WO2021124719A1 - 車載用半導体回路および半導体回路 - Google Patents

車載用半導体回路および半導体回路 Download PDF

Info

Publication number
WO2021124719A1
WO2021124719A1 PCT/JP2020/041492 JP2020041492W WO2021124719A1 WO 2021124719 A1 WO2021124719 A1 WO 2021124719A1 JP 2020041492 W JP2020041492 W JP 2020041492W WO 2021124719 A1 WO2021124719 A1 WO 2021124719A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
line
voltage
status notification
semiconductor circuit
Prior art date
Application number
PCT/JP2020/041492
Other languages
English (en)
French (fr)
Inventor
睦雄 西川
加藤 博文
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202080040728.0A priority Critical patent/CN113994560A/zh
Priority to JP2021565358A priority patent/JP7276511B2/ja
Publication of WO2021124719A1 publication Critical patent/WO2021124719A1/ja
Priority to US17/456,577 priority patent/US12109958B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/202Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage for dc systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • B60R16/0232Circuits relating to the driving or the functioning of the vehicle for measuring vehicle parameters and indicating critical, abnormal or dangerous conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/185Electrical failure alarms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/18Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to reversal of direct current

Definitions

  • the present invention relates to an in-vehicle semiconductor circuit having an overvoltage protection function and a failure detection function.
  • Patent Document 1 A semiconductor circuit having an overvoltage protection function that protects the circuit when an overvoltage is applied is known (see, for example, Patent Document 1). Further, a semiconductor circuit having a failure detection function for notifying the outside of a failure state has also been devised (see, for example, Patent Document 2). Patent No. 3899984 Patent No. 3918614
  • the in-vehicle semiconductor circuit can notify the outside that the overvoltage is applied even when the overvoltage is applied.
  • an in-vehicle semiconductor circuit may be connected to the load circuit.
  • the vehicle-mounted semiconductor circuit may control the power supply to the load circuit.
  • the vehicle-mounted semiconductor circuit may include a power supply line.
  • a power supply voltage may be applied to the power supply line.
  • the vehicle-mounted semiconductor circuit may include an overvoltage protection unit.
  • the overvoltage protection unit may have an output unit.
  • the output unit may cut off the power supply from the power supply line to the load circuit when the power supply voltage in the power supply line is overvoltage.
  • the vehicle-mounted semiconductor circuit may include a status notification unit.
  • the status notification unit may notify the outside of a status signal indicating whether or not the output unit cuts off the power supply.
  • the status notification unit may generate a status signal based on the voltage of the detection node.
  • the voltage of the detection node may have different potentials depending on whether the power supply is cut off or the power supply is not cut off in the overvoltage protection unit.
  • the vehicle-mounted semiconductor circuit may include a reference potential line.
  • a reference potential may be applied to the reference potential line.
  • the status notification unit may have a status notification line.
  • the status notification line may transmit a status signal to the outside.
  • the status notification unit may have a status notification switch.
  • the status notification switch may switch whether or not to connect the status notification line to the reference potential line according to the voltage of the detection node.
  • the status notification switch may switch whether or not to connect the status notification line to the power supply line according to the voltage of the detection node.
  • the status notification switch may switch whether or not to connect the status notification line to the load circuit according to the voltage of the detection node.
  • the in-vehicle semiconductor circuit may be provided with an output line.
  • the output line may be connected to the load circuit.
  • the output unit may be an output transistor.
  • the output transistor may switch whether or not the power supply line is connected to the output line.
  • the status notification unit may detect the voltage of the gate terminal of the output transistor as the voltage of the detection node.
  • the overvoltage protection unit may have a protection transistor.
  • the protection transistor may be provided between the power supply line and the reference potential line.
  • the protection transistor may be applied to the gate terminal of the output transistor by selecting either a voltage corresponding to the power supply voltage or a voltage corresponding to the reference potential according to the magnitude of the power supply voltage.
  • the status notification unit may detect the voltage output by the protection transistor to the gate terminal as the voltage of the detection node.
  • the overvoltage protection unit may have a Zener diode.
  • the overvoltage protection unit may have a first resistance element.
  • the first resistance element may be connected in series with the Zener diode.
  • a voltage at the connection point between the Zener diode and the first resistance element may be applied to the gate terminal.
  • the state notification unit may detect the voltage at the connection point between the Zener diode and the first resistance element as the voltage of the detection node.
  • the status notification unit may detect the voltage of the output line as the voltage of the detection node.
  • the in-vehicle semiconductor circuit may be provided with a disconnection detection unit.
  • the disconnection detection unit may be connected to a power supply line, a reference potential line, and a status notification line.
  • the disconnection detection unit may notify the outside of a disconnection signal indicating whether or not the vehicle-mounted semiconductor circuit is disconnected.
  • the disconnection detection unit may have a second resistance element connected between the power supply line and the status notification line.
  • the disconnection detection unit may have a third resistance element connected between the state notification line and the reference potential line.
  • the disconnection detection unit may have a fourth resistance element connected between the power supply line and the reference potential line.
  • the status notification line may transmit a disconnection signal to the outside.
  • the status notification line may transmit the status signal and the disconnection signal to the outside in different voltage ranges.
  • a semiconductor circuit in the second aspect of the present invention, is provided.
  • the semiconductor circuit may be connected to the load circuit.
  • the semiconductor circuit may control the power supply to the load circuit.
  • the semiconductor circuit may include a power supply line.
  • a power supply voltage may be applied to the power supply line.
  • the semiconductor circuit may include an overvoltage protection section.
  • the overvoltage protection unit may have an output unit.
  • the output unit may cut off the power supply from the power supply line to the load circuit when the power supply voltage in the power supply line is overvoltage.
  • the semiconductor circuit may include a status notification unit.
  • the status notification unit may notify the outside of a status signal indicating whether or not the output unit cuts off the power supply.
  • the semiconductor circuit may include a disconnection detection unit.
  • the disconnection detection unit may notify the outside of a disconnection signal indicating whether or not the semiconductor circuit is disconnected.
  • the semiconductor circuit may include a status notification line.
  • the status notification line may transmit a status signal and a disconnection signal to the outside.
  • the load circuit may be a pressure sensor.
  • FIG. 1 is a diagram showing an example of the configuration of the semiconductor circuit 100 according to one embodiment of the present invention.
  • the semiconductor circuit 100 of this example may be an in-vehicle semiconductor circuit.
  • the semiconductor circuit 100 of this example includes an overvoltage protection unit 1, a disconnection detection unit 2, a status notification unit 3, a reverse connection protection unit 4, and a load circuit 5.
  • the semiconductor circuit 100 of this example has a power supply terminal 61, an output terminal 62, and a reference potential in order to operate the overvoltage protection unit 1, the disconnection detection unit 2, the status notification unit 3, the reverse connection protection unit 4, and the load circuit 5. It includes a terminal 63, an internal power supply line 71, an internal state notification line 72, an internal reference potential line 73, and an output line 74.
  • the power supply terminal 61 is a terminal to which a power supply voltage Vcc is supplied from an external power supply.
  • the output terminal 62 is a terminal that outputs an output voltage Vout to the outside.
  • the reference potential terminal 63 is a terminal to which the ground voltage GND is supplied from the outside.
  • the power supply terminal 61, the output terminal 62, and the reference potential terminal 63 are connected to the internal power supply line 71, the internal state notification line 72, and the internal reference potential line 73, respectively.
  • the internal power supply line 71 is an example of a power supply line.
  • the internal status notification line 72 is an example of a status notification line.
  • the internal reference potential line 73 is an example of the reference potential line.
  • the external power supply voltage Vcc is supplied to the overvoltage protection unit 1, the disconnection detection unit 2, and the reverse connection protection unit 4 via the internal power supply line 71.
  • the power supply voltage Vcc may be applied to the internal power supply line 71.
  • the output voltage Vout is output to the outside from the disconnection detection unit 2, the status notification unit 3, and the load circuit 5 via the internal state notification line 72.
  • An external ground voltage GND (reference potential) is supplied to the overvoltage protection unit 1, the disconnection detection unit 2, the status notification unit 3, the reverse connection protection unit 4, and the load circuit 5 via the internal reference potential line 73.
  • the ground voltage GND reference potential
  • the ground voltage GND may be applied to the internal reference potential line 73.
  • the ground voltage GND may be expressed as a reference potential.
  • the overvoltage protection unit 1 is connected to the internal power supply line 71, the internal reference potential line 73, and the output line 74.
  • the overvoltage protection unit 1 supplies the supply voltage Vdd to the load circuit 5 via the output line 74 when the external power supply voltage Vcc is steady.
  • the overvoltage protection unit 1 may have a function of cutting off the voltage supply from the power supply line to the load circuit 5 when the external power supply voltage Vcc is overvoltage. In this specification, supplying a voltage may be referred to as a power supply.
  • the semiconductor circuit 100 may control the power supply to the load circuit 5.
  • the overvoltage protection unit 1 includes a first resistance element 11, a Zener diode 12, a protection transistor 13, a resistance element 14, and an output transistor 15.
  • the first resistance element 11 may be connected in series with the Zener diode 12. One end of the first resistance element 11 may be connected to the Zener diode 12, and the other end may be connected to the internal power supply line 71.
  • the cathode may be connected to the first resistance element 11, and the anode may be connected to the internal reference potential line 73.
  • the connection point between the first resistance element 11 and the Zener diode 12 may be connected to the gate terminal of the protection transistor 13.
  • the connection point between the first resistance element 11 and the Zener diode 12 is defined as the connection point N1.
  • the voltage Va at the connection point N1 may be applied to the gate terminal of the protection transistor 13.
  • the protection transistor 13 may be a P-type high voltage MOS transistor.
  • the source terminal of the protection transistor 13 may be connected to the internal power supply line 71.
  • the drain terminal of the protection transistor 13 may be connected to the gate terminal of the resistance element 14 and the output transistor 15.
  • the connection point between the drain terminal of the protection transistor 13 and the resistance element 14 is defined as the connection point N2.
  • the voltage Vb at the connection point N2 may be applied to the gate terminal of the output transistor 15.
  • One end of the resistance element 14 may be connected to the drain terminal of the protection transistor 13 and the gate terminal of the output transistor 15, and the other end may be connected to the internal reference potential line 73.
  • the protection transistor 13 may be provided between the internal power supply line 71 and the internal reference potential line 73.
  • the output transistor 15 may be a P-type high voltage MOS transistor.
  • the source terminal of the output transistor 15 may be connected to the internal power supply line 71.
  • the drain terminal of the output transistor 15 may be connected to the load circuit 5.
  • the output transistor 15 may output the supply voltage Vdd to the load circuit 5.
  • the output transistor 15 is an example of an output unit.
  • the overvoltage protection unit 1 When the external power supply voltage Vcc is equal to or lower than the breakdown voltage of the Zener diode 12, the absolute value of the difference between the power supply voltage Vcc and the voltage Va at the connection point N1 becomes small, and the protection transistor 13 is turned off. When the protection transistor 13 is turned off, the voltage Vb at the connection point N2 becomes approximately the external ground voltage GND. Therefore, since the output transistor 15 is turned on, the power supply voltage Vcc is supplied to the load circuit 5.
  • the protection transistor 13 When the protection transistor 13 is turned on, the voltage Vb at the connection point N2 becomes approximately the power supply voltage Vcc. Therefore, since the output transistor 15 is turned off, the power supply to the load circuit 5 is cut off. That is, the output transistor 15 may cut off the power supply from the internal power supply line 71 to the load circuit 5 when the power supply voltage Vcc in the internal power supply line 71 is overvoltage. The output transistor 15 may switch whether or not to connect the internal power supply line 71 to the output line 74. The protection transistor 13 may select either a voltage corresponding to the power supply voltage Vcc or a voltage corresponding to the reference potential according to the magnitude of the power supply voltage Vcc and apply the voltage to the gate terminal of the output transistor 15.
  • the overvoltage protection unit 1 supplies the supply voltage Vdd to the load circuit 5 when the power supply voltage Vcc is steady. Further, the overvoltage protection unit 1 cuts off the power supply to the load circuit 5 when the power supply voltage Vcc is overvoltage. Since the overvoltage protection unit 1 has a function of cutting off the voltage supply at the time of overvoltage, there is a risk that the load circuit 5 will fail when an overvoltage is applied to the internal power supply line 71 as in the case where the wiring of the power supply voltage Vcc is mistaken. Can be reduced.
  • the disconnection detection unit 2 is connected to the internal power supply line 71, the internal status notification line 72, and the internal reference potential line 73.
  • the disconnection detection unit 2 may detect whether or not the semiconductor circuit 100 is disconnected, and notify the outside of a disconnection signal indicating whether or not the semiconductor circuit 100 is disconnected via the internal state notification line 72.
  • the internal state notification line 72 may transmit a disconnection signal to the outside.
  • the status notification unit 3 may generate a status signal based on the voltage of the detection node.
  • the detection node is a node that can detect the on / off state of the overvoltage protection unit 1. That is, the voltage of the detection node is a potential different between the case where the power supply is cut off and the case where the power supply is not cut off in the overvoltage protection unit 1.
  • the state notification unit 3 since the state notification unit 3 is connected to the connection point N2, the voltage of the detection node is the voltage Vb at the connection point N2. Further, the voltage of the detection node may be the voltage Va at the connection point N1.
  • the voltage of the detection node may be the supply voltage Vdd.
  • the status notification unit 3 can be realized by a simple circuit configuration.
  • the state notification unit 3 may detect the voltage of the gate terminal of the output transistor 15 as the voltage of the detection node.
  • the state notification unit 3 may detect the voltage output by the protection transistor 13 to the gate terminal as the voltage of the detection node.
  • the status notification unit 3 may have a status notification switch 31.
  • the status notification switch 31 may be an N-type high voltage MOS transistor.
  • the source terminal of the status notification switch 31 may be connected to the internal reference potential line 73.
  • the drain terminal of the status notification switch 31 may be connected to the internal status notification line 72.
  • the gate terminal of the status notification switch 31 may be connected to the connection point N2.
  • the status notification unit 3 may have a configuration having an internal status notification line 72.
  • the internal status notification line 72 transmits the status signal generated by the status notification unit 3 to the outside.
  • the status notification switch 31 is turned on, the impedance from the output terminal 62 to the reference potential terminal 63 is lowered, and the output voltage Vout is forcibly set to the ground voltage GND.
  • the state notification switch 31 may switch whether or not to connect the internal state notification line 72 to the internal reference potential line 73 according to the voltage of the detection node (voltage Vb at the connection point N2).
  • the status notification switch 31 connects the internal status notification line 72 to the internal reference potential line 73 when the voltage of the detection node (voltage Vb at the connection point N2) becomes approximately the power supply voltage Vcc. This makes it possible to notify the outside that the overvoltage state is present.
  • the source terminal of the status notification switch 31 is connected to the internal reference potential line 73, there is no risk of outputting an overvoltage to the output terminal 62, and the external circuit can be operated safely.
  • the reverse connection protection unit 4 is connected to the internal power supply line 71 and the internal reference potential line 73.
  • the reverse connection protection unit 4 protects the semiconductor circuit 100 when the reverse connection is made.
