WO2021124567A1 - 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法 - Google Patents

電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法 Download PDF

Info

Publication number
WO2021124567A1
WO2021124567A1 PCT/JP2019/050160 JP2019050160W WO2021124567A1 WO 2021124567 A1 WO2021124567 A1 WO 2021124567A1 JP 2019050160 W JP2019050160 W JP 2019050160W WO 2021124567 A1 WO2021124567 A1 WO 2021124567A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
renewable energy
power generation
maximum
Prior art date
Application number
PCT/JP2019/050160
Other languages
English (en)
French (fr)
Inventor
道彦 犬飼
喜久雄 高木
小林 武則
博明 松本
道彦 稲葉
良介 浅野
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2019/050160 priority Critical patent/WO2021124567A1/ja
Priority to PCT/JP2020/047239 priority patent/WO2021125287A1/ja
Priority to JP2021565652A priority patent/JP7263555B2/ja
Publication of WO2021124567A1 publication Critical patent/WO2021124567A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present embodiment relates to a power control system, a power control device, a computer program for power control, and a power control method for controlling the output power of a natural energy power generation device that generates power by natural energy.
  • renewable energy power generation equipment that generates electricity from natural energy such as solar power generation and wind power generation is progressing.
  • renewable energy generators are connected to the power system.
  • a power control system that controls a power system including a renewable energy power generation device is known.
  • the output power of renewable energy power generation equipment such as solar power generation and wind power generation fluctuates from moment to moment due to the influence of weather conditions such as solar radiation and wind speed.
  • the response speed characteristics of the output power of thermal power, hydraulic power, nuclear power generation equipment, and renewable energy power generation equipment are different from each other. For this reason, there is a problem that it may be difficult to perform stable control because the electric powers output from the power generation devices such as thermal power, hydraulic power, and nuclear power and the renewable energy power generation devices interfere with each other. If the power system is not controlled in a stable manner, the quality of the power supplied to the load may deteriorate.
  • An object of the present embodiment is to provide a power control system, a power control device, a computer program for power control, and a power control method capable of stably controlling a power system including a renewable energy power generation device.
  • the power control system of the present embodiment is characterized by having the following configuration.
  • a renewable energy power generation device that generates electric power from natural energy and supplies electric power to the electric power system.
  • a power control device having the following configuration.
  • (2-1) Maximum power detecting means for detecting the maximum power output from the renewable energy power generation device.
  • (2-2) A system information detecting means for detecting system information related to the electric power of the power system.
  • (2-3) An output that is equal to or less than the maximum power to be output to the renewable energy power generation device based on the maximum power detected by the maximum power detecting means and the system information detected by the system information detecting means.
  • Output power command means for calculating and instructing power.
  • Block diagram showing the configuration of the power control system according to the first embodiment Block diagram showing the configuration of the power control device according to the first embodiment Block diagram showing the configuration of the renewable energy power generation device according to the first embodiment
  • the figure which shows the program flow of the power control apparatus which concerns on 1st Embodiment The figure explaining the operation concerning MPPT (maximum power point tracking) of the renewable energy power generation apparatus which concerns on 1st Embodiment.
  • the figure explaining the calculation method of the target power by the power control device which concerns on 1st Embodiment The figure explaining another calculation method of the target power by the power control device which concerns on 1st Embodiment
  • the figure explaining the control of the renewable energy power generation apparatus by the electric power control apparatus which concerns on 1st Embodiment The figure explaining the output of the renewable energy power generation apparatus which concerns on 1st Embodiment Block diagram showing the configuration of the power control system according to another embodiment
  • Output power information A1 (information on output power P1 of renewable energy power generation device 3) Maximum power information A2 (information on maximum power P2 of renewable energy power generation device 3) System information B1 (information on the power of the power system 9 transmitted from the power measuring device 4) System information B2 (information on the power of the power system 9 transmitted from the center device 8) Higher-level command C1 (command transmitted from the center device 8) Target power command D1 (command of target power P3 for renewable energy power generation device 3) Measurement target selection information E1 (information on the renewable energy power generation device to be measured for the maximum power P2) Command target selection information E2 (information on renewable energy power generation equipment that is the target of the target power command D1) Output power P1 (power output from renewable energy power generation device 3) Maximum power P2 (maximum power that can be output from the renewable energy power generation device 3) Target power P3 (target power to be output to the renewable energy power generation device 3) Different
  • the power control system 1 will be described as an example of the present embodiment with reference to FIGS. 1 to 3.
  • the present embodiment when there are a plurality of devices and members having the same configuration, they are given the same number and described, and when each device and member having the same configuration are described, they are common. Distinguish by adding an alphabetical subscript to the number.
  • the electric power control system 1 has, for example, an electric power control device 2, six renewable energy power generation devices 3, and six electric power measuring devices 4.
  • the six renewable energy power generation devices 3a, 3b, 3c, 3d, 3e, and 3f are electrically connected to the power system 9 via the cable 7.
  • the six power measuring devices 4a, 4b, 4c, 4d, 4e, and 4f are electrically connected to and arranged with the renewable energy power generation devices 3a, 3b, 3c, 3d, 3e, and 3f, respectively.
  • the power control device 2 is connected to the power measuring devices 4a, 4b, 4c, 4d, 4e, and 4f via the communication line 5a. Further, the power control device 2 is connected to the renewable energy power generation devices 3a, 3b, 3c, 3d, 3e, and 3f via the communication line 5b. Further, the power control device 2 is connected to the center device 8 which is a higher-level control device via the communication line 5c.
  • the power control device 2 transmits the output power information A1 which is the information of the output power P1 output from the renewable energy power generation device 3 and the system information B1 which is the power information of the power system 9 from the power measuring device 4 to the communication line 5a. Receive via.
  • the power control device 2 receives the system information B2, which is the power information of the power system 9, and the higher-level command C1 from the center device 8 via the communication line 5c.
  • the power control device 2 receives the maximum power information A2, which is the information of the maximum power P2 that can be output from the renewable energy power generation device 3, from the renewable energy power generation device 3 via the communication line 5b.
  • the power control device 2 transmits the target power command D1, which is a command of the target power P3 to be output to the renewable energy power generation device 3, to the renewable energy power generation device 3 via the communication line 5b.
  • the renewable energy power generation device 3 is a power supply device that generates electric power by receiving solar energy or wind power which is renewable energy.
  • the power control system 1 includes, as an example, a renewable energy power generation device 3a, 3b, 3c, 3d, 3e, 3f, which is a photovoltaic power generation device.
  • the renewable energy power generation devices 3a, 3b, 3c, 3d, 3e, and 3f are electrically connected in parallel by the cable 7.
  • the renewable energy power generation devices 3a, 3b, 3c, 3d, 3e, and 3f supply the generated power to the power system 9 via the cable 7.
  • the renewable energy power generation device 3 is installed at an outdoor solar power generation site or the like.
  • the renewable energy power generation device 3 is connected to the power control device 2 via the communication line 5b.
  • the renewable energy power generation device 3 includes a power generation unit 31, a power conversion unit 32, and a control unit 33.
  • the power generation unit 31 is composed of a solar panel and converts the received sunlight into DC power.
  • the converted DC power is supplied to the power conversion unit 32.
  • the power generation unit 31 may be composed of a wind power generation unit.
  • the power conversion unit 32 is composed of a conversion circuit such as an inverter having a switching element.
  • the power conversion unit 32 converts the DC power generated by the power generation unit 31 into AC power applied to the output power P1.
  • the AC power applied to the converted output power P1 is supplied to the power system 9 via the cable 7.
  • the power conversion unit 32 is controlled by the control unit 33.
  • the control unit 33 is composed of a control circuit such as a microcomputer.
  • the control unit 33 receives the target power command D1 which is a command of the target power P3 to the renewable energy power generation device 3 from the power control device 2 via the communication line 5b.
  • the control unit 33 controls the output power P1 output from the power conversion unit 32 based on the target power command D1.
  • control unit 33 incorporates a maximum power measurement module N1 configured by software that controls the power conversion unit 32.
  • the maximum power measurement module N1 detects the maximum power P2 that can be output from the renewable energy power generation device 3.
  • the maximum power P2 is detected by MPPT (maximum power point tracking) that sequentially changes the output voltage of the renewable energy power generation device 3 and detects the maximum power.
  • the maximum electric power P2 for each renewable energy power generation device 3 is transmitted to the power control device 2 via the communication line 5b.
  • the power measuring device 4 is a power measuring device composed of circuits for measuring power, voltage, current, and frequency.
  • the power measuring device 4 is connected to the power control device 2 via the communication line 5a.
  • the power measuring device 4 measures the output power P1 and the output voltage V1 output from the renewable energy power generation device 3, and transmits the output power information A1 which is the output power information of the renewable energy power generation device 3 to the power control device 2.
  • the power measuring device 4 measures the frequency f of the power system 9 and transmits it to the power control device 2 as system information B1 which is information on the power of the power system 9.
  • the power measuring devices 4a to 4f are electrically connected to and arranged in the renewable energy power generation devices 3a to 3f, respectively.
  • the power measuring device 4a measures the output power P1a and the output voltage V1a output from the renewable energy power generation device 3a, and transmits the output power information A1a to the power control device 2.
  • the power measuring devices 4b to 4f measure the output powers P1b to P2f and the output voltages V1b to V1f output from the renewable energy power generation devices 3b to 3f, respectively, and transmit the output power information A1b to A1f to the power control device 2. ..
  • the center device 8 is a higher-level control device configured by a computer or the like.
  • the center device 8 is connected to the power control device 2 via the communication line 5c.
  • the center device 8 is installed in a command room such as a power supply command center, a system control center, or a centralized control center that monitors and controls the power system.
  • the center device 8 transmits system information B2, which is information on the power of the power system 9, and higher-level command C1, which is a command to the renewable energy power generation device 3, to a plurality of power control devices 2 arranged at each photovoltaic power generation site or the like. Then, control the generated power of each photovoltaic power generation site.
  • the system information B2 includes information on the voltage, current, frequency, etc. of the power system 9, information on the required power of the power system 9, and information on the supplied power.
  • the communication lines 5a, 5b, and 5c are composed of a dedicated line, a communication line such as the Internet, and a communication line such as a telephone line. Communication between the power measuring device 4 and the power control device 2 is performed by the communication line 5a. Communication between the power control device 2 and the renewable energy power generation device 3 is performed by the communication line 5b. Communication between the power control device 2 and the center device 8 is performed by the communication line 5c.
  • the cable 7 is composed of a power cable.
  • the cable 7 electrically connects the renewable energy power generation device 3 and the electric power system 9.
  • the cable 7 supplies the electric power output from the renewable energy power generation device 3 to the electric power system 9.
  • the power system 9 is a power supply network that supplies AC power.
  • the power system 9 supplies the power output from the renewable energy power generation device 3 and the power generated by a power generation device such as thermal power, hydraulic power, or nuclear power (not shown in the figure) to the consumer.
  • the power control device 2 is a device configured by a computer or the like.
  • the power control device 2 is installed in a power management room or the like that monitors and controls a photovoltaic power generation site or the like.
  • the power control device 2 is connected to the power measuring devices 4a, 4b, 4c, 4d, 4e, and 4f via the communication line 5a.
  • the power control device 2 is connected to the renewable energy power generation device 3a, 3b, 3c, 3d, 3e, 3f via the communication line 5b.
  • the power control device 2 is connected to the center device 8 which is a higher-level control device via the communication line 5c.
  • the power control device 2 receives the output power information A1 which is the information of the output power P1 output from the renewable energy power generation device 3 and the system information B1 which is the power information of the power system 9 from the power measuring device 4.
  • the power control device 2 receives the maximum power information A2 related to the maximum power P2 that can be output from the renewable energy power generation device 3 from the renewable energy power generation device 3.
  • the power control device 2 receives the higher-level command C1 from the center device 8.
  • the power control device 2 transmits the target power command D1 which is a command of the target power P3 which is the target power to be output to the renewable energy power generation device 3 to the renewable energy power generation device 3.
  • the power control device 2 has a communication unit 21, a communication unit 22, a communication unit 23, an output unit 24, a storage unit 25, and a calculation unit 26.
  • the communication unit 21 is composed of a communication interface with a communication line such as a dedicated line, the Internet, and a telephone line.
  • the communication unit 21 is connected to the calculation unit 26 inside the power control device 2.
  • the communication unit 21 is connected to the power measuring devices 4a to 4f via the communication line 5a.
  • the communication unit 21 receives the output power information A1 from the power measuring device 4 selected from the power measuring devices 4a to 4f.
  • the output power information A1 includes information on the output power P1 and the output voltage V1 output from the renewable energy power generation device 3 connected to the power measuring device 4.
  • the communication unit 21 receives the system information B1 which is the power information of the power system 9 from the power measuring device 4 selected from the power measuring devices 4a to 4f.
  • the system information B1 includes information regarding the frequency f1 applied to the power of the power system 9.
  • the communication unit 22 is composed of a communication interface with a communication line such as a dedicated line, the Internet, and a telephone line.
  • the communication unit 22 is connected to the calculation unit 26 inside the power control device 2.
  • the communication unit 22 is connected to the center device 8 via the communication line 5c.
  • the communication unit 22 receives the higher-level command C1 from the center device 8.
  • the higher-level command C1 includes a command for increasing or decreasing the output power of the renewable energy power generation device 3, and an amount of increase or decrease.
  • the communication unit 23 is composed of a communication interface with a communication line such as a dedicated line, the Internet, and a telephone line.
  • the communication unit 23 is connected to the calculation unit 26 inside the power control device 2. Further, the communication unit 23 is connected to the renewable energy power generation devices 3a to 3f via the communication line 5b.
  • the communication unit 23 receives the maximum power information A2, which is the information of the maximum power P2 that can be output from the natural energy power generation device 3, from the natural energy power generation device 3 selected from the natural energy power generation devices 3a to 3f. ..
  • the communication unit 23 transmits the target power command D1 which is a command of the target power P3 to be output to the renewable energy power generation device 3 to the renewable energy power generation device 3 selected from the renewable energy power generation devices 3a to 3f.
  • the output unit 24 is composed of a display device, a printer, a communication interface, and the like.
  • the output unit 24 is connected to the calculation unit 26 inside the power control device 2.
  • the output unit 24 displays, prints, and displays the differential power P4, which is the difference between the output power P1 output from the renewable energy power generation device 3 and the maximum power P2 that can be output from the renewable energy power generation device 3. Output by.
  • the storage unit 25 is composed of a storage medium such as a semiconductor memory or a hard disk.
  • the storage unit 25 is connected to the calculation unit 26 inside the power control device 2.
  • the storage unit 25 has maximum power information A2 which is information on the maximum power P2 that can be output from the renewable energy power generation device 3, system information B1 and system information B2 which is information on the power of the power system 9, and the renewable energy power generation device.
  • the target power command D1, which is a command of the target power P3 with respect to 3, is sequentially stored for each renewable energy power generation device 3.
  • the storage unit 25 selects the command target, which is the information of the renewable energy power generation device 3 which is the command target of the measurement target selection information E1 and the target power command D1 which are the information of the renewable energy power generation device 3 which is the measurement target of the maximum power P2. Information E2 is stored. The writing and reading of data to the storage unit 25 is controlled by the calculation unit 26.
  • the calculation unit 26 is composed of a CPU or the like built in the computer.
  • the calculation unit 26 is connected to the communication unit 21, the communication unit 22, the communication unit 23, the output unit 24, and the storage unit 25 inside the power control device 2.
