicle, and can be applied to the power supply system of various vehicles such as one-wheel, two-wheel, and four-wheel.
  • the electric power device 10 is not limited to the power supply system 15 of the vehicle 12, and can be applied to various power supply systems that supply electric power from each removable battery 16 to a load such as a drive motor 14. Therefore, the electric power device 10 can be applied to a power supply system capable of supplying electric power to a load in various mobile objects including a vehicle 12 and an air vehicle and various electronic devices.
  • the removable battery 16 may be a portable power storage device that can be attached to and detached from the electric power device 10, the vehicle 12, and the like. Therefore, the electric power device 10 can adopt various power storage devices including a standard battery pack, a high output battery pack, a high capacity battery pack, and a battery for a hybrid vehicle as the removable battery 16. .. Further, the number of removable batteries 16 included in the power device 10 may be two or more.
  • FIGS. 1 to 3 a case where power is supplied from four removable batteries 16 to a drive motor 14 in a power supply system 15 of a four-wheel electric vehicle will be described.
  • a seat 22 which is a driver's seat is provided at a position substantially intermediate with the rear wheel 20R on the Ab direction side (rear side).
  • the four removable batteries 16a to 16d (16) are arranged between the left and right directions (direction of arrow B as the vehicle width direction) of the vehicle body 18.
  • two power storage device accommodating portions 24 capable of accommodating one detachable battery 16 are provided side by side in the arrow B direction near the upper side of the rear wheel 20R on the arrow B1 direction side (left side) of the vehicle body 18.
  • two power storage device accommodating portions 24 capable of accommodating one removable battery 16 are provided side by side in the arrow B direction in the vicinity of the upper side of the rear wheel 20R on the arrow B2 direction side (right side) of the vehicle body 18.
  • a lid member 26 that is opened when the removable battery 16 is attached / detached is provided on the arrow Ab direction side (rear side) of each power storage device accommodating portion 24.
  • the four removable batteries 16a to 16d are not limited to the arrangements shown in FIGS. 2 and 3, and are arbitrary in the vehicle 12 as long as they do not interfere with the driving operation of the driver seated on the seat 22. Can be placed in the location of.
  • the power device 10 includes a vehicle control unit 30 (charge rate calculation unit), DC / DC converters 32a to 32d, a joint box 34, and an inverter 36. Further, the power supply system 15 is provided with a display device 38. Further, each detachable battery 16a to 16d has a battery management unit 40a to 40d (hereinafter, referred to as BMU 40a to 40d).
  • BMU 40a to 40d battery management unit 40a to 40d
  • the vehicle control control unit 30 may be referred to as a control unit 30.
  • the DC / DC converters 32a to 32d are not particularly distinguished, they may be described as the DC / DC converter 32.
  • a plurality of BMUs 40a to 40d may also be described as BMU40 when not particularly distinguished.
  • the control unit 30 has a communication unit (transmission unit) 30a. Further, the display device 38 has a communication unit (reception unit) 38a.
  • the communication units 30a and 38a are connected to a CAN 42 for communicating with each device in the vehicle 12 and a CAN 44 for communicating with each device related to the removable batteries 16a to 16d, respectively.
  • the DC / DC converters 32a to 32d and the BMUs 40a to 40d of the removable batteries 16a to 16d are connected to the CAN 44.
  • the control unit 30 is a computer (information processing device) as an ECU (electronic control device) mounted on the vehicle 12, and reads and executes a program stored in the storage unit 30b, which is a non-transient storage medium. As a result, various functions including the calculation of the charge rate, which will be described later, are realized. That is, the control unit 30 acquires an ignition signal, which is an on signal, from the ignition switch 46, which is a drive switch of the vehicle 12. Further, the control unit 30 acquires the accelerator pedal opening degree information from the accelerator pedal sensor 48. In this case, the control unit 30 sets the torque of the drive motor 14 according to the accelerator pedal opening degree information, and outputs the torque command value from the communication unit 30a to the CAN 42. Further, the control unit 30 sets a current command value which is a PWM signal for converting the output voltage of the detachable battery 16 according to the torque command value, and outputs the set current command value from the communication unit 30a to the CAN 44. To do.
  • control unit 30 acquires a lid opening / closing signal indicating the detection result of opening / closing of the lid member 26 from the lid switch 50.
  • the control unit 30 sets the display content of the display device 38 according to the open state or the closed state of the lid member 26 indicated by the lid open / close signal, and transmits a display instruction signal indicating the set display content from the communication unit 30a to the CAN44. Output to.
  • the control unit 30 obtains (receives) the information of the plurality of removable batteries 16a to 16a based on the acquired information.
  • the individual SOC of 16d (hereinafter, may be referred to as charge rate or charge capacity) is grasped.
  • the control unit 30 sets a display content to notify the replacement of the removable battery 16a to 16d, and sets the displayed display content.
  • the indicated display instruction signal is output from the communication unit 30a to the CAN44.
  • control unit 30 is based on the information of the removable batteries 16a to 16d acquired by the communication unit 30a, and whether or not the removable batteries 16a to 16d are loaded in the power storage device accommodating unit 24, that is, the detachable type. It is determined whether or not the batteries 16a to 16d and the DC / DC converters 32a to 32d are electrically connected.
  • the control unit 30 sets the display contents according to the determination result, and outputs a display instruction signal indicating the set display contents from the communication unit 30a to the CAN 44.
  • control unit 30 stores the entire SOC (plurality of removable batteries 16a to 16d) of the plurality of removable batteries 16a to 16d from the information of each removable battery 16a to 16d acquired by the communication unit 30a.
  • the SOC (charge rate) of the one power storage device when regarded as a device is calculated.
  • the control unit 30 sets the overall SOC display contents of the calculated detachable batteries 16a to 16d, and outputs a display instruction signal indicating the set display contents from the communication unit 30a to the CAN 44.
  • the BMUs 40a to 40d include the SOC of the removable batteries 16a to 16d, the temperature (temperature coefficient), the degree of deterioration (degree of deterioration, deterioration coefficient), the internal resistance, the current charge capacity as the remaining capacity, and the removable batteries 16a to 16d.
  • the connection state with the DC / DC converters 32a to 32d is managed.
  • the BMUs 40a to 40d also manage the specifications of the removable batteries 16a to 16d (specification difference values such as specification coefficients), the specification value or initial value of the full charge capacity, and the current full charge capacity.
  • the BMUs 40a to 40d output this information to the CAN44.
  • the control unit 30 acquires the current charge capacity of each of the detachable batteries 16a to 16d, the current full charge capacity, the specification value or the initial value of the full charge capacity, and the like from the BMU 40a to 40d.
  • the specification value of the full charge capacity means the standard value of the full charge capacity of the removable batteries 16a to 16d.
  • the initial value of the full charge capacity means the value of the full charge capacity (initial full charge amount) at the start of use (factory shipment) of the removable batteries 16a to 16d.
  • the DC / DC converter 32 converts the output voltage of the removable battery 16 according to the current command value, and outputs the converted output voltage to the joint box 34.
  • the joint box 34 supplies DC power from the removable battery 16 to the inverter 36.
  • the inverter 36 converts the DC power supplied from the joint box 34 into three-phase AC power according to the torque command value and supplies it to the drive motor 14. Further, the inverter 36 outputs the rotation speed information and the actual torque information of the drive motor 14 to the CAN 42.
  • the display device 38 includes a screen 62 (see FIG. 4) set on the dashboard of the vehicle 12 and a processing device for processing characters and images to be displayed on the screen 62.
  • Information from the inverter 36 or the drive motor 14 is input (received) to the display device 38 via the communication unit 38a, and SOC information (various charging rates or charging) of the removable battery 16 is input (received) from the CAN 44 via the communication unit 38a. Capacity information) and the display instruction signal of the control unit 30 are input (received).
  • the display device 38 displays the status of the removable battery 16 based on various information input to the communication unit 38a.
  • FIG. 4 is a diagram showing a display example of the display device 38.
  • the display device 38 includes a battery remaining amount display unit 52a to 52d, a total remaining amount display unit 54, an open / closed state display unit 56a to 56d, a battery replacement display unit 58a to 58d, and a battery connection status display unit 60a to 60d.
  • the battery remaining amount display units 52a to 52d are provided on the right side of the screen 62 of the display device 38.
  • the two battery remaining amount display units 52a and 52b on the right side correspond to the two removable batteries 16a and 16b arranged on the right side of the vehicle body 18 (see FIGS. 2 and 3).
  • the two battery remaining amount display units 52c and 52d on the left side correspond to the two removable batteries 16c and 16d arranged on the left side of the vehicle body 18.
  • the battery remaining amount display units 52a to 52d display the numbers of the removable batteries 16a to 16d, a picture imitating a dry battery in which a bar graph is arranged inside, and the SOC values of the removable batteries 16a to 16d. indicate. Further, the bar-shaped graph inside the dry battery changes in the vertical direction according to the SOC size of the corresponding removable batteries 16a to 16d.
  • each segment is, for example, an LED, and when one segment is lit, 10% of SOC is displayed.
  • the lighting state is shown by hatching, and the lighting state is shown in white. Therefore, the battery remaining amount display units 52a to 52d are lit in order from the lower segment to the upper segment according to the SOC size of the corresponding removable batteries 16a to 16d, thereby increasing the SOC size.
  • the outline is displayed.
  • FIG. 4 shows that all the segments are not lit and the SOC of each removable battery 16a to 16d is 0%.
  • all segments are lit, indicating that the SOC of the removable battery 16a is 100%.
  • the lower three segments are lit, indicating that the detachable battery 16a has a SOC of 30%.
  • one lower segment is lit, indicating that the removable battery 16a has a SOC of 10%.
  • the lighting color of the segment may be changed according to the size of the SOC.
  • 5B and 6A show that the segments are lit in different colors by making the hatching directions in the segments different as compared with the case of FIG. 5A.
  • the open / closed status display units 56a to 56d, the battery replacement display units 58a to 58d, and the battery connection status display units 60a to 60d are arranged around the pictures simulating the dry batteries of the battery remaining amount display units 52a to 52d. These display units are provided around the battery remaining amount display units 52a to 52d of the corresponding removable batteries 16a to 16d.
  • the open / closed state display units 56a to 56d indicate that the lid member 26 of the power storage device accommodating unit 24 accommodating the corresponding removable batteries 16a to 16d is open by turning on, and the lid is turned off by turning off the lid. Indicates that the member 26 is closed.