  • the reverse connection is, for example, a case where the battery of an automobile is reversely connected, a case where an external ground voltage GND is supplied to the power supply terminal 61, and a case where an external power supply voltage Vcc is supplied to the reference potential terminal 63.
  • the reverse connection protection unit 4 has a plurality of Zener diodes connected in series between the internal power supply line 71 and the internal reference potential line 73 (in this example, it has a Zener diode 41, a Zener diode 42, and a Zener diode 43). ..
  • the Zener diode 41 may have a cathode connected to the internal power supply line 71 and an anode connected to the Zener diode 42.
  • the Zener diode 42 may have a cathode connected to the Zener diode 41 and an anode connected to the Zener diode 43.
  • the Zener diode 43 may have a cathode connected to the Zener diode 42 and an anode connected to the internal reference potential line 73. Since it has a plurality of Zener diodes, it is possible to protect the semiconductor circuit 100 when it is reversely connected. As an example, the semiconductor circuit 100 can be protected when a voltage of 2 V or more is supplied. Further, the reverse connection protection unit 4 does not have to be provided.
  • the load circuit 5 is connected to the internal state notification line 72, the internal reference potential line 73, and the output line 74.
  • the output transistor 15 outputs the supply voltage Vdd to the load circuit 5 via the output line 74. Since the output transistor 15 cuts off the power supply to the load circuit 5 when the power supply voltage Vcc is overvoltage, the overvoltage is not applied to the output transistor 15. Further, the load circuit 5 outputs a voltage to the output terminal 62 via the internal state notification line 72.
  • the load circuit 5 is, for example, a pressure sensor.
  • the load circuit 5 may be a vehicle-mounted semiconductor pressure sensor. The semiconductor pressure sensor can measure the pressure in the intake manifold, for example.
  • the semiconductor circuit 100 has an overvoltage protection having an output unit (output transistor 15) that cuts off the power supply from the internal power supply line 71 to the load circuit 5 when the power supply voltage Vcc in the internal power supply line 71 is overvoltage.
  • the unit 1 and the output unit (output transistor 15) include a status notification unit 3 that notifies the outside of a status signal indicating whether or not the power supply is cut off.
  • FIG. 2 is a diagram showing an example of the output voltage Vout characteristic of the load circuit 5 of the semiconductor circuit 100 of FIG.
  • the load circuit 5 is a pressure sensor.
  • the output voltage Vout of the load circuit 5 changes in the range of the steady output region according to the applied pressure as shown by the output line a.
  • the range of the steady output region is the range from V12 to V13.
  • the range from V12 to V13 is the range from 0.2V to 4.8V.
  • the saturation voltage (clamp voltage) of the load circuit 5 is set so that the output of the load circuit 5 does not enter the upper limit failure detection region and the lower limit failure detection region.
  • the output voltage Vout falls within the range of the upper failure detection area or the lower failure detection area.
  • the range of the upper failure detection region is a range from V13 to V14.
  • the range from V13 to V14 is the range from 4.8V to 5.0V.
  • the range of the lower failure detection area is the range from V11 to V12.
  • the range from V11 to V12 is the range from 0.0V to 0.2V.
  • the status notification switch 31 When the power supply voltage Vcc is overvoltage, the status notification switch 31 is turned on, and the output voltage Vout is forcibly set to the ground voltage GND. Therefore, the output voltage Vout enters the lower failure detection region from V11 to V12. As described above, since it is possible to detect that the output voltage Vout has entered the lower failure detection region outside, it is possible to detect that the upper system is in a failure state.
  • FIG. 4 is a diagram showing an example of the configuration of the semiconductor circuit 200 according to another embodiment of the present invention.
  • the semiconductor circuit 200 of this example includes an overvoltage protection unit 1, a disconnection detection unit 2, a status notification unit 3, a reverse connection protection unit 4, and a load circuit 5.
  • the semiconductor circuit 200 of this example is different from the semiconductor circuit 100 of FIG. 1 in that the overvoltage protection unit 1, the disconnection detection unit 2, and the state notification unit 3 further have a protection circuit.
  • Other configurations of the semiconductor circuit 200 may be similar to those of the semiconductor circuit 100.
  • the status notification switch 31 when the power supply voltage Vcc is steady, the status notification switch 31 is in a high impedance state and does not affect the output voltage Vout.
  • the power supply voltage Vcc when the power supply voltage Vcc is overvoltage, the impedance from the output terminal 62 to the reference potential terminal 63 becomes low, and the output voltage Vout is forcibly set to the power supply voltage Vcc.
  • the output voltage Vout becomes the power supply voltage Vcc, it enters the upper failure detection region of FIG. Therefore, since it is possible to detect that the output voltage Vout has entered the upper failure detection region on the outside, it is possible to detect that the failure state is on the upper system side.
  • the status notification switch 31 may be an N-type high-voltage MOS transistor.
  • a booster circuit may be provided on the gate terminal side of the status notification switch 31.
  • the voltage Va at the connection point N1 is such that the status notification switch 31 is turned off when the output transistor 15 is on and the status notification switch 31 is turned on when the output transistor 15 is off. May be boosted.
  • the booster circuit may be realized by any known configuration.
  • FIG. 7 is a diagram showing an example of the configuration of the semiconductor circuit 500 according to another embodiment of the present invention.
  • the semiconductor circuit 500 of this example includes an overvoltage protection unit 1, a disconnection detection unit 2, a status notification unit 3, a reverse connection protection unit 4, and a load circuit 5.
  • the semiconductor circuit 500 of this example is different from the semiconductor circuit 400 of FIG. 6 in that the state notification unit 3 is connected to the output line 74.
  • Other configurations of the semiconductor circuit 500 may be similar to those of the semiconductor circuit 400.
  • the status notification switch 31 is a P-type high-voltage MOS transistor, and the gate terminal is connected to the output line 74. That is, the supply voltage Vdd supplied by the output transistor 15 to the load circuit 5 may be used as the voltage of the detection node.
  • the status notification switch 31 When the output transistor 15 is in the on state (power supply voltage Vcc is steady), the status notification switch 31 is in the off state, and when the output transistor 15 is in the off state (power supply voltage Vcc is overvoltage), the status notification switch 31 is in the on state. It becomes.
  • the state notification switch 31 is in a high impedance state and does not affect the output voltage Vout.
  • the status notification switch 31 may switch whether or not to connect the internal status notification line 72 to the internal power supply line 71 according to the supply voltage Vdd of the detection node.
  • the output voltage Vout becomes the power supply voltage Vcc, it enters the upper failure detection region of FIG. Therefore, since it is possible to detect that the output voltage Vout has entered the upper failure detection region on the outside, it is possible to detect that the upper system is in a failure state with a simple circuit configuration.
  • the status notification unit 3 may detect the supply voltage Vdd of the output line 74 as the voltage of the detection node.
  • the status notification unit 3 may include a status notification switch 31, a Zener diode 32, and a resistance element 33.
  • the status notification switch 31 may be an N-type high voltage MOS transistor.
  • the source terminal of the status notification switch 31 may be connected to the load circuit 5.
  • the drain terminal of the status notification switch 31 may be connected to the internal status notification line 72.
  • the gate terminal of the status notification switch 31 may be connected to the connection point N2.
  • the Zener diode 32 the cathode may be connected to the gate terminal of the state notification switch 31, and the anode may be connected to the internal reference potential line 73.
  • One end of the resistance element 33 may be connected to the connection point N2, and the other end may be connected to the gate terminal of the status notification switch 31.
  • the Zener diode 32 and the resistance element 33 are protection circuits that protect internal circuits when an overvoltage is applied.
  • the status notification switch 31 is an N-type high-voltage MOS transistor, and the gate terminal is connected to the connection point N2. That is, the voltage Vb at the connection point N2 may be the voltage of the detection node.
  • the status notification switch 31 is in the off state, and when the output transistor 15 is in the off state (power supply voltage Vcc is overvoltage), the status notification switch 31 is in the on state. It becomes.
  • the state notification switch 31 is in a high impedance state and does not affect the output voltage Vout.
  • the status notification switch 31 may switch whether or not to connect the internal status notification line 72 to the load circuit 5 according to the voltage of the detection node (voltage Vb at the connection point N2).
  • the output voltage Vout becomes the ground voltage GND, it enters the lower failure detection region of FIG. Therefore, since it is possible to detect that the output voltage Vout has entered the lower failure detection region on the outside, it is possible to detect that the upper system is in a failure state with a simple circuit configuration.
  • the disconnection detection unit 2 is the same as the disconnection detection unit 2 of the semiconductor circuit 100 shown in FIG.
  • the synthesis circuit 8 is a synthesis circuit of the overvoltage protection unit 1, the state notification unit 3, the reverse connection protection unit 4, and the load circuit 5 of the semiconductor circuit 100 shown in FIG. 1, and a part thereof is omitted.
  • the external circuit 9 is an external circuit that connects to the power supply terminal 61, the output terminal 62, and the reference potential terminal 63.
  • the configuration of the disconnection detection unit 2 is the same as that of the semiconductor circuit 100 shown in FIG.
  • the disconnection detection unit 2 includes a second resistance element 21, a third resistance element 22, and a fourth resistance element 23.
  • the synthesis circuit 8 includes a resistance element 81, a resistance element 82, a resistance element 83, and an output stage amplifier 84.
  • One end of the resistance element 81 may be connected to the internal power supply line 71, and the other end may be connected to the internal state notification line 72.
  • One end of the resistance element 82 may be connected to the internal state notification line 72, and the other end may be connected to the internal reference potential line 73.
  • One end of the resistance element 83 may be connected to the internal power supply line 71, and the other end may be connected to the internal reference potential line 73.
  • the output stage amplifier 84 is connected to the internal state notification line 72 and outputs a signal to the internal state notification line 72.
  • the external circuit 9 has a resistance element 91, a resistance element 92, a power supply terminal 93, an output terminal 94, and a reference potential terminal 95.
  • One end of the resistance element 91 may be connected to the external power supply line 75, and the other end may be connected to the external state notification line 76.
  • One end of the resistance element 92 may be connected to the external state notification line 76, and the other end may be connected to the external reference potential line 77.
  • the power supply terminal 93 is a terminal to which the power supply voltage Vcc is supplied.
  • the output terminal 94 is a terminal that outputs an output voltage Vout to the outside.
  • the reference potential terminal 95 is a terminal to which the ground voltage GND is supplied.
  • the power supply terminal 93, the output terminal 94, and the reference potential terminal 95 are connected to the power supply terminal 61, the output terminal 62, and the reference potential terminal 63, respectively, via the external power supply line 75, the external status notification line 76, and the external reference potential line 77, respectively. ..
  • the output voltage Vout changes in the range of the steady output region according to the applied pressure.
  • the fourth resistance element 23 Since the fourth resistance element 23 has nothing to do with the output of the output stage amplifier 84, it does not affect the voltage value of the output signal when there is no disconnection. Further, by changing the resistance value of the fourth resistance element 23, the output voltage Vout at the time of disconnection can be changed. In other words, the output voltage Vout at the time of disconnection can be adjusted by adjusting the resistance value of the fourth resistance element 23.
  • the fourth resistance element 23 When the external power supply line 75 is disconnected, the fourth resistance element 23 may be set so as to fall within the range of the lower failure detection region of FIG. The resistance value may be adjusted by a known method such as using a variable resistor.
  • FIG. 11 is a diagram showing a state in which the external reference potential line 77 of the semiconductor circuit 700 of FIG. 9 is disconnected.
  • the output voltage Vout when the external reference potential line 77 is disconnected is expressed as the following equation 2.
  • the output voltage Vout at the time of disconnection can be changed.
  • the output voltage Vout at the time of disconnection can be adjusted by adjusting the resistance value of the fourth resistance element 23.
  • the fourth resistance element 23 may be set so as to fall within the range of the upper failure detection region of FIG.
  • FIG. 12 is a diagram showing an example of the output voltage Vout characteristic of the output stage amplifier 84 of the semiconductor circuit 700 of FIG. Similar to FIG. 2, when neither overvoltage nor disconnection failure has occurred, the output voltage Vout of the output stage amplifier 84 changes in the range of the steady output region according to the applied pressure as shown by the output line b.
  • the range of the steady output region is the range from V12 to V13.
  • the range from V12 to V13 is the range from 0.2V to 4.8V.
  • the saturation voltage (clamp voltage) of the output stage amplifier 84 is set so that the output of the output stage amplifier 84 does not enter the upper limit failure detection region and the lower limit failure detection region.
  • the resistance value of the fourth resistance element 23 may be adjusted so that the output voltage Vout falls within the range of the upper failure detection region.
  • the range of the upper failure detection region is a range from V13 to V14.
  • the range from V13 to V14 is the range from 4.8V to 5.0V.
  • the resistance value of the fourth resistance element 23 may be adjusted so that the output voltage Vout falls within the range of the lower failure detection region.
  • the range of the upper failure detection region is a range from V13 to V14.
  • the range from V13 to V14 is the range from 0.0V to 0.2V.
  • the output voltage Vout becomes a value close to 0.0V.
  • the resistance value of the fourth resistance element 23 may be adjusted so that the output voltage Vout enters the second lower failure detection region.
  • the range of the first lower failure detection area is the range from V11 to V15. As an example, the range from V11 to V15 is the range from 0.0V to 0.1V.
  • the range of the second lower failure detection region is the range from V15 to V12.
  • the range from V15 to V12 is the range from 0.1V to 0.2V.
  • the internal state notification line 72 may transmit the state signal and the disconnection signal to the outside in different voltage ranges.
  • FIG. 13 is a diagram showing an example of the configuration of the semiconductor circuit 800 according to the comparative example.
  • the semiconductor circuit 800 of this example includes an overvoltage protection unit 1, a disconnection detection unit 2, a reverse connection protection unit 4, and a load circuit 5.
  • the semiconductor circuit 800 of this example is different from the semiconductor circuit 200 of FIG. 4 in that it does not have the state notification unit 3.
  • Other configurations of FIG. 13 may be similar to those of FIG.
  • the semiconductor circuit 800 according to this example has an overvoltage protection unit 1 like the semiconductor circuit 200 of FIG. Therefore, the voltage supply can be cut off when the power supply voltage Vcc is overvoltage.
  • the semiconductor circuit 800 according to this example does not have the state notification unit 3. Therefore, the semiconductor circuit 800 according to this example cannot notify the outside that it is in an overvoltage state.
  • FIG. 14 is a diagram illustrating a current path of the semiconductor circuit 800 of FIG.
  • the thick line in FIG. 14 is the current path that flows from the disconnection detection unit 2 to the load circuit 5.
  • the thick dotted line in FIG. 14 is the current path flowing from the third resistance element 22 to the fourth resistance element 23.
  • the output voltage Vout is the current path flowing from the connection point AA to the load circuit 5 and the fourth resistance element from the connection point AA. It is the voltage at the voltage dividing point between the combined resistance of the current path flowing to 23 and the third resistance element 22.
  • the output voltage Vout at this time does not become lower than the voltage at which the active element used inside the load circuit 5 operates.
  • the semiconductor circuit 800 is formed on a silicon substrate, the output voltage Vout is 0.6 V or more. Therefore, the output voltage Vout is fixed in the steady output region. Therefore, the semiconductor circuit 800 according to this example cannot notify the outside that it is in an overvoltage state when the power supply voltage Vcc is overvoltage.
  • booster circuit 41 ... Zener diode, 42 ... Zener diode, 43 ... Zener diode, 61 ... power supply terminal, 62 ... output terminal, 63 ... reference potential terminal , 71 ... Internal power supply line, 72 ... Internal status notification line, 73 ... Internal reference potential line, 74 ... Output line, 75 ... External power supply line, 76 ... External status notification line, 77 ... External reference Potential line, 81 ... resistance element, 82 ... resistance element, 83 ... resistance element, 84 ... output stage amplifier, 91 ... resistance element, 92 ... resistance element, 93 ... power supply terminal, 94 ... output Terminal, 95 ... Reference potential terminal, 100 ... Semiconductor circuit, 200 ... Semiconductor circuit, 300 ... Semiconductor circuit, 400 ... Semiconductor circuit, 500 ... Semiconductor circuit, 600 ... Semiconductor circuit, 700 ... Semiconductor circuit , 800 ... Semiconductor circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electronic Switches (AREA)