  • the calculation unit 26 performs the following control.
  • (B) Control for communication unit 21 The calculation unit 26 controls the communication unit 21, and the power information A1 and the power information of the power system 9 which are the information of the output power P1 of the renewable energy power generation device 3 from the power measurement device 4. The system information B1 is received.
  • (B) Control for communication unit 22 The calculation unit 26 controls the communication unit 22 and receives the higher-level command C1 from the center device 8.
  • (C) Control for communication unit 23 The calculation unit 26 controls the communication unit 23 and receives the maximum power information A2 which is the information of the maximum power P2 of the renewable energy power generation device 3 from the renewable energy power generation device 3. The calculation unit 26 controls the communication unit 23 and transmits the target power command D1 which is a command of the target power P3 to the renewable energy power generation device 3 to the renewable energy power generation device 3.
  • (D) Control for output unit 24 The calculation unit 26 controls the output unit 24, and the output power P1 output from the renewable energy power generation device 3 and the maximum power P2 that can be output from the natural energy power generation device 3
  • the differential power P4 which is the difference, is output by display, printing, and communication message.
  • (E) Control of the storage unit 25 The calculation unit 26 controls the storage unit 25 to obtain maximum power information A2, system information B1, system information B2, target power command D1, measurement target selection information E1, and command target selection information E2. , Write and read.
  • the calculation unit 26 in the calculation unit 26 includes an output adjustment module M1 composed of software, a difference calculation module M2, a measurement target selection module M3, a command target selection module M4, and a system information detection module M5.
  • the calculation unit 26 calculates the target power P3 to be output to the renewable energy power generation device 3 by the output adjustment module M1.
  • the target power P3 is calculated for the renewable energy power generation device 3 selected from the renewable energy power generation devices 3a to 3f, and is instructed to the renewable energy power generation device 3 selected by the target power command D1.
  • the calculation unit 26 detects the system information B1 and B2 related to the power of the power system 9 by the system information detection module M5.
  • the system information B1 is transmitted from the control unit 33 of the renewable energy power generation device 3.
  • the system information B2 is transmitted from the center device 8.
  • the calculation unit 26 calculates the differential power P4, which is the difference between the output power P1 output from the renewable energy power generation device 3 and the maximum power P2 that can be output from the natural energy power generation device 3, by the difference calculation module M2. ..
  • the calculated differential power P4 is output from the output unit 24 by display, printing, and communication telegram.
  • the calculation unit 26 selects the renewable energy power generation device 3 to be measured of the maximum power P2 that can be output from the renewable energy power generation devices 3a to 3f by the measurement target selection module M3.
  • the renewable energy power generation device 3 to be measured with the maximum power P2 is selected one or more from the renewable energy power generation devices 3a to 3f, and is stored in the storage unit 25 as the measurement target selection information E1. Further, based on the measurement target selection information E1, the maximum power information A2, which is the information of the maximum power P2, is received from the renewable energy power generation device 3 selected from the renewable energy power generation devices 3a to 3f.
  • the calculation unit 26 selects the renewable energy power generation device 3 to be the command target of the target power command D1 from the renewable energy power generation devices 3a to 3f by the command target selection module M4.
  • the renewable energy power generation device 3 to be commanded by the target power command D1 is selected one or more from the renewable energy power generation devices 3a to 3f, and is stored in the storage unit 25 as the command target selection information E2. Further, the target power command D1 which is a command of the target power P3 is transmitted to the renewable energy power generation device 3 selected from the renewable energy power generation devices 3a to 3f based on the command target selection information E2.
  • FIG. 4 is a diagram showing a flow of a program built in the power control device 2.
  • the program shown in FIG. 4 is built in the calculation unit 26 of the power control device 2.
  • the renewable energy power generation device 3 In the electric power control system 1, the renewable energy power generation device 3 generates electric power by natural energy and supplies electric power to the electric power system 9.
  • the control unit 33 of the renewable energy power generation device 3 incorporates the maximum power measurement module N1.
  • the control unit 33 of the renewable energy power generation device 3 measures the maximum power P2 that can be output from the renewable energy power generation device 3 by the maximum power measurement module N1, and includes the maximum power P2 in the maximum power information A2 for power control. It is transmitted to the device 2.
  • the control unit 33 of the renewable energy power generation device 3 sequentially changes the output voltage applied to the power output from the power conversion unit 32 by the maximum power measurement module N1, and detects the maximum power P2 by MPPT (maximum power point tracking). ..
  • the power control device 2 detects the maximum power P2 that can be output from the renewable energy power generation device 3 by receiving the maximum power information A2 from the natural energy power generation device 3.
  • the power control device 2 receives the maximum power information A2 by the communication unit 23.
  • the power control device 2 detects system information B1 and B2 regarding the power of the power system 9.
  • the calculation unit 26 of the power control device 2 receives the system information B1 from the control unit 33 of the renewable energy power generation device 3 and the system information B2 from the center device 8 by the built-in system information detection module M5. By receiving the system information B1 and B2, the power control device 2 detects information on the voltage, current, frequency, etc. of the power system 9, and information on the required power and the supplied power of the power system 9.
  • the power control device 2 calculates the target power P3 which is equal to or less than the maximum power P2 to be output to the renewable energy power generation device 3 based on the maximum power P2 required for the maximum power information A2, the system information B1 and the system information B2, and the natural energy. Instruct the power generation device 3.
  • the calculation unit 26 of the power control device 2 calculates the target power P3 by the built-in output adjustment module M1.
  • the power control device 2 is based on the system information B1 transmitted from the control unit 33 of the renewable energy power generation device 3 and the system information B2 transmitted from the center device 8, and the power of the power system 9 is within a predetermined frequency range. If it is determined that the power is not present, the renewable energy power generation device 3 is instructed to reduce the output power P1 to the target power P3.
  • the calculation unit 26 of the power control device 2 calculates the target power P3, which is less than the output power P1, by the built-in output adjustment module M1.
  • the power control device 2 transmits the target power P3 from the communication unit 23 to the renewable energy power generation device 3 according to the target power command D1, and instructs the target power P3.
  • the power control device. 2 gives an instruction to the renewable energy power generation device 3 to reduce the output power P1 to the target power P3 by transmitting the target power command D1.
  • ⁇ f1 may be referred to as being within the first frequency range.
  • the power control device 2 transmits an instruction to reduce the output power P1 to the target power P3 to the renewable energy power generation device 3 with the target power command D1. To be done by.
  • the power control device 2 calculates the differential power P4, which is the difference between the output power P1 output from the renewable energy power generation device 3 and the maximum power P2 that can be output from the natural energy power generation device 3, and the output unit 24 calculates the differential power P4. Output.
  • the calculation unit 26 of the power control device 2 calculates the difference power P4 by the difference calculation module M2.
  • the power control device 2 detects information related to the power of the power system 9 by the system information B1 transmitted from the control unit 33 of the renewable energy power generation device 3 and the system information B2 transmitted from the center device 8. When the power control device 2 determines that the power of the power system 9 is within a predetermined frequency range based on the system information B1 and B2, the power control device 2 can output the maximum power that can be output to the renewable energy power generation device 3. Instruct to output P2.
  • the power control device 2 gives an instruction to the renewable energy power generation device 3 to set the output power P1 to the maximum power P2 by transmitting the target power command D1.
  • ⁇ f2 may be referred to as being within the second frequency range.
  • the power control device 2 issues an instruction to set the output power P1 to the maximum power P2 to the target power command D1 to the renewable energy power generation device 3. It is done by sending.
  • the power control device 2 instructs some of the renewable energy power generation devices 3 among the plurality of renewable energy power generation devices 3 to output the power applied to the target power P3 by the target power command D1.
  • the calculation unit 26 of the power control device 2 selects a part of the renewable energy power generation devices 3 among the plurality of renewable energy power generation devices 3 as the target for instructing the target power command D1 by the command target selection module M4.
  • the power control device 2 detects the maximum power P2 of the selected renewable energy power generation device 3 from the plurality of renewable energy power generation devices 3.
  • the calculation unit 26 of the power control device 2 selects a part of the renewable energy power generation devices 3 to be measured of the maximum power P2 from the plurality of renewable energy power generation devices 3 by the measurement target selection module M3.
  • the above operation is realized by the program shown in FIG.
  • the program shown in FIG. 4 is built in the calculation unit 26 of the power control device 2.
  • the program shown in FIG. 4 is repeatedly executed at regular intervals.
  • the program shown in FIG. 4 is executed, for example, in a cycle of 5 minutes or 30 minutes.
  • the calculation unit 26 of the power control device 2 performs an operation related to power control of the renewable energy power generation device 3 according to the following procedure.
  • Step S01 Select the renewable energy power generation device 3 to be measured for the maximum power P2
  • the calculation unit 26 of the power control device 2 selects the renewable energy power generation device 3 to be measured for the maximum power P2 from the plurality of natural energy power generation devices 3 by the built-in measurement target selection module M3.
  • the renewable energy power generation device 3a located on the east side of the renewable energy site and the renewable energy power generation device 3d located on the west side are selected as the measurement targets of the maximum power P2.
  • the renewable energy power generation device 3 to be selected is not limited to this, and may be arbitrarily selected.
  • the renewable energy power generation devices 3a and 3d selected as the measurement target of the maximum power P2 are stored in the storage unit 25 as the measurement target selection information E1.
  • Step S02 Measure the maximum power P2
  • the calculation unit 26 of the power control device 2 detects the maximum power of the selected renewable energy power generation devices 3a and 3d based on the measurement target selection information E1 stored in the storage unit 25.
  • the calculation unit 26 of the power control device 2 receives the maximum power information A2, which is information on the maximum power P2 that can be output from the renewable energy power generation devices 3a and 3d, via the communication unit 23.
  • the maximum power P2 is measured at regular intervals, and the maximum power information A2 is transmitted to the power control device 2.
  • the electric power generated by the power generation unit 31 in the renewable energy power generation device 3 is converted from direct current to alternating current by the power conversion unit 32.
  • the control unit 33 controls the output power P1 of the power conversion unit 32.
  • the control unit 33 incorporates a maximum power measurement module N1 configured by software.
  • the control unit 33 measures the maximum power P2 that can be output from the renewable energy power generation device 3 by the maximum power measurement module N1.
  • the maximum power P2 is detected by MPPT (Maximum Power Point Tracking).
  • the output voltage of the power conversion unit 32 is sequentially changed by MPPT (maximum power point tracking) as shown in FIG. 5, and the maximum power is detected as the maximum power P2.
  • the maximum power P2 of the renewable energy power generation devices 3a and 3d is included in the maximum power information A2 and transmitted to the power control device 2 via the communication line 5b.
  • the calculation unit 26 of the power control device 2 receives the maximum power information A2 via the communication unit 23, and detects the maximum power P2 of the renewable energy power generation devices 3a and 3d.
  • Step S02 or the maximum power measuring module N1 in the program may be referred to as the maximum power detecting means.
  • Step S03 Receive system information B1 and system information B2
  • the calculation unit 26 of the power control device 2 detects system information B1 and B2 regarding the power of the power system 9.
  • the calculation unit 26 of the power control device 2 receives the system information B1 transmitted from the control unit 33 of the renewable energy power generation device 3 and the system information B2 transmitted from the center device 8 by the built-in system information detection module M5. , Detects information about the power of the power system 9.
  • the calculation unit 26 of the power control device 2 selects the natural energy power generation devices 3a and 3d from the natural energy power generation devices 3a to 3f, and the natural energy.
  • the system information B1a and B1d are received from the power measuring devices 4a and 4d connected to the power generation devices 3a and 3d, respectively.
  • the calculation unit 26 of the power control device 2 receives the system information B1a and B1d by the communication unit 21 via the communication line 5a.
  • the arithmetic unit 26 of the power control device 2 receives the system information B2 from the center device 8.
  • the calculation unit 26 of the power control device 2 receives the system information B2 by the communication unit 22 via the communication line 5c.
  • the received system information B1a, B1d, and system information B2 are stored in the storage unit 25.
  • the system information B1a and B1d include information on the frequency f applied to the power of the power system 9.
  • the system information B2 includes information on the voltage, current, frequency, etc. of the power system 9, information on the required power of the power system 9, and information on the supplied power.
  • Step S03 or the system information detection module M5 in the program may be referred to as system information detection means.
  • Step S04 Select the renewable energy power generation device 3 to be commanded by the target power P3
  • the calculation unit 26 of the power control device 2 selects the renewable energy power generation device 3 to be the target of the command to output the target power P3 from the plurality of renewable energy power generation devices 3 by the built-in command target selection module M4. To do.
  • the renewable energy power generation device 3 whose output power is averaged is selected from the renewable energy power generation devices 3a to 3f as the target of the command to output the target power P3. For example, two renewable energy power generators 3c and 3d that output a large amount of electric power are selected.
  • the renewable energy power generation device 3 to be selected is not limited to this, and may be arbitrarily selected.
  • the renewable energy power generation devices 3c and 3d selected as the target of the command to output the target power P3 are stored in the storage unit 25 as the command target selection information E2.
  • the renewable energy power generation device 3 to be commanded by the target power P3 may overlap with the renewable energy power generation device 3 to be measured by the maximum power P2.
  • Step S05 Determining whether the frequency f is within the predetermined frequency ⁇ f2)
  • step S03 based on the system information B1 and B2 detected by the system information detection module M5 and stored in the storage unit 25, the calculation unit 26 of the power control device 2 determines the frequency f of the power in the power system 9 in advance. It is determined whether or not the frequency is within the range of ⁇ f2.
  • the power frequency f in the power system 9 is in the range of f0 ⁇ f2 ⁇ f ⁇ f0 + ⁇ f2, the power frequency f in the power system 9 is within a predetermined frequency ⁇ f2 with respect to the reference frequency f0. Is judged.
  • f0- ⁇ f2 49.9 Hz
  • f0 + ⁇ f2 50.1 Hz
  • the power frequency f in the power system 9 is 49.9 Hz ⁇ f ⁇ 50.1 Hz
  • step S05 When it is determined that the frequency f is within the predetermined frequency range (YES in step S05), the program shifts to step S06. If it is not determined that the frequency f is within the predetermined frequency range (NO in step S05), the program proceeds to step S07.
  • Step S06 Instruct the renewable energy power generation device 3 to output the maximum power P2
  • the power control device 2 selects the natural power based on the command target selection information E2 stored in the storage unit 25 in step S04.
  • the energy power generation devices 3c and 3d are instructed to set the output power P1 to the maximum power P2 by the target power command D1.
  • the calculation unit 26 of the power control device 2 instructs the target power command D1 by the built-in output adjustment module M1.
  • the target power command D1 is transmitted to the renewable energy power generation devices 3a to 3f via the communication unit 23 and the communication line 5b.
  • the instruction to set the output power P1 to the maximum power P2 may be transmitted to all the renewable energy power generation devices 3a to 3f.
  • Step S07 Instruct the renewable energy power generation device 3 to output the target power P3
  • the calculation unit 26 of the power control device 2 is based on the command target selection information E2 stored in the storage unit 25 in step S04.
  • the selected renewable energy power generation devices 3c and 3d are instructed to output the power applied to the target power P3 by the target power command D1 which is a command of the output power.
  • the calculation unit 26 of the power control device 2 calculates the target power P3 to be applied to the target power command D1 by the built-in output adjustment module M1.
  • the target power command D1 is transmitted to the renewable energy power generation devices 3c and 3d via the communication unit 23 and the communication line 5b.
  • the target power P3 is calculated based on the maximum power P2 detected in step S02 and the system information B1 and B2 detected in step S03. It is estimated that the maximum powers P2a and P2d of the renewable energy power generation devices 3a and 3d are similar to the maximum power P2 of the renewable energy power generation devices 3b, 3c, 3e and 3f arranged at the same photovoltaic power generation site. Will be done. Therefore, the target power P3 for the renewable energy power generation devices 3c and 3d has a certain degree of certainty even if it is calculated based on the maximum powers P2a and P2d.