  • the lighting state is shown by a solid line, and the lighting state is shown by a broken line.
  • the battery replacement display units 58a to 58d light up to indicate that the corresponding removable batteries 16a to 16d need to be replaced, and turn off to indicate that the replacement is unnecessary.
  • the lighting state is shown by a solid line, and the lighting state is shown by a broken line.
  • the battery connection status display units 60a to 60d When the battery connection status display units 60a to 60d are turned on, the corresponding removable batteries 16a to 16d are loaded into the power storage device accommodating unit 24, and the removable batteries 16a to 16d and the DC / DC converters 32a to 32d are connected. Indicates that it is electrically connected. Further, by turning off the battery connection status display units 60a to 60d, the removable batteries 16a to 16d are not loaded in the power storage device accommodating unit 24, or even if they are loaded, the removable batteries 16a are loaded. Indicates that ⁇ 16d and the DC / DC converters 32a to 32d are not electrically connected. In FIGS. 4 to 7B, the lighting state is illustrated by a black circle, and the lighting state is illustrated by a white circle.
  • the total remaining amount display unit 54 displays the total SOC of the four removable batteries 16a to 16d.
  • the total remaining amount display unit 54 is composed of 10 segments arranged in the horizontal direction. Each segment is, for example, an LED, and when one segment is lit, 10% of SOC is displayed. Therefore, the total remaining amount display unit 54 indicates 100% SOC from the left side (E side indicating 0% SOC) segment according to the overall SOC size of each removable battery 16a to 16d. By lighting in order toward the segment (F side), the approximate size of the SOC is displayed.
  • 5A to 7B show changes in the display contents of the display device 38 before and after battery replacement for one removable battery 16a.
  • the display content of the display device 38 changes in the same manner when the batteries are replaced.
  • FIG. 5A shows a case where the removable battery 16a is housed in the power storage device accommodating portion 24 (see FIGS. 2 and 3), the lid member 26 is closed, and the SOC of the removable battery 16a is 100%. Is shown. In this case, on the battery remaining amount display unit 52a, all the segments are lit and the character "100%" indicating the SOC value is displayed. Further, the battery connection status display unit 60a is lit, and the open / closed status display unit 56a and the battery replacement status display unit 58a are extinguished.
  • FIG. 5B shows the case where the SOC of the removable battery 16a is reduced to 30%.
  • the lower three segments are lit and the character "30%" indicating the SOC value is displayed. Since the SOC is lowered, the lower three segments are lit with different lighting colors than in the case of FIG. 5A.
  • FIG. 6A shows the case where the SOC of the removable battery 16a is reduced to 10%.
  • the battery remaining amount display unit 52a one lower segment is lit and the character "10%" indicating the SOC value is displayed. Further, when the battery replacement display unit 58a lights up, the driver or the like is urged to replace the removable battery 16a.
  • the screen display of FIG. 6A when the driver or the like opens the lid member 26 (see FIGS. 2 and 3) of the power storage device accommodating portion 24 accommodating the detachable battery 16a, the screen 62 of the display device 38 is displayed. The display content is switched to that shown in FIG. 6B. In FIG. 6B, the open / closed state display unit 56a is turned on to notify that the lid member 26 is open.
  • the screen 62 of the display device 38 switches to the display content of FIG. 7A.
  • the battery connection status display unit 60a is turned off, and the open / closed status display unit 56a and the battery replacement status display unit 58a are lit. Further, the battery remaining amount display unit 52a turns off all the segments and displays the character "0%" indicating the SOC value.
  • the screen 62 of the display device 38 switches to the display content of FIG. 7B.
  • the battery connection status display unit 60a, the open / closed status display unit 56a, and the battery replacement status display unit 58a are all lit. Further, the battery remaining amount display unit 52a lights all the segments and displays the character "100%" indicating the SOC value.
  • the screen 62 of the display device 38 switches to the display content of FIG. 5A.
  • the open / closed state display unit 56a and the battery replacement display unit 58a are turned off.
  • a characteristic function is to accurately calculate the overall SOC of the plurality of removable batteries 16 even when a plurality of different types of removable batteries 16 are housed in the power storage device accommodating unit 24. It should be noted that this characteristic function can also be applied to the SOC calculation process for a plurality of removable batteries 16 of the same type.
  • the control unit 30 (see FIG. 1) considers the temperature coefficient, deterioration coefficient, and specification coefficient (specification difference value) of each of the detachable batteries 16 for the four removable batteries 16.
  • the total SOC of the plurality of removable batteries 16 is calculated. Therefore, in the first embodiment, it is applicable to both the case of four removable batteries 16 of the same type and the case of four removable batteries 16 of different types.
  • the types of the removable battery 16 include, for example, a difference in capacity or output, and a difference in battery structure. In the present embodiment, even if the removable battery 16 has the same structure, if it is a standard type, a high output type, or a high capacity type, it is treated as a different type of removable battery 16. In addition, general battery packs and batteries for hybrid vehicles are also treated as different types of removable batteries 16.
  • step S1 when the driver turns on the ignition switch 46, the ignition signal is supplied from the ignition switch 46 to the control unit 30. As a result, the power supply system 15 (electric power device 10) in the vehicle 12 is activated.
  • the communication unit 30a of the control unit 30 acquires the information of each removable battery 16 from each BMU 40 via the CAN 44.
  • the information to be acquired includes the SOC of each removable battery 16 and a state indicating whether or not each removable battery 16 is loaded in each power storage device accommodating unit 24.
  • the SOC information acquired by the communication unit 30a in step S2 includes the current charge capacity of each removable battery 16, the current full charge capacity, and the specified value or the initial value of the full charge capacity.
  • control unit 30 determines whether or not the detachable battery 16 is housed in each power storage device accommodating unit 24 based on the information of each detachable battery 16 acquired by the communication unit 30a. Further, the control unit 30 determines whether or not the SOC of each removable battery 16 is not 0%.
  • step S3 when the detachable battery 16 is accommodated in all the power storage device accommodating portions 24 and the detachable battery 16 having 0% SOC does not exist (step S3: YES), the control unit 30 is in step S4. Proceed to processing.
  • step S4 the control unit 30 confirms the type of each removable battery 16 based on the information of each removable battery 16 acquired in step S2.
  • step S5 the communication unit 30a of the control unit 30 acquires the temperature coefficient, deterioration coefficient, and specification coefficient of each removable battery 16 from each BMU 40 via the CAN 44.
  • step S6 the control unit 30 calculates the total FCC of the full charge capacity of each removable battery 16 based on the information of each removable battery 16 acquired by the communication unit 30a from each BMU 40 via the CAN 44.
  • the total FCC of each fully charged capacity is the total FCC0 of the specified value or the initial value of the fully charged capacity of each removable battery 16 if each removable battery 16 is not deteriorated.
  • the total FCC of each full charge capacity becomes the total of each full charge capacity at the present time. That is, the total FCC of each full charge capacity is expressed by the following equation (1).
  • is a mathematical symbol indicating the sum.
  • FCC ⁇ (full charge capacity of each removable battery 16) (1)
  • the control unit 30 is the total RC of the current remaining capacity (current charging capacity) of each removable battery 16 based on the information of each removable battery 16 acquired by the communication unit 30a from each BMU 40 via the CAN 44. Is calculated. In this case, the control unit 30 calculates based on the full charge capacity of each removable battery 16 and the current SOC. Alternatively, the control unit 30 may calculate the total RC of the current charge capacity based on the SOC, temperature coefficient, deterioration coefficient and specification coefficient of each removable battery 16. Further, the control unit 30 may calculate the total RC of the current charge capacity based on the time integration value of the currents (charge current, discharge current) for charging and discharging each detachable battery 16.
  • the total RC of the current charge capacity is represented by any of the following equations (2) to (4).
  • RC ⁇ ⁇ (SOC of each removable battery 16) x (temperature coefficient) ⁇ (deterioration coefficient) ⁇ (specification coefficient) ⁇ (2)
  • RC ⁇ ⁇ (Full charge capacity of each removable battery 16) ⁇ (SOC of each removable battery 16) ⁇ (3)
  • RC ⁇ (integrated value of current for charging and discharging each removable battery 16) (4)
  • step S8 the control unit 30 divides the total RC of the current charge capacity of each detachable battery 16 by the total FCC of the full charge capacity of each detachable battery 16 to obtain the total SOC of each detachable battery 16.
  • RSOC is calculated.
  • RSOC is represented by the following equation (5).
  • RSOC RC / FCC (5)
  • step S9 the control unit 30 controls each BMU 40 and each DC / DC converter 32 based on the calculated RSOC and the like.
  • control unit 30 assigns an ID for transmitting and receiving information via the CAN 44 to each BMU 40 (each detachable battery 16), and outputs the assigned ID from the communication unit 30a to the CAN 44. Further, the control unit 30 outputs a control command for controlling the BMU 40 to which the ID is assigned from the communication unit 30a to the CAN 44 based on the RSOC or the like. As a result, the BMU 40 causes a current to flow from the removable battery 16 toward the DC / DC converter 32 based on the control command acquired from the CAN 44.
  • control unit 30 adjusts the current command value for each DC / DC converter 32 in consideration of RSOC, and outputs each adjusted current command value from the communication unit 30a to the CAN 44.
  • the DC / DC converter 32 converts the output voltage of the removable battery 16 based on the current command value acquired from the CAN 44.
  • step S10 the control unit 30 sets the display content of the display device 38 according to the calculated RSOC or the like as a display instruction signal, and outputs the set display instruction signal from the communication unit 30a to the CAN 44.
  • the display device 38 displays the screens of FIGS. 5A to 7B based on the display instruction signal or the like acquired by the communication unit 38a via the CAN 44.
  • step S11 when the processes of steps S2 to S11 are repeatedly executed (step S11: YES), the control unit 30 returns to step S2. Further, after the driver confirms the display content of the display device 38 in step S10, the vehicle 12 can be moved by driving the vehicle 12 in step S12. In this case, after step S12, the determination process of step S11 is executed.
  • FIG. 10A is a diagram showing the relationship between the voltage of the standard type removable battery 16 and the total dischargeable capacity of the plurality of removable batteries 16.
  • the solid line is the result when four removable batteries 16 are mounted on the vehicle 12.