Abstract

負荷回路に接続し、負荷回路への電力供給を制御する半導体回路は、電源電圧が印加される電源線と、電源線における電源電圧が過電圧の時に、電源線から負荷回路への電力供給を遮断する出力部を有する過電圧保護部と、出力部が電力供給を遮断しているか否かを示す状態信号を外部に通知する状態通知部とを備える。

Description

車載用半導体回路および半導体回路
 本発明は、過電圧保護機能および故障検知機能を備える車載用半導体回路に関する。
 過電圧が印加された場合、回路を保護する過電圧保護機能を備えた半導体回路が知られている(例えば、特許文献1参照)。また、外部へ故障状態であることを伝える故障検知機能を備えた半導体回路も考案されている(例えば、特許文献2参照)。
特許第3899984号 特許第3918614号
解決しようとする課題
 車載用半導体回路は、過電圧が印加された場合においても、過電圧印加状態であることを外部へ通知できることが好ましい。
一般的開示
 本発明の第1の態様においては、車載用半導体回路を提供する。車載用半導体回路は、負荷回路に接続してよい。車載用半導体回路は、負荷回路への電力供給を制御してよい。車載用半導体回路は、電源線を備えてよい。電源線は、電源電圧が印加されてよい。車載用半導体回路は、過電圧保護部を備えてよい。過電圧保護部は、出力部を有してよい。出力部は、電源線における電源電圧が過電圧の時に、電源線から負荷回路への電力供給を遮断してよい。車載用半導体回路は、状態通知部を備えてよい。状態通知部は、出力部が電力供給を遮断しているか否かを示す状態信号を外部に通知してよい。
 状態通知部は、検知ノードの電圧に基づいて、状態信号を生成してよい。検知ノードの電圧は、過電圧保護部において、電力供給を遮断している場合と、電力供給を遮断していない場合とで異なる電位になってよい。
 車載用半導体回路は、基準電位線を備えてよい。基準電位線は、基準電位が印加されてよい。状態通知部は、状態通知線を有してよい。状態通知線は、状態信号を外部に伝送してよい。状態通知部は、状態通知スイッチを有してよい。状態通知スイッチは、検知ノードの電圧に応じて、状態通知線を基準電位線に接続するか否かを切り替えてよい。状態通知スイッチは、検知ノードの電圧に応じて、状態通知線を電源線に接続するか否かを切り替えてよい。状態通知スイッチは、検知ノードの電圧に応じて、状態通知線を負荷回路に接続するか否かを切り替えてよい。
 車載用半導体回路は、出力線を備えてよい。出力線は、負荷回路に接続されてよい。出力部は、出力トランジスタであってよい。出力トランジスタは、電源線を出力線に接続するか否かを切り替えてよい。状態通知部は、出力トランジスタのゲート端子の電圧を、検知ノードの電圧として検知してよい。
 過電圧保護部は、保護トランジスタを有してよい。保護トランジスタは、電源線および基準電位線の間に設けられてよい。保護トランジスタは、電源電圧の大きさに応じて、電源電圧に応じた電圧と、基準電位に応じた電圧のいずれかを選択して出力トランジスタのゲート端子に印加してよい。状態通知部は、保護トランジスタがゲート端子に出力する電圧を、検知ノードの電圧として検知してよい。
 過電圧保護部は、ツェナーダイオードを有してよい。過電圧保護部は、第1抵抗素子を有してよい。第1抵抗素子は、ツェナーダイオードと直列に接続されてよい。保護トランジスタは、ツェナーダイオードと第1抵抗素子との接続点における電圧がゲート端子に印加されてよい。状態通知部は、ツェナーダイオードと第1抵抗素子との接続点における電圧を、検知ノードの電圧として検知してよい。状態通知部は、出力線の電圧を、検知ノードの電圧として検知してよい。
 車載用半導体回路は、断線検知部を備えてよい。断線検知部は、電源線、基準電位線および状態通知線に接続してよい。断線検知部は、車載用半導体回路が断線しているか否かを示す断線信号を外部に通知してよい。
 断線検知部は、電源線と状態通知線との間に接続された第2抵抗素子を有してよい。断線検知部は、状態通知線と基準電位線との間に接続された第3抵抗素子を有してよい。断線検知部は、電源線と基準電位線との間に接続された第4抵抗素子を有してよい。
 状態通知線は、断線信号を外部に伝送してよい。状態通知線は、異なる電圧範囲で、状態信号および断線信号を外部に伝送してよい。
 本発明の第2の態様においては、半導体回路を提供する。半導体回路は、負荷回路に接続してよい。半導体回路は、負荷回路への電力供給を制御してよい。半導体回路は、電源線を備えてよい。電源線は、電源電圧が印加されてよい。半導体回路は、過電圧保護部を備えてよい。過電圧保護部は、出力部を有してよい。出力部は、電源線における電源電圧が過電圧の時に、電源線から負荷回路への電力供給を遮断してよい。半導体回路は、状態通知部を備えてよい。状態通知部は、出力部が電力供給を遮断しているか否かを示す状態信号を外部に通知してよい。半導体回路は、断線検知部を備えてよい。断線検知部は、半導体回路が断線しているか否かを示す断線信号を外部に通知してよい。半導体回路は、状態通知線を備えてよい。状態通知線は、状態信号および断線信号を外部に伝送してよい。
 負荷回路は、圧力センサであってよい。
本発明の一つの実施形態に係る半導体回路100の構成の一例を示す図である。 図1の半導体回路100の負荷回路5の出力電圧Vout特性の一例を示す図である。 半導体回路100の電源電圧Vccと出力電圧Voutの関係を示す図である。 本発明の他の実施形態に係る半導体回路200の構成の一例を示す図である。 本発明の他の実施形態に係る半導体回路300の構成の一例を示す図である。 本発明の他の実施形態に係る半導体回路400の構成の一例を示す図である。 本発明の他の実施形態に係る半導体回路500の構成の一例を示す図である。 本発明の他の実施形態に係る半導体回路600の構成の一例を示す図である。 断線検知部2の動作を説明するための半導体回路700の構成を示す図である。 図9の半導体回路700の外部電源線75が断線した状態を示す図である。 図9の半導体回路700の外部基準電位線77が断線した状態を示す図である。 図9の半導体回路700の出力段アンプ84の出力電圧Vout特性の例を示す図である。 比較例に係る半導体回路800の構成の一例を示す図である。 図13の半導体回路800の電流経路を説明する図である。 比較例に係る半導体回路800の電源電圧Vccと出力電圧Voutの関係を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本発明の一つの実施形態に係る半導体回路100の構成の一例を示す図である。本例の半導体回路100は、車載用半導体回路であってよい。本例の半導体回路100は、過電圧保護部1、断線検知部2、状態通知部3、逆接続保護部4および負荷回路5を備える。また、本例の半導体回路100は、過電圧保護部1、断線検知部2、状態通知部3、逆接続保護部4および負荷回路5を動作させるために、電源端子61、出力端子62、基準電位端子63、内部電源線71、内部状態通知線72、内部基準電位線73および出力線74を備える。過電圧保護部1、断線検知部2、状態通知部3、逆接続保護部4および負荷回路5は、同一半導体基板上に形成されてよい。また、本例では、半導体回路100は、負荷回路5を備えるが、半導体回路100は、負荷回路5は備えなくてもよい。つまり、半導体回路100は、外部の負荷回路5に接続する構成でもよい。
 電源端子61は、外部の電源から電源電圧Vccが供給される端子である。出力端子62は、外部へ出力電圧Voutを出力する端子である。基準電位端子63は、外部から接地電圧GNDが供給される端子である。電源端子61、出力端子62および基準電位端子63は、それぞれ、内部電源線71、内部状態通知線72および内部基準電位線73と接続する。内部電源線71は、電源線の例である。内部状態通知線72は、状態通知線の例である。内部基準電位線73は、基準電位線の例である。内部電源線71を介して、過電圧保護部1、断線検知部2、および逆接続保護部4に、外部の電源電圧Vccが供給される。換言すれば、内部電源線71は、電源電圧Vccが印加されてよい。内部状態通知線72を介して、断線検知部2、状態通知部3および負荷回路5から、外部へ出力電圧Voutを出力する。内部基準電位線73を介して、過電圧保護部1、断線検知部2、状態通知部3、逆接続保護部4および負荷回路5に、外部の接地電圧GND(基準電位)が供給される。換言すれば、内部基準電位線73は、接地電圧GND(基準電位)が印加されてよい。なお、本明細書では、接地電圧GNDを基準電位と表現する場合がある。
 過電圧保護部1は、内部電源線71、内部基準電位線73および出力線74と接続する。過電圧保護部1は、出力線74を介して、外部の電源電圧Vccが定常の時、負荷回路5に供給電圧Vddを供給する。過電圧保護部1は、外部の電源電圧Vccが過電圧の時に、電源線から負荷回路5への電圧供給を遮断する機能を有してよい。なお、本明細書では、電圧を供給することを電力供給と表現する場合がある。半導体回路100は、負荷回路5への電力供給を制御してよい。
 過電圧保護部1は、第1抵抗素子11、ツェナーダイオード12、保護トランジスタ13、抵抗素子14および出力トランジスタ15を有する。第1抵抗素子11は、ツェナーダイオード12と直列に接続されてよい。第1抵抗素子11は、一端がツェナーダイオード12と接続し、他の一端が内部電源線71と接続してよい。ツェナーダイオード12は、カソードが第1抵抗素子11と接続し、アノードが内部基準電位線73と接続してよい。第1抵抗素子11とツェナーダイオード12との接続点は、保護トランジスタ13のゲート端子と接続してよい。第1抵抗素子11とツェナーダイオード12との接続点を接続点N1とする。保護トランジスタ13のゲート端子には、接続点N1における電圧Vaが印加されてよい。
 保護トランジスタ13は、P型高圧MOSトランジスタであってよい。保護トランジスタ13のソース端子は、内部電源線71と接続してよい。保護トランジスタ13のドレイン端子は、抵抗素子14および出力トランジスタ15のゲート端子と接続してよい。保護トランジスタ13のドレイン端子と抵抗素子14との接続点を接続点N2とする。出力トランジスタ15のゲート端子には、接続点N2における電圧Vbが印加されてよい。抵抗素子14は、一端が保護トランジスタ13のドレイン端子および出力トランジスタ15のゲート端子と接続し、他の一端が内部基準電位線73と接続してよい。保護トランジスタ13は、内部電源線71および内部基準電位線73の間に設けられてよい。
 出力トランジスタ15は、P型高圧MOSトランジスタであってよい。出力トランジスタ15のソース端子は、内部電源線71と接続してよい。出力トランジスタ15のドレイン端子は、負荷回路5と接続してよい。換言すれば、出力トランジスタ15は、負荷回路5へ供給電圧Vddを出力してよい。出力トランジスタ15は出力部の例である。
 過電圧保護部1の動作について説明する。外部の電源電圧Vccがツェナーダイオード12のブレークダウン電圧以下の場合、電源電圧Vccと接続点N1における電圧Vaの差の絶対値が小さくなり、保護トランジスタ13はオフ状態となる。保護トランジスタ13がオフ状態になると、接続点N2における電圧Vbはおおよそ外部の接地電圧GNDとなる。したがって、出力トランジスタ15はオン状態となるため、負荷回路5へ電源電圧Vccが供給される。
 一方で、外部の電源電圧Vccがツェナーダイオード12のブレークダウン電圧以上の場合、接続点N1における電圧Vaは、ツェナーダイオード12のブレークダウン電圧にクランプされる。ブレークダウン電圧にクランプされた状態でさらに外部の電源電圧Vccがツェナーダイオード12のブレークダウン電圧と保護トランジスタ13の閾値電圧の和を超えた場合、電源電圧Vccと接続点N1における電圧Vaの差の絶対値が大きくなり、保護トランジスタ13はオン状態となる。外部の電源電圧Vccがツェナーダイオード12のブレークダウン電圧と保護トランジスタ13の閾値電圧の和を超えた場合とは、電源電圧Vccが過電圧の時であるとしてよい。また、外部の電源電圧Vccがツェナーダイオード12のブレークダウン電圧と保護トランジスタ13の閾値電圧の和以下の場合とは、電源電圧Vccが定常の時であるとしてよい。
 保護トランジスタ13がオン状態になると、接続点N2における電圧Vbはおおよそ電源電圧Vccとなる。したがって、出力トランジスタ15はオフ状態となるため、負荷回路5への電力供給は遮断される。つまり、出力トランジスタ15は、内部電源線71における電源電圧Vccが過電圧の時に、内部電源線71から負荷回路5への電力供給を遮断してよい。出力トランジスタ15は、内部電源線71を出力線74に接続するか否かを切り替えてよい。保護トランジスタ13は、電源電圧Vccの大きさに応じて、電源電圧Vccに応じた電圧と、基準電位に応じた電圧のいずれかを選択して出力トランジスタ15のゲート端子に印加してよい。
 以上の動作により、過電圧保護部1は、電源電圧Vccが定常の時は、負荷回路5に供給電圧Vddを供給する。また、過電圧保護部1は、電源電圧Vccが過電圧の時は、負荷回路5への電力供給は遮断する。過電圧保護部1が、過電圧時に電圧供給を遮断する機能を有するため、電源電圧Vccの配線を取り違えた場合のように内部電源線71に過電圧が印加された時、負荷回路5が故障するリスクを減らすことができる。
 断線検知部2は、内部電源線71、内部状態通知線72および内部基準電位線73と接続する。断線検知部2は、半導体回路100が断線しているか否かを検知し、内部状態通知線72を介して、断線しているか否かを示す断線信号を外部に通知してよい。内部状態通知線72は、断線信号を外部に伝送してよい。
 断線検知部2は、第2抵抗素子21、第3抵抗素子22、および第4抵抗素子23を有する。第2抵抗素子21は、一端が内部電源線71と接続し、他の一端が内部状態通知線72と接続してよい。第3抵抗素子22は、一端が内部状態通知線72と接続し、他の一端が内部基準電位線73と接続してよい。第4抵抗素子23は、一端が内部電源線71と接続し、他の一端が内部基準電位線73と接続してよい。断線検知部2の断線検知の詳細な動作については後述する。
 状態通知部3は、内部状態通知線72および内部基準電位線73と接続する。状態通知部3は、出力トランジスタ15が電力供給を遮断しているか否かを示す状態信号を検知し、内部状態通知線72を介して、出力トランジスタ15が電力供給を遮断しているか否かを示す状態信号を外部に通知してよい。また、状態通知部3は、断線検知部2と内部状態通知線72を共用してもよい。換言すれば、内部状態通知線72は、状態信号および断線信号を外部に伝送してよい。
 状態通知部3は、検知ノードの電圧に基づいて、状態信号を生成してよい。検知ノードとは、過電圧保護部1のオンオフ状態を検知することができるノードである。つまり、検知ノードの電圧とは、過電圧保護部1において、電力供給を遮断している場合と、電力供給を遮断していない場合とで異なる電位である。本例において、状態通知部3は、接続点N2と接続しているため、検知ノードの電圧は接続点N2における電圧Vbである。また、検知ノードの電圧は接続点N1における電圧Vaであってよい。検知ノードの電圧は供給電圧Vddであってよい。検知ノードの電圧を接続点N2における電圧Vbとすることで、簡単な回路構成により状態通知部3を実現することができる。換言すれば、状態通知部3は、出力トランジスタ15のゲート端子の電圧を、検知ノードの電圧として検知してよい。換言すれば、状態通知部3は、保護トランジスタ13がゲート端子に出力する電圧を、検知ノードの電圧として検知してよい。
 状態通知部3の回路構成について説明する。状態通知部3は、状態通知スイッチ31を有してよい。状態通知スイッチ31は、N型高圧MOSトランジスタであってよい。状態通知スイッチ31のソース端子は、内部基準電位線73と接続してよい。状態通知スイッチ31のドレイン端子は、内部状態通知線72と接続してよい。状態通知スイッチ31のゲート端子は、接続点N2と接続してよい。また、状態通知部3は、内部状態通知線72を有する構成でもよい。内部状態通知線72は、状態通知部3が生成した状態信号を外部に伝送する。
 状態通知部3は、接続点N2と接続しているため、接続点N2における電圧Vbに応じて、スイッチング動作を実施する。電源電圧Vccが定常の場合(外部の電源電圧Vccがツェナーダイオード12のブレークダウン電圧と保護トランジスタ13の閾値電圧の和以下の場合)において、接続点N2における電圧Vbはおおよそ外部の接地電圧GNDとなる。接続点N2における電圧Vbが接地電圧GNDになると、状態通知スイッチ31は、N型高圧MOSトランジスタであるため、オフ状態となる。したがって、状態通知スイッチ31はハイインピーダンス状態となり、出力電圧Voutに影響を及ぼさない。一方、電源電圧Vccが過電圧の場合(外部の電源電圧Vccがツェナーダイオード12のブレークダウン電圧と保護トランジスタ13の閾値電圧の和を超えた場合)において、接続点N2における電圧Vbはおおよそ電源電圧Vccとなる。したがって、状態通知スイッチ31は、オン状態となり、出力端子62から基準電位端子63までのインピーダンスが低くなり、出力電圧Voutは強制的に接地電圧GNDとなる。状態通知スイッチ31は、検知ノードの電圧(接続点N2における電圧Vb)に応じて、内部状態通知線72を内部基準電位線73に接続するか否かを切り替えてよい。状態通知スイッチ31は、検知ノードの電圧(接続点N2における電圧Vb)がおおよそ電源電圧Vccとなった場合に、内部状態通知線72を内部基準電位線73に接続する。これにより、外部へ過電圧状態であることを通知することが可能となる。
 また、状態通知スイッチ31のソース端子は、内部基準電位線73と接続しているため、出力端子62に過電圧を出力する危険性がなく、外部回路を安全に動作させることが可能である。
 逆接続保護部4は、内部電源線71および内部基準電位線73と接続する。逆接続保護部4は、逆接続した際に半導体回路100を保護する。逆接続とは、例えば、自動車のバッテリーが逆接続される場合であり、電源端子61に外部の接地電圧GNDが供給され、基準電位端子63に外部の電源電圧Vccが供給される場合である。逆接続保護部4は、内部電源線71と内部基準電位線73の間に直列に接続された複数のツェナーダイオードを有する(本例では、ツェナーダイオード41、ツェナーダイオード42およびツェナーダイオード43を有する)。ツェナーダイオード41は、カソードが内部電源線71と接続し、アノードがツェナーダイオード42と接続してよい。ツェナーダイオード42は、カソードがツェナーダイオード41と接続し、アノードがツェナーダイオード43と接続してよい。ツェナーダイオード43は、カソードがツェナーダイオード42と接続し、アノードが内部基準電位線73と接続してよい。複数のツェナーダイオードを有するため、逆接続した際に半導体回路100を保護することができる。一例として、2V以上の電圧が供給された時、半導体回路100を保護することができる。また、逆接続保護部4は、設けなくてもよい。
 負荷回路5は、内部状態通知線72、内部基準電位線73および出力線74と接続する。出力トランジスタ15は、出力線74を介して、負荷回路5へ供給電圧Vddを出力する。出力トランジスタ15は、電源電圧Vccが過電圧の時、負荷回路5への電力供給を遮断するため、出力トランジスタ15に過電圧が印加されることはない。また、内部状態通知線72を介して、負荷回路5は、出力端子62に電圧を出力する。負荷回路5は、例として、圧力センサである。負荷回路5は車載用の半導体圧力センサであってよい。半導体圧力センサは、例えば、インテークマニホールド内の圧力を計測することができる。
 以上で説明した通り、半導体回路100は、内部電源線71における電源電圧Vccが過電圧の時に、内部電源線71から負荷回路5への電力供給を遮断する出力部(出力トランジスタ15)を有する過電圧保護部1および出力部(出力トランジスタ15)が電力供給を遮断しているか否かを示す状態信号を外部に通知する状態通知部3を備える。過電圧保護部1および状態通知部3を備えることにより、外部へ過電圧状態であることを通知でき、上位システム側で故障状態であることを検知することが可能となる。
 図2は、図1の半導体回路100の負荷回路5の出力電圧Vout特性の一例を示す図である。なお、図2において、負荷回路5は圧力センサである。図2に示すように、過電圧も断線故障も生じていない場合には、負荷回路5の出力電圧Voutは、出力線aで示すように印加圧力に応じて定常出力領域の範囲で変化する。定常出力領域の範囲とは、V12からV13までの範囲である。例として、V12からV13までの範囲は、0.2Vから4.8Vまでの範囲である。負荷回路5の出力が上限故障検知領域および下限故障検知領域に入らないように、負荷回路5の飽和電圧(クランプ電圧)を設定する。断線故障した場合には、上側故障検知領域の範囲または下側故障検知領域の範囲に出力電圧Voutが入ることになる。上側故障検知領域の範囲とは、V13からV14までの範囲である。例として、V13からV14までの範囲は、4.8Vから5.0Vまでの範囲である。下側故障検知領域の範囲とは、V11からV12までの範囲である。例として、V11からV12までの範囲は、0.0Vから0.2Vまでの範囲である。
 電源電圧Vccが過電圧の時は、状態通知スイッチ31は、オン状態となり、出力電圧Voutは強制的に接地電圧GNDとなる。したがって、出力電圧Voutは、V11からV12までの下側故障検知領域に入ることになる。以上で説明した通り、外部において、出力電圧Voutが下側故障検知領域に入ったことを検知することができるため、上位システム側で故障状態であること検知することが可能となる。
 図3は、半導体回路100の電源電圧Vccと出力電圧Voutの関係を示す図である。電源電圧Vccが定常の場合(電源電圧VccがV21以下の場合)において、出力電圧Voutは図2で示したV12とV13との間で変化する。V21は、ツェナーダイオード12のブレークダウン電圧と保護トランジスタ13の閾値電圧の和である。
 一方で、電源電圧Vccが過電圧の場合(電源電圧VccがV21を超える場合)において、出力電圧Voutはおよそ0Vになる。出力電圧Voutがおよそ0Vになるのは、状態通知スイッチ31がオン状態となり、出力電圧Voutが強制的に接地電圧GNDとなるためである。電源電圧Vccが過電圧になった際に、出力電圧Voutがおよそ0Vで一定となる。
 図4は、本発明の他の実施形態に係る半導体回路200の構成の一例を示す図である。本例の半導体回路200は、過電圧保護部1、断線検知部2、状態通知部3、逆接続保護部4および負荷回路5を備える。本例の半導体回路200は、過電圧保護部1、断線検知部2および状態通知部3が保護回路を更に有する点で、図1の半導体回路100とは異なる。半導体回路200の他の構成は、半導体回路100と同様であってよい。
 過電圧保護部1は、図1の構成に加え、抵抗素子16、ツェナーダイオード17、抵抗素子18、ツェナーダイオード19およびツェナーダイオード20を有する。抵抗素子16は、一端が接続点N1と接続し、他の一端が保護トランジスタ13のゲート端子と接続してよい。換言すれば、抵抗素子16は、接続点N1と保護トランジスタ13のゲート端子との間に設けられてよい。抵抗素子16を設けることで、電源端子61から基準電位端子63までに流れる電流を絞り、保護トランジスタ13のゲート端子を保護することができる。なお、保護トランジスタ13のゲート膜厚が十分に厚い場合は、抵抗素子16は設けられなくてもよい。
 ツェナーダイオード17は、カソードが内部電源線71と接続し、アノードが保護トランジスタ13のゲート端子と接続してよい。ツェナーダイオード17を設けることで、保護トランジスタ13のソースゲート間に過電圧が印加されることを防ぐことができる。
 抵抗素子18は、一端が接続点N2と接続し、他の一端が出力トランジスタ15のゲート端子と接続してよい。換言すれば、抵抗素子18は、接続点N2および出力トランジスタ15のゲート端子との間に設けられてよい。抵抗素子18を設けることで、電源端子61から基準電位端子63までに流れる電流を絞り、出力トランジスタ15のゲート端子を保護することができる。なお、出力トランジスタ15のゲート膜厚が十分に厚い場合は、抵抗素子18は設けられなくてもよい。
 ツェナーダイオード19は、カソードが内部電源線71と接続し、アノードが出力トランジスタ15のゲート端子と接続してよい。ツェナーダイオード19を設けることで、出力トランジスタ15のソースゲート間に過電圧が印加されることを防ぐことができる。
 ツェナーダイオード20は、アノードが内部基準電位線73と接続し、カソードが出力線74と接続してよい。ツェナーダイオード20を設けることで、負荷回路5を保護することができる。
 断線検知部2は、図1の構成に加え、ツェナーダイオード24を有する。ツェナーダイオード24は、カソードが内部状態通知線72と接続し、アノードが内部基準電位線73と接続してよい。ツェナーダイオード24を設けることで、出力端子62に接続した外部の回路を保護することができる。
 状態通知部3は、図1の構成に加え、ツェナーダイオード32および抵抗素子33を有する。ツェナーダイオード32は、カソードが状態通知スイッチ31のゲート端子と接続し、アノードが内部基準電位線73と接続してよい。ツェナーダイオード32を設けることで、状態通知スイッチ31のソースゲート間に過電圧が印加されることを防ぐことができる。
 抵抗素子33は、一端が接続点N2と接続し、他の一端が状態通知スイッチ31のゲート端子と接続してよい。換言すれば、抵抗素子33は、接続点N2および状態通知スイッチ31のゲート端子との間に設けられてよい。抵抗素子33を設けることで、電源端子61から基準電位端子63までに流れる電流を絞り、状態通知スイッチ31のゲート端子を保護することができる。なお、状態通知スイッチ31のゲート膜厚が十分に厚い場合は、抵抗素子33は設けられなくてもよい。
 図4の半導体回路200は、図1の構成に加え、保護回路を更に備える。したがって、電源電圧Vccが過電圧の際に、回路が故障するリスクを更に減らすことができる。
 図5は、本発明の他の実施形態に係る半導体回路300の構成の一例を示す図である。本例の半導体回路300は、過電圧保護部1、断線検知部2、状態通知部3、逆接続保護部4および負荷回路5を備える。本例の半導体回路300は、状態通知部3の構成および状態通知部3が状態通知スイッチ31のソース端子が内部電源線71と接続する点で、図4の半導体回路200とは異なる。半導体回路300の他の構成は、半導体回路200と同様であってよい。
 状態通知部3は、状態通知スイッチ31、ツェナーダイオード32、抵抗素子33および昇圧回路34を有してよい。状態通知スイッチ31は、N型高圧MOSトランジスタであってよい。また、状態通知スイッチ31は、P型高圧MOSトランジスタであってよい。状態通知スイッチ31のソース端子は、内部電源線71と接続してよい。状態通知スイッチ31のドレイン端子は、内部状態通知線72と接続してよい。状態通知スイッチ31のゲート端子は、接続点N2と接続してよい。ツェナーダイオード32は、アノードが状態通知スイッチ31のゲート端子と接続し、カソードが内部電源線71と接続してよい。抵抗素子33は、一端が接続点N2と接続し、他の一端が状態通知スイッチ31のゲート端子と接続してよい。ツェナーダイオード32および抵抗素子33は、過電圧が印加された場合、内部の回路を保護する保護回路である。
 昇圧回路34は、接続点N2の電圧を昇圧する回路である。昇圧方法として、出力トランジスタ15がオン状態の際に、状態通知スイッチ31がオフ状態となり、出力トランジスタ15がオフ状態の際に、状態通知スイッチ31がオン状態となるように接続点N2における電圧Vbを昇圧してよい。昇圧回路34は、任意の公知の構成によって実現されてよい。
 昇圧回路34を設けることにより、電源電圧Vccが定常の場合、状態通知スイッチ31は、ハイインピーダンス状態となり、出力電圧Voutに影響を及ぼさない。一方、電源電圧Vccが過電圧の場合、出力端子62から基準電位端子63までのインピーダンスが低くなり、出力電圧Voutは強制的に電源電圧Vccとなる。出力電圧Voutが電源電圧Vccになると、図2の上側故障検知領域に入ることになる。したがって、外部において、出力電圧Voutが上側故障検知領域に入ったことを検知することができるため、上位システム側で故障状態であること検知することが可能となる。
 図6は、本発明の他の実施形態に係る半導体回路400の構成の一例を示す図である。本例の半導体回路400は、過電圧保護部1、断線検知部2、状態通知部3、逆接続保護部4および負荷回路5を備える。本例の半導体回路400は、状態通知部3の構成および状態通知部3が接続点N1と接続する点で、図5の半導体回路300とは異なる。半導体回路400の他の構成は、半導体回路300と同様であってよい。
 状態通知部3は、状態通知スイッチ31、ツェナーダイオード32および抵抗素子33を有してよい。状態通知スイッチ31は、P型高圧MOSトランジスタであってよい。状態通知スイッチ31のソース端子は、内部電源線71と接続してよい。状態通知スイッチ31のドレイン端子は、内部状態通知線72と接続してよい。状態通知スイッチ31のゲート端子は、接続点N1と接続してよい。ツェナーダイオード32は、アノードが状態通知スイッチ31のゲート端子と接続し、カソードが内部電源線71と接続してよい。抵抗素子33は、一端が接続点N1と接続し、他の一端が状態通知スイッチ31のゲート端子と接続してよい。ツェナーダイオード32および抵抗素子33は、過電圧が印加された場合、内部の回路を保護する保護回路である。
 状態通知スイッチ31は、P型高圧MOSトランジスタであり、ゲート端子が接続点N1と接続している。つまり、接続点N1における電圧Vaを、検知ノードの電圧としてよい。出力トランジスタ15がオン状態(電源電圧Vccが定常)の際に、状態通知スイッチ31がオフ状態となり、出力トランジスタ15がオフ状態(電源電圧Vccが過電圧)の際に、状態通知スイッチ31がオン状態となる。電源電圧Vccが定常の場合、状態通知スイッチ31は、ハイインピーダンス状態となり、出力電圧Voutに影響を及ぼさない。一方、電源電圧Vccが過電圧の場合、出力端子62から基準電位端子63までのインピーダンスが低くなり、出力電圧Voutは強制的に電源電圧Vccとなる。状態通知スイッチ31は、検知ノードの電圧(接続点N1における電圧Va)に応じて、内部状態通知線72を内部電源線71に接続するか否かを切り替えてよい。出力電圧Voutが電源電圧Vccになると、図2の上側故障検知領域に入ることになる。したがって、外部において、出力電圧Voutが上側故障検知領域に入ったことを検知することができるため、簡単な回路構成により上位システム側で故障状態であること検知することが可能となる。接続点N1における電圧Vaを、検知ノードの電圧として検知してよい。
 また、状態通知スイッチ31は、N型高圧MOSトランジスタであってよい。状態通知スイッチ31が、N型高圧MOSトランジスタである場合、状態通知スイッチ31のゲート端子側に昇圧回路が設けられてよい。昇圧回路は、出力トランジスタ15がオン状態の際に、状態通知スイッチ31がオフ状態となり、出力トランジスタ15がオフ状態の際に、状態通知スイッチ31がオン状態となるように接続点N1における電圧Vaを昇圧してよい。昇圧回路は、任意の公知の構成によって実現されてよい。
 図7は、本発明の他の実施形態に係る半導体回路500の構成の一例を示す図である。本例の半導体回路500は、過電圧保護部1、断線検知部2、状態通知部3、逆接続保護部4および負荷回路5を備える。本例の半導体回路500は、状態通知部3が出力線74と接続する点で、図6の半導体回路400とは異なる。半導体回路500の他の構成は、半導体回路400と同様であってよい。
 状態通知部3は、状態通知スイッチ31、ツェナーダイオード32および抵抗素子33を有してよい。状態通知スイッチ31は、P型高圧MOSトランジスタであってよい。状態通知スイッチ31のゲート端子は、出力線74と接続してよい。
 状態通知スイッチ31は、P型高圧MOSトランジスタであり、ゲート端子が出力線74と接続している。つまり、出力トランジスタ15が負荷回路5へ供給する供給電圧Vddを、検知ノードの電圧としてよい。出力トランジスタ15がオン状態(電源電圧Vccが定常)の際に、状態通知スイッチ31がオフ状態となり、出力トランジスタ15がオフ状態(電源電圧Vccが過電圧)の際に、状態通知スイッチ31がオン状態となる。電源電圧Vccが定常の場合、状態通知スイッチ31は、ハイインピーダンス状態となり、出力電圧Voutに影響を及ぼさない。一方、電源電圧Vccが過電圧の場合、出力端子62から基準電位端子63までのインピーダンスが低くなり、出力電圧Voutは強制的に電源電圧Vccとなる。状態通知スイッチ31は、検知ノードの供給電圧Vddに応じて、内部状態通知線72を内部電源線71に接続するか否かを切り替えてよい。出力電圧Voutが電源電圧Vccになると、図2の上側故障検知領域に入ることになる。したがって、外部において、出力電圧Voutが上側故障検知領域に入ったことを検知することができるため、簡単な回路構成により上位システム側で故障状態であること検知することが可能となる。状態通知部3は、出力線74の供給電圧Vddを、検知ノードの電圧として検知してよい。
 また、状態通知スイッチ31は、N型高圧MOSトランジスタであってよい。状態通知スイッチ31が、N型高圧MOSトランジスタである場合、状態通知スイッチ31のゲート端子側に昇圧回路が設けられてよい。昇圧回路は、出力トランジスタ15がオン状態の際に、状態通知スイッチ31がオフ状態となり、出力トランジスタ15がオフ状態の際に、状態通知スイッチ31がオン状態となるように供給電圧Vddを昇圧してよい。昇圧回路は、任意の公知の構成によって実現されてよい。
 図8は、本発明の他の実施形態に係る半導体回路600の構成の一例を示す図である。本例の半導体回路600は、過電圧保護部1、断線検知部2、状態通知部3、逆接続保護部4および負荷回路5を備える。本例の半導体回路600は、状態通知部3の構成および状態通知スイッチ31のソース端子が負荷回路5と接続する点で、図4の半導体回路200とは異なる。半導体回路600の他の構成は、半導体回路200と同様であってよい。
 状態通知部3は、状態通知スイッチ31、ツェナーダイオード32および抵抗素子33を有してよい。状態通知スイッチ31は、N型高圧MOSトランジスタであってよい。状態通知スイッチ31のソース端子は、負荷回路5と接続してよい。状態通知スイッチ31のドレイン端子は、内部状態通知線72と接続してよい。状態通知スイッチ31のゲート端子は、接続点N2と接続してよい。ツェナーダイオード32は、カソードが状態通知スイッチ31のゲート端子と接続し、アノードが内部基準電位線73と接続してよい。抵抗素子33は、一端が接続点N2と接続し、他の一端が状態通知スイッチ31のゲート端子と接続してよい。ツェナーダイオード32および抵抗素子33は、過電圧が印加された場合、内部の回路を保護する保護回路である。
 状態通知スイッチ31は、N型高圧MOSトランジスタであり、ゲート端子が接続点N2と接続している。つまり、接続点N2における電圧Vbを、検知ノードの電圧としてよい。出力トランジスタ15がオン状態(電源電圧Vccが定常)の際に、状態通知スイッチ31がオフ状態となり、出力トランジスタ15がオフ状態(電源電圧Vccが過電圧)の際に、状態通知スイッチ31がオン状態となる。電源電圧Vccが定常の場合、状態通知スイッチ31は、ハイインピーダンス状態となり、出力電圧Voutに影響を及ぼさない。一方、電源電圧Vccが過電圧の場合、出力端子62から基準電位端子63までのインピーダンスが低くなり、出力電圧Voutは強制的に負荷回路5の出力電圧となる。負荷回路5の出力電圧は、過電圧時にはほぼ接地電圧GNDとなるため、出力電圧Voutは強制的に接地電圧GNDとなる。状態通知スイッチ31は、検知ノードの電圧(接続点N2における電圧Vb)に応じて、内部状態通知線72を負荷回路5に接続するか否かを切り替えてよい。出力電圧Voutが接地電圧GNDになると、図2の下側故障検知領域に入ることになる。したがって、外部において、出力電圧Voutが下側故障検知領域に入ったことを検知することができるため、簡単な回路構成により上位システム側で故障状態であること検知することが可能となる。
 図9は、断線検知部2の動作を説明するための半導体回路700の構成を示す図である。半導体回路700は、図1に示した半導体回路100に外部回路9を接続した回路である。本例の半導体回路700は、断線検知部2、合成回路8および外部回路9を備える。また、本例の半導体回路700は、断線検知部2、合成回路8および外部回路9を動作させるために、電源端子61、出力端子62、基準電位端子63、内部電源線71、内部状態通知線72、内部基準電位線73、外部電源線75、外部状態通知線76および外部基準電位線77を備える。断線検知部2は、図1に示した半導体回路100の断線検知部2と同様である。合成回路8は、図1に示した半導体回路100の過電圧保護部1、状態通知部3、逆接続保護部4および負荷回路5の合成回路であり、一部を省略している。外部回路9は、電源端子61、出力端子62および基準電位端子63と接続する外部回路である。
 断線検知部2の構成は図1に示した半導体回路100と同様である。断線検知部2は、第2抵抗素子21、第3抵抗素子22、および第4抵抗素子23を有する。
 合成回路8は、抵抗素子81、抵抗素子82、抵抗素子83および出力段アンプ84を有する。抵抗素子81は、一端が内部電源線71と接続し、他の一端が内部状態通知線72と接続してよい。抵抗素子82は、一端が内部状態通知線72と接続し、他の一端が内部基準電位線73と接続してよい。抵抗素子83は、一端が内部電源線71と接続し、他の一端が内部基準電位線73と接続してよい。出力段アンプ84は、内部状態通知線72と接続し、内部状態通知線72に信号を出力する。
 外部回路9は、抵抗素子91、抵抗素子92、電源端子93、出力端子94および基準電位端子95を有する。抵抗素子91は、一端が外部電源線75と接続し、他の一端が外部状態通知線76と接続してよい。抵抗素子92は、一端が外部状態通知線76と接続し、他の一端が外部基準電位線77と接続してよい。電源端子93は、電源電圧Vccが供給される端子である。出力端子94は、外部へ出力電圧Voutを出力する端子である。基準電位端子95は、接地電圧GNDが供給される端子である。電源端子93、出力端子94および基準電位端子95は、外部電源線75、外部状態通知線76および外部基準電位線77を介して、それぞれ電源端子61、出力端子62および基準電位端子63と接続する。図2で説明した通り、過電圧も断線故障も生じていない場合には、出力電圧Voutは、印加圧力に応じて定常出力領域の範囲で変化する。
 図10は、図9の半導体回路700の外部電源線75が断線した状態を示す図である。外部電源線75が断線した場合の出力電圧Voutは、下記数1のように表される。数1において、第2抵抗素子21の抵抗値をR1、第3抵抗素子22の抵抗値をR2、第4抵抗素子23の抵抗値をR3、抵抗素子81の抵抗値をR01、抵抗素子82の抵抗値をR02、抵抗素子83の抵抗値をR03、抵抗素子91の抵抗値をR4、抵抗素子92の抵抗値をR5とする。また、R1//R2と表す場合、抵抗値R1の抵抗素子と抵抗値R2の抵抗素子を並列に接続した場合の合成抵抗値を表す。また、R1//R2//R3と表す場合、抵抗値R1の抵抗素子と抵抗値R2の抵抗素子と抵抗値R3の抵抗素子を並列に接続した場合の合成抵抗値を表す。
Figure JPOXMLDOC01-appb-M000001
 第4抵抗素子23は、出力段アンプ84の出力と無関係であるため、断線がない場合の出力信号の電圧値に影響を与えない。また、第4抵抗素子23の抵抗値を変化させることで、断線時の出力電圧Voutを変化させることができる。換言すれば、第4抵抗素子23の抵抗値を調整することで、断線時の出力電圧Voutを調整することができる。外部電源線75が断線した場合、図2の下側故障検知領域の範囲に入るように第4抵抗素子23を設定してよい。抵抗値の調整は、可変抵抗を用いる等、公知の方法で行ってよい。
 図11は、図9の半導体回路700の外部基準電位線77が断線した状態を示す図である。外部基準電位線77が断線した場合の出力電圧Voutは、下記数2のように表される。第4抵抗素子23の抵抗値を変化させることで、断線時の出力電圧Voutを変化させることができる。換言すれば、第4抵抗素子23の抵抗値を調整することで、断線時の出力電圧Voutを調整することができる。外部基準電位線77が断線した場合、図2の上側故障検知領域の範囲に入るように第4抵抗素子23を設定してよい。
Figure JPOXMLDOC01-appb-M000002
 図12は、図9の半導体回路700の出力段アンプ84の出力電圧Vout特性の例を示す図である。図2と同様に、過電圧も断線故障も生じていない場合には、出力段アンプ84の出力電圧Voutは、出力線bで示すように印加圧力に応じて定常出力領域の範囲で変化する。定常出力領域の範囲とは、V12からV13までの範囲である。例として、V12からV13までの範囲は、0.2Vから4.8Vまでの範囲である。出力段アンプ84の出力が上限故障検知領域および下限故障検知領域に入らないように、出力段アンプ84の飽和電圧(クランプ電圧)を設定する。
 外部基準電位線77が断線した場合、上側故障検知領域の範囲に出力電圧Voutが入るように、第4抵抗素子23の抵抗値を調整してよい。上側故障検知領域の範囲とは、V13からV14までの範囲である。例として、V13からV14までの範囲は、4.8Vから5.0Vまでの範囲である。
 外部電源線75が断線した場合、下側故障検知領域の範囲に出力電圧Voutが入るように、第4抵抗素子23の抵抗値を調整してよい。上側故障検知領域の範囲とは、V13からV14までの範囲である。例として、V13からV14までの範囲は、0.0Vから0.2Vまでの範囲である。また、外部基準電位線77が断線した場合、上側故障検知領域の範囲に出力電圧Voutが入り、外部電源線75が断線した場合、下側故障検知領域の範囲に出力電圧Voutが入るように第4抵抗素子23の抵抗値を調整することで、容易に断線箇所を特定することが可能である。
 上記のように、電源電圧Vccが過電圧である場合は、出力電圧Voutは0.0Vに近い値となる。電源電圧Vccが過電圧である場合と外部電源線75が断線した場合を区別するため、電源電圧Vccが過電圧である場合には出力電圧Voutが第1下側故障検知領域に、外部電源線75が断線した場合には出力電圧Voutが第2下側故障検知領域に、それぞれ入るように、第4抵抗素子23の抵抗値を調整してよい。第1下側故障検知領域の範囲とは、V11からV15までの範囲である。例として、V11からV15までの範囲は、0.0Vから0.1Vまでの範囲である。第2下側故障検知領域の範囲とは、V15からV12での範囲である。例として、V15からV12までの範囲は、0.1Vから0.2Vまでの範囲である。換言すれば、内部状態通知線72は、異なる電圧範囲で、状態信号および断線信号を外部に伝送してよい。第1下側故障検知領域および第2下側故障検知領域を設けることで、電源電圧Vccが過電圧である場合と断線した場合を区別することができる。
 図13は比較例に係る半導体回路800の構成の一例を示す図である。本例の半導体回路800は、過電圧保護部1、断線検知部2、逆接続保護部4および負荷回路5を備える。本例の半導体回路800は、状態通知部3を有さない点で、図4の半導体回路200とは異なる。図13の他の構成は、図4と同様であってよい。
 本例に係る半導体回路800は、図4の半導体回路200と同様に、過電圧保護部1を有する。したがって、電源電圧Vccが過電圧の時に電圧供給を遮断することができる。一方で、本例に係る半導体回路800は、図4の半導体回路200とは異なり、状態通知部3を有さない。そのため、本例に係る半導体回路800は、外部へ過電圧状態であることを通知できない。
 図14は、図13の半導体回路800の電流経路を説明する図である。電源電圧Vccが過電圧になると、断線検知部2から負荷回路5へ回り込む形で流れる電流経路および第3抵抗素子22から第4抵抗素子23へ流れる経路が生じる。図14の太線が、断線検知部2から負荷回路5へ回り込む形で流れる電流経路である。図14の太い点線が、第3抵抗素子22から第4抵抗素子23へ流れる電流経路である。第3抵抗素子22と第4抵抗素子23との接続点AAから負荷回路5へ回り込む形で流れる電流経路および接続点AAから第4抵抗素子23へ流れる電流経路の合成抵抗と第3抵抗素子22との分圧点(接続点AAの電圧)が、出力電圧Voutとして出力される。
 図15は、比較例に係る半導体回路800の電源電圧Vccと出力電圧Voutの関係を示す図である。電源電圧Vccが定常の場合(電源電圧VccがV21以下の場合)において、出力電圧Voutは図2で示したV12とV13との間で変化する。V21は、ツェナーダイオード12のブレークダウン電圧と保護トランジスタ13の閾値電圧の和である。
 一方で、電源電圧Vccが過電圧の場合(電源電圧VccがV21を超える場合)において、出力電圧Voutは、接続点AAから負荷回路5へ回り込む形で流れる電流経路および接続点AAから第4抵抗素子23へ流れる電流経路の合成抵抗と第3抵抗素子22との分圧点の電圧となる。この際の出力電圧Voutは、負荷回路5の内部で用いられる能動素子が動作する電圧以下にはならない。例えば、半導体回路800がシリコン基板上に形成された場合、出力電圧Voutは0.6V以上となる。このため、出力電圧Voutが定常出力領域に固定化されてしまう。したがって、本例に係る半導体回路800は、電源電圧Vccが過電圧の時に、外部へ過電圧状態であることを通知することができない。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順序で実施することが必須であることを意味するものではない。
1・・過電圧保護部、2・・断線検知部、3・・状態通知部、4・・逆接続保護部、5・・負荷回路、8・・合成回路、9・・外部回路、11・・第1抵抗素子、12・・ツェナーダイオード、13・・保護トランジスタ、14・・抵抗素子、15・・出力トランジスタ、16・・抵抗素子、17・・ツェナーダイオード、18・・抵抗素子、19・・ツェナーダイオード、20・・ツェナーダイオード、21・・第2抵抗素子、22・・第3抵抗素子、23・・第4抵抗素子、24・・ツェナーダイオード、31・・状態通知スイッチ、32・・ツェナーダイオード、33・・抵抗素子、34・・昇圧回路、41・・ツェナーダイオード、42・・ツェナーダイオード、43・・ツェナーダイオード、61・・電源端子、62・・出力端子、63・・基準電位端子、71・・内部電源線、72・・内部状態通知線、73・・内部基準電位線、74・・出力線、75・・外部電源線、76・・外部状態通知線、77・・外部基準電位線、81・・抵抗素子、82・・抵抗素子、83・・抵抗素子、84・・出力段アンプ、91・・抵抗素子、92・・抵抗素子、93・・電源端子、94・・出力端子、95・・基準電位端子、100・・半導体回路、200・・半導体回路、300・・半導体回路、400・・半導体回路、500・・半導体回路、600・・半導体回路、700・・半導体回路、800・・半導体回路

Claims (16)

  1.  負荷回路に接続し、前記負荷回路への電力供給を制御する車載用半導体回路であって、
     電源電圧が印加される電源線と、
     前記電源線における前記電源電圧が過電圧の時に、前記電源線から前記負荷回路への電力供給を遮断する出力部を有する過電圧保護部と、
     前記出力部が前記電力供給を遮断しているか否かを示す状態信号を外部に通知する状態通知部と
     を備える車載用半導体回路。
  2.  前記状態通知部は、前記過電圧保護部において、前記電力供給を遮断している場合と、前記電力供給を遮断していない場合とで異なる電位になる検知ノードの電圧に基づいて、前記状態信号を生成する
     請求項1に記載の車載用半導体回路。
  3.  基準電位が印加される基準電位線を更に備え、
     前記状態通知部は、
     前記状態信号を外部に伝送する状態通知線と、
     前記検知ノードの電圧に応じて、前記状態通知線を前記基準電位線に接続するか否かを切り替える状態通知スイッチと
     を有する請求項2に記載の車載用半導体回路。
  4.  前記状態通知部は、
     前記状態信号を外部に伝送する状態通知線と、
     前記検知ノードの電圧に応じて、前記状態通知線を前記電源線に接続するか否かを切り替える状態通知スイッチと
     を有する請求項2に記載の車載用半導体回路。
  5.  前記状態通知部は、
     前記状態信号を外部に伝送する状態通知線と、
     前記検知ノードの電圧に応じて、前記状態通知線を前記負荷回路に接続するか否かを切り替える状態通知スイッチと
     を有する請求項2に記載の車載用半導体回路。
  6.  前記負荷回路に接続される出力線を更に備え、
     前記出力部は、前記電源線を前記出力線に接続するか否かを切り替える出力トランジスタであり、
     前記状態通知部は、前記出力トランジスタのゲート端子の電圧を、前記検知ノードの電圧として検知する
     請求項3から5いずれか一項に記載の車載用半導体回路。
  7.  基準電位が印加される基準電位線を更に備え、
     前記過電圧保護部は、前記電源線および前記基準電位線の間に設けられ、前記電源電圧の大きさに応じて、前記電源電圧に応じた電圧と、前記基準電位に応じた電圧のいずれかを選択して前記出力トランジスタのゲート端子に印加する保護トランジスタを更に有し、
     前記状態通知部は、前記保護トランジスタが前記ゲート端子に出力する電圧を、前記検知ノードの電圧として検知する
     請求項6に記載の車載用半導体回路。
  8.  基準電位が印加される基準電位線と、
     前記負荷回路に接続される出力線と
     を更に備え、
     前記出力部は、前記電源線を前記出力線に接続するか否かを切り替える出力トランジスタであり、
     前記過電圧保護部は、
     ツェナーダイオードと、
     前記ツェナーダイオードと直列に接続された第1抵抗素子と、
     前記電源線および前記基準電位線の間に設けられ、前記ツェナーダイオードと前記第1抵抗素子との接続点における電圧がゲート端子に印加され、前記電源電圧に応じた電圧と、前記基準電位に応じた電圧のいずれかを選択して前記出力トランジスタのゲート端子に印加する保護トランジスタと
     を更に有し、
     前記状態通知部は、前記ツェナーダイオードと前記第1抵抗素子との接続点における電圧を、前記検知ノードの電圧として検知する
     請求項3から5のいずれか一項に記載の車載用半導体回路。
  9.  前記負荷回路に接続される出力線を更に備え、
     前記出力部は、前記電源線を前記出力線に接続するか否かを切り替える出力トランジスタであり、
     前記状態通知部は、前記出力線の電圧を、前記検知ノードの電圧として検知する
     請求項3から5のいずれか一項に記載の車載用半導体回路。
  10.  基準電位が印加される基準電位線と、
     前記電源線、前記基準電位線および前記状態通知線に接続する断線検知部と
     を更に備え、
     前記断線検知部は、前記車載用半導体回路が断線しているか否かを示す断線信号を外部に通知する
     請求項3から9のいずれか一項に記載の車載用半導体回路。
  11.  前記断線検知部は、
     前記電源線と前記状態通知線との間に接続された第2抵抗素子と、
     前記状態通知線と前記基準電位線との間に接続された第3抵抗素子と、
     前記電源線と前記基準電位線との間に接続された第4抵抗素子と
    を有する
     請求項10に記載の車載用半導体回路。
  12.  前記状態通知線は、前記断線信号を外部に伝送する
     請求項10または11に記載の車載用半導体回路。
  13.  前記状態通知線は、異なる電圧範囲で、前記状態信号および前記断線信号を外部に伝送する
     請求項12に記載の車載用半導体回路。
  14.  前記負荷回路は、圧力センサである
     請求項1から13のいずれか一項に記載の車載用半導体回路。
  15.  負荷回路に接続し、前記負荷回路への電力供給を制御する半導体回路であって、
     電源電圧が印加される電源線と、
     前記電源線における前記電源電圧が過電圧の時に、前記電源線から前記負荷回路への電力供給を遮断する出力部を有する過電圧保護部と、
     前記出力部が前記電力供給を遮断しているか否かを示す状態信号を外部に通知する状態通知部と、
     前記半導体回路が断線しているか否かを示す断線信号を外部に通知する断線検知部と、
     前記状態信号および前記断線信号を外部に伝送する状態通知線と、
     を備える半導体回路。
  16.  前記負荷回路は、圧力センサである
     請求項15に記載の半導体回路。
PCT/JP2020/041492 2019-12-17 2020-11-06 車載用半導体回路および半導体回路 WO2021124719A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080040728.0A CN113994560A (zh) 2019-12-17 2020-11-06 车载用半导体电路及半导体电路
JP2021565358A JP7276511B2 (ja) 2019-12-17 2020-11-06 車載用半導体回路および半導体回路
US17/456,577 US12109958B2 (en) 2019-12-17 2021-11-25 In-vehicle semiconductor circuit and semiconductor circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-227401 2019-12-17
JP2019227401 2019-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/456,577 Continuation US12109958B2 (en) 2019-12-17 2021-11-25 In-vehicle semiconductor circuit and semiconductor circuit

Publications (1)

Publication Number Publication Date
WO2021124719A1 true WO2021124719A1 (ja) 2021-06-24

Family

ID=76476583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041492 WO2021124719A1 (ja) 2019-12-17 2020-11-06 車載用半導体回路および半導体回路

Country Status (4)

Country Link
US (1) US12109958B2 (ja)
JP (1) JP7276511B2 (ja)
CN (1) CN113994560A (ja)
WO (1) WO2021124719A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303890A (ja) * 2002-04-09 2003-10-24 Fuji Electric Co Ltd 過電圧保護回路
JP3918614B2 (ja) * 2002-04-09 2007-05-23 富士電機デバイステクノロジー株式会社 断線故障検知回路
JP2007195330A (ja) * 2006-01-19 2007-08-02 Sharp Corp 電子機器及び移動体通信端末
JP2018152391A (ja) * 2017-03-10 2018-09-27 日立オートモティブシステムズ株式会社 半導体装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587126U (ja) * 1978-12-11 1980-06-16
JP2000332207A (ja) 1999-05-25 2000-11-30 Hitachi Ltd 過電圧保護回路
JP4220916B2 (ja) * 2004-02-24 2009-02-04 株式会社デンソー 半導体スイッチ
JP4668836B2 (ja) 2006-05-09 2011-04-13 ローム株式会社 充電制御回路ならびにそれらを用いた充電回路および電子機器
JP4332172B2 (ja) * 2006-11-07 2009-09-16 三菱電機株式会社 車両用オルタネータの制御装置
JP5319246B2 (ja) * 2008-11-14 2013-10-16 株式会社日立製作所 スイッチング電源保護システム及び計算機
CN101420116B (zh) * 2008-12-04 2010-08-25 临安亿安电子有限公司 一种智能化集成漏电保护装置
JP2012231556A (ja) 2011-04-25 2012-11-22 Aisin Aw Co Ltd 放電制御回路
CN103779829A (zh) 2012-10-19 2014-05-07 鸿富锦精密工业(深圳)有限公司 负载保护电路
JP6686782B2 (ja) * 2016-08-08 2020-04-22 トヨタ自動車株式会社 電源システム
JP2018093638A (ja) * 2016-12-05 2018-06-14 日本電産サーボ株式会社 保護回路、及びモータユニット
JP6892367B2 (ja) * 2017-10-10 2021-06-23 ルネサスエレクトロニクス株式会社 電源回路
JP7067033B2 (ja) 2017-11-24 2022-05-16 株式会社オートネットワーク技術研究所 給電制御装置、給電制御方法及びコンピュータプログラム
JP7110870B2 (ja) * 2018-09-26 2022-08-02 Tdk株式会社 判定回路および電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303890A (ja) * 2002-04-09 2003-10-24 Fuji Electric Co Ltd 過電圧保護回路
JP3918614B2 (ja) * 2002-04-09 2007-05-23 富士電機デバイステクノロジー株式会社 断線故障検知回路
JP2007195330A (ja) * 2006-01-19 2007-08-02 Sharp Corp 電子機器及び移動体通信端末
JP2018152391A (ja) * 2017-03-10 2018-09-27 日立オートモティブシステムズ株式会社 半導体装置

Also Published As

Publication number Publication date
JP7276511B2 (ja) 2023-05-18
US20220080907A1 (en) 2022-03-17
CN113994560A (zh) 2022-01-28
JPWO2021124719A1 (ja) 2021-06-24
US12109958B2 (en) 2024-10-08

Similar Documents

Publication Publication Date Title
US7639064B2 (en) Drive circuit for reducing inductive kickback voltage
CN106484017B (zh) 稳压器用半导体集成电路
JP4890126B2 (ja) ボルテージレギュレータ
US8847569B2 (en) Semiconductor integrated circuit for regulator
CN107885270B (zh) 调节器用半导体集成电路
US9325168B2 (en) Semiconductor device
US7382594B2 (en) Method of forming an integrated voltage protection device and structure
US10637237B2 (en) Power switch circuit and power circuit with the same
US7863942B2 (en) Voltage detecting circuit
US20160033984A1 (en) Voltage regulator having source voltage protection function
CN109477862B (zh) 车载控制装置
US20120306516A1 (en) Voltage detection circuit, ecu, automobile with ecu
US20100053827A1 (en) Protection circuit
US20240097437A1 (en) Overshoot current detection and correction circuit for electrical fast transient events
WO2021124719A1 (ja) 車載用半導体回路および半導体回路
US20190393780A1 (en) Current detection circuit and power supply device
US11892481B2 (en) Current detecting circuit and switching circuit
JP6277151B2 (ja) センサ装置
CN111868660A (zh) 用于识别电路缺陷并用于避免调节器中的过电压的电路
US20200313543A1 (en) Processing circuit and power supply device
US20160141906A1 (en) Charging and discharging control circuit for battery device
US11196248B2 (en) Bidirectional flat clamp device with shared voltage sensor circuit
JP2019186880A (ja) 負荷駆動装置
JP7405595B2 (ja) 入力保護回路
JPWO2021124719A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565358

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900772

Country of ref document: EP

Kind code of ref document: A1