  • the power less than the maximum powers P2a and P2d detected by the renewable energy power generation devices 3a and 3d is calculated as the target power P3.
  • the target power P3 is calculated by subtracting a constant power ⁇ P from the maximum power P2 as shown in FIGS. 5 and 6. As shown in FIG. 6, the target power P3 is calculated for each time.
  • the target power P3 may be calculated so as to have a constant ratio with respect to the maximum power P2. As shown in FIG. 7, the target power P3 is calculated for each time.
  • the target power P3 calculated in step S07 is the target power P3k and the target power P3 calculated in step S11 described later is the target power P3j, it is desirable to calculate the target power P3k such that P3k> P3j.
  • Step S07 or the output adjustment module M1 in the program may be referred to as output power command means.
  • Step S08 Determine whether the higher command C1 has been received
  • the calculation unit 26 of the power control device 2 determines whether or not the higher command C1 has been received from the center device 8.
  • the higher-level command C1 is transmitted from the center device 8 to the calculation unit 26 via the communication line 5c and the communication unit 22.
  • the higher-level command C1 includes a command for increasing or decreasing the output power of the renewable energy power generation device 3, and an amount of increase or decrease.
  • step S08 If it is determined that the higher command C1 has been received (YES in step S08), the program proceeds to step S09. If it is not determined that the higher command C1 has been received (NO in step S08), the program proceeds to step S10.
  • Step S09 Instruct the renewable energy power generation device 3 to output the target power P3
  • the calculation unit 26 of the power control device 2 selects renewable energy power generation based on the command target selection information E2 stored in the storage unit 25 in step S04.
  • the devices 3c and 3d are instructed to output the power applied to the target power P3 by the target power command D1.
  • the calculation unit 26 of the power control device 2 calculates the target power P3 to be applied to the target power command D1 by the built-in output adjustment module M1.
  • the target power command D1 is transmitted to the renewable energy power generation devices 3c and 3d via the communication unit 23 and the communication line 5b.
  • the target power P3 is calculated based on the command for increasing or decreasing the output power included in the higher-level command C1 determined to have been received in step S08, and the amount of increase or decrease.
  • the higher-level command C1 instructs to increase the output power P1 of the renewable energy power generation device 3
  • the amount of increase applied to the higher-level command C1 is apportioned to the renewable energy power generation devices 3c and 3d to calculate the target power P3.
  • the renewable energy power generation devices 3c and 3d receive the target power command D1 and increase the output power P1 to the target power P3.
  • the reduction amount applied to the higher-level command C1 is apportioned to the renewable energy power generation devices 3c and 3d to calculate the target power P3. ..
  • the renewable energy power generation devices 3c and 3d receive the target power command D1 and reduce the output power P1 to the target power P3.
  • step S09 for instructing the renewable energy power generation device 3 to output the target power P3 is performed in preference to the operation related to steps S05 to S07.
  • Step S09 or the output adjustment module M1 in the program may be referred to as output power command means.
  • Step S10 Determine if the frequency f is within the predetermined frequency ⁇ f1
  • the calculation unit 26 of the power control device 2 determines the frequency f of the power in the power system 9 in advance based on the system information B1 and B2 detected by the system information detection module M5 and stored in the storage unit 25. It is determined whether or not the frequency is within the range of ⁇ f1.
  • the power frequency f in the power system 9 is in the range of f0 ⁇ f1 ⁇ f ⁇ f0 + ⁇ f1
  • the power frequency f in the power system 9 is within the range of the frequency ⁇ f1 predetermined with respect to the reference frequency f0. Is judged.
  • the power frequency f in the power system 9 is 49 Hz ⁇ f ⁇ 51 Hz
  • step S10 If it is not determined that the frequency f is within the predetermined frequency ⁇ f1 (NO in step S10), the program shifts to step S11. When it is determined that the frequency f is within the range of the predetermined frequency ⁇ f1 (YES in step S10), the program shifts to step S12.
  • Step S11 Instruct the renewable energy power generation device 3 to output the target power P3
  • the calculation unit 26 of the power control device 2 is stored in the storage unit 25 by the command target selection module M4 in step S04.
  • the selected renewable energy power generation devices 3c and 3d are instructed to output the power applied to the target power P3 by the target power command D1 which is a command of the output power.
  • the calculation unit 26 of the power control device 2 calculates the target power P3 to be applied to the target power command D1 by the built-in output adjustment module M1.
  • the target power command D1 is transmitted to the renewable energy power generation devices 3c and 3d via the communication unit 23 and the communication line 5b.
  • the target power P3 is set to be less than the output power P1 currently output from the renewable energy power generation devices 3c and 3d. Further, when the target power P3 calculated in step S07 is the target power P3k and the target power P3 calculated in step S11 is the target power P3j, it is desirable to calculate the target power P3j such that P3k> P3j.
  • the operation related to step S11 for instructing the renewable energy power generation device 3 to output the target power P3 is performed in preference to the operations related to steps S05 to S09.
  • the power generation devices such as thermal power, hydraulic power, and nuclear power in the power system 9 (not shown in the figure) have the frequencies of the power system 9. Is controlled to keep the frequency constant.
  • the frequency f of the electric power in the electric power system 9 is not in the range of f0- ⁇ f1 ⁇ f ⁇ f0 + ⁇ f1, for example, when it is not in the range of 49 Hz ⁇ f ⁇ 51 Hz, it is more stable due to a power generation device such as thermal power, hydraulic power, or nuclear power. It is inferred that frequency control is not performed.
  • the output power P1 of the renewable energy power generation device 3 fluctuates from moment to moment due to the influence of weather conditions such as solar radiation and wind speed. Further, the response speed characteristics of the output power of the power generation device such as thermal power, hydraulic power, nuclear power, and the renewable energy power generation device 3 are different from each other. For this reason, power generation devices such as thermal power, hydraulic power, and nuclear power and electric power output from the renewable energy power generation device 3 may interfere with each other, and frequency control by the power generation devices such as thermal power, hydraulic power, and nuclear power may not function efficiently. ..
  • the calculation unit 26 of the power control device 2 issues the target power command D1 to the renewable energy power generation devices 3c and 3d as shown in FIG.
  • the target power P3 gives an instruction to reduce the output power P1.
  • the calculation unit 26 of the power control device 2 still uses the renewable energy power generation device 3c. 3d is instructed to reduce the output power P1 by the target power P3 applied to the target power command D1.
  • the target power P3 may be transmitted to all the renewable energy power generation devices 3a to 3f according to the target power command D1.
  • the renewable energy power generation devices 3a to 3f in which the target power P3 is instructed by the target power command D1 reduce the output power P1.
  • Step S11 or the output adjustment module M1 in the program may be referred to as output power command means.
  • Step S12 Calculate the differential power P4
  • the calculation unit 26 of the power control device 2 calculates the differential power P4.
  • the calculation unit 26 of the power control device 2 is the difference between the output power P1 output from the renewable energy power generation device 3 by the built-in difference calculation module M2 and the maximum power P2 that can be output from the natural energy power generation device 3.
  • a certain differential power P4 is calculated.
  • the differential power P4 is calculated for each of the renewable energy power generation devices 3a to 3f.
  • Step S13 Output the differential power P4
  • the calculation unit 26 of the power control device 2 causes the output unit 24 to output the data related to the differential power P4 calculated in step S12.
  • the output unit 24 displays, prints, and outputs the data related to the differential power P4 by a communication telegram.
  • the output data related to the differential power P4 is useful for billing charges by the operating company of the renewable energy power generation device 3.
  • Step S13 and the output unit 24 in the program may be referred to as output means.
  • the above is the operation of the power control system 1.
  • the frequency f is not within the range of the frequency ⁇ f3 whose frequency can be controlled by the power generation devices such as thermal power, hydraulic power, and nuclear power of the power system 9
  • the target power P3 is set to zero for the renewable energy power generation devices 3a to 3f.
  • the power command D1 may be transmitted.
  • the output power P1 of the renewable energy power generation device 3 is suppressed as the frequency f of the power system 9 is separated from the reference frequency f0.
  • the power control system 1 generates a natural energy power generation device 3 that generates power by natural energy and supplies power to the power system 9, and a maximum power P2 output from the natural energy power generation device 3.
  • the maximum power detecting means to be detected the system information detecting means for detecting the system information B1 and B2 related to the power of the power system 9, the maximum power P2 detected by the maximum power detecting means, and the system detected by the system information detecting means. Since it has an output power command means for calculating and instructing a target power P3 which is equal to or less than the maximum power P2 to be output to the renewable energy power generation device 3 based on the information B1 and B2, and a power control device 2 provided with the natural energy. It is possible to provide a power control system 1 capable of stably controlling a power system 9 including a power generation device 3.
  • the renewable energy power generation device 3 is instructed by the target power command D1 to output the target power P3, and outputs the output power P1 applied to the target power P3 which is equal to or less than the maximum power P2.
  • the output power P1 applied to the above can be output to the renewable energy power generation device 3.
  • the renewable energy power generation device 3 outputs an output power P1 which is equal to or less than the maximum power P2, and a steep request for an increase in the output power P1 is commanded by the center device 8 by the higher-level command C1.
  • the output power P1 can be easily increased.
  • the power control system 1 has the power of the power system 9 within a predetermined range of the first frequency ⁇ f1 based on the system information B1 and B2 detected by the system information detecting means. If it is determined that the power system does not exist, the output power command means (step S11 or the output adjustment module M1) instructs the renewable energy power generation device 3 to reduce the output power P1. Therefore, the power system including the renewable energy power generation device 3 It is possible to provide a power control system 1 capable of stably controlling 9.
  • the output power P1 of the renewable energy power generation device 3 fluctuates from moment to moment due to the influence of weather conditions such as solar radiation and wind speed. Further, the response speed characteristics of the output power of the power generation device such as thermal power, hydraulic power, nuclear power, and the renewable energy power generation device 3 are different from each other. For this reason, power generation devices such as thermal power, hydraulic power, and nuclear power and electric power output from the renewable energy power generation device 3 may interfere with each other, and frequency control by the power generation devices such as thermal power, hydraulic power, and nuclear power may not function efficiently. ..
  • the power control device 2 is detected by the output power P1 output from the renewable energy power generation device 3 based on the target power P3 instructed by the output power command means and the maximum power detecting means. Since it has an output means for calculating and outputting the differential power P4 with the maximum power P2, the data related to the output differential power P4 is useful for billing by the operating company of the renewable energy power generation device 3.
  • the power control device 2 has the power of the power system within a predetermined second frequency ⁇ f2 based on the system information B1 and B2 detected by the system information detecting means. If it is determined that there is, the output power command means instructs the renewable energy power generation device 3 to output at the maximum power, so that the output power P1 of the natural energy power generation device 3 is not suppressed to less than the maximum power P2. , The output power P1 of the renewable energy power generation device 3 can be efficiently supplied to the power system 9.
  • the maximum power detecting means of the power control device 2 detects the maximum power P2 of the predetermined natural energy power generation device 3 among the plurality of natural energy power generation devices 3, so that a large number of natural power generation devices 3 are detected.
  • the maximum power P2 can be easily measured without measuring the maximum power P2 of the energy power generation device 3. It is inferred that the maximum power P2 of the renewable energy power generation device 3 arranged at the same photovoltaic power generation site is similar.
  • the maximum power P2 that can be output is measured by the renewable energy power generation device 3 selected by the measurement target selection module M3 in step S01.
  • the maximum power P2 that can be output may be measured by all the renewable energy power generation devices 3.
  • the natural energy power generation device 3 to be measured of the maximum power P2 is selected by the measurement target selection module M3 in step S01.
  • the renewable energy power generation device 3 to be measured for the maximum power P2 selected by the operator may be set and stored in the storage unit 25 in advance as the measurement target selection information E1.
  • the renewable energy power generation device 3 to be commanded by the target power P3 in step S04 may be selected in duplicate with the renewable energy power generation device 3 to be measured by the maximum power P2. did. That is, when the renewable energy power generation device 3 to be measured of the maximum power P2 receives a command to output the target power P3 according to the target power command D1, the maximum power P2 output as the output power P1 is changed to the target power P3. Was required to output.
  • the renewable energy power generation device 3 selected as the command target of the target power P3 by the command target selection module M4 in step S04 may exclude the renewable energy power generation device 3 that is the detection target of the maximum power P2. ..
  • the renewable energy power generation devices 3a and 3d are selected as the measurement targets of the maximum power P2 by the measurement target selection module M3 in step S01, the natural energy power generation devices 3b, 3c and 3e excluding the natural energy power generation devices 3a and 3d, From 3f, the renewable energy power generation device 3 to be commanded by the target power P3 may be selected. It is assumed that the renewable energy power generation devices 3a and 3d, which are the measurement targets of the maximum power P2, always output the output power P1 applied to the maximum power P2.
  • the output power command means of the power control device 2 refers to some of the renewable energy power generation devices 3a to 3f among the plurality of renewable energy power generation devices 3a to 3f, excluding the detection target of the maximum power P2. Since the instruction is instructed to output the output power P1 applied to the target power P3, the renewable energy power generation devices 3a and 3d to be detected by the maximum power P2 can always output the output power P1 applied to the maximum power P2. Since the renewable energy power generation devices 3a and 3d, which are the targets of detection of the maximum power P2, always output the output power P1 applied to the maximum power P2, the maximum power P2 can be easily measured.
  • the renewable energy power generation device 3 incorporates the maximum power measurement module N1 and measures the maximum power P2 that can be output, and the maximum power information A2 that is the information of the maximum power P2 is It is made to be transmitted from the renewable energy power generation device 3 to the power control device 2.
  • the arithmetic unit 26 of the power control device 2 incorporates the maximum power measurement module N1 and sequentially transmits the output voltage of the renewable energy power generation device 3 by transmitting a command to increase or decrease the output power to the renewable energy power generation device 3. It may be changed so that the calculation unit 26 of the power control device 2 measures the maximum power P2 of the renewable energy power generation device 3.
  • step S05 when it is determined in step S05 that the frequency f is within the range of the predetermined frequency ⁇ f2, the power control device 2 issues the target power command D1 to the renewable energy power generation device 3. It is assumed that the output power P1 is instructed to be the maximum power P2. However, regardless of whether the frequency f is within the predetermined frequency ⁇ f2 without having step S05 and step S06, the power control device 2 sends the renewable energy power generation device 3 to the target power command D1. An instruction to set the output power P1 to the maximum power P2 may be transmitted.
  • the system information B1 is received from the power measuring devices 4a and 4d connected to the renewable energy power generation devices 3a and 3d selected by the measurement target selection module M3 in step S01.
  • the system information B1 is transferred to the power control device 2 from the power measurement devices 4a to 4f arranged in each of the renewable energy power generation devices 3a to 3f, or from the power measurement device 4 arbitrarily selected from the power measurement devices 4a to 4f. It may be sent.
  • the power measuring devices 4a to 4f are electrically connected and arranged in each of the renewable energy power generation devices 3a to 3f, but the power measuring device 4 is a plurality of renewable energy power generation devices. It may be electrically connected and arranged in a part of 3.
  • the power measuring devices 4a and 4d may be arranged only in the renewable energy power generation devices 3a and 3d selected in advance from the plurality of natural energy power generation devices 3a to 3f, respectively. .. With this configuration, the number of power measuring devices 4 in the power control system 1 can be reduced.
  • a plurality of renewable energy power generation devices 3a to 3f are connected to one power control device 2 via a communication line 5b.
  • one renewable energy power generation device 3 may be connected to one power control device 2.
  • the power control device 2 is provided as a device separate from the renewable energy power generation device 3.
  • the power control device 2 may be integrally configured with the renewable energy power generation device 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