  • the total dischargeable capacity of the four removable batteries 16 is 100%. Further, in the case of four removable batteries 16, 1C discharge is performed.
  • the broken line indicates the case where the two removable batteries 16 are mounted on the vehicle 12.
  • the total dischargeable capacity of the two removable batteries 16 is the total dischargeable capacity of the four removable batteries 16. Compared to capacity (100%), it drops to 95%.
  • the load per one of the two removable batteries 16 is increased, so that the discharge rate is high and the discharge rate is 2C.
  • the four removable batteries 16 have a closed circuit voltage of 50 V and discharge. The current is about 160A (40A per battery), but with the two removable batteries 16, the closed circuit voltage drops to 45V and the discharge current increases to 200A (100A per battery).
  • FIG. 10B is a diagram showing the relationship between the voltage of the high output type removable battery 16 and the total dischargeable capacity of the plurality of removable batteries 16.
  • the solid line shows the case where four removable batteries 16 are mounted on the vehicle 12. Also in FIG. 10B, when four fully charged removable batteries 16 are mounted on the vehicle 12, the total dischargeable capacity of the four removable batteries 16 is 100%. Further, the four removable batteries 16 are discharged at 1C.
  • the broken line shows the case where two removable batteries 16 are mounted on the vehicle 12.
  • the total dischargeable capacity of the two removable batteries 16 is the four removable batteries 16.
  • the load per one of the two removable batteries 16 is increased, resulting in 2C discharge.
  • the decrease in the dischargeable capacity is suppressed to 2% as compared with the result of the standard type removable battery 16 (broken line in FIG. 10A).
  • the total SOC of each removable battery 16 is calculated in consideration of the increase in the load of the removable battery 16 due to such a decrease in the number of batteries.
  • the second embodiment a case where two removable batteries 16 of the same type are mounted on the vehicle 12 will be described.
  • step S2 of FIG. 8 four removable batteries 16 are not housed in the power storage device accommodating portion 24, or at least one of the removable batteries 16 is of the removable battery 16.
  • step S2: NO the control unit 30 proceeds to step S21 in FIG.
  • step S21 the control unit 30 determines the number of each removable battery 16 mounted on the vehicle 12 and the type of each removable battery 16 based on the information of each removable battery 16 acquired by the communication unit 30a. Confirm.
  • step S22 the communication unit 30a of the control unit 30 acquires the temperature coefficient, deterioration coefficient, and specification coefficient of each removable battery 16 from each BMU 40 via CAN44, as in step S4. If the removable battery 16 is not housed in the power storage device accommodating unit 24, the above information cannot be acquired. Further, even when the detachable battery 16 is housed in the power storage device accommodating unit 24, when the SOC is 0%, the communication unit 30a of the control unit 30 acquires information including the fact that the SOC is 0%.
  • step S23 the control unit 30 calculates the total FCC of the full charge capacity of each removable battery 16 in the same manner as in step S6. In this case, the control unit 30 calculates the total FCC of the full charge capacity of the two removable batteries 16.
  • step S24 the control unit 30 calculates the total RC0 of the current charge capacities of the two housed removable batteries 16. Next, the control unit 30 determines a correction coefficient according to the number and type of removable batteries 16 mounted on the vehicle 12.
  • the correction coefficient is, for example, a numerical value corresponding to a decrease in the dischargeable capacity due to a decrease in the number of removable batteries 16 mounted on the vehicle 12 from four to two. Specifically, in the case of the standard type removable battery 16 of FIG. 10A, the correction coefficient is 0.95, which corresponds to a reduction of 5%. Further, in the case of the high output type removable battery 16 shown in FIG. 10B, the correction coefficient is 0.98, which corresponds to a decrease of 2%.
  • step S25 the control unit 30 calculates the total RC of the current charge capacities of each removable battery 16 in consideration of the correction coefficient. That is, the control unit 30 calculates the total RC using the following equation (6).
  • RC RC0 ⁇ (correction coefficient) (6)
  • step S8 of FIG. 8 after step S25, the control unit 30 uses the total RC of the current charge capacity calculated by the equation (6) and the total FCC of the full charge capacity, and RSOC from the equation (5). Is calculated.
  • step S23 the control unit 30 calculates the total FCC of the full charge capacity for the number of the four removable batteries 16 as in step S6.
  • step S23 the control unit 30 proceeds to step S31 and calculates the total RC of the current charge capacity in consideration of the number of removable batteries 16 not mounted on the vehicle 12. That is, the control unit 30 calculates the sum of the current charge capacities of the two removable batteries 16 mounted on the vehicle 12 as the total RC.
  • step S8 of FIG. 8 the control unit 30 uses the total FCC of the full charge capacity calculated in step S23 and the total RC of the current charge capacity calculated in step S31 to (5).
  • the RSOC is calculated from the formula.
  • control unit 30 acquires the full charge capacity and the current charge capacity in step S2 in step S2 in step S5 or S22.
  • control unit 30 in step S5 or S22, can also acquire the current charge capacity and the full charge capacity.
  • one of the full charge capacity and the current charge capacity may be acquired by the control unit 30, and in step S5 or S22, the control unit 30 may acquire the other.
  • control unit 30 calculates the total of the acquired charge capacities after acquiring either the full charge capacity or the current charge capacity, and then acquires the charge capacity of the other. It is also possible to execute the process so as to calculate the total of the other charged capacities obtained.
  • control unit 30 is not limited to the order described in the first to third embodiments.
  • the present embodiment is a power device 10 having a plurality of removable batteries 16a to 16d (16) (storage units) that can be charged and discharged, and the control unit 30 (charge rate calculation unit) is a control unit 30 (charge rate calculation unit).
  • the plurality of removable batteries 16a to 16d RSOC which is the total SOC (charge rate) is calculated.
  • the present embodiment is a display device 38, in which the display device 38 has a communication unit 38a (reception unit) that receives the entire SOC (RSOC) of the plurality of removable batteries 16a to 16d from the power device 10. It has and displays the received RSOC.
  • RSOC entire SOC
  • the present embodiment is a method for calculating the charge rate of the power device 10 having a plurality of removable batteries 16a to 16d (16) that can be charged and discharged, and the full charge capacity of each of the plurality of removable batteries 16a to 16d. (Step S2), a step of calculating the total FCC of a plurality of fully charged capacities (steps S6 and S23), and a step of acquiring the current charge capacities of the plurality of removable batteries 16a to 16d (steps).
  • step S2 a step of calculating the total RC of a plurality of current charge capacities (steps S7, S25, S31), and a step of calculating RSOC based on the total FCC of the full charge capacity and the total RC of the current charge capacity (step S8). ) And.
  • the present embodiment is a program, in which the program includes a step (step S2) of acquiring the full charge capacity of each of the plurality of removable batteries 16a to 16d, and a total FCC of the plurality of fully charged capacities.
  • a step of calculating (steps S6 and S23), a step of acquiring the current charge capacity of each of the plurality of removable batteries 16a to 16d (step S2), and a step of calculating the total RC of the plurality of current charge capacities (step S7). , S25, S31), and the step (step S8) of calculating the RSOC based on the total FCC of the full charge capacity and the total RC of the current charge capacity is executed by the control unit 30 of the power device 10 as a computer.
  • the present embodiment is a storage unit 30b (storage medium), and the above program is stored in the storage unit 30b.
  • a plurality of removable batteries can be attached and detached. It is possible to accurately calculate the RSOC, which is the overall SOC of the batteries 16a to 16d. In addition, it is possible to display the RSOC obtained in this way.
  • the full charge capacity is obtained based on the specification value or the initial value regarding the full charge capacity of the removable batteries 16a to 16d.
  • the RSOC can be calculated with higher accuracy.
  • the full charge capacity is determined based on at least one of the temperature or the degree of deterioration of the removable batteries 16a to 16d.
  • the RSOC can be calculated more accurately based on the current situation of each of the removable batteries 16a to 16d.
  • the full charge capacity is obtained based on the specification difference value (for example, the specification coefficient) set according to the specification difference.
  • the RSOC can be calculated accurately in consideration of the specification difference between the removable batteries 16a to 16d.
  • the current charge capacity is determined based on the integrated value of the currents that charge and discharge the removable batteries 16a to 16d. As a result, the RSOC can be calculated accurately.
  • control unit 30 may calculate the RSOC by dividing the total RC of the current charge capacity by the total FCC of the full charge capacity. This makes it possible to easily calculate the RSOC.
  • control unit 30 corrects the total RC of the current charge capacity according to the number and types of the plurality of removable batteries 16a to 16d as in the second embodiment. Thereby, the optimum RSOC can be calculated in consideration of the decrease in the discharge capacity due to the decrease in the number of removable batteries 16a to 16d.
  • control unit 30 corrects the total RC of the current charge capacity according to the number of removable batteries 16a to 16d whose charge capacity is currently 0, as in the third embodiment. Even in this case, the optimum RSOC can be calculated in consideration of the decrease in the discharge capacity due to the decrease in the number of removable batteries 16a to 16d.
  • the plurality of removable batteries 16a to 16d are power storage devices that can be attached to and detached from the vehicle 12, and the control unit 30 is a control device mounted on the vehicle 12.
  • the electric power device 10 can be suitably applied as the power supply system 15 of the vehicle 12.
  • the power device 10 further has a communication unit 30a (transmission unit) that transmits the RSOC calculated by the control unit 30 to the display device 38.