自然エネルギー発電装置を含む電力系統を、安定的に制御することができる電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法を提供する。電力制御システム1は、自然エネルギーにより発電を行い電力系統9に電力を供給する自然エネルギー発電装置3と、自然エネルギー発電装置3から出力される最大電力を検出する最大電力検出手段と、電力系統9の電力に関する系統情報を検出する系統情報検出手段と、最大電力検出手段により検出された最大電力、および系統情報検出手段により検出された系統情報に基づき、自然エネルギー発電装置3に出力させる最大電力以下である出力電力を算出し指示する出力電力指令手段と、を備えた電力制御装置2と、を有する。

Description

電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法
 本実施形態は、自然エネルギーにより発電を行う自然エネルギー発電装置の出力電力の制御を行う電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法に関する。
 近年、太陽光発電、風力発電などの自然エネルギーにより発電を行う自然エネルギー発電装置の導入が進んでいる。電力系統に、多数の自然エネルギー発電装置が接続される。自然エネルギー発電装置を含む電力系統の制御を行う電力制御システムが知られている。
特開2006-204081号公報 特開2016-208723号公報
 近年、太陽光発電、風力発電などの多数の自然エネルギー発電装置が、電力系統に接続されるようになった。多数の自然エネルギー発電装置を含む電力系統においても、火力、水力、原子力等の発電装置および自然エネルギー発電装置から出力される供給電力と、負荷から要求される需要電力とが一致するように、電力制御が行われることが望ましい。
 しかしながら、電力系統に接続される太陽光発電、風力発電などの多数の自然エネルギー発電装置が増加することにより、電力制御における電力系統の同期安定性や電圧安定性が低下することが予測される。
 太陽光発電、風力発電などの自然エネルギー発電装置の出力電力は、日射や風速等の気象条件の影響を受けて時々刻々変動する。また火力、水力、原子力等の発電装置、自然エネルギー発電装置の出力電力の応答速度特性は、それぞれ異なる。このため、火力、水力、原子力等の発電装置および自然エネルギー発電装置から出力される電力どうしが互いに干渉し、安定的な制御を行うことが難しい場合があるとの問題点があった。電力系統の安定的な制御が行われない場合、負荷に供給される電力の品質が低下する可能性がある。
 本実施形態は、自然エネルギー発電装置を含む電力系統を、安定的に制御することができる電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法を提供することを目的とする。
 本実施形態の電力制御システムは、次のような構成を有することを特徴とする。
(1)自然エネルギーにより発電を行い電力系統に電力を供給する自然エネルギー発電装置。
(2)以下の構成を備えた電力制御装置。
(2-1)前記自然エネルギー発電装置から出力される最大電力を検出する最大電力検出手段。
(2-2)前記電力系統の電力に関する系統情報を検出する系統情報検出手段。
(2-3)前記最大電力検出手段により検出された前記最大電力、および前記系統情報検出手段により検出された前記系統情報に基づき、前記自然エネルギー発電装置に出力させる、前記最大電力以下である出力電力を算出し指示する出力電力指令手段。
第1実施形態にかかる電力制御システムの構成を示すブロック図 第1実施形態にかかる電力制御装置の構成を示すブロック図 第1実施形態にかかる自然エネルギー発電装置の構成を示すブロック図 第1実施形態にかかる電力制御装置のプログラムフローを示す図 第1実施形態にかかる自然エネルギー発電装置のMPPT(最大電力ポイントトラッキング)にかかる動作を説明する図 第1実施形態にかかる電力制御装置による目標電力の算出方法を説明する図 第1実施形態にかかる電力制御装置による目標電力の別の算出方法を説明する図 第1実施形態にかかる電力制御装置による自然エネルギー発電装置の制御を説明する図 第1実施形態にかかる自然エネルギー発電装置の出力を説明する図 他の実施形態にかかる電力制御システムの構成を示すブロック図
 本実施形態にかかる電力制御システム1において、以下の信号、データ、情報が、入力、出力、記憶される。
  出力電力情報A1(自然エネルギー発電装置3の出力電力P1の情報)
  最大電力情報A2(自然エネルギー発電装置3の最大電力P2の情報)
  系統情報B1(電力測定装置4から送信される電力系統9の電力の情報)
  系統情報B2(センタ装置8から送信される電力系統9の電力の情報)
  上位指令C1(センタ装置8から送信される指令)
  目標電力指令D1(自然エネルギー発電装置3に対する目標電力P3の指令)
  測定対象選択情報E1(最大電力P2の測定対象となる自然エネルギー発電装置の情報)
  指令対象選択情報E2(目標電力指令D1の指令対象となる自然エネルギー発電装置の情報)
  出力電力P1(自然エネルギー発電装置3から出力された電力)
  最大電力P2(自然エネルギー発電装置3から出力することが可能な最大電力)
  目標電力P3(自然エネルギー発電装置3に出力させる目標となる電力)
  差分電力P4(最大電力P2と出力電力P1との差分にかかる電力)
[1.第1実施形態]
[1-1.構成]
 図1~図3を参照して本実施形態の一例として、電力制御システム1について説明する。本実施形態において、同一構成の装置や部材が複数ある場合にはそれらについて同一の番号を付して説明を行い、また、同一構成の個々の装置や部材についてそれぞれを説明する場合に、共通する番号にアルファベットの添え字を付けることで区別する。
(電力制御システム1の構成)
 電力制御システム1は、一例として電力制御装置2、6つの自然エネルギー発電装置3、6つの電力測定装置4を有する。6つの自然エネルギー発電装置3a、3b、3c、3d,3e、3fは、ケーブル7を介し電力系統9と電気的に接続される。6つの電力測定装置4a、4b、4c、4d、4e、4fはそれぞれ自然エネルギー発電装置3a、3b、3c、3d,3e、3fに電気的に接続され配置される。
 電力制御装置2は、通信線5aを介し電力測定装置4a、4b、4c、4d、4e、4fに接続される。また、電力制御装置2は、通信線5bを介し自然エネルギー発電装置3a、3b、3c、3d,3e、3fに接続される。さらに電力制御装置2は、通信線5cを介し上位の制御装置であるセンタ装置8に接続される。
 電力制御装置2は、自然エネルギー発電装置3から出力された出力電力P1の情報である出力電力情報A1、および電力系統9の電力の情報である系統情報B1を、電力測定装置4から通信線5aを介し受信する。電力制御装置2は、電力系統9の電力の情報である系統情報B2、および上位指令C1をセンタ装置8から通信線5cを介し受信する。
 電力制御装置2は、自然エネルギー発電装置3から出力することが可能な最大電力P2の情報である最大電力情報A2を、自然エネルギー発電装置3から通信線5bを介し受信する。電力制御装置2は、自然エネルギー発電装置3に出力させる目標電力P3の指令である目標電力指令D1を、通信線5bを介し自然エネルギー発電装置3に送信する。
 自然エネルギー発電装置3は、再生可能エネルギーである太陽光または風力を受け電力を発電する電源装置である。本実施形態にかかる電力制御システム1は、一例として太陽光発電装置である自然エネルギー発電装置3a、3b、3c、3d、3e、3fを有する。自然エネルギー発電装置3a、3b、3c、3d、3e、3fは、ケーブル7により電気的に並列に接続される。自然エネルギー発電装置3a、3b、3c、3d、3e、3fは、ケーブル7を介し電力系統9に発電した電力を供給する。自然エネルギー発電装置3は、屋外の太陽光発電サイト等に設置される。
 また、自然エネルギー発電装置3は、通信線5bを介し電力制御装置2に接続される。自然エネルギー発電装置3は、図3に示すように発電部31、電力変換部32、制御部33により構成される。発電部31は、太陽光パネルにより構成され、受けた太陽光を直流電力に変換する。変換された直流電力は、電力変換部32に供給される。発電部31は、風力発電ユニットにより構成されていてもよい。
 電力変換部32は、スイッチング素子を有するインバータ等の変換回路により構成される。電力変換部32は、発電部31により発電された直流電力を出力電力P1にかかる交流電力に変換する。変換された出力電力P1にかかる交流電力は、ケーブル7を介し電力系統9に供給される。電力変換部32は、制御部33に制御される。
 制御部33は、マイクロコンピュータ等の制御回路により構成される。制御部33は、通信線5bを介し、電力制御装置2から、自然エネルギー発電装置3に対する目標電力P3の指令である目標電力指令D1を受信する。制御部33は、目標電力指令D1に基づき、電力変換部32から出力される出力電力P1の制御を行う。
 また、制御部33は、電力変換部32を制御するソフトウェアにより構成された最大電力測定モジュールN1を内蔵する。最大電力測定モジュールN1により、自然エネルギー発電装置3から出力することが可能な最大電力P2が検出される。最大電力P2は、自然エネルギー発電装置3の出力電圧を逐次変化させ、最大となる電力を検出するMPPT(最大電力ポイントトラッキング)により検出される。自然エネルギー発電装置3ごとの最大電力P2は、通信線5bを介し電力制御装置2に送信される。
 電力測定装置4は、電力、電圧、電流、周波数を測定する回路により構成された電力測定装置である。電力測定装置4は、通信線5aを介し電力制御装置2に接続される。電力測定装置4は、自然エネルギー発電装置3から出力された出力電力P1、出力電圧V1を測定し、自然エネルギー発電装置3の出力電力の情報である出力電力情報A1として、電力制御装置2に送信する。また、電力測定装置4は、電力系統9の周波数fを測定し、電力系統9の電力の情報である系統情報B1として、電力制御装置2に送信する。
 電力測定装置4a~4fが自然エネルギー発電装置3a~3fに、それぞれ電気的に接続され配置される。電力測定装置4aは、自然エネルギー発電装置3aから出力された出力電力P1a、出力電圧V1aを測定し、出力電力情報A1aとして、電力制御装置2に送信する。電力測定装置4b~4fは、それぞれ自然エネルギー発電装置3b~3fから出力された出力電力P1b~P2f、出力電圧V1b~V1fを測定し、出力電力情報A1b~A1fとして、電力制御装置2に送信する。
 センタ装置8は、コンピュータ等により構成された上位の制御装置である。センタ装置8は、通信線5cを介し電力制御装置2に接続される。センタ装置8は、電力系統の監視制御を行う給電指令所、系統制御所、集中制御所などの指令室等に設置される。センタ装置8は、電力系統9の電力の情報である系統情報B2、自然エネルギー発電装置3に対する指令である上位指令C1を、各太陽光発電サイト等に配置された複数の電力制御装置2に送信し、各太陽光発電サイト等の発電電力の制御を行う。系統情報B2には、電力系統9の電圧、電流、周波数等の情報、電力系統9の需要電力、供給電力に関する情報が含まれる。
 通信線5a、5b、5cは、専用線、インターネット等の通信回線、電話回線等の通信回線により構成される。通信線5aにより電力測定装置4と電力制御装置2との間の通信が行われる。通信線5bにより電力制御装置2と自然エネルギー発電装置3との間の通信が行われる。通信線5cにより電力制御装置2とセンタ装置8との間の通信が行われる。
 ケーブル7は、電力ケーブルにより構成される。ケーブル7は、自然エネルギー発電装置3と電力系統9とを電気的に接続する。ケーブル7は、自然エネルギー発電装置3から出力された電力を電力系統9に供給する。
 電力系統9は、交流電力を供給する電力供給網である。電力系統9は、自然エネルギー発電装置3から出力された電力、および火力、水力、原子力等の発電装置(図中不示)により発電された電力を需要家に供給する。
(電力制御装置2の構成)
 電力制御装置2は、コンピュータ等により構成された装置である。電力制御装置2は、太陽光発電サイト等の監視制御を行う電力管理室等に設置される。電力制御装置2は、通信線5aを介し電力測定装置4a、4b、4c、4d、4e、4fに接続される。また、電力制御装置2は、通信線5bを介し自然エネルギー発電装置3a、3b、3c、3d、3e、3fに接続される。さらに電力制御装置2は、通信線5cを介し上位の制御装置であるセンタ装置8に接続される。
 電力制御装置2は、自然エネルギー発電装置3から出力された出力電力P1の情報である出力電力情報A1、および電力系統9の電力の情報である系統情報B1を電力測定装置4から受信する。電力制御装置2は、自然エネルギー発電装置3から出力することが可能な最大電力P2にかかる最大電力情報A2を、自然エネルギー発電装置3から受信する。電力制御装置2は、上位指令C1をセンタ装置8から受信する。電力制御装置2は、自然エネルギー発電装置3に出力させる目標となる電力である目標電力P3の指令である目標電力指令D1を自然エネルギー発電装置3に送信する。
 電力制御装置2は、図2に示すように通信部21、通信部22、通信部23、出力部24、記憶部25、演算部26を有する。
 通信部21は、専用線、インターネット、電話回線等の通信回線との通信インタフェースにより構成される。通信部21は、電力制御装置2の内部において演算部26に接続される。
 また、通信部21は、通信線5aを介し電力測定装置4a~4fに接続される。通信部21は、電力測定装置4a~4fのうち選択された電力測定装置4から、出力電力情報A1を受信する。出力電力情報A1には、電力測定装置4に接続された自然エネルギー発電装置3から出力された出力電力P1、出力電圧V1に関する情報が含まれる。
 また、通信部21は、電力測定装置4a~4fのうち選択された電力測定装置4から、電力系統9の電力の情報である系統情報B1を受信する。系統情報B1には、電力系統9の電力にかかる周波数f1に関する情報が含まれる。
 通信部22は、専用線、インターネット、電話回線等の通信回線との通信インタフェースにより構成される。通信部22は、電力制御装置2の内部において演算部26に接続される。通信部22は、通信線5cを介しセンタ装置8に接続される。通信部22は、センタ装置8から、上位指令C1を受信する。上位指令C1には、自然エネルギー発電装置3の出力電力を増加、減少させる指令、および増加量または減少量が含まれる。
 通信部23は、専用線、インターネット、電話回線等の通信回線との通信インタフェースにより構成される。通信部23は、電力制御装置2の内部において演算部26に接続される。また、通信部23は、通信線5bを介し自然エネルギー発電装置3a~3fに接続される。
 通信部23は、自然エネルギー発電装置3a~3fのうち選択された自然エネルギー発電装置3から、自然エネルギー発電装置3から出力することが可能な最大電力P2の情報である最大電力情報A2を受信する。通信部23は、自然エネルギー発電装置3a~3fのうち選択された自然エネルギー発電装置3に対し、自然エネルギー発電装置3に出力させる目標電力P3の指令である目標電力指令D1を送信する。
 出力部24は、表示装置、プリンタ、通信インタフェース等により構成される。出力部24は、電力制御装置2の内部において演算部26に接続される。出力部24は、自然エネルギー発電装置3から出力された出力電力P1と、自然エネルギー発電装置3から出力することが可能な最大電力P2との差分である差分電力P4を、表示、プリント、通信電文により出力する。
 記憶部25は、半導体メモリやハードディスクのような記憶媒体にて構成される。記憶部25は、電力制御装置2の内部において演算部26に接続される。記憶部25は、自然エネルギー発電装置3から出力することが可能な最大電力P2の情報である最大電力情報A2、電力系統9の電力の情報である系統情報B1、系統情報B2、自然エネルギー発電装置3に対する目標電力P3の指令である目標電力指令D1を、自然エネルギー発電装置3ごとに逐次記憶する。
 また記憶部25は、最大電力P2の測定対象となる自然エネルギー発電装置3の情報である測定対象選択情報E1、目標電力指令D1の指令対象となる自然エネルギー発電装置3の情報である指令対象選択情報E2を記憶する。記憶部25に対するデータの書き込み、読み出しは、演算部26により制御される。
 演算部26は、コンピュータに内蔵されたCPU等により構成される。演算部26は、電力制御装置2の内部において通信部21、通信部22、通信部23、出力部24、記憶部25に接続される。演算部26は、以下の制御を行う。
(イ)通信部21に対する制御
 演算部26は、通信部21を制御し、電力測定装置4から自然エネルギー発電装置3の出力電力P1の情報である出力電力情報A1、電力系統9の電力の情報である系統情報B1を受信する。
(ロ)通信部22に対する制御
 演算部26は、通信部22を制御し、センタ装置8から上位指令C1を受信する。
(ハ)通信部23に対する制御
 演算部26は、通信部23を制御し、自然エネルギー発電装置3から自然エネルギー発電装置3の最大電力P2の情報である最大電力情報A2を受信する。演算部26は、通信部23を制御し、自然エネルギー発電装置3に自然エネルギー発電装置3に対する目標電力P3の指令である目標電力指令D1を送信する。
(ニ)出力部24に対する制御
 演算部26は、出力部24を制御し、自然エネルギー発電装置3から出力された出力電力P1と自然エネルギー発電装置3から出力することが可能な最大電力P2との差分である差分電力P4を、表示、プリント、通信電文により出力させる。
(ホ)記憶部25に対する制御
 演算部26は、記憶部25を制御し、最大電力情報A2、系統情報B1、系統情報B2、目標電力指令D1、測定対象選択情報E1、指令対象選択情報E2の、書込みおよび読み出しを行う。
(へ)演算部26における演算
 演算部26は、ソフトウェアにより構成された出力調整モジュールM1、差分算出モジュールM2、測定対象選択モジュールM3、指令対象選択モジュールM4、系統情報検出モジュールM5を内蔵する。
 演算部26は、出力調整モジュールM1により、自然エネルギー発電装置3に出力させる目標電力P3を算出する。目標電力P3は、自然エネルギー発電装置3a~3fのうち選択された自然エネルギー発電装置3について算出され、目標電力指令D1により選択された自然エネルギー発電装置3に指示される。
 演算部26は、系統情報検出モジュールM5により、電力系統9の電力に関する系統情報B1、B2を検出する。系統情報B1は、自然エネルギー発電装置3の制御部33から送信される。系統情報B2は、センタ装置8から送信される。
 演算部26は、差分算出モジュールM2により、自然エネルギー発電装置3から出力された出力電力P1と自然エネルギー発電装置3から出力することが可能な最大電力P2との差分である差分電力P4を算出する。算出された差分電力P4は、表示、プリント、通信電文により出力部24から出力される。
 演算部26は、測定対象選択モジュールM3により、自然エネルギー発電装置3a~3fのうち、出力することが可能な最大電力P2の測定対象となる自然エネルギー発電装置3を選択する。最大電力P2の測定対象となる自然エネルギー発電装置3は、自然エネルギー発電装置3a~3fから単数または複数選択され、測定対象選択情報E1として記憶部25に記憶される。また、測定対象選択情報E1に基づき、自然エネルギー発電装置3a~3fのうち選択された自然エネルギー発電装置3から、最大電力P2の情報である最大電力情報A2を受信する。
 演算部26は、指令対象選択モジュールM4により、自然エネルギー発電装置3a~3fのうち、目標電力指令D1の指令対象となる自然エネルギー発電装置3を選択する。目標電力指令D1の指令対象となる自然エネルギー発電装置3は、自然エネルギー発電装置3a~3fから単数または複数選択され、指令対象選択情報E2として記憶部25に記憶される。また、指令対象選択情報E2に基づき、自然エネルギー発電装置3a~3fのうち選択された自然エネルギー発電装置3に対し、目標電力P3の指令である目標電力指令D1が送信される。
 以上が、電力制御システム1の構成である。
[1-2.作用]
 次に、図1~9に基づき本実施形態の電力制御システム1および電力制御装置2の動作の概要を説明する。図4は電力制御装置2に内蔵されたプログラムのフローを示す図である。図4に示すプログラムは、電力制御装置2の演算部26に内蔵される。
 電力制御システム1において、自然エネルギー発電装置3は、自然エネルギーにより発電を行い電力系統9に電力を供給する。自然エネルギー発電装置3の制御部33は、最大電力測定モジュールN1を内蔵する。自然エネルギー発電装置3の制御部33は、最大電力測定モジュールN1により、自然エネルギー発電装置3から出力することが可能な最大電力P2の測定を行い、最大電力P2を最大電力情報A2に含め電力制御装置2に送信する。
 自然エネルギー発電装置3の制御部33は、最大電力測定モジュールN1により電力変換部32から出力される電力にかかる出力電圧を逐次変化させ、MPPT(最大電力ポイントトラッキング)により、最大電力P2を検出する。
 電力制御装置2は、自然エネルギー発電装置3から出力することが可能な最大電力P2を、自然エネルギー発電装置3から最大電力情報A2を受信することにより検出する。電力制御装置2は、最大電力情報A2を通信部23により受信する。
 また、電力制御装置2は、電力系統9の電力に関する系統情報B1、B2を検出する。電力制御装置2の演算部26は、内蔵する系統情報検出モジュールM5により自然エネルギー発電装置3の制御部33から系統情報B1を、センタ装置8から系統情報B2を受信する。電力制御装置2は、系統情報B1、B2を受信することにより、電力系統9の電圧、電流、周波数等の情報、電力系統9の需要電力、供給電力に関する情報を検出する。
 電力制御装置2は、最大電力情報A2にかかる最大電力P2、および系統情報B1、系統情報B2に基づき、自然エネルギー発電装置3に出力させる最大電力P2以下である目標電力P3を算出し、自然エネルギー発電装置3に指示する。電力制御装置2の演算部26は、内蔵する出力調整モジュールM1により目標電力P3の算出を行う。
 電力制御装置2は、自然エネルギー発電装置3の制御部33から送信された系統情報B1、センタ装置8から送信された系統情報B2に基づき、電力系統9の電力が予め定められた周波数の範囲内にないと判断した場合、自然エネルギー発電装置3に対し、出力電力P1を目標電力P3に減少させる指示を行う。電力制御装置2の演算部26は、内蔵する出力調整モジュールM1により出力電力P1未満である目標電力P3を算出する。電力制御装置2は、目標電力P3を目標電力指令D1により通信部23から自然エネルギー発電装置3に送信し、目標電力P3の指示を行う。
 電力系統9の周波数fが、基準周波数f0に対し予め定められたΔf1内にないと判断した場合、つまり周波数fがf0-Δf1≦f≦f0+Δf1となる範囲にないと判断した場合、電力制御装置2は、自然エネルギー発電装置3に対し出力電力P1を目標電力P3に減少させる指示を、目標電力指令D1を送信することにより行う。Δf1を第1の周波数範囲内と呼ぶ場合がある。
 例えばf0=50Hz、Δf1=1Hzである場合、f0-Δf1=49Hz、f0+Δf1=51Hzである。周波数fが49Hz≦f≦51Hzとなる範囲にない場合、電力制御装置2は、出力電力P1を目標電力P3に減少させる指示を、目標電力指令D1を自然エネルギー発電装置3に対して送信することにより行う。
 電力制御装置2は、自然エネルギー発電装置3から出力された出力電力P1と自然エネルギー発電装置3から出力することが可能な最大電力P2との差分である差分電力P4を算出し、出力部24から出力させる。電力制御装置2の演算部26は、差分算出モジュールM2により差分電力P4を算出する。
 電力制御装置2は、自然エネルギー発電装置3の制御部33から送信された系統情報B1、センタ装置8から送信された系統情報B2により電力系統9の電力に関する情報を検出する。電力制御装置2は、系統情報B1、B2に基づき、電力系統9の電力が予め定められた周波数範囲内にあると判断した場合、自然エネルギー発電装置3に対し、出力することが可能な最大電力P2を出力させる指示を行う。
 電力系統9の周波数fが、基準周波数f0に対し予め定められたΔf2内にあると判断した場合、つまり周波数fがf0-Δf2≦f≦f0+Δf2となる範囲にあると判断した場合、電力制御装置2は、自然エネルギー発電装置3に対し出力電力P1を最大電力P2とする指示を、目標電力指令D1を送信することにより行う。Δf2を第2の周波数範囲内と呼ぶ場合がある。
 例えばf0=50Hz、Δf2=0.1Hzである場合、f0-Δf2=49.9Hz、f0+Δf2=50.1Hzである。周波数fが49.9Hz≦f≦50.1Hzとなる範囲にある場合、電力制御装置2は、出力電力P1を最大電力P2とする指示を、目標電力指令D1を自然エネルギー発電装置3に対して送信することにより行う。
 電力制御装置2は、複数の自然エネルギー発電装置3のうち、一部の自然エネルギー発電装置3に対し、目標電力指令D1により目標電力P3にかかる電力を出力する指示を行う。電力制御装置2の演算部26は、指令対象選択モジュールM4により、目標電力指令D1を指示する対象として、複数の自然エネルギー発電装置3のうち一部の自然エネルギー発電装置3を選択する。
 電力制御装置2は、複数の自然エネルギー発電装置3のうち、選択された自然エネルギー発電装置3の最大電力P2を検出する。電力制御装置2の演算部26は、測定対象選択モジュールM3により、複数の自然エネルギー発電装置3のうち、最大電力P2の測定対象となる一部の自然エネルギー発電装置3を選択する。
 上記の動作は、図4に示すプログラムにより実現される。図4に示すプログラムは、電力制御装置2の演算部26に内蔵される。図4に示すプログラムは、一定周期にて繰り返し実行される。図4に示すプログラムは、例えば5分、30分周期にて実行される。電力制御装置2の演算部26は、下記の手順にて自然エネルギー発電装置3の電力制御に関する動作を行う。
(ステップS01:最大電力P2の測定対象となる自然エネルギー発電装置3を選択する)
 電力制御装置2の演算部26は、内蔵する測定対象選択モジュールM3により、最大電力P2の測定対象となる自然エネルギー発電装置3を、複数の自然エネルギー発電装置3の中から選択する。
 最大電力P2の測定対象として、自然エネルギー発電装置3a~3fのうち、例えば、自然エネルギーサイトの東側に配置された自然エネルギー発電装置3a、西側に配置された自然エネルギー発電装置3dの二つが選択される。選択される自然エネルギー発電装置3はこれに限られず、任意に選択されてよい。最大電力P2の測定対象として選択された自然エネルギー発電装置3a、3dは、測定対象選択情報E1として記憶部25に記憶される。