  • the display device 38 can receive the RSOC at the communication unit 38a and reliably display the received RSOC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

電力装置(10)及び充電率算出方法において、コントロールユニット(30)は、複数の着脱式バッテリ(16a~16d(16))のそれぞれの満充電容量の合計(FCC)を算出し、複数の着脱式バッテリ(16)のそれぞれの現在充電容量の合計(RC)を算出し、算出した満充電容量の合計(FCC)及び現在充電容量の合計(RC)に基づき、複数の着脱式バッテリ(16)の全体のSOCであるRSOCを算出する。

Description

電力装置、表示装置、充電率算出方法、プログラム及び記憶媒体
 本発明は、充放電可能な複数の蓄電部を有する電力装置、複数の蓄電部の全体の充電率を表示する表示装置、複数の蓄電部の全体の充電率を算出する充電率算出方法、複数の蓄電部の全体の充電率を算出するためのプログラム、及び、該プログラムが記憶された記憶媒体に関する。
 電気自動車(電動車両)に搭載されたバッテリ(蓄電部)の残容量をリアルタイムに検出し、その検出結果を残容量表示器に表示することが、例えば、特開2000-92604号公報に開示されている。
 ところで、複数の蓄電部の間で、温度、劣化度合、又は、種類等の仕様が互いに異なる場合、単純に、それぞれの蓄電部の充電率の平均値を算出しても、算出した平均値が複数の蓄電部の全体の充電率にならないことがある。
 本発明は、このような課題を考慮してなされたものであり、複数の蓄電部の全体の充電率を精度良く求めることが可能な電力装置、充電率算出方法、プログラム及び記憶媒体を提供することを目的とする。また、本発明は、そのように求めた複数の蓄電部の全体の充電率を表示可能な表示装置を提供することを目的とする。
 本発明の第1の態様は、充放電可能な複数の蓄電部を有する電力装置であって、複数の前記蓄電部のそれぞれの満充電容量の合計と、複数の前記蓄電部のそれぞれの現在充電容量の合計とに基づいて、複数の前記蓄電部の全体の充電率を算出する充電率算出部を有する。
 本発明の第2の態様は、表示装置であって、該表示装置は、上記の電力装置から複数の前記蓄電部の全体の前記充電率を受信する受信部を有し、受信した複数の前記蓄電部の全体の前記充電率を表示する。
 本発明の第3の態様は、充放電可能な複数の蓄電部を有する電力装置の充電率算出方法であって、複数の前記蓄電部のそれぞれの満充電容量を取得するステップと、複数の前記満充電容量の合計を算出するステップと、複数の前記蓄電部のそれぞれの現在充電容量を取得するステップと、複数の前記現在充電容量の合計を算出するステップと、前記満充電容量の前記合計及び前記現在充電容量の前記合計に基づき、複数の前記蓄電部の全体の充電率を算出するステップとを有する。
 本発明の第4の態様は、プログラムであって、該プログラムは、複数の蓄電部のそれぞれの満充電容量を取得するステップと、複数の前記満充電容量の合計を算出するステップと、複数の前記蓄電部のそれぞれの現在充電容量を取得するステップと、複数の前記現在充電容量の合計を算出するステップと、前記満充電容量の前記合計及び前記現在充電容量の前記合計に基づき、複数の前記蓄電部の全体の充電率を算出するステップとをコンピュータに実行させる。
 本発明の第5の態様は、記憶媒体であって、該記憶媒体には、上記のプログラムが記憶されている。
 本発明によれば、複数の蓄電部のそれぞれの満充電容量の合計と、複数の蓄電部のそれぞれの現在充電容量の合計とを用いることで、複数の蓄電部の全体の充電率を精度良く算出することが可能となる。また、本発明では、そのように求めた複数の蓄電部の全体の充電率を表示することが可能となる。
本実施形態に係る電力装置の一実施形態の構成図である。 図1の電力装置を搭載した車両の模式的平面図である。 図2の車両の模式的背面図である。 図1の表示装置の表示例を示す図である。 図5Aは、満充電状態の表示例を示す図であり、図5Bは、SOCが低下した場合の表示例を示す図である。 図6Aは、バッテリ交換の表示例を示す図であり、図6Bは、蓋部材を開いたときの表示例を示す図である。 図7Aは、着脱式バッテリを取り外した状態の表示例を示す図であり、図7Bは、着脱式バッテリを装填したときの表示例を示す図である。 本実施形態に係る電力装置の動作(充電率算出方法)の第1実施例を示すフローチャートである。 第2実施例及び第3実施例を示すフローチャートである。 図10Aは、標準タイプの着脱式バッテリにおける出力電圧と放電可能容量との関係を示す図であり、図10Bは、高出力の着脱式バッテリにおける出力電圧と放電可能容量との関係を示す図である。
 以下、本発明に係る電力装置、表示装置、充電率算出方法、プログラム及び記憶媒体について好適な実施形態を例示し、添付の図面を参照しながら説明する。
[1.本実施形態の概略構成]
 図1は、本実施形態に係る電力装置10の一実施形態を示す構成図である。図1は、本実施形態に係る電力装置10を、車両12の駆動源(負荷)である駆動モータ14に電力を供給するための電源システム15(電力供給システム)に適用した場合を図示している。
 車両12は、図2及び図3に示すように、電力装置10を構成する4個の着脱式バッテリ16a~16d(蓄電部)が着脱可能に搭載される四輪の電気自動車である。4個の着脱式バッテリ16a~16dは、図1の駆動モータ14に電力を供給する。以下の説明では、複数の着脱式バッテリ16a~16dを特に区別しないときに、着脱式バッテリ16と記載する場合がある。また、着脱式バッテリ16は、車両12から取り外した状態で、外部の不図示の充電器によって充電される。すなわち、着脱式バッテリ16は、充放電可能な蓄電装置である。
 なお、本実施形態において、車両12は、電気自動車等の電動車両やハイブリッド車両のように、駆動モータ14が搭載される車両であればよい。従って、本実施形態に係る電力装置10は、四輪の電気自動車に限定されることはなく、一輪、二輪、四輪等の各種の車両の電源システムに適用可能である。
 また、電力装置10は、車両12の電源システム15に限定されることはなく、各着脱式バッテリ16から駆動モータ14等の負荷に電力を供給する各種の電源システムに適用可能である。従って、電力装置10は、車両12や飛行体を含む各種の移動体や各種の電子機器において、負荷に電力を供給可能な電源システムに適用可能である。
 さらに、着脱式バッテリ16は、電力装置10や車両12等に対して着脱可能な可搬型の蓄電装置であればよい。従って、電力装置10は、標準的なバッテリパック、高出力のバッテリパック、高容量のバッテリパック、ハイブリッド車両用のバッテリを含む各種の蓄電装置を、着脱式バッテリ16として採用することが可能である。また、電力装置10が具備する着脱式バッテリ16の個数についても、2個以上の複数個であればよい。
 以下の説明では、図1~図3に示すように、四輪の電気自動車の電源システム15において、4個の着脱式バッテリ16から駆動モータ14に電力を供給する場合について説明する。
 図2及び図3に示すように、車両12において、車体18の前後方向(車長方向としての矢印A方向)の略中央部に、すなわち、矢印Af方向側(前側)の前輪20Fと、矢印Ab方向側(後側)の後輪20Rとの略中間位置に、運転席であるシート22が設けられている。4個の着脱式バッテリ16a~16d(16)は、車体18の左右方向(車幅方向としての矢印B方向)間に配置される。
 具体的に、車体18における矢印B1方向側(左側)の後輪20Rの上方近傍には、1個の着脱式バッテリ16を収容可能な蓄電装置収容部24が矢印B方向に2つ並んで設けられている。また、車体18における矢印B2方向側(右側)の後輪20Rの上方近傍には、1個の着脱式バッテリ16を収容可能な蓄電装置収容部24が矢印B方向に2つ並んで設けられている。各蓄電装置収容部24の矢印Ab方向側(後側)には、着脱式バッテリ16を着脱する際に開放される蓋部材26が設けられる。なお、4個の着脱式バッテリ16a~16dは、図2及び図3の配置に限定されることはなく、シート22に着座する運転者の運転操作に支障が無い範囲で、車両12内の任意の場所に配置可能である。
 図1に戻り、電力装置10(電源システム15)は、車両統括コントロールユニット30(充電率算出部)、DC/DCコンバータ32a~32d、ジョイントボックス34及びインバータ36を有している。また、電源システム15には、表示装置38が設けられている。さらに、各着脱式バッテリ16a~16dは、バッテリマネージメントユニット40a~40d(以下、BMU40a~40dと呼称する。)を有する。以下の説明では、車両統括コントロールユニット30をコントロールユニット30と記載する場合がある。また、DC/DCコンバータ32a~32dを特に区別しないときにはDC/DCコンバータ32と記載する場合がある。さらに、複数のBMU40a~40dについても、特に区別しないときにはBMU40と記載する場合がある。
 コントロールユニット30は、通信部(送信部)30aを有する。また、表示装置38は、通信部(受信部)38aを有する。各通信部30a、38aは、車両12内の各装置と通信を行うためのCAN42、及び、着脱式バッテリ16a~16dに関連する各装置と通信を行うためのCAN44にそれぞれ接続されている。DC/DCコンバータ32a~32d、及び、各着脱式バッテリ16a~16dのBMU40a~40dは、CAN44と接続されている。
 コントロールユニット30は、車両12に搭載されるECU(電子制御装置)としてのコンピュータ(情報処理装置)であり、非一過性の記憶媒体である記憶部30bに記憶されたプログラムを読み出して実行することで、後述する充電率の算出を含む各種の機能を実現する。すなわち、コントロールユニット30は、車両12の駆動スイッチであるイグニッションスイッチ46からオン信号であるイグニッション信号を取得する。また、コントロールユニット30は、アクセルペダルセンサ48からアクセルペダル開度情報を取得する。この場合、コントロールユニット30は、アクセルペダル開度情報に応じて、駆動モータ14のトルクを設定し、トルク指令値として通信部30aからCAN42に出力する。また、コントロールユニット30は、トルク指令値に応じて、着脱式バッテリ16の出力電圧を変換するためのPWM信号である電流指令値を設定し、設定した電流指令値を通信部30aからCAN44に出力する。
 また、コントロールユニット30は、リッドスイッチ50から蓋部材26の開閉の検知結果を示すリッド開閉信号を取得する。コントロールユニット30は、リッド開閉信号の示す蓋部材26の開いた状態又は閉じた状態に応じて、表示装置38の表示内容を設定し、設定した表示内容を示す表示指示信号を通信部30aからCAN44に出力する。
 さらに、コントロールユニット30は、各BMU40a~40dからCAN44を介して各着脱式バッテリ16a~16dの情報を通信部30aが取得(受信)した場合、取得した情報に基づいて複数の着脱式バッテリ16a~16dの個々のSOC(以下、充電率又は充電容量と称する場合がある。)を把握する。そして、所定値未満のSOCを有する着脱式バッテリ16a~16dが存在する場合、コントロールユニット30は、該着脱式バッテリ16a~16dの交換を通知する旨の表示内容を設定し、設定した表示内容を示す表示指示信号を通信部30aからCAN44に出力する。 