(ステップS02:最大電力P2の測定を行う)
 ステップS01において、記憶部25に記憶された測定対象選択情報E1に基づき、電力制御装置2の演算部26は、選択された自然エネルギー発電装置3a、3dの最大電力の検出を行う。電力制御装置2の演算部26は、通信部23を介し、自然エネルギー発電装置3a、3dから出力することが可能な最大電力P2の情報である最大電力情報A2を受信する。
 自然エネルギー発電装置3において、一定周期にて最大電力P2の測定が行われ、最大電力情報A2が電力制御装置2に対し送信される。
 自然エネルギー発電装置3において発電部31により発電された電力は、電力変換部32により直流から交流に変換される。制御部33は、電力変換部32の出力電力P1を制御する。制御部33は、ソフトウェアにより構成された最大電力測定モジュールN1を内蔵する。
 制御部33は、最大電力測定モジュールN1により、自然エネルギー発電装置3から出力することが可能な最大電力P2の測定を行う。最大電力P2は、MPPT(最大電力ポイントトラッキング)により検出される。MPPT(最大電力ポイントトラッキング)により電力変換部32の出力電圧を図5に示すように逐次変化させ、最大となる電力を最大電力P2として検出する。自然エネルギー発電装置3a、3dの最大電力P2は、最大電力情報A2に含められ通信線5bを介し電力制御装置2に送信される。
 電力制御装置2の演算部26は、通信部23を介し最大電力情報A2を受信し、自然エネルギー発電装置3a、3dの最大電力P2を検出する。プログラムにおけるステップS02または最大電力測定モジュールN1を、最大電力検出手段と呼ぶ場合がある。
(ステップS03:系統情報B1、系統情報B2を受信する)
 次に電力制御装置2の演算部26は、電力系統9の電力に関する系統情報B1、B2を検出する。電力制御装置2の演算部26は、内蔵する系統情報検出モジュールM5により自然エネルギー発電装置3の制御部33から送信された系統情報B1、センタ装置8から送信された系統情報B2を受信することにより、電力系統9の電力に関する情報を検出する。
 ステップS01において記憶部25に記憶された測定対象選択情報E1に基づき、電力制御装置2の演算部26は、自然エネルギー発電装置3a~3fのうち自然エネルギー発電装置3a、3dを選択し、自然エネルギー発電装置3a、3dにそれぞれ接続された電力測定装置4a、4dから、系統情報B1a、B1dを受信する。電力制御装置2の演算部26は、系統情報B1a、B1dを、通信線5aを介し通信部21により受信する。
 また、電力制御装置2の演算部26は、センタ装置8から系統情報B2を受信する。電力制御装置2の演算部26は、系統情報B2を通信線5cを介し通信部22により受信する。受信した系統情報B1a、B1d、系統情報B2は、記憶部25に記憶される。
 系統情報B1a、B1dには、電力系統9の電力にかかる周波数fに関する情報が含まれる。系統情報B2には、電力系統9の電圧、電流、周波数等の情報、電力系統9の需要電力、供給電力に関する情報が含まれる。プログラムにおけるステップS03または系統情報検出モジュールM5を、系統情報検出手段と呼ぶ場合がある。
(ステップS04:目標電力P3の指令対象となる自然エネルギー発電装置3を選択する)
 次に電力制御装置2の演算部26は、内蔵する指令対象選択モジュールM4により、目標電力P3を出力させる指令の対象となる自然エネルギー発電装置3を、複数の自然エネルギー発電装置3の中から選択する。
 目標電力P3を出力させる指令の対象として、自然エネルギー発電装置3a~3fのうち、出力電力が平均化される自然エネルギー発電装置3が選択される。例えば、大きい電力を出力している自然エネルギー発電装置3c、3dの二つが選択される。選択される自然エネルギー発電装置3はこれに限られず、任意に選択されてよい。目標電力P3を出力させる指令の対象として選択された自然エネルギー発電装置3c、3dは、指令対象選択情報E2として記憶部25に記憶される。目標電力P3の指令対象となる自然エネルギー発電装置3は、最大電力P2の測定対象となる自然エネルギー発電装置3と重複していてもよい。
(ステップS05:周波数fが予め定められた周波数Δf2の範囲内にあるかを判断する)
 ステップS03において、系統情報検出モジュールM5により検出され、記憶部25に記憶された系統情報B1、B2に基づき、電力制御装置2の演算部26は、電力系統9における電力の周波数fが予め定められた周波数Δf2の範囲内にあるかの判断を行う。
 電力系統9における電力の周波数fが、f0-Δf2≦f≦f0+Δf2となる範囲にある場合、電力系統9における電力の周波数fは、基準周波数f0に対し予め定められた周波数Δf2の範囲内にあると判断される。
 例えば、基準周波数f0=50Hz、Δf2=0.1Hzである場合、f0-Δf2=49.9Hz、f0+Δf2=50.1Hzである。電力系統9における電力の周波数fが、49.9Hz≦f≦50.1Hzである場合、電力系統9における電力の周波数fは、予め定められた周波数範囲内にあると判断される。
 周波数fが予め定められた周波数範囲内にあると判断した場合(ステップS05のYES)、プログラムは、ステップS06に移行する。周波数fが予め定められた周波数範囲内にあると判断しない場合(ステップS05のNO)、プログラムは、ステップS07に移行する。
(ステップS06:自然エネルギー発電装置3に最大電力P2を出力する指示を行う)
 ステップS05で、周波数fが予め定められた周波数範囲内にあると判断された場合、電力制御装置2は、ステップS04において記憶部25に記憶された指令対象選択情報E2に基づき、選択された自然エネルギー発電装置3c、3dに対し、目標電力指令D1により出力電力P1を最大電力P2とする指示を行う。電力制御装置2の演算部26は、内蔵する出力調整モジュールM1により目標電力指令D1の指示を行う。目標電力指令D1は、通信部23、通信線5bを介し自然エネルギー発電装置3a~3fに送信される。出力電力P1を最大電力P2とする指示は、全数の自然エネルギー発電装置3a~3fに対し送信されるようにしてもよい。
(ステップS07:自然エネルギー発電装置3に目標電力P3を出力する指示を行う)
 ステップS05で、周波数fが予め定められた周波数範囲内にないと判断された場合、電力制御装置2の演算部26は、ステップS04において記憶部25に記憶された指令対象選択情報E2に基づき、選択された自然エネルギー発電装置3c、3dに対し、出力電力の指令である目標電力指令D1により目標電力P3にかかる電力を出力する指示を行う。電力制御装置2の演算部26は、内蔵する出力調整モジュールM1により目標電力指令D1にかかる目標電力P3を算出する。目標電力指令D1は、通信部23、通信線5bを介し自然エネルギー発電装置3c、3dに送信される。
 目標電力P3は、ステップS02において検出された最大電力P2、およびステップS03において検出された系統情報B1、B2に基づき算出される。自然エネルギー発電装置3a、3dのそれぞれの最大電力P2a、P2dは、同一の太陽光発電サイトに配置された自然エネルギー発電装置3b、3c、3e、3fのそれぞれの最大電力P2と近似であると類推される。したがって、自然エネルギー発電装置3c、3dに対する目標電力P3は、最大電力P2a、P2dに基づき算出されても一定の確からしさを有する。
 自然エネルギー発電装置3a、3dにより検出された最大電力P2a、P2d未満の電力が目標電力P3として算出される。目標電力P3は、図5、図6に示すように最大電力P2から一定の電力ΔPが減算され算出される。図6に示すように時刻ごとに目標電力P3が算出される。
 目標電力P3は、図7に示すように、最大電力P2に対し一定の比率を有するように算出されてもよい。図7に示すように時刻ごとに目標電力P3が算出される。ステップS07において算出される目標電力P3を目標電力P3k、後述するステップS11において算出される目標電力P3を目標電力P3jとした場合、P3k>P3jとなる目標電力P3kが算出されることが望ましい。プログラムにおけるステップS07または出力調整モジュールM1を出力電力指令手段と呼ぶ場合がある。
(ステップS08:上位指令C1を受信したかを判断する)
 次に、電力制御装置2の演算部26は、センタ装置8から上位指令C1を受信したかの判断を行う。上位指令C1は、センタ装置8から、通信線5c、通信部22を介し演算部26に送信される。上位指令C1には、自然エネルギー発電装置3の出力電力を増加、減少させる指令、および増加量または減少量が含まれる。
 上位指令C1を受信したと判断した場合(ステップS08のYES)、プログラムは、ステップS09に移行する。上位指令C1を受信したと判断しない場合(ステップS08のNO)、プログラムは、ステップS10に移行する。
(ステップS09:自然エネルギー発電装置3に目標電力P3を出力する指示を行う)
 ステップS08で、上位指令C1を受信したと判断された場合、電力制御装置2の演算部26は、ステップS04において記憶部25に記憶された指令対象選択情報E2に基づき、選択された自然エネルギー発電装置3c、3dに対し、目標電力指令D1により目標電力P3にかかる電力を出力する指示を行う。電力制御装置2の演算部26は、内蔵する出力調整モジュールM1により目標電力指令D1にかかる目標電力P3の算出を行う。目標電力指令D1は、通信部23、通信線5bを介し自然エネルギー発電装置3c、3dに送信される。
 目標電力P3は、ステップS08において受信したと判断された上位指令C1に含まれる出力電力を増加、減少させる指令、および増加量または減少量に基づき算出される。上位指令C1が自然エネルギー発電装置3の出力電力P1を増加させることを指示するものである場合、上位指令C1にかかる増加量が、自然エネルギー発電装置3c、3dに按分され目標電力P3が算出される。自然エネルギー発電装置3c、3dは、目標電力指令D1を受信し、目標電力P3に出力電力P1を増加させる。
 上位指令C1が自然エネルギー発電装置3の出力電力を減少させることを指示するものである場合、上位指令C1にかかる減少量が、自然エネルギー発電装置3c、3dに按分され目標電力P3が算出される。自然エネルギー発電装置3c、3dは、目標電力指令D1を受信し、目標電力P3に出力電力P1を減少させる。
 自然エネルギー発電装置3に目標電力P3を出力する指示を行うステップS09にかかる動作は、ステップS05~S07にかかる動作に優先して行われる。プログラムにおけるステップS09または出力調整モジュールM1を出力電力指令手段と呼ぶ場合がある。
(ステップS10:周波数fが予め定められた周波数Δf1の範囲内にあるか判断する)
 電力制御装置2の演算部26は、ステップS03において、系統情報検出モジュールM5により検出され、記憶部25に記憶された系統情報B1、B2に基づき、電力系統9における電力の周波数fが予め定められた周波数Δf1の範囲内にあるかの判断を行う。
 電力系統9における電力の周波数fが、f0-Δf1≦f≦f0+Δf1となる範囲にある場合、電力系統9における電力の周波数fは、基準周波数f0に対し予め定められた周波数Δf1の範囲内にあると判断される。
 例えば、基準周波数f0=50Hz、Δf1=1Hzである場合、f0-Δf1=49Hz、f0+Δf1=51Hzである。電力系統9における電力の周波数fが、49Hz≦f≦51Hzである場合、電力系統9における電力の周波数fは、予め定められた周波数範囲内にあると判断される。
 周波数fが予め定められた周波数Δf1の範囲内にあると判断しない場合(ステップS10のNO)、プログラムは、ステップS11に移行する。周波数fが予め定められた周波数Δf1の範囲内にあると判断した場合(ステップS10のYES)、プログラムは、ステップS12に移行する。
(ステップS11:自然エネルギー発電装置3に目標電力P3を出力する指示を行う)
 ステップS10で、周波数fが予め定められた周波数Δf1の範囲内にないと判断された場合、電力制御装置2の演算部26は、ステップS04において、指令対象選択モジュールM4により記憶部25に記憶された指令対象選択情報E2に基づき、選択された自然エネルギー発電装置3c、3dに対し、出力電力の指令である目標電力指令D1により目標電力P3にかかる電力を出力する指示を行う。電力制御装置2の演算部26は、内蔵する出力調整モジュールM1により目標電力指令D1にかかる目標電力P3を算出する。目標電力指令D1は、通信部23、通信線5bを介し自然エネルギー発電装置3c、3dに送信される。
 目標電力P3は、現在自然エネルギー発電装置3c、3dから出力されている出力電力P1未満に設定される。また、ステップS07において算出される目標電力P3を目標電力P3k、ステップS11において算出される目標電力P3を目標電力P3jとした場合、P3k>P3jとなる目標電力P3jが算出されることが望ましい。自然エネルギー発電装置3に目標電力P3を出力する指示を行うステップS11にかかる動作は、ステップS05~S09にかかる動作に優先して行われる。