 さらにまた、コントロールユニット30は、通信部30aが取得した各着脱式バッテリ16a~16dの情報から、各着脱式バッテリ16a~16dが蓄電装置収容部24に装填されているか否か、すなわち、着脱式バッテリ16a~16dとDC/DCコンバータ32a~32dとが電気的に接続されているか否かを判断する。コントロールユニット30は、その判断結果に応じた表示内容を設定し、設定した表示内容を示す表示指示信号を通信部30aからCAN44に出力する。
 また、コントロールユニット30は、通信部30aが取得した各着脱式バッテリ16a~16dの情報から、複数の着脱式バッテリ16a~16dの全体のSOC(複数の着脱式バッテリ16a~16dを1個の蓄電装置とみなしたときの該1個の蓄電装置のSOC(充電率))を算出する。コントロールユニット30は、算出した各着脱式バッテリ16a~16dの全体のSOCの表示内容を設定し、設定した表示内容を示す表示指示信号を通信部30aからCAN44に出力する。
 BMU40a~40dは、着脱式バッテリ16a~16dのSOC、温度(温度係数)、劣化度(劣化度合、劣化係数)、内部抵抗、残容量としての現在充電容量、及び、着脱式バッテリ16a~16dとDC/DCコンバータ32a~32dとの接続状態を管理する。また、BMU40a~40dは、着脱式バッテリ16a~16dの仕様(仕様係数等の仕様差値)、満充電容量の仕様値又は初期値、現在の満充電容量も管理している。BMU40a~40dは、これらの情報をCAN44に出力する。
 従って、コントロールユニット30は、各着脱式バッテリ16a~16dの現在充電容量、現在の満充電容量、及び、満充電容量の仕様値又は初期値等をBMU40a~40dから取得する。なお、満充電容量の仕様値とは、着脱式バッテリ16a~16dの満充電容量の規格値をいう。また、満充電容量の初期値とは、着脱式バッテリ16a~16dの使用開始時(工場出荷時)の満充電容量の値(初期満充電量)をいう。
 DC/DCコンバータ32は、電流指令値に応じて着脱式バッテリ16の出力電圧を変換し、変換後の出力電圧をジョイントボックス34に出力する。ジョイントボックス34は、着脱式バッテリ16からインバータ36に直流電力を供給する。インバータ36は、トルク指令値にしたがって、ジョイントボックス34から供給される直流電力を三相の交流電力に変換して、駆動モータ14に供給する。また、インバータ36は、駆動モータ14の回転数情報、実トルク情報をCAN42に出力する。
 表示装置38は、車両12のダッシュボード等に設定された画面62(図4参照)と、その画面62に表示させる文字や画像を処理する処理装置とから構成されている。表示装置38には、インバータ36又は駆動モータ14からの情報が通信部38aを介して入力(受信)され、CAN44から通信部38aを介して着脱式バッテリ16のSOC情報(各種の充電率又は充電容量の情報)、及び、コントロールユニット30の表示指示信号が入力(受信)される。表示装置38は、通信部38aに入力された各種の情報に基づいて、着脱式バッテリ16の状態を表示する。
[2.表示装置38における表示内容]
 図4は、表示装置38の表示例を示す図である。表示装置38は、バッテリ残量表示部52a~52d、合計残量表示部54、開閉状態表示部56a~56d、バッテリ交換表示部58a~58d、及び、バッテリ接続状態表示部60a~60dを有する。
 各バッテリ残量表示部52a~52dは、表示装置38の画面62の右側に設けられている。このうち、右側の2つのバッテリ残量表示部52a、52bは、車体18(図2及び図3参照)の右側に配置される2個の着脱式バッテリ16a、16bに対応する。また、左側の2つのバッテリ残量表示部52c、52dは、車体18の左側に配置される2個の着脱式バッテリ16c、16dに対応する。
 各バッテリ残量表示部52a~52dは、各着脱式バッテリ16a~16dの番号と、棒状グラフが内部に配置された乾電池を模した絵と、各着脱式バッテリ16a~16dのSOCの数値とを表示する。また、乾電池の内部の棒状グラフは、対応する着脱式バッテリ16a~16dのSOCの大きさに応じて上下方向に変化する。
 図4では、乾電池の絵の内部に10個の矩形状のセグメントが上下方向に並んで配置されている。各セグメントは、例えば、LEDであり、1つのセグメントが点灯することで、10%分のSOCを表示する。図4~図7Bでは、点灯状態をハッチングで図示すると共に、消灯状態を白抜きで図示している。従って、各バッテリ残量表示部52a~52dは、対応する着脱式バッテリ16a~16dのSOCの大きさに応じて、下側のセグメントから上側のセグメントに向かって順に点灯することで、SOCの大きさを概略的に表示する。
 図4では、全てのセグメントが点灯しておらず、各着脱式バッテリ16a~16dのSOCが0%であることを示している。図5Aでは、1個の着脱式バッテリ16aについて、全てのセグメントが点灯することで、該着脱式バッテリ16aのSOCが100%であることを示している。図5Bでは、下側の3つのセグメントが点灯しており、該着脱式バッテリ16aのSOCが30%であることを示している。図6Aでは、下側の1つのセグメントが点灯しており、該着脱式バッテリ16aのSOCが10%であることを示している。
 この場合、SOCの大きさに応じて、セグメントの点灯色を変化させてもよい。図5B及び図6Aでは、図5Aの場合と比較して、セグメント内のハッチングの向きを異なるものとすることで、セグメントが異なる色で点灯していることを図示している。
 各バッテリ残量表示部52a~52dの乾電池を模した絵の周囲には、開閉状態表示部56a~56d、バッテリ交換表示部58a~58d及びバッテリ接続状態表示部60a~60dが配置されている。これらの表示部は、対応する着脱式バッテリ16a~16dのバッテリ残量表示部52a~52dの周囲に設けられている。
 開閉状態表示部56a~56dは、点灯することにより、対応する着脱式バッテリ16a~16dを収容する蓄電装置収容部24の蓋部材26が開いていることを表示し、消灯することにより、該蓋部材26が閉じていることを表示する。図4~図7Bでは、点灯状態を実線で図示すると共に、消灯状態を破線で図示している。
 バッテリ交換表示部58a~58dは、点灯することにより、対応する着脱式バッテリ16a~16dの交換が必要であることを表示し、消灯することにより、該交換が不要であることを表示する。図4~図7Bでは、点灯状態を実線で図示すると共に、消灯状態を破線で図示している。
 バッテリ接続状態表示部60a~60dは、点灯することにより、対応する着脱式バッテリ16a~16dが蓄電装置収容部24に装填され、該着脱式バッテリ16a~16dとDC/DCコンバータ32a~32dとが電気的に接続されていることを表示する。また、バッテリ接続状態表示部60a~60dは、消灯することにより、該着脱式バッテリ16a~16dが蓄電装置収容部24に装填されていないか、又は、装填されていても、該着脱式バッテリ16a~16dとDC/DCコンバータ32a~32dとが電気的に接続されていないことを表示する。図4~図7Bでは、点灯状態を黒塗りの円で図示すると共に、消灯状態を白抜きの円で図示している。
 合計残量表示部54は、4つの着脱式バッテリ16a~16dの全体のSOCを表示する。合計残量表示部54は、横方向に並んだ10個のセグメントで構成される。各セグメントは、例えば、LEDであり、1つのセグメントが点灯することで、10%分のSOCを表示する。従って、合計残量表示部54は、各着脱式バッテリ16a~16dの全体のSOCの大きさに応じて、左側(0%のSOCを示すE側)のセグメントから右側(100%のSOCを示すF側)のセグメントに向かって順に点灯することで、該SOCの概略的な大きさを表示する。
 図5A~図7Bは、1個の着脱式バッテリ16aについて、バッテリ交換の前後での表示装置38の表示内容の変化を図示したものである。なお、他の着脱式バッテリ16b~16dについても、バッテリ交換の際には、表示装置38の表示内容が同様に変化する。
 図5Aは、着脱式バッテリ16aが蓄電装置収容部24(図2及び図3参照)に収容され、蓋部材26が閉じており、且つ、該着脱式バッテリ16aのSOCが100%の状態の場合を示している。この場合、バッテリ残量表示部52aでは、全てのセグメントが点灯し、SOCの数値を示す「100%」の文字が表示されている。また、バッテリ接続状態表示部60aが点灯すると共に、開閉状態表示部56a及びバッテリ交換表示部58aが消灯している。
 図5Bは、着脱式バッテリ16aのSOCが30%にまで低下した場合を示している。この場合、バッテリ残量表示部52aでは、下側の3つのセグメントが点灯すると共に、SOCの数値を示す「30%」の文字が表示されている。SOCが低下しているため、下側の3つのセグメントは、図5Aの場合とは異なる点灯色で点灯している。
 図6Aは、着脱式バッテリ16aのSOCが10%にまで低下した場合を示している。この場合、バッテリ残量表示部52aは、下側の1つのセグメントが点灯すると共に、SOCの数値を示す「10%」の文字が表示されている。また、バッテリ交換表示部58aが点灯することで、運転者等に対して着脱式バッテリ16aの交換を促す。
 図6Aの画面表示を見て、運転者等が着脱式バッテリ16aを収容する蓄電装置収容部24の蓋部材26(図2及び図3参照)を開いた場合、表示装置38の画面62は、図6Bの表示内容に切り替わる。図6Bでは、開閉状態表示部56aが点灯することで、蓋部材26が開いていることを報知する。
 運転者等が蓄電装置収容部24から着脱式バッテリ16aを取り外した場合、表示装置38の画面62は、図7Aの表示内容に切り替わる。図7Aでは、バッテリ接続状態表示部60aが消灯すると共に、開閉状態表示部56a及びバッテリ交換表示部58aが点灯している。また、バッテリ残量表示部52aは、全てのセグメントを消灯させると共に、SOCの数値を示す「0%」の文字を表示させる。
 次に、運転者等が蓄電装置収容部24に満充電状態の着脱式バッテリ16aを装填した場合、表示装置38の画面62は、図7Bの表示内容に切り替わる。図7Bでは、バッテリ接続状態表示部60a、開閉状態表示部56a及びバッテリ交換表示部58aが共に点灯している。また、バッテリ残量表示部52aは、全てのセグメントを点灯させると共に、SOCの数値を示す「100%」の文字を表示させる。
 次に、運転者等が蓋部材26を閉じた場合、表示装置38の画面62は、図5Aの表示内容に切り替わる。これにより、開閉状態表示部56a及びバッテリ交換表示部58aは消灯する。
[3.SOCの算出処理]
 次に、本実施形態に係る電力装置10の特徴的な機能について、図8~図10Bを参照しながら説明する。特徴的な機能とは、種類の異なる複数の着脱式バッテリ16が蓄電装置収容部24に収容されている場合でも、複数の着脱式バッテリ16の全体のSOCを精度良く算出するというものである。なお、この特徴的な機能では、同じ種類の複数の着脱式バッテリ16に対するSOCの算出処理にも適用可能である。
 ここで、特徴的な機能によるSOCの算出処理に関する3つの手法(図8の第1実施例、図9の第2実施例及び第3実施例)について、順に説明する。
 <3.1 第1実施例>
 図8の第1実施例では、コントロールユニット30(図1参照)は、4個の着脱式バッテリ16について、各着脱式バッテリ16の温度係数、劣化係数及び仕様係数(仕様差値)を考慮して、複数の着脱式バッテリ16の全体のSOCを算出する。従って、第1実施例では、同じ種類の4個の着脱式バッテリ16や、種類の異なる4個の着脱式バッテリ16の双方の場合に適用可能である。
 なお、着脱式バッテリ16の種類としては、例えば、容量又は出力の違いや、バッテリ構造の違いがある。本実施形態では、同じ構造の着脱式バッテリ16でも、標準タイプ、高出力タイプ又は高容量タイプであれば、異なる種類の着脱式バッテリ16として取り扱う。また、一般的なバッテリパック及びハイブリッド車両用バッテリについても、異なる種類の着脱式バッテリ16として取り扱う。
 先ず、ステップS1において、運転者がイグニッションスイッチ46をオンにすると、イグニッションスイッチ46からコントロールユニット30にイグニッション信号が供給される。これにより、車両12内の電源システム15(電力装置10)が起動する。
 次のステップS2において、コントロールユニット30の通信部30aは、各BMU40からCAN44を介して各着脱式バッテリ16の情報を取得する。取得する情報には、各着脱式バッテリ16のSOCや、各蓄電装置収容部24に対する各着脱式バッテリ16の装填の有無を示す状態等が含まれる。なお、ステップS2において、通信部30aが取得するSOCの情報としては、各着脱式バッテリ16の現在充電容量、現在の満充電容量及び満充電容量の仕様値又は初期値が含まれる。
 次のステップS3において、コントロールユニット30は、通信部30aが取得した各着脱式バッテリ16の情報に基づいて、各蓄電装置収容部24に着脱式バッテリ16が収容されているか否かを判定する。また、コントロールユニット30は、各着脱式バッテリ16のSOCが0%でないか否かを判定する。
 ステップS3において、全ての蓄電装置収容部24に着脱式バッテリ16が収容され、且つ、SOCが0%の着脱式バッテリ16が存在しない場合(ステップS3:YES)、コントロールユニット30は、ステップS4の処理に進む。
 ステップS4において、コントロールユニット30は、ステップS2で取得した各着脱式バッテリ16の情報に基づき、各着脱式バッテリ16の種類を確認する。
 ステップS5において、コントロールユニット30の通信部30aは、各BMU40からCAN44を介して各着脱式バッテリ16の温度係数、劣化係数及び仕様係数を取得する。なお、仕様係数とは、任意の着脱式バッテリ16を基準のバッテリとした場合、該基準の着脱式バッテリ16に対する自己の着脱式バッテリ16の仕様差に関わる係数である。従って、仕様係数は、仕様差値の一種である。例えば、基準の着脱式バッテリ16の容量が1000Whである場合、500Whの容量の着脱式バッテリ16の仕様係数は0.5となる(500/1000=0.5)。また、2000Whの容量の着脱式バッテリ16の仕様係数は2.0となる(2000/1000=2.0)。
 ステップS6において、コントロールユニット30は、各BMU40からCAN44を介して通信部30aが取得した各着脱式バッテリ16の情報に基づき、各着脱式バッテリ16の満充電容量の合計FCCを算出する。この場合、各満充電容量の合計FCCは、各着脱式バッテリ16が劣化していなければ、各着脱式バッテリ16の満充電容量の仕様値又は初期値の合計FCC0となる。また、各着脱式バッテリ16が劣化している場合には、各満充電容量の合計FCCは、現時点での各満充電容量の合計となる。すなわち、各満充電容量の合計FCCは、下記の(1)式で表わされる。なお、Σは、総和を示す数学記号である。
   FCC=Σ(各着脱式バッテリ16の満充電容量)   (1)
 ステップS7において、コントロールユニット30は、各BMU40からCAN44を介して通信部30aが取得した各着脱式バッテリ16の情報に基づき、各着脱式バッテリ16の現在の残容量(現在充電容量)の合計RCを算出する。この場合、コントロールユニット30は、各着脱式バッテリ16の満充電容量と現在のSOCとに基づいて算出する。あるいは、コントロールユニット30は、各着脱式バッテリ16のSOC、温度係数、劣化係数及び仕様係数に基づいて現在充電容量の合計RCを算出してもよい。さらには、コントロールユニット30は、各着脱式バッテリ16を充放電する電流(充電電流、放電電流)の時間積算値に基づいて、現在充電容量の合計RCを算出してもよい。
 従って、現在充電容量の合計RCは、下記の(2)式~(4)式のいずれかで表わされる。
   RC=Σ{(各着脱式バッテリ16のSOC)×(温度係数)
      ×(劣化係数)×(仕様係数)}         (2)
   RC=Σ{(各着脱式バッテリ16の満充電容量)
      ×(各着脱式バッテリ16のSOC)}      (3)
   RC=Σ(各着脱式バッテリ16を充放電する電流の積算値)(4)
 ステップS8において、コントロールユニット30は、各着脱式バッテリ16の現在充電容量の合計RCを、各着脱式バッテリ16の満充電容量の合計FCCで除算することにより、各着脱式バッテリ16の全体のSOCであるRSOCを算出する。この場合、RSOCは、下記の(5)式で表わされる。
   RSOC=RC/FCC                (5)
 ステップS9において、コントロールユニット30は、算出したRSOC等に基づき、各BMU40及び各DC/DCコンバータ32を制御する。
 この場合、コントロールユニット30は、各BMU40(各着脱式バッテリ16)に対して、CAN44経由で情報の送受信を行う際のIDを付与し、付与したIDを通信部30aからCAN44に出力する。また、コントロールユニット30は、RSOC等に基づき、IDを付与したBMU40を制御するための制御指令を通信部30aからCAN44に出力する。これにより、BMU40は、CAN44から取得した制御指令に基づき、着脱式バッテリ16からDC/DCコンバータ32に向けて電流を流す。
 また、コントロールユニット30は、RSOCを考慮して、各DC/DCコンバータ32に対する電流指令値を調整し、調整した各電流指令値を通信部30aからCAN44に出力する。DC/DCコンバータ32は、CAN44から取得した電流指令値に基づき着脱式バッテリ16の出力電圧を変換する。
 ステップS10において、コントロールユニット30は、算出したRSOC等に応じた表示装置38の表示内容を表示指示信号として設定し、設定した表示指示信号を通信部30aからCAN44に出力する。これにより、表示装置38は、CAN44を介して通信部38aが取得した表示指示信号等に基づき、図5A~図7B等の画面表示を行う。
 ステップS11において、ステップS2~S11の処理を繰り返し実行する場合(ステップS11:YES)、コントロールユニット30は、ステップS2に戻る。また、ステップS10で運転者が表示装置38の表示内容を確認した後、ステップS12において、車両12を運転操作することで、該車両12を移動させることができる。この場合、ステップS12後、ステップS11の判定処理が実行される。
 <3.2 第2実施例>
 第2実施例は、着脱式バッテリ16が収容されていない蓄電装置収容部24が存在する場合や、各蓄電装置収容部24に着脱式バッテリ16が収容されていても、SOCが0%の着脱式バッテリ16が存在する場合における、各着脱式バッテリ16の全体のSOCの算出処理に関する。
 この場合、電力を供給する着脱式バッテリ16の本数が少なくなるため、着脱式バッテリ16の1個当たりの負荷が増大すると共に、複数の着脱式バッテリ16の全体の出力が低下する。この結果、複数の着脱式バッテリ16の全体の容量が却って減少する。このことについて、図10A及び図10Bを参照しながら具体的に説明する。
 図10Aは、標準タイプの着脱式バッテリ16での電圧と複数の着脱式バッテリ16の全体の放電可能容量との関係を示す図である。実線は、4個の着脱式バッテリ16を車両12に搭載した場合の結果である。満充電状態の4個の着脱式バッテリ16を車両12に搭載する場合、4個の着脱式バッテリ16の全体の放電可能容量は、100%となる。また、4個の着脱式バッテリ16の場合、1C放電となる。
 また、図10Aにおいて、破線は、2個の着脱式バッテリ16を車両12に搭載した場合である。破線の場合は、満充電状態の2個の着脱式バッテリ16を車両12に搭載すると、2個の着脱式バッテリ16の全体の放電可能容量は、4個の着脱式バッテリ16の全体の放電可能容量(100%)と比較して、95%にまで低下する。また、4個の着脱式バッテリ16の場合と比較して、2個の着脱式バッテリ16では、1個当たりの負荷が増大するので、放電レートが高い2C放電となる。例えば、4個の着脱式バッテリ16(実線)と2個の着脱式バッテリ16(破線)とについて、同じ出力(10kW)を出す場合、4個の着脱式バッテリ16では、閉路電圧が50V、放電電流が160A(1個当たり40A)程度となるが、2個の着脱式バッテリ16では、閉路電圧が45Vに低下し、放電電流が200A(1個当たり100A)にまで増加する。
 図10Bは、高出力タイプの着脱式バッテリ16での電圧と複数の着脱式バッテリ16の全体の放電可能容量との関係を示す図である。実線は、4個の着脱式バッテリ16を車両12に搭載した場合を示す。図10Bでも、満充電状態の4個の着脱式バッテリ16を車両12に搭載する場合、4個の着脱式バッテリ16の全体の放電可能容量は、100%となる。また、4個の着脱式バッテリ16では、1C放電となる。
 また、図10Bにおいて、破線は、2個の着脱式バッテリ16を車両12に搭載した場合を示す。高出力タイプにおいて、破線の場合は、満充電状態の2個の着脱式バッテリ16を車両12に搭載すると、2個の着脱式バッテリ16の全体の放電可能容量は、4個の着脱式バッテリ16の全体の放電可能容量(100%)と比較して、98%にまで低下する。従って、図10Bにおいても、4個の着脱式バッテリ16の場合と比較して、2個の着脱式バッテリ16では、1個当たりの負荷が増大し、2C放電となる。但し、標準タイプの着脱式バッテリ16の結果(図10Aの破線)と比較して、図10Bの破線の結果では、放電可能容量の低下は2%に抑えられている。
 そこで、第2実施例では、このような本数の減少による着脱式バッテリ16の負荷の増大を考慮して、各着脱式バッテリ16の全体のSOCを算出する。なお、第2実施例での以下の説明では、同じ種類の2個の着脱式バッテリ16が車両12に搭載される場合について説明する。
 具体的に、図8のステップS2で、4個の着脱式バッテリ16が蓄電装置収容部24に収容されていないか、又は、各着脱式バッテリ16のうち、少なくとも1個の着脱式バッテリ16のSOCが0%である場合(ステップS2:NO)、コントロールユニット30は、図9のステップS21に進む。
 ステップS21において、コントロールユニット30は、通信部30aが取得した各着脱式バッテリ16の情報に基づき、車両12に搭載されている各着脱式バッテリ16の個数と、各着脱式バッテリ16の種類とを確認する。
 ステップS22において、コントロールユニット30の通信部30aは、ステップS4と同様に、各BMU40からCAN44を介して各着脱式バッテリ16の温度係数、劣化係数及び仕様係数を取得する。なお、蓄電装置収容部24に着脱式バッテリ16が収容されていない場合、上記の情報を取得することはできない。また、蓄電装置収容部24に着脱式バッテリ16が収容されている場合でも、SOCが0%の場合、コントロールユニット30の通信部30aは、SOCが0%である旨を含む情報を取得する。
 ステップS23において、コントロールユニット30は、ステップS6と同様に、各着脱式バッテリ16の満充電容量の合計FCCを算出する。この場合、コントロールユニット30は、2個の着脱式バッテリ16の満充電容量の合計FCCを算出する。
 ステップS24において、コントロールユニット30は、収容されている2個の着脱式バッテリ16の現在充電容量の合計RC0を算出する。次に、コントロールユニット30は、車両12に搭載されている着脱式バッテリ16の個数及び種類に応じた補正係数を決定する。
 ここで、補正係数とは、例えば、車両12に搭載される着脱式バッテリ16の本数が、4個から2個に減少することによる放電可能容量の減少分に相当する数値である。具体的に、図10Aの標準タイプの着脱式バッテリ16の場合、補正係数は、5%の減少分に相当する0.95となる。また、図10Bの高出力タイプの着脱式バッテリ16の場合、補正係数は、2%の減少分に相当する0.98となる。
 ステップS25において、コントロールユニット30は、補正係数を加味して各着脱式バッテリ16の現在充電容量の合計RCを算出する。すなわち、コントロールユニット30は、下記の(6)式を用いて、合計RCを算出する。
   RC=RC0×(補正係数)              (6)
 そして、ステップS25後の図8のステップS8において、コントロールユニット30は、(6)式で算出した現在充電容量の合計RCと、満充電容量の合計FCCとを用いて、(5)式からRSOCを算出する。
 <3.3 第3実施例>
 第3実施例は、車両12に搭載される着脱式バッテリ16の本数が少ない場合でも、4個分の着脱式バッテリ16の満充電容量の和を、満充電容量の合計FCCとし、一方で、搭載されている着脱式バッテリ16の本数分の残容量を、現在充電容量の合計RCとする点で、第2実施例とは異なる。
 この場合、ステップS23において、コントロールユニット30は、ステップS6と同様に、4個の着脱式バッテリ16の本数分の満充電容量の合計FCCを算出する。
 ステップS23後、コントロールユニット30は、ステップS31に進み、車両12に搭載されていない着脱式バッテリ16の本数を考慮して、現在充電容量の合計RCを算出する。すなわち、コントロールユニット30は、車両12に搭載されている2個の着脱式バッテリ16についての現在充電容量の和を、合計RCとして算出する。
 そして、ステップS31後の図8のステップS8において、コントロールユニット30は、ステップS23で算出した満充電容量の合計FCCと、ステップS31で算出した現在充電容量の合計RCとを用いて、(5)式からRSOCを算出する。
 <3.4 各実施例の変形例>
 上記の各実施例では、満充電容量の合計FCCを算出した後に、現在充電容量の合計RCを算出する場合について説明した(ステップS6→S7、ステップS23→S25、S31)。本実施形態では、現在充電容量の合計RCを先に算出し、その後、満充電容量の合計FCCを算出することも可能である(ステップS7→S6、ステップS25、S31→S23)。
 また、上記の各実施例では、ステップS2において、コントロールユニット30が満充電容量及び現在充電容量を取得する場合について説明した。本実施形態では、ステップS5又はS22において、コントロールユニット30が現在充電容量及び満充電容量を取得することも可能である。あるいは、ステップS2において、満充電容量及び現在充電容量のうち、いずれか一方をコントロールユニット30が取得し、ステップS5又はS22において、他方をコントロールユニット30が取得することも可能である。 
 また、本実施形態では、コントロールユニット30は、満充電容量及び現在充電容量のいずれか一方を取得した後に、取得した一方の充電容量の合計を算出し、次に、他方の充電容量を取得し、取得した他方の充電容量の合計を算出するように処理を実行することも可能である。
 このように、本実施形態において、コントロールユニット30での処理順序は、第1~第3実施例に記載した順序に限定されないことに留意する。
[4.本実施形態の効果]
 以上説明したように、本実施形態は、充放電可能な複数の着脱式バッテリ16a~16d(16)(蓄電部)を有する電力装置10であって、コントロールユニット30(充電率算出部)は、複数の着脱式バッテリ16a~16dのそれぞれの満充電容量の合計FCCと、複数の着脱式バッテリ16a~16dのそれぞれの現在充電容量の合計RCとに基づいて、複数の着脱式バッテリ16a~16dの全体のSOC(充電率)であるRSOCを算出する。
 また、本実施形態は、表示装置38であって、該表示装置38は、電力装置10から複数の着脱式バッテリ16a~16dの全体のSOC(RSOC)を受信する通信部38a(受信部)を有し、受信したRSOCを表示する。
 さらに、本実施形態は、充放電可能な複数の着脱式バッテリ16a~16d(16)を有する電力装置10の充電率算出方法であって、複数の着脱式バッテリ16a~16dのそれぞれの満充電容量を取得するステップ(ステップS2)と、複数の満充電容量の合計FCCを算出するステップ(ステップS6、S23)と、複数の着脱式バッテリ16a~16dのそれぞれの現在充電容量を取得するステップ(ステップS2)と、複数の現在充電容量の合計RCを算出するステップ(ステップS7、S25、S31)と、満充電容量の合計FCC及び現在充電容量の合計RCに基づき、RSOCを算出するステップ(ステップS8)とを有する。
 さらにまた、本実施形態は、プログラムであって、該プログラムは、複数の着脱式バッテリ16a~16dのそれぞれの満充電容量を取得するステップ(ステップS2)と、複数の満充電容量の合計FCCを算出するステップ(ステップS6、S23)と、複数の着脱式バッテリ16a~16dのそれぞれの現在充電容量を取得するステップ(ステップS2)と、複数の現在充電容量の合計RCを算出するステップ(ステップS7、S25、S31)と、満充電容量の合計FCC及び現在充電容量の合計RCに基づき、RSOCを算出するステップ(ステップS8)とを、コンピュータとしての電力装置10のコントロールユニット30に実行させる。
 また、本実施形態は、記憶部30b(記憶媒体)であって、該記憶部30bには、上記のプログラムが記憶されている。
 このように、複数の着脱式バッテリ16a~16dのそれぞれの満充電容量の合計FCCと、複数の着脱式バッテリ16a~16dのそれぞれの現在充電容量の合計RCとを用いることで、複数の着脱式バッテリ16a~16dの全体のSOCであるRSOCを精度良く算出することが可能となる。また、そのように求めたRSOCを表示することが可能となる。
 この場合、満充電容量は、着脱式バッテリ16a~16dの満充電容量に関する仕様値又は初期値に基づいて求められる。これにより、RSOCを一層精度良く算出することができる。
 また、満充電容量は、着脱式バッテリ16a~16dのの温度又は劣化度合の少なくとも1つに基づいて求められる。これにより、各着脱式バッテリ16a~16dの現在の状況に基づき、RSOCを一層精度良く算出することができる。
 さらに、満充電容量は、複数の着脱式バッテリ16a~16dに仕様差がある場合、該仕様差に応じて設定される仕様差値(例えば、仕様係数等)に基づいて求められる。これにより、各着脱式バッテリ16a~16dの仕様差を考慮して、RSOCを精度良く算出することができる。
 さらにまた、現在充電容量は、着脱式バッテリ16a~16dを充放電する電流の積算値に基づいて求められる。これにより、RSOCを正確に算出することができる。
 また、コントロールユニット30は、現在充電容量の合計RCを満充電容量の合計FCCで除算することにより、RSOCを算出すればよい。これにより、RSOCを簡単に算出することができる。
 さらに、コントロールユニット30は、第2実施例のように、複数の着脱式バッテリ16a~16dの個数及び種類に応じて、現在充電容量の合計RCを補正する。これにより、着脱式バッテリ16a~16dの個数の減少による放電容量の低下を考慮して、最適なRSOCを算出することができる。
 さらにまた、コントロールユニット30は、第3実施例のように、現在充電容量が0である着脱式バッテリ16a~16dの個数に応じて、現在充電容量の合計RCを補正する。この場合でも、着脱式バッテリ16a~16dの個数の減少による放電容量の低下を考慮して、最適なRSOCを算出することができる。
 また、複数の着脱式バッテリ16a~16dは、車両12に対して着脱可能な蓄電装置であり、コントロールユニット30は、車両12に搭載された制御装置である。これにより、車両12の電源システム15として電力装置10を好適に適用することができる。
 また、電力装置10は、コントロールユニット30が算出したRSOCを、表示装置38に送信する通信部30a(送信部)をさらに有する。これにより、表示装置38は、通信部38aでRSOCを受信し、受信したRSOCを確実に表示することができる。
 なお、本発明は、上述の実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることは勿論である。

Claims (14)

  1.  充放電可能な複数の蓄電部(16、16a~16d)を有する電力装置(10)であって、
     複数の前記蓄電部のそれぞれの満充電容量の合計(FCC)と、複数の前記蓄電部のそれぞれの現在充電容量の合計(RC)とに基づいて、複数の前記蓄電部の全体の充電率(RSOC)を算出する充電率算出部(30)を有する、電力装置。
  2.  請求項1記載の電力装置において、
     前記満充電容量は、前記蓄電部の満充電容量に関する仕様値又は初期値に基づいて求められる、電力装置。
  3.  請求項1又は2記載の電力装置において、
     前記満充電容量は、前記蓄電部の温度又は劣化度合の少なくとも1つに基づいて求められる、電力装置。
  4.  請求項1~3のいずれか1項に記載の電力装置において、
     前記満充電容量は、複数の前記蓄電部に仕様差がある場合、該仕様差に応じて設定される仕様差値に基づいて求められる、電力装置。
  5.  請求項1~4のいずれか1項に記載の電力装置において、
     前記現在充電容量は、前記蓄電部を充放電する電流の積算値に基づいて求められる、電力装置。
  6.  請求項1~5のいずれか1項に記載の電力装置において、
     前記充電率算出部は、前記現在充電容量の前記合計を前記満充電容量の前記合計で除算することにより、複数の前記蓄電部の全体の前記充電率を算出する、電力装置。
  7.  請求項1~6のいずれか1項に記載の電力装置において、
     前記充電率算出部は、複数の前記蓄電部の個数及び種類に応じて、前記現在充電容量の前記合計を補正する、電力装置。
  8.  請求項1~6のいずれか1項に記載の電力装置において、
     前記充電率算出部は、前記現在充電容量が0である前記蓄電部の個数に応じて、前記現在充電容量の前記合計を補正する、電力装置。
  9.  請求項1~8のいずれか1項に記載の電力装置において、
     複数の前記蓄電部は、車両(12)に対して着脱可能な蓄電装置であり、
     前記充電率算出部は、前記車両に搭載された制御装置である、電力装置。
  10.  請求項1~9のいずれか1項に記載の電力装置において、
     前記充電率算出部が算出した複数の前記蓄電部の全体の前記充電率を、表示装置(38)に送信する送信部(30a)をさらに有する、電力装置。