 自然エネルギー発電装置3により発電された電力が電力系統9に供給された場合であっても、電力系統9における火力、水力、原子力等の発電装置(図中不示)は、電力系統9の周波数を一定の周波数に保つ制御を行う。しかしながら、電力系統9における電力の周波数fが、f0-Δf1≦f≦f0+Δf1の範囲にない場合、例えば49Hz≦f≦51Hzの範囲にない場合、火力、水力、原子力等の発電装置により安定的な周波数制御が、行われていないものと類推される。
 自然エネルギー発電装置3の出力電力P1は、日射や風速等の気象条件の影響を受けて時々刻々変動する。また火力、水力、原子力等の発電装置と、自然エネルギー発電装置3の出力電力の応答速度特性は、それぞれ異なる。このため、火力、水力、原子力等の発電装置および自然エネルギー発電装置3から出力される電力どうしが互いに干渉し、火力、水力、原子力等の発電装置による周波数制御が、効率よく機能しない場合がある。
 火力、水力、原子力等の発電装置による周波数制御が、効率よく機能しない場合、自然エネルギー発電装置3の出力電力P1を抑制することが望ましい。応答速度特性が異なる自然エネルギー発電装置3の出力電力P1の、電力系統9における比率を低減させ、火力、水力、原子力等の発電装置による安定的な周波数制御を確保するためである。
 したがって、自然エネルギー発電装置3の出力電力P1が少ない場合であっても、電力制御装置2の演算部26は、図8に示すように自然エネルギー発電装置3c、3dに対し、目標電力指令D1にかかる目標電力P3により、出力電力P1を減少させる指示を行う。また、ステップS08においてセンタ装置8から上位指令C1により自然エネルギー発電装置3の出力電力P1を増加させる指令を受けた場合であっても、電力制御装置2の演算部26は、自然エネルギー発電装置3c、3dに対し、目標電力指令D1にかかる目標電力P3により、出力電力P1を減少させる指示を行う。
 目標電力P3は、目標電力指令D1により全数の自然エネルギー発電装置3a~3fに送信されるようにしてもよい。目標電力指令D1により目標電力P3を指示された自然エネルギー発電装置3a~3fは、出力電力P1を減少させる。プログラムにおけるステップS11または出力調整モジュールM1を出力電力指令手段と呼ぶ場合がある。
(ステップS12:差分電力P4を算出する)
 次に、電力制御装置2の演算部26は、差分電力P4の算出を行う。電力制御装置2の演算部26は、内蔵する差分算出モジュールM2により自然エネルギー発電装置3から出力された出力電力P1と、自然エネルギー発電装置3から出力することが可能な最大電力P2との差分である差分電力P4を算出する。差分電力P4は、自然エネルギー発電装置3a~3fごとに算出される。
(ステップS13:差分電力P4を出力する)
 次に、電力制御装置2の演算部26は、ステップS12で算出した差分電力P4にかかるデータを、出力部24に出力させる。出力部24は、差分電力P4にかかるデータを表示、プリント、通信電文により出力する。出力された差分電力P4にかかるデータは、自然エネルギー発電装置3の運営会社による料金請求等に役立てられる。プログラムにおけるステップS13および出力部24を出力手段と呼ぶ場合がある。
 以上が、電力制御システム1の動作である。周波数fが、電力系統9の火力、水力、原子力等の発電装置により周波数制御可能である周波数Δf3の範囲内にない場合、自然エネルギー発電装置3a~3fに対し、目標電力P3をゼロとする目標電力指令D1が送信されるようにしてもよい。図9に示すように電力系統9の周波数fが基準周波数f0から離間するほど、自然エネルギー発電装置3の出力電力P1は抑制される。
[1-3.効果]
(1)本実施形態によれば、電力制御システム1は、自然エネルギーにより発電を行い電力系統9に電力を供給する自然エネルギー発電装置3と、自然エネルギー発電装置3から出力される最大電力P2を検出する最大電力検出手段と、電力系統9の電力に関する系統情報B1、B2を検出する系統情報検出手段と、最大電力検出手段により検出された最大電力P2、および系統情報検出手段により検出された系統情報B1、B2に基づき、自然エネルギー発電装置3に出力させる最大電力P2以下である目標電力P3を算出し指示する出力電力指令手段と、を備えた電力制御装置2と、を有するので、自然エネルギー発電装置3を含む電力系統9を、安定的に制御することができる電力制御システム1を提供することができる。
 自然エネルギー発電装置3は、目標電力指令D1により目標電力P3を指示され、最大電力P2以下である目標電力P3にかかる出力電力P1を出力するので、電力系統9が安定となるような目標電力P3にかかる出力電力P1を、自然エネルギー発電装置3に出力させることができる。
 また、自然エネルギー発電装置3は、最大電力P2以下である出力電力P1を出力しており、急峻な出力電力P1の増加の要求が、上位指令C1によりセンタ装置8から指令された場合であっても容易に出力電力P1を増加させることができる。
(2)本実施形態によれば、電力制御システム1は、系統情報検出手段により検出された系統情報B1、B2に基づき、電力系統9の電力が予め定められた第1の周波数Δf1の範囲内にないと判断した場合、出力電力指令手段(ステップS11または出力調整モジュールM1)は、自然エネルギー発電装置3に対し、出力電力P1を減少させる指示を行うので、自然エネルギー発電装置3を含む電力系統9を、安定的に制御することができる電力制御システム1を提供することができる。
 自然エネルギー発電装置3の出力電力P1は、日射や風速等の気象条件の影響を受けて時々刻々変動する。また火力、水力、原子力等の発電装置と、自然エネルギー発電装置3の出力電力の応答速度特性は、それぞれ異なる。このため、火力、水力、原子力等の発電装置および自然エネルギー発電装置3から出力される電力どうしが互いに干渉し、火力、水力、原子力等の発電装置による周波数制御が、効率よく機能しない場合がある。
 火力、水力、原子力等の発電装置による周波数制御が、効率よく機能しない場合、自然エネルギー発電装置3の出力電力P1を抑制することが望ましい。自然エネルギー発電装置3に対し、出力電力P1を減少させる指示を行うので、自然エネルギー発電装置3の出力電力P1の、電力系統9における比率を低減させ、火力、水力、原子力等の発電装置による安定的な周波数制御を確保することができる。これにより、自然エネルギー発電装置3を含む電力系統9を、安定的に制御することができる。
(3)本実施形態によれば、電力制御装置2は、出力電力指令手段に指示された目標電力P3に基づき自然エネルギー発電装置3から出力された出力電力P1と、最大電力検出手段により検出された最大電力P2と、の差分電力P4を算出し出力する出力手段を有するので、出力された差分電力P4にかかるデータは、自然エネルギー発電装置3の運営会社による料金請求等に役立てられる。
(4)本実施形態によれば、電力制御装置2は、系統情報検出手段により検出された系統情報B1、B2に基づき、電力系統の電力が予め定められた第2の周波数Δf2の範囲内にあると判断した場合、出力電力指令手段は、自然エネルギー発電装置3に対し、最大電力にて出力させる指示を行うので、自然エネルギー発電装置3の出力電力P1は、最大電力P2未満に抑制されず、効率よく自然エネルギー発電装置3の出力電力P1を電力系統9に供給することができる。
(6)本実施形態によれば、電力制御装置2の最大電力検出手段は、複数の自然エネルギー発電装置3のうち、所定の自然エネルギー発電装置3の最大電力P2を検出するので、多数の自然エネルギー発電装置3の最大電力P2の測定を行うことなく、容易に最大電力P2の測定を行うことができる。同一の太陽光発電サイトに配置された自然エネルギー発電装置3の最大電力P2は近似するものと類推される。
[2.他の実施形態]
 変形例を含めた実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。以下は、その一例である。
(1)上記実施形態では、ステップS01において測定対象選択モジュールM3により選択された自然エネルギー発電装置3により、出力することが可能な最大電力P2の測定が行われるようにした。しかしながら、全数の自然エネルギー発電装置3により、出力することが可能な最大電力P2の測定が行われるようにしてもよい。
(2)上記実施形態では、ステップS01において測定対象選択モジュールM3により、最大電力P2の測定対象となる自然エネルギー発電装置3が選択されるものとした。しかしながら、作業者により選択された最大電力P2の測定対象となる自然エネルギー発電装置3が、予め測定対象選択情報E1として記憶部25に設定記憶されるようにしてもよい。
(3)上記実施形態では、ステップS04において目標電力P3の指令対象となる自然エネルギー発電装置3は、最大電力P2の測定対象となる自然エネルギー発電装置3と重複して選択されてもよいものとした。つまり、最大電力P2の測定対象となる自然エネルギー発電装置3は、目標電力指令D1により目標電力P3出力する指令を受信した場合、出力電力P1として出力している最大電力P2を目標電力P3に変更して出力することが必要とされた。しかしながら、ステップS04において指令対象選択モジュールM4により、目標電力P3の指令対象として選択される自然エネルギー発電装置3は、最大電力P2の検出対象となる自然エネルギー発電装置3を除くものであってもよい。
 例えば、ステップS01において測定対象選択モジュールM3により自然エネルギー発電装置3a、3dが最大電力P2の測定対象として選択された場合、自然エネルギー発電装置3a、3dを除く自然エネルギー発電装置3b、3c、3e、3fの中から、目標電力P3の指令対象となる自然エネルギー発電装置3が選択されるようにしてもよい。最大電力P2の測定対象となる自然エネルギー発電装置3a、3dは常時最大電力P2にかかる出力電力P1を出力するものとする。
 このように構成することで、電力制御装置2の出力電力指令手段は、複数の自然エネルギー発電装置3a~3fのうち、最大電力P2の検出対象を除く一部の自然エネルギー発電装置3に対し、目標電力P3にかかる出力電力P1を出力するように指示するので、最大電力P2の検出対象となる自然エネルギー発電装置3a、3dは常時最大電力P2にかかる出力電力P1を出力することができる。最大電力P2の検出対象となる自然エネルギー発電装置3a、3dは常時最大電力P2にかかる出力電力P1を出力するので、容易に最大電力P2の測定を行うことができる。
(4)上記実施形態では、自然エネルギー発電装置3が、最大電力測定モジュールN1を内蔵し、出力することが可能な最大電力P2を測定し、最大電力P2の情報である最大電力情報A2が、自然エネルギー発電装置3から電力制御装置2に送信されるようにした。しかしながら、電力制御装置2の演算部26が、最大電力測定モジュールN1を内蔵し、自然エネルギー発電装置3に対し、出力電力を増減するコマンドを送信することにより自然エネルギー発電装置3の出力電圧を逐次変化させ、電力制御装置2の演算部26により、自然エネルギー発電装置3の最大電力P2が測定されるようにしてもよい。
(5)上記実施形態では、ステップS05において周波数fが予め定められた周波数Δf2の範囲内にあると判断された場合、電力制御装置2は、自然エネルギー発電装置3に対し、目標電力指令D1により出力電力P1を最大電力P2とする指示を行うものとした。しかしながら、ステップS05、ステップS06を有さず、周波数fが予め定められた周波数Δf2の範囲内にあるかにかかわらず、電力制御装置2は、自然エネルギー発電装置3に対し、目標電力指令D1により出力電力P1を最大電力P2とする指示を送信するようにしてもよい。
(6)上記実施形態では、ステップS01において測定対象選択モジュールM3により選択された自然エネルギー発電装置3a、3dに接続された電力測定装置4a、4dから、系統情報B1を受信するものとしたが、自然エネルギー発電装置3a~3fのそれぞれに配置された電力測定装置4a~4fから、または電力測定装置4a~4fのうち任意に選択された電力測定装置4から、系統情報B1が電力制御装置2に送信されるようにしてもよい。
(7)上記実施形態では、自然エネルギー発電装置3a~3fのそれぞれに電力測定装置4a~4fが電気的に接続され配置されるものとしたが、電力測定装置4は、複数の自然エネルギー発電装置3のうちの一部に電気的に接続され配置されていてもよい。例えば図10に示すように、複数の自然エネルギー発電装置3a~3fのうち、予め選択された自然エネルギー発電装置3a、3dにのみ、それぞれ電力測定装置4a、4dが配置されるようにしてもよい。このように構成することにより、電力制御システム1における電力測定装置4の台数を減らすことができる。
(8)上記実施形態では、一つの電力制御装置2に複数の自然エネルギー発電装置3a~3fが通信線5bを介し接続されるようにした。しかしながら、一つの電力制御装置2に対し一つの自然エネルギー発電装置3が接続されるようにしてもよい。
(9)上記実施形態では、電力制御装置2は、自然エネルギー発電装置3と別の装置として設けられるものとした。しかしながら電力制御装置2は、自然エネルギー発電装置3と一体に構成されるものであってもよい。
1・・・電力制御システム
2・・・電力制御装置
21,22,23・・・通信部
24・・・出力部
25・・・記憶部
26・・・演算部
3,3a,3b,3c,3d,3e,3f・・・自然エネルギー発電装置
31・・・発電部
32・・・電力変換部
33・・・制御部
4,4a,4b,4c,4d,4e,4f・・・電力測定装置
5a,5b,5c・・・通信線
7・・・ケーブル
8・・・センタ装置
9・・・電力系統