  11.  請求項1~10のいずれか1項に記載の電力装置から複数の前記蓄電部の全体の前記充電率を受信する受信部(38a)を有し、受信した複数の前記蓄電部の全体の前記充電率を表示する、表示装置(38)。
  12.  充放電可能な複数の蓄電部(16、16a~16d)を有する電力装置(10)の充電率算出方法であって、
     複数の前記蓄電部のそれぞれの満充電容量を取得するステップと、
     複数の前記満充電容量の合計(FCC)を算出するステップと、
     複数の前記蓄電部のそれぞれの現在充電容量を取得するステップと、
     複数の前記現在充電容量の合計(RC)を算出するステップと、
     前記満充電容量の前記合計及び前記現在充電容量の前記合計に基づき、複数の前記蓄電部の全体の充電率(RSOC)を算出するステップと、
     を有する、充電率算出方法。
  13.  複数の蓄電部(16、16a~16d)のそれぞれの満充電容量を取得するステップと、
     複数の前記満充電容量の合計(FCC)を算出するステップと、
     複数の前記蓄電部のそれぞれの現在充電容量を取得するステップと、
     複数の前記現在充電容量の合計(RC)を算出するステップと、
     前記満充電容量の前記合計及び前記現在充電容量の前記合計に基づき、複数の前記蓄電部の全体の充電率(RSOC)を算出するステップと、
     をコンピュータ(30)に実行させる、プログラム。
  14.  請求項13に記載のプログラムが記憶された、記憶媒体(30b)。
PCT/JP2020/047216 2019-12-18 2020-12-17 電力装置、表示装置、充電率算出方法、プログラム及び記憶媒体 WO2021125282A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080088043.3A CN114829960A (zh) 2019-12-18 2020-12-17 电力装置、显示装置、充电率计算方法、程序和存储介质
JP2021565649A JPWO2021125282A1 (ja) 2019-12-18 2020-12-17
EP20902262.3A EP4079556B1 (en) 2019-12-18 2020-12-17 Electric power device, display device, charging rate calculation method, program, and memory medium
US17/785,073 US20230010424A1 (en) 2019-12-18 2020-12-17 Electric power device, display device, charging rate calculation method, and memory medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-228412 2019-12-18
JP2019228412 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021125282A1 true WO2021125282A1 (ja) 2021-06-24

Family

ID=76477627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047216 WO2021125282A1 (ja) 2019-12-18 2020-12-17 電力装置、表示装置、充電率算出方法、プログラム及び記憶媒体

Country Status (5)

Country Link
US (1) US20230010424A1 (ja)
EP (1) EP4079556B1 (ja)
JP (1) JPWO2021125282A1 (ja)
CN (1) CN114829960A (ja)
WO (1) WO2021125282A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023039705A (ja) * 2021-09-09 2023-03-22 ヤマト運輸株式会社 電力供給システム及び電力供給方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092604A (ja) 1998-09-04 2000-03-31 Honda Motor Co Ltd 小型電動車
JP2011226805A (ja) * 2010-04-15 2011-11-10 Toyota Motor Corp 残存容量の算出装置
JP2012175734A (ja) * 2011-02-17 2012-09-10 Toyota Motor Corp 車両の充電装置
WO2013051135A1 (ja) * 2011-10-06 2013-04-11 日立ビークルエナジー株式会社 電池制御装置
JP2015070782A (ja) * 2013-10-01 2015-04-13 トヨタ自動車株式会社 蓄電システム
WO2016147302A1 (ja) * 2015-03-16 2016-09-22 株式会社東芝 蓄電池制御装置および蓄電池制御方法
JP2017034951A (ja) * 2015-08-06 2017-02-09 パナソニックIpマネジメント株式会社 中継管理装置、蓄電システム
JP2017093250A (ja) * 2015-11-17 2017-05-25 オムロン株式会社 バッテリ残量表示装置、バッテリシステムおよびバッテリ残量表示方法
JP2018066682A (ja) * 2016-10-20 2018-04-26 株式会社デンソー 電源システム
JP2019029173A (ja) * 2017-07-28 2019-02-21 株式会社デンソー 監視装置
JP2019187189A (ja) * 2018-04-17 2019-10-24 株式会社デンソー 電源制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092604A (ja) 1998-09-04 2000-03-31 Honda Motor Co Ltd 小型電動車
JP2011226805A (ja) * 2010-04-15 2011-11-10 Toyota Motor Corp 残存容量の算出装置
JP2012175734A (ja) * 2011-02-17 2012-09-10 Toyota Motor Corp 車両の充電装置
WO2013051135A1 (ja) * 2011-10-06 2013-04-11 日立ビークルエナジー株式会社 電池制御装置
JP2015070782A (ja) * 2013-10-01 2015-04-13 トヨタ自動車株式会社 蓄電システム
WO2016147302A1 (ja) * 2015-03-16 2016-09-22 株式会社東芝 蓄電池制御装置および蓄電池制御方法
JP2017034951A (ja) * 2015-08-06 2017-02-09 パナソニックIpマネジメント株式会社 中継管理装置、蓄電システム
JP2017093250A (ja) * 2015-11-17 2017-05-25 オムロン株式会社 バッテリ残量表示装置、バッテリシステムおよびバッテリ残量表示方法
JP2018066682A (ja) * 2016-10-20 2018-04-26 株式会社デンソー 電源システム
JP2019029173A (ja) * 2017-07-28 2019-02-21 株式会社デンソー 監視装置
JP2019187189A (ja) * 2018-04-17 2019-10-24 株式会社デンソー 電源制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079556A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023039705A (ja) * 2021-09-09 2023-03-22 ヤマト運輸株式会社 電力供給システム及び電力供給方法

Also Published As

Publication number Publication date
CN114829960A (zh) 2022-07-29
EP4079556A1 (en) 2022-10-26
EP4079556B1 (en) 2024-10-16
JPWO2021125282A1 (ja) 2021-06-24
EP4079556A4 (en) 2023-06-14
US20230010424A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
JP5615095B2 (ja) 電動車両のメータ表示装置
US10266066B2 (en) Straddled electric vehicle, and charging system for straddled electric vehicle
CN103998283B (zh) 电动二轮车及其控制装置的工作方法
CN103998282B (zh) 电动式交通工具及其控制装置的工作方法
JP5249277B2 (ja) 車両充電装置
US11535151B2 (en) Vehicle and method of notifying charging information of vehicle
JP6790617B2 (ja) 電動車両
JP4906921B2 (ja) 電気システムの制御装置および制御方法
US20050128065A1 (en) Hybrid vehicle display apparatus and method
US20110133690A1 (en) Cell Management System
WO2017033631A1 (ja) 制御装置、蓄電装置及び移動体システム
WO2021125282A1 (ja) 電力装置、表示装置、充電率算出方法、プログラム及び記憶媒体
CN107487202B (zh) 车辆电池保护方法、装置和车辆
JP6260065B2 (ja) 電源装置、電源装置の制御方法、および制御装置
US10513197B1 (en) Vehicle electrical port indicia
JP5301520B2 (ja) 電動車両における出力制御装置
JP6264579B2 (ja) 電源装置、輸送機器、電源制御方法、および制御装置
KR20190023801A (ko) 차량 및 그 제어방법
WO2019240245A1 (ja) 表示装置および表示方法
JP2008067425A (ja) 車両用充電制御装置
JP2013112303A (ja) ハイブリッドカーの電源装置
WO2019240244A1 (ja) 表示装置および表示方法
JP5674584B2 (ja) 充電システム
JP2012147617A (ja) 車両用バッテリ充電装置
JP2024039528A (ja) バッテリ制御方法及びバッテリ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902262

Country of ref document: EP

Effective date: 20220718