 

Claims (10)

  1.  自然エネルギーにより発電を行い電力系統に電力を供給する自然エネルギー発電装置と、
     前記自然エネルギー発電装置から出力される最大電力を検出する最大電力検出手段と、
     前記電力系統の電力に関する系統情報を検出する系統情報検出手段と、
     前記最大電力検出手段により検出された前記最大電力、および前記系統情報検出手段により検出された前記系統情報に基づき、前記自然エネルギー発電装置に出力させる前記最大電力以下である出力電力を算出し指示する出力電力指令手段と、
     を備えた電力制御装置と、
      を有する電力制御システム。
  2.  前記系統情報検出手段により検出された前記系統情報に基づき、前記電力系統の電力が予め定められた第1の周波数範囲内にないと判断した場合、
     前記出力電力指令手段は、前記自然エネルギー発電装置に対し、出力電力を減少させる指示を行う、
      請求項1に記載の電力制御システム。
  3.  前記電力制御装置は、
     前記出力電力指令手段に指示された出力電力に基づき前記自然エネルギー発電装置から出力された出力電力と、前記最大電力検出手段により検出された最大電力と、の差分電力を算出し出力する出力手段を有する、
      請求項1または2に記載の電力制御システム。
  4.  前記系統情報検出手段により検出された前記系統情報に基づき、前記電力系統の電力が予め定められた第2の周波数範囲内にあると判断した場合、
     前記出力電力指令手段は、前記自然エネルギー発電装置に対し、最大電力にて出力させる指示を行う、
      請求項1乃至3のいずれか1項に記載の電力制御システム。
  5.  前記出力電力指令手段は、複数の前記自然エネルギー発電装置のうち、前記最大電力の検出対象を除く一部の前記自然エネルギー発電装置に対し、出力電力を指示する、
      請求項1乃至4のいずれか1項に記載の電力制御システム。
  6.  前記最大電力検出手段は、複数の前記自然エネルギー発電装置のうち、所定の前記自然エネルギー発電装置の最大電力を検出する、
      請求項1乃至5のいずれか1項に記載の電力制御システム。
  7.  前記最大電力検出手段は、前記自然エネルギー発電装置の出力電圧を逐次変化させ、最大となる電力を検出するMPPT(最大電力ポイントトラッキング)により、前記最大電力を検出する、
      請求項1乃至6のいずれか1項に記載の電力制御システム。
  8.  自然エネルギーにより発電を行い電力系統に電力を供給する自然エネルギー発電装置から出力される最大電力を検出する最大電力検出手段と、
     前記電力系統の電力に関する系統情報を検出する系統情報検出手段と、
     前記最大電力検出手段により検出された前記最大電力、および前記系統情報検出手段により検出された前記系統情報に基づき、前記自然エネルギー発電装置に、出力させる前記最大電力以下である出力電力を算出し指示する出力電力指令手段と、
      を有する電力制御装置。
  9.  自然エネルギーにより発電を行い電力系統に電力を供給する自然エネルギー発電装置から出力される最大電力を検出する最大電力検出ステップと、
     前記電力系統の電力に関する系統情報を検出する系統情報検出ステップと、
     前記最大電力検出ステップにより検出された前記最大電力、および前記系統情報検出ステップにより検出された前記系統情報に基づき、前記自然エネルギー発電装置に出力させる前記最大電力以下である出力電力を算出し指示する出力電力指令ステップと、
      を有する電力制御用コンピュータプログラム。
  10.  自然エネルギーにより発電を行い電力系統に電力を供給する自然エネルギー発電装置から出力される最大電力を検出する最大電力検出手順と、
     前記電力系統の電力に関する系統情報を検出する系統情報検出手順と、
     前記最大電力検出手順により検出された前記最大電力、および前記系統情報検出手順により検出された前記系統情報に基づき、前記自然エネルギー発電装置に出力させる前記最大電力以下である出力電力を算出し指示する出力電力指令手順と、
      を有する電力制御方法。

     
PCT/JP2019/050160 2019-12-20 2019-12-20 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法 WO2021124567A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/050160 WO2021124567A1 (ja) 2019-12-20 2019-12-20 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法
PCT/JP2020/047239 WO2021125287A1 (ja) 2019-12-20 2020-12-17 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法
JP2021565652A JP7263555B2 (ja) 2019-12-20 2020-12-17 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050160 WO2021124567A1 (ja) 2019-12-20 2019-12-20 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法

Publications (1)

Publication Number Publication Date
WO2021124567A1 true WO2021124567A1 (ja) 2021-06-24

Family

ID=76476842

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/050160 WO2021124567A1 (ja) 2019-12-20 2019-12-20 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法
PCT/JP2020/047239 WO2021125287A1 (ja) 2019-12-20 2020-12-17 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047239 WO2021125287A1 (ja) 2019-12-20 2020-12-17 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法

Country Status (2)

Country Link
JP (1) JP7263555B2 (ja)
WO (2) WO2021124567A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060921A (ja) * 2009-09-08 2011-03-24 Tokyo Electric Power Co Inc:The 太陽光発電設備
JP2014241678A (ja) * 2013-06-11 2014-12-25 富士電機株式会社 電力調整装置、電力調整システム、プログラム
CN104600742A (zh) * 2014-12-25 2015-05-06 华中科技大学 一种利用储能装置补偿风电场虚拟惯量的方法
JP2015201900A (ja) * 2014-04-03 2015-11-12 株式会社東芝 ウィンドファームの出力制御装置、方法、及びプログラム
JP2018107919A (ja) * 2016-12-27 2018-07-05 株式会社東芝 電力需給制御システム、電力需給制御用コンピュータプログラムおよび電力需給制御方法
WO2019038954A1 (ja) * 2017-08-23 2019-02-28 株式会社日立製作所 電力系統の負荷周波数制御装置及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204081A (ja) 2004-12-24 2006-08-03 Hitachi Ltd 分散型電源による需給調整方法,システムおよびサービス
US8338987B2 (en) * 2010-02-26 2012-12-25 General Electric Company Power generation frequency control
JP2016208723A (ja) 2015-04-24 2016-12-08 一般財団法人電力中央研究所 電力系統の需給調整方式

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060921A (ja) * 2009-09-08 2011-03-24 Tokyo Electric Power Co Inc:The 太陽光発電設備
JP2014241678A (ja) * 2013-06-11 2014-12-25 富士電機株式会社 電力調整装置、電力調整システム、プログラム
JP2015201900A (ja) * 2014-04-03 2015-11-12 株式会社東芝 ウィンドファームの出力制御装置、方法、及びプログラム
CN104600742A (zh) * 2014-12-25 2015-05-06 华中科技大学 一种利用储能装置补偿风电场虚拟惯量的方法
JP2018107919A (ja) * 2016-12-27 2018-07-05 株式会社東芝 電力需給制御システム、電力需給制御用コンピュータプログラムおよび電力需給制御方法
WO2019038954A1 (ja) * 2017-08-23 2019-02-28 株式会社日立製作所 電力系統の負荷周波数制御装置及び方法

Also Published As

Publication number Publication date
WO2021125287A1 (ja) 2021-06-24
JP7263555B2 (ja) 2023-04-24
JPWO2021125287A1 (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
EP2602898B1 (en) System and method for reactive power compensation in power networks
EP3224925B1 (en) Method for black starting wind turbine, wind farm, and restoring wind farm and wind turbine, wind farm using the same
EP2673870B1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
EP3618217A1 (en) Photovoltaic power plant and secondary frequency modulation control method therefor
JP6163494B2 (ja) 電力変換器、および電力変換器を制御する方法
EP3635835B1 (en) Method and system for locally controlling power delivery along a distribution feeder of an electricity grid
JP6163558B2 (ja) 太陽光発電システム
WO2015037654A1 (ja) 制御装置、蓄電装置、電池制御システム、電池制御装置、制御方法、電池制御方法および記録媒体
JP4988540B2 (ja) ウィンドファーム群,ウィンドファームおよびその制御方法
US20200028367A1 (en) Method for operating a wind farm
WO2018139164A1 (ja) 蓄電池と電力変換装置の連携システムの制御方法、およびパワーコンディショニングシステム
WO2016098200A1 (ja) 太陽光発電所の制御システム
KR20150059313A (ko) 송전 한계를 고려한 자동 발전 제어 방법
US20230275436A1 (en) Power management server and power management method
CN109314395A (zh) 与多个可再生能源发电厂的互连有关的改进
JP2006288079A (ja) 電力設備接続装置、電力供給システム、電力設備接続方法および電力系統運用方法。
KR20170021606A (ko) 배터리 에너지 저장 시스템 및 이를 이용한 무효 전력 보상 방법
WO2021124567A1 (ja) 電力制御システム、電力制御装置、電力制御用コンピュータプログラム、および電力制御方法
WO2019107017A1 (ja) 電力管理システム
JP2022513951A (ja) 複数の電気デバイスを有する電気設備を制御するための方法、制御ユニット及びそのような制御ユニットを有する電気設備
JP4365332B2 (ja) 発電設備の単独運転検出装置
WO2023175983A1 (ja) 制御装置、制御方法、及びプログラム
JP7185178B2 (ja) 発電予備力測定装置及び発電予備力測定方法
JP6936071B2 (ja) 発電設備の制御方法および発電設備の制御装置
JP2022155264A (ja) 電源管理システム、燃料電池装置及び充放電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP