WO2016098200A1 - 太陽光発電所の制御システム - Google Patents

太陽光発電所の制御システム Download PDF

Info

Publication number
WO2016098200A1
WO2016098200A1 PCT/JP2014/083425 JP2014083425W WO2016098200A1 WO 2016098200 A1 WO2016098200 A1 WO 2016098200A1 JP 2014083425 W JP2014083425 W JP 2014083425W WO 2016098200 A1 WO2016098200 A1 WO 2016098200A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
time
plw
emergency request
Prior art date
Application number
PCT/JP2014/083425
Other languages
English (en)
French (fr)
Inventor
大河内 俊夫
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2014/083425 priority Critical patent/WO2016098200A1/ja
Priority to JP2016564508A priority patent/JP6265281B2/ja
Priority to CN201480083549.XA priority patent/CN107005056B/zh
Priority to US15/516,819 priority patent/US10468888B2/en
Publication of WO2016098200A1 publication Critical patent/WO2016098200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment

Definitions

  • the present invention relates to a control system for a solar power plant.
  • Patent Document 1 listed below is a power conditioner that converts DC power from a solar cell into AC power, and receives information related to a power generation limit value from an output suppression management device that manages a plurality of power conditioners. What is provided with the communication part which transmits the information regarding the electric power generation amount of an apparatus and the suppression control part which suppresses the output electric power of an own apparatus based on an electric power generation amount limit value is disclosed.
  • calendar information including suppression information indicating an output suppression date and a suppression amount is received from a command station or a control center on the commercial grid side that supplies commercial power, and based on the calendar information.
  • the power conditioner controls the output suppression date and the suppression amount that suppress the output of the photovoltaic power generation.
  • the amount of power generation varies depending on the amount of solar radiation. Therefore, as the number of photovoltaic power plants increases, it becomes difficult to maintain the power supply / demand balance, and it becomes difficult to stabilize the power system.
  • the output suppression date and the suppression amount are determined based on the prediction of the power supply / demand balance, the calendar information including the suppression information is distributed, and based on the calendar information, the power conditioner Suppress the output of photovoltaic power generation.
  • the power supply / demand balance is unpredictable or the weather is different from the prediction, the amount of photovoltaic power generation suppression becomes inappropriate and the power system cannot be stabilized.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control system for a solar power plant that can contribute to stabilization of an electric power system.
  • the solar power plant control system of the present invention includes a plurality of power conditioning systems that perform grid interconnection control for transmitting the power generated by the photovoltaic power generation apparatus to the power grid, and a linkage point that is power output to the power grid. And an overall control device that commands a target output to each power conditioning system so that the electric power is equal to or lower than the output upper limit value, and the overall control device changes the output upper limit value and the changed output upper limit value.
  • the receiver that receives the emergency request including information on the connection point, and the connection point power conforms to the output upper limit after the change by the time notified in the emergency request, and the change rate of the connection point power does not exceed the allowable limit
  • a calculation unit that calculates a target value of interconnection point power for each time and calculates a target output for each time of each power conditioning system based on the target value. Is shall.
  • control system of the photovoltaic power plant of the present invention by controlling the power at the connection point in response to an emergency request including information on the time when the output upper limit value is changed and the output upper limit value after the change, It is possible to contribute to stabilization.
  • FIG. 1 In the control system for a photovoltaic power plant according to Embodiment 1 of the present invention, an example of a change in electric power when the shortage of the output of some power conditioning systems is compensated by the output of another power conditioning system having surplus power FIG. It is a time chart for demonstrating the method in which the integrated control apparatus calculates the target value of the connection point electric power PLW for every time in Embodiment 2 of this invention.
  • FIG. 1 is a configuration diagram showing a control system for a photovoltaic power plant according to Embodiment 1 of the present invention.
  • the control system 1 of the solar power plant according to the first embodiment includes a plurality of power conditioning systems 3 and an overall control device 10 that controls these power conditioning systems 3.
  • Each power conditioning system 3 is provided with respect to each of the some solar power generation device 2 with which the solar power plant was equipped.
  • FIG. 1 only three sets of solar power generation devices 2 and power conditioning systems 3 are illustrated, but a larger number of solar power generation devices 2 and power conditioning systems 3 may be provided.
  • the overall control device 10 and each power conditioning system 3 are connected to each other via a communication network NT, so that bidirectional communication is possible.
  • the solar power generation device 2 generates direct-current power by changing the light energy of the sun into electric energy.
  • Each solar power generation device 2 can be composed of a plurality of solar cell strings in which a plurality of solar cell modules configured by arranging a large number of cells (solar cell elements) are arranged in series.
  • each solar power generation device 2 may be one in which a single solar cell module is electrically connected in parallel instead of the solar cell string.
  • the DC power generated by each solar power generation device 2 is supplied to the corresponding power conditioning system 3.
  • Each power conditioning system 3 performs system interconnection control for converting the DC power generated by the corresponding solar power generation device 2 into AC power and transmitting the AC power to the power system 7.
  • the AC power output from the power conditioning system 3 is transmitted to the power system 7 via the interconnection transformer 4 and the main transformer 5.
  • an interconnection transformer 4 is provided for each power conditioning system 3.
  • the output side of each interconnection transformer 4 is connected to one main transformer 5.
  • the output side of the main transformer 5 is connected to the power system 7.
  • the electric power system 7 is a commercial transmission / distribution network owned by an electric power company, an electric power distribution company, or the like.
  • the power output from the main transformer 5 corresponds to the interconnection point power PLW that is the power output to the power system 7.
  • FIG. 2 is a block diagram illustrating a configuration of the overall control device 10 according to the first embodiment.
  • the overall control device 10 includes a reception unit 11, a calculation unit 12, and a transmission unit 13.
  • the receiving unit 11 receives the information transmitted from each power conditioning system 3, the information on the connection point power PLW detected by the power meter 6, and the system information Dps transmitted from the manager of the power system 7. To do.
  • the calculation unit 12 calculates the individual target output of each power conditioning system 3 based on the information received by the reception unit 11.
  • the calculation unit 12 executes a calculation process based on a storage unit 121 including a ROM (Read Only Memory), a RAM (Random Access Memory), a nonvolatile memory, and the like, and a control program and data stored in the storage unit 121.
  • a CPU (Central Processing Unit) 122 and an input / output port for inputting / outputting external signals to / from the CPU 122 are provided.
  • the transmission unit 13 transmits the information on the individual target output of each power conditioning system 3 calculated by the calculation unit 12 to the corresponding power conditioning system 3.
  • the system information Dps is transmitted to the receiving unit 11 of the overall control apparatus 10 online from a computer system of an administrator of the power system 7 or an energy management system of a power distribution company that manages local power supply and demand.
  • the system information Dps transmitted from the computer system or the energy management system may be manually input to the receiving unit 11 of the overall control device 10 by the staff of the solar power plant. good.
  • the system information Dps includes information on the output upper limit value that regulates the upper limit of the connection point power PLW.
  • the manager of the power system 7 sets the output upper limit value so that the power system 7 is stabilized based on the prediction of the power supply-demand balance.
  • the overall control device 10 receives the output upper limit value and commands the target output to each power conditioning system 3.
  • the overall control device 10 controls the interconnection point power PLW to be as high as possible within a range where the interconnection point power PLW does not exceed the output upper limit value.
  • the rated output (W) of the interconnection power PLW is determined by a contract between the owner of the solar power plant and the power company, distribution company, etc. In the following description, the rated output of the interconnection point power PLW is referred to as “interconnection rated power”.
  • the output upper limit value and the connection point power PLW may be expressed by percentages when the connection rated power is 100%.
  • the output upper limit value and the interconnection point power PLW may be expressed in units of power (W).
  • Each power conditioning system 3 includes a power conversion unit that converts power input from the corresponding solar power generation device 2, a communication unit for communicating with the overall control device 10 via the communication network NT, and various data. And the memory
  • Each power conditioning system 3 desirably has a function of performing MPPT (Maximum Power Point Tracking) control that follows the maximum power point of the corresponding solar power generation device 2. Further, each power conditioning system 3 is configured so that the power generated by the corresponding solar power generation device 2 matches the target output received from the overall control device 10 (the voltage and the operating point of the solar power generation device 2). Current). Since such a power conditioning system 3 is well-known, the detailed description is abbreviate
  • MPPT Maximum Power Point Tracking
  • the system information Dps can include an emergency request that is a request to urgently change the output upper limit value.
  • the urgent request includes information regarding the time for changing the output upper limit value and the output upper limit value after the change.
  • the time at which the change of the output upper limit value is notified in an emergency request is hereinafter referred to as “change notification time”.
  • change notification time The time at which the change of the output upper limit value is notified in an emergency request.
  • change notification time The time at which the change of the output upper limit value is notified in an emergency request.
  • the time at which the overall control device 10 receives the emergency request is not limited to 15 minutes before the change notice time, for example, 30 minutes, 20 minutes, or 10 minutes before the change notice time.
  • a time that is a preset time before the change notice time may be used.
  • an allowable limit is set for the changing speed of the interconnection point power PLW.
  • the overall control device 10 performs control so that the changing speed of the connection point power PLW does not exceed the allowable limit.
  • the allowable limit is set so that the amount of change (increase or decrease) in interconnection point power PLW per minute is 12% or less of the interconnection rated power.
  • the calculation unit 12 matches the connection point power PLW to the output upper limit value after the change notice time and changes the connection point power PLW.
  • a target value of interconnection point power PLW for each time is calculated so that the speed does not exceed the allowable limit.
  • the calculating part 12 calculates the target output for every time of each power conditioning system based on the target value of the connection point electric power PLW for every time.
  • FIG. 3 is a time chart for explaining a method in which the overall control apparatus 10 calculates the target value of the connection point power PLW for each time in the first embodiment.
  • the overall control device 10 calculates the target value of the interconnection point power PLW for each time.
  • the output upper limit value is initially 100%.
  • An output upper limit value of 100% corresponds to the absence of a request for output suppression for a solar power plant.
  • an emergency request is received at 11:15.
  • This urgent request is for notifying that the output upper limit will be changed from 100% to 50% at 11:30.
  • the overall control device 10 performs control so that the connection point power PLW starts to decrease or increase from the time when the emergency request is received.
  • the overall control device 10 starts to reduce the connection point power PLW from 11:15 in response to the emergency request, and the connection point power PLW is reduced to 50% by 11:30, which is the change notice time. Reduce.
  • connection point power PLW decreases at a constant speed (a speed equal to the allowable limit) from 100% at 11:15 to 50% at 11:19:10.
  • a line 21 in FIG. 3 corresponds to the case where the interconnection point power PLW is reduced most slowly in a range satisfying the emergency request. In the case of the line 21, the connection point power PLW decreases at a constant speed from 100% at 11:15 to 50% at 11:30.
  • the overall control device 10 may be configured such that the line for changing the target value of the interconnection point power PLW for each time is within the range (allowable range) between the line 20 and the line 21. Thereby, it is possible to contribute to the stability of the electric power system 7 because it is possible to suppress the sudden change of the connection point power PLW while responding to the emergency request.
  • the overall control device 10 decreases the connection point power PLW in response to an emergency request, it is desirable that the change speed of the connection point power PLW be as slow as possible within the allowable range. That is, when receiving an emergency request at 11:15, the overall control device 10 preferably calculates the target value of the interconnection point power PLW for each time along the line 21 or a line close thereto.
  • an emergency request is subsequently received at 11:45.
  • This urgent request is for notifying that the output upper limit will be changed from 50% to 0% at 12:00.
  • the overall control apparatus 10 starts to decrease the connection point power PLW from 11:45 in response to the emergency request, and the connection point power PLW is reduced to 0% by 12:00, which is the change notice time.
  • a line 22 in FIG. 3 corresponds to a case where the interconnection point power PLW is lowered at the fastest allowable limit. In the case of the line 22, the interconnection point power PLW decreases at a constant speed (a speed equal to the allowable limit) from 50% at 11:45 to 0% at 11:49:10.
  • a line 23 in FIG. 3 corresponds to the case where the interconnection point power PLW is reduced most slowly in a range satisfying the emergency request. In the case of the line 23, the connection point power PLW decreases at a constant speed from 50% at 11:45 to 0% at 12:00.
  • the overall control device 10 may be configured so that the line that changes the target value of the interconnection point power PLW for each time is in the range (allowable range) between the line 22 and the line 23. Thereby, it is possible to contribute to the stability of the electric power system 7 because it is possible to suppress the sudden change of the connection point power PLW while responding to the emergency request.
  • the overall control device 10 decreases the connection point power PLW in response to an emergency request, it is desirable that the change speed of the connection point power PLW be as slow as possible within the allowable range. That is, when receiving an emergency request at 11:45, the overall control device 10 preferably calculates the target value of the interconnection point power PLW for each time along the line 23 or a line close thereto.
  • an emergency request is received at 12:15.
  • This urgent request is for notifying that the output upper limit will be changed from 0% to 50% at 12:30.
  • the central control device 10 starts to increase the connection point power PLW from 12:15 in response to the emergency request, and the connection point power PLW is increased to 50% by 12:30, which is the change notice time. Raise.
  • a line 24 in FIG. 3 corresponds to a case where the interconnection point power PLW is increased at the fastest allowable limit. In the case of the line 24, the connection point power PLW increases at a constant speed (a speed equal to the allowable limit) from 0% at 12:15 to 50% at 12:19:10.
  • a line 25 in FIG. 3 corresponds to the case where the connection point power PLW is increased most slowly within a range satisfying the emergency request. In the case of the line 25, the interconnection point power PLW decreases at a constant speed from 0% at 12:15 to 50% at 12:30.
  • the overall control device 10 may be configured such that the line that changes the target value of the interconnection point power PLW for each time is in the range (allowable range) between the line 24 and the line 25. Thereby, it is possible to contribute to the stability of the electric power system 7 because it is possible to suppress the sudden change of the connection point power PLW while responding to the emergency request.
  • connection point power PLW When the connection point power PLW is increased along the line 24, the amount of power transmitted to the power system 7, that is, the amount of power sold is larger than when the connection point power PLW is increased along the line 25. it can. Therefore, when the overall control device 10 increases the connection point power PLW in response to an emergency request, it is desirable that the change speed of the connection point power PLW be as fast as possible within the allowable range. That is, when receiving an emergency request at 12:15, the overall control device 10 preferably calculates the target value of the interconnection point power PLW for each time along the line 24 or a line close thereto.
  • an emergency request is received at 13:15.
  • This urgent request is a notice to change the output upper limit value from 50% to 100% at 13:30.
  • the overall control apparatus 10 starts to increase the connection point power PLW from 13:15 in response to the emergency request, and the connection point power PLW is increased to 100% by 13:30, which is the change notice time. Raise.
  • a line 26 in FIG. 3 corresponds to a case where the interconnection point power PLW is increased at the fastest allowable limit. In the case of the line 26, the connection point power PLW increases at a constant speed (a speed equal to the allowable limit) from 50% at 13:15 to 100% at 13:19:10.
  • a line 27 in FIG. 3 corresponds to the case where the connection point power PLW is increased most slowly within a range satisfying the emergency request. In the case of the line 27, the interconnection point power PLW increases at a constant speed from 50% at 13:15 to 100% at 13:30.
  • the overall control device 10 may be configured so that the line that changes the target value of the interconnection point power PLW for each time is in a range (allowable range) between the line 26 and the line 27. Thereby, it is possible to contribute to the stability of the electric power system 7 because it is possible to suppress the sudden change of the connection point power PLW while responding to the emergency request.
  • connection point power PLW When the connection point power PLW is increased along the line 26, the amount of power transmitted to the power system 7, that is, the amount of power sold is larger than when the connection point power PLW is increased along the line 27. it can. Therefore, when the overall control device 10 increases the connection point power PLW in response to an emergency request, it is desirable that the change speed of the connection point power PLW be as fast as possible within the allowable range. That is, when receiving an emergency request at 13:15, the overall control device 10 preferably calculates the target value of the interconnection point power PLW for each time along the line 26 or a line close thereto.
  • FIG. 4 is a graph for explaining a method in which the overall control device 10 calculates the target value of the connection point power PLW for each time in the first embodiment.
  • the interconnection point power PLW is changed along line 28 from P1 at time T1 to P2 at time T2.
  • the overall control device 10 determines a line for changing the target value P of the connection point power PLW as described with reference to FIG.
  • FIG. 5 is a flowchart showing a process in which the overall control device 10 sets the target value P of the connection point power PLW in response to the emergency request in the first embodiment.
  • step S1 of FIG. 5 it is determined whether the receiving unit 11 of the overall control apparatus 10 has received an emergency request. If an emergency request is received, the process proceeds to step S2.
  • step S2 the calculation unit 12 of the overall control apparatus 10 outputs P1 that is the output (or the current connection point power PLW) corresponding to the output upper limit value before the change due to the emergency request, and the output upper limit after the change due to the emergency request.
  • the output P2 corresponding to the value is compared.
  • P1> P2 the process proceeds from step S2 to step S3. If P1 ⁇ P2, the process proceeds from step S2 to step S4.
  • step S3 it corresponds to a case where the connection point power PLW is lowered in response to an emergency request.
  • the calculation unit 12 of the overall control device 10 is a line for reducing the target value P of the connection point power PLW as in the case of an emergency request at 11:15 or 11:45 in FIG. To decide.
  • step S4 it corresponds to a case where the connection point power PLW is increased in response to an emergency request.
  • the calculation unit 12 of the overall control apparatus 10 increases the target value P of the connection point power PLW as in the case of an emergency request at 12:15 or 13:15 in FIG. To decide. For the reason described above, in this case, it is desirable to determine a line for increasing the target value P of the connection point power PLW so that the changing speed of the connection point power PLW is as fast as possible within the allowable range.
  • the overall control device 10 desirably increases the speed at which the connection point power PLW is increased in response to the emergency request, compared to the speed at which the connection point power PLW is decreased in response to the emergency request. . That is, the overall control device 10 increases the absolute value of the speed at which the connection point power PLW is increased in response to the emergency request, as compared with the absolute value of the speed at which the connection point power PLW is decreased in response to the emergency request. Is desirable. Thereby, the electric power amount transmitted to the electric power grid
  • FIG. 6 is a flowchart showing processing in which the overall control apparatus 10 controls each power conditioning system 3 in the first embodiment.
  • the arithmetic unit 12 of the overall control device 10 calculates a target value P of the connection point power PLW at the current time. That is, the calculation unit 12 connects the current time based on the line that changes the target value P of the connection point power PLW determined in step S3 or step S4 in FIG. 5 and the above equation (1).
  • a target value P of the point power PLW is calculated.
  • the overall control apparatus 10 proceeds from step S10 to step S11.
  • step S ⁇ b> 11 the calculation unit 12 calculates a deviation ⁇ P between the target value P of the connection point power PLW at the current time and the actual connection point power PLW measured by the wattmeter 6.
  • step S ⁇ b> 12 the computing unit 12 calculates the target output of each power conditioning system 3 by allocating the deviation ⁇ P calculated in step S ⁇ b> 11 to each power conditioning system 3. For example, assuming that the current output power of each power conditioning system 3 is p and the number of power conditioning systems 3 is n, (p + ⁇ P / n) is calculated as the target output of each power conditioning system 3.
  • step S13 the calculation unit 12 corrects the target output of the power conditioning system 3 calculated in step S12 as follows.
  • the output of each power conditioning system 3 may differ according to the solar radiation state with respect to each solar power generation device 2 or the like. For example, when the solar power generation device 2 at a certain location enters the shadow of a flowing cloud, the output of the corresponding power conditioning system 3 decreases. For the same reason, the maximum output pmax that each power conditioning system 3 can output at that time may differ depending on the solar radiation state of each solar power generation device 2 or the like.
  • the calculation unit 12 corrects the value equal to the maximum output pmax to be the target output.
  • the minimum output pmin of each power conditioning system 3 is usually zero.
  • the target output (p + ⁇ P / n) calculated in step S11 may be less than the minimum output pmin.
  • the calculation unit 12 corrects the value equal to the minimum output pmin to be the target output.
  • step S ⁇ b> 14 the transmission unit 13 instructs each power conditioning system 3 for the target output of each power conditioning system 3 calculated through steps S ⁇ b> 12 and S ⁇ b> 13.
  • the overall control device 10 repeatedly executes the processing of the flowchart of FIG. 6 periodically (for example, every second). Thereby, the connection point power PLW can be changed along the line of the target value P.
  • the overall control device 10 compensates for the shortage of the output of some power conditioning systems 3 with the output of the other power conditioning system 3 having power.
  • the target output of each power conditioning system 3 can be calculated. For this reason, even if some of the solar power generation devices 2 fall behind the clouds and the output of some of the power conditioning systems 3 falls short, other power conditioning systems 3 that have power reserves. By increasing the output of, it is possible to suppress a decrease in the interconnection point power PLW.
  • FIG. 7 shows a state in which in the control system 1 for the photovoltaic power plant according to the first embodiment, the shortage of the output of some power conditioning systems 3 is compensated by the output of another power conditioning system 3 having a surplus capacity.
  • FIG. 7 the number of power conditioning systems 3 is four and the output upper limit value is 90% in order to simplify the description.
  • the output is reduced to 80% of the rating because the corresponding solar power generation device 2 is behind the clouds.
  • the output is reduced to 80% of the rating due to the deterioration of the corresponding solar power generation device 2.
  • the overall control device 10 sets the outputs of the first and third power conditioning systems 3 from the right in FIG.
  • the power PLW can be matched with the output upper limit value (90%). In this way, by supplementing the shortage of the output of some power conditioning systems 3 with the output of another power conditioning system 3 having surplus power, the amount of power transmitted to the power system 7, that is, the amount of power sold can be increased.
  • FIG. 8 shows the electric power when the shortage of the output of some of the power conditioning systems 3 is compensated by the output of the other power conditioning systems 3 having surplus power in the control system 1 of the solar power plant of the first embodiment. It is a figure which shows the example of a change of.
  • the lower graph in FIG. 8 shows changes in the output of each power conditioning system 3.
  • the output decrease 30 in FIG. 8 is due to the solar power generation device 2 entering the shade of a cloud. As the plurality of photovoltaic power generation devices 2 enter the shade of the clouds one after another, the output of the plurality of power conditioning systems 3 decreases one after another.
  • the overall control device 10 increases the output of the other power conditioning system 3 having the surplus power, as indicated by the output increase 31 in FIG.
  • the upper graph in FIG. 8 shows changes in the interconnection power PLW.
  • PLW1 in FIG. 8 indicates a change in the connection point power PLW when the above-described control by the overall control device 10 is performed. That is, PLW1 corresponds to the sum of the outputs of each power conditioning system 3 in the lower part of FIG. PLW2 in FIG. 8 indicates a change in the connection point power PLW when the above-described control by the overall control device 10 is not performed.
  • the PLW1 has a lower output reduction than the PLW2.
  • the overall control device 10 performs control so that the shortage of the output of some of the power conditioning systems 3 is compensated by the output of the other power conditioning systems 3 having surplus power.
  • the decrease can be reliably suppressed, and the amount of power transmitted to the power system 7, that is, the amount of sold power can be increased.
  • FIG. 9 is a time chart for explaining a method in which the overall control device 10 calculates the target value of the interconnection point power PLW for each time in the second embodiment.
  • the contents of the emergency request shown in FIG. 9 are the same as those in FIG.
  • an emergency request is received at 11:15.
  • This urgent request is for notifying that the output upper limit will be changed from 100% to 50% at 11:30.
  • the overall control device 10 decreases the connection point power PLW in response to the emergency request, the overall control device 10 does not immediately start to decrease the connection point power PLW, but the time when the emergency request is received. Control is performed so that the interconnection point power PLW starts to decrease at a later time.
  • the delay time DT in FIG. 9 is the time from the time when the emergency request is received to the time when the interconnection point power PLW starts to decrease.
  • the delay time DT is a line that can make the delay time DT the longest within a range that satisfies the emergency request received at 11:15.
  • the rate of decrease of the interconnection point power PLW of the line 32 corresponds to the fastest allowable limit.
  • the connection point power PLW decreases from 100% at 11:25:50 to 50% at 11:30 at a constant speed (speed equal to the allowable limit).
  • the delay time DT is 10 minutes 50 seconds.
  • the overall control device 10 provides a delay time DT along the line 32 or a line close thereto when reducing the interconnection point power PLW in response to an emergency request at 11:15. It is desirable to calculate the target value of the interconnection point power PLW for each time. In this case, in order to provide a margin, the delay time DT may be shorter than the above time.
  • a line 33 is a line that can make the delay time DT the longest within a range that satisfies the emergency request received at 11:45.
  • the rate of decrease of the interconnection point power PLW of the line 33 corresponds to the fastest allowable limit.
  • the connection point power PLW decreases at a constant speed (speed equal to the allowable limit) from 50% at 11:55:50 to 0% at 12:00.
  • the delay time DT is 10 minutes and 50 seconds.
  • the overall control device 10 provides a delay time DT along the line 33 or a line close thereto when reducing the connection point power PLW in response to an emergency request at 11:45. It is desirable to calculate the target value of the interconnection point power PLW for each time. In this case, in order to provide a margin, the delay time DT may be shorter than the above time.
  • an emergency request is received at 12:15 and 13:15. These urgent requests are forewarning to raise the output upper limit.
  • the overall control device 10 immediately starts increasing the connection point power PLW when increasing the connection point power PLW in response to an emergency request.
  • the control for increasing the interconnection point power PLW in response to an urgent request is the same as in the first embodiment, and thus the description thereof is omitted.
  • the overall control apparatus 10 receives the emergency request from the time when the emergency request is received until it starts to decrease the interconnection point power PLW according to the emergency request. It is made longer than the time from when the connection point power PLW starts to rise in response to the emergency request. That is, the overall control device 10 provides a delay time DT before starting to decrease the connection point power PLW in response to an emergency request, and delays before starting to increase the connection point power PLW in response to an emergency request. DT is not provided. By doing in this way, the electric energy transmitted to the electric power grid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 太陽光発電所の制御システムは、太陽光発電装置が発電した電力を電力系統に送電する系統連系制御を行う複数のパワーコンディショニングシステムと、電力系統へ出力する電力である連系点電力が出力上限値以下になるように各々のパワーコンディショニングシステムに対して目標出力を指令する統括制御装置と、を備える。統括制御装置は、出力上限値を変更する時刻及び変更後の出力上限値に関する情報を含む緊急要請を受ける受信部と、緊急要請で予告された時刻までに連系点電力が変更後の出力上限値に適合し、且つ連系点電力の変化速度が許容限度を超えないように、時刻毎の連系点電力の目標値を演算し、当該目標値に基づいて各々のパワーコンディショニングシステムの時刻毎の目標出力を演算する演算部と、を備える。

Description

太陽光発電所の制御システム
 本発明は、太陽光発電所の制御システムに関する。
 下記特許文献1には、太陽電池からの直流電力を交流電力に変換するパワーコンディショナであって、複数のパワーコンディショナを管理する出力抑制管理装置から発電量制限値に関する情報を受信するとともに自装置の発電量に関する情報を送信する通信部と、発電量制限値に基づき自装置の出力電力を抑制する抑制制御部とを備えるものが開示されている。
日本特開2013-207862号公報
 特許文献1に開示されたシステムでは、商用電力を供給する商用系統側の指令所またはコントロールセンタから、出力抑制日及び抑制量を表わす抑制情報を含むカレンダ情報を受信し、このカレンダ情報に基づいてパワーコンディショナが太陽光発電の出力を抑制する出力抑制日及び抑制量を制御する。
 太陽光発電所は、日射量によって発電量が変化する。そのため、太陽光発電所が多くなるほど、電力の需給バランスを保つのが難しくなり、電力系統を安定させることが容易でなくなる。上述した従来のシステムでは、電力の需給バランスの予測に基づいて出力抑制日及び抑制量が決定され、それらの抑制情報を含むカレンダ情報が配信され、当該カレンダ情報に基づいて、パワーコンディショナが太陽光発電の出力を抑制する。しかしながら、電力の需給バランスの予測が外れたり、天候が予測と異なったりした場合には、太陽光発電量の抑制量が不適切となり、電力系統を安定化させることができない。
 本発明は、上述のような課題を解決するためになされたもので、電力系統の安定化に貢献できる太陽光発電所の制御システムを提供することを目的とする。
 本発明の太陽光発電所の制御システムは、太陽光発電装置が発電した電力を電力系統に送電する系統連系制御を行う複数のパワーコンディショニングシステムと、電力系統へ出力する電力である連系点電力が出力上限値以下になるように各々のパワーコンディショニングシステムに対して目標出力を指令する統括制御装置と、を備え、統括制御装置は、出力上限値を変更する時刻及び変更後の出力上限値に関する情報を含む緊急要請を受ける受信部と、緊急要請で予告された時刻までに連系点電力が変更後の出力上限値に適合し、且つ連系点電力の変化速度が許容限度を超えないように、時刻毎の連系点電力の目標値を演算し、当該目標値に基づいて各々のパワーコンディショニングシステムの時刻毎の目標出力を演算する演算部と、を備えるものである。
 本発明の太陽光発電所の制御システムによれば、出力上限値を変更する時刻及び変更後の出力上限値に関する情報を含む緊急要請を受けて連系点電力を制御することで、電力系統の安定化に貢献することが可能となる。
本発明の実施の形態1の太陽光発電所の制御システムを示す構成図である。 本発明の実施の形態1における統括制御装置の構成を示すブロック図である。 本発明の実施の形態1において統括制御装置が時刻毎の連系点電力PLWの目標値を演算する方法を説明するためのタイムチャートである。 本発明の実施の形態1において統括制御装置が時刻毎の連系点電力PLWの目標値を演算する方法を説明するためのグラフである。 本発明の実施の形態1において統括制御装置が緊急要請に応じて連系点電力PLWの目標値を設定する処理を示すフローチャートである。 本発明の実施の形態1において統括制御装置が各パワーコンディショニングシステムを制御する処理を示すフローチャートである。 本発明の実施の形態1の太陽光発電所の制御システムにおいて、一部のパワーコンディショニングシステムの出力の不足分を、余力のある他のパワーコンディショニングシステムの出力で補うときの状態を模式的に示す図である。 本発明の実施の形態1の太陽光発電所の制御システムにおいて、一部のパワーコンディショニングシステムの出力の不足分を、余力のある他のパワーコンディショニングシステムの出力で補うときの電力の変化の例を示す図である。 本発明の実施の形態2において統括制御装置が時刻毎の連系点電力PLWの目標値を演算する方法を説明するためのタイムチャートである。
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。
実施の形態1.
 図1は、本発明の実施の形態1の太陽光発電所の制御システムを示す構成図である。図1に示すように、本実施の形態1の太陽光発電所の制御システム1は、複数のパワーコンディショニングシステム3と、これらのパワーコンディショニングシステム3を統括する統括制御装置10とを備える。各々のパワーコンディショニングシステム3は、太陽光発電所に備えられた複数の太陽光発電装置2の各々に対して設けられている。図1では、3組の太陽光発電装置2及びパワーコンディショニングシステム3のみが描かれているが、より多数の太陽光発電装置2及びパワーコンディショニングシステム3が備えられても良い。
 統括制御装置10と各々のパワーコンディショニングシステム3とは、通信ネットワークNTを介して接続されることで、双方向に通信可能になっている。
 太陽光発電装置2は、太陽の光エネルギーを電気エネルギーに変えることにより直流電力を生成する。各々の太陽光発電装置2は、多数のセル(太陽電池素子)を並べて構成される太陽電池モジュールを直列に複数枚並べた複数の太陽電池ストリングから構成することができる。また、各々の太陽光発電装置2は、太陽電池ストリングに代えて、単体の太陽電池モジュールを電気的に並列接続するものでもよい。各々の太陽光発電装置2で発電された直流電力は、対応するパワーコンディショニングシステム3へ供給される。
 各々のパワーコンディショニングシステム3は、対応する太陽光発電装置2が発電した直流電力を交流電力に変換し、電力系統7に送電する系統連系制御を行う。パワーコンディショニングシステム3が出力する交流電力は、連系トランス4及び主変圧器5を介して、電力系統7に送電される。本実施の形態1では、パワーコンディショニングシステム3毎に連系トランス4が設けられている。各々の連系トランス4の出力側は、一つの主変圧器5に接続されている。主変圧器5の出力側が電力系統7に接続されている。電力系統7は、電力会社、配電会社等が保有する商用の送配電網である。主変圧器5から出力される電力が、電力系統7へ出力する電力である連系点電力PLWに相当する。
 電力計6は、連系点電力PLWを計測する。電力計6で検知された連系点電力PLWの情報は、統括制御装置10に送信される。図2は、本実施の形態1における統括制御装置10の構成を示すブロック図である。図2に示すように、統括制御装置10は、受信部11、演算部12、及び送信部13を有する。受信部11は、各々のパワーコンディショニングシステム3から送信された情報と、電力計6で検知された連系点電力PLWの情報と、電力系統7の管理者から送信された系統情報Dpsとを受信する。演算部12は、受信部11が受信した情報に基づいて、各々のパワーコンディショニングシステム3の個別の目標出力を演算する。演算部12は、ROM(リードオンリーメモリ)、RAM(ランダムアクセスメモリ)、及び不揮発性メモリ等を含む記憶部121と、記憶部121に記憶された制御プログラム及びデータに基いて演算処理を実行するCPU(セントラルプロセッシングユニット)122と、CPU122に対して外部の信号を入出力する入出力ポートとを有する。送信部13は、演算部12で演算された各々のパワーコンディショニングシステム3の個別の目標出力の情報を、対応するパワーコンディショニングシステム3へ送信する。
 系統情報Dpsは、電力系統7の管理者のコンピュータシステムまたは地域の電力需給を管理する配電会社のエネルギーマネジメントシステムなどから、オンラインで統括制御装置10の受信部11に送信される。ただし、本発明では、当該コンピュータシステムまたはエネルギーマネジメントシステムなどから発信された系統情報Dpsを、太陽光発電所のスタッフが手入力で統括制御装置10の受信部11に入力するように構成しても良い。
 系統情報Dpsは、連系点電力PLWの上限を規制する出力上限値の情報を含む。電力系統7の管理者は、電力の需給バランスの予測に基づいて、電力系統7が安定するように、出力上限値を設定する。統括制御装置10は、出力上限値を受けて、各々のパワーコンディショニングシステム3に対して目標出力を指令する。統括制御装置10は、連系点電力PLWが出力上限値を超えない範囲で、連系点電力PLWがなるべく高くなるように制御する。電力系統7の安定性を維持するために太陽光発電所の出力を緊急に調整する必要が生じた場合には、後述する緊急要請が系統情報Dpsとして発信される。
 太陽光発電所の所有者と、電力会社、配電会社等との契約により、連系点電力PLWの定格出力(W)が定められている。以下の説明では、連系点電力PLWの定格出力を「連系定格電力」と称する。また、連系定格電力を100%としたときの百分率によって出力上限値及び連系点電力PLWを表す場合がある。出力上限値及び連系点電力PLWを電力の単位(W)で表しても良い。
 各々のパワーコンディショニングシステム3は、対応する太陽光発電装置2から入力された電力を変換する電力変換部と、通信ネットワークNTを介して統括制御装置10と通信するための通信部と、各種のデータ及び制御プログラムを記憶する記憶部と、対応する太陽光発電装置2の発電量等を計測する計測部と、各部の動作を制御する制御部とを有する。
 各々のパワーコンディショニングシステム3は、対応する太陽光発電装置2の最大電力点を追従するMPPT(Maximum Power Point Tracking)制御を行う機能を有することが望ましい。また、各々のパワーコンディショニングシステム3は、対応する太陽光発電装置2が発電する電力が、統括制御装置10とから受信した目標出力に一致するように、太陽光発電装置2の運転点(電圧及び電流)を制御する機能を有する。このようなパワーコンディショニングシステム3は公知であるので、その詳細な説明は省略する。
 系統情報Dpsは、出力上限値を緊急に変更する要請である緊急要請を含むことができる。緊急要請は、出力上限値を変更する時刻及び変更後の出力上限値に関する情報を含む。緊急要請で出力上限値の変更が予告された時刻を以下「変更予告時刻」と称する。本実施の形態1では、変更予告時刻の15分前に、緊急要請が統括制御装置10の受信部11へ送信されるものとする。本発明では、統括制御装置10が緊急要請を受ける時刻は、変更予告時刻の15分前に限定されるものではなく、例えば、変更予告時刻の30分前、20分前、または10分前など、変更予告時刻から予め設定された時間だけ前の時刻でも良い。
 連系点電力PLWが急変すると、電力系統7の安定性に悪影響を及ぼす可能性がある。そのような影響を防止するため、連系点電力PLWの変化速度には、許容限度が設定されている。統括制御装置10は、連系点電力PLWの変化速度が許容限度を超えないように制御する。例として、本実施の形態1では、毎分の連系点電力PLWの変化量(上昇量または低下量)を、連系定格電力の12%以下にすることが許容限度として設定されているものとする。
 統括制御装置10の受信部11が緊急要請を受けた場合、演算部12は、変更予告時刻までに連系点電力PLWが変更後の出力上限値に適合し、且つ連系点電力PLWの変化速度が許容限度を超えないように、時刻毎の連系点電力PLWの目標値を演算する。そして、演算部12は、時刻毎の連系点電力PLWの目標値に基づいて、各々のパワーコンディショニングシステムの時刻毎の目標出力を演算する。
 図3は、本実施の形態1において統括制御装置10が時刻毎の連系点電力PLWの目標値を演算する方法を説明するためのタイムチャートである。以下、図3に示す例を参照して、統括制御装置10が時刻毎の連系点電力PLWの目標値を演算する方法について説明する。
 図3に示す例では、当初は、出力上限値が100%である。出力上限値が100%であることは、太陽光発電所に対する出力抑制の要請が無いことに相当する。その後、11時15分に緊急要請を受ける。この緊急要請は、11時30分に出力上限値を100%から50%へ変更することを予告するものである。本実施の形態1では、統括制御装置10は、緊急要請を受けた時刻から連系点電力PLWを低下または上昇させ始めるように制御する。この場合、統括制御装置10は、緊急要請に応じて、11時15分から連系点電力PLWを低下させ始め、変更予告時刻である11時30分までには連系点電力PLWを50%まで低下させる。図3中の線20は、連系点電力PLWを最も急速な許容限度で低下させる場合に相当する。この場合、連系点電力PLWの変化速度の許容限度(連系定格電力の12%/分)で、連系定格電力の50%に相当する変化量を得るには、4分10秒かかる。したがって、線20の場合、連系点電力PLWは、11時15分のときの100%から、11時19分10秒のときの50%まで、一定の速度(許容限度に等しい速度)で低下する。図3中の線21は、緊急要請を満たす範囲で連系点電力PLWを最も緩やかに低下させる場合に相当する。線21の場合、連系点電力PLWは、11時15分のときの100%から、11時30分のときの50%まで、一定の速度で低下する。
 統括制御装置10は、時刻毎の連系点電力PLWの目標値を変化させる線が、線20と線21との間の範囲(許容範囲)になるようにすれば良い。これにより、緊急要請に応えつつ、連系点電力PLWの急変を抑制できるので、電力系統7の安定性に貢献できる。
 連系点電力PLWを線21に沿って低下させた場合には、連系点電力PLWを線20に沿って低下させた場合に比べて、電力系統7へ送電する電力量すなわち売電量を多くできる。よって、統括制御装置10は、緊急要請に応じて連系点電力PLWを低下させる場合には、連系点電力PLWの変化速度を許容範囲の中でなるべく遅くすることが望ましい。すなわち、統括制御装置10は、11時15分の緊急要請を受けた場合、線21またはこれに近い線に沿って、時刻毎の連系点電力PLWの目標値を演算することが望ましい。
 図3に示す例では、その後、11時45分に緊急要請を受ける。この緊急要請は、12時00分に出力上限値を50%から0%へ変更することを予告するものである。この場合、統括制御装置10は、緊急要請に応じて、11時45分から連系点電力PLWを低下させ始め、変更予告時刻である12時00分までには連系点電力PLWを0%まで低下させる。図3中の線22は、連系点電力PLWを最も急速な許容限度で低下させる場合に相当する。線22の場合、連系点電力PLWは、11時45分のときの50%から、11時49分10秒のときの0%まで、一定の速度(許容限度に等しい速度)で低下する。図3中の線23は、緊急要請を満たす範囲で連系点電力PLWを最も緩やかに低下させる場合に相当する。線23の場合、連系点電力PLWは、11時45分のときの50%から、12時00分のときの0%まで、一定の速度で低下する。
 統括制御装置10は、時刻毎の連系点電力PLWの目標値を変化させる線が、線22と線23との間の範囲(許容範囲)になるようにすれば良い。これにより、緊急要請に応えつつ、連系点電力PLWの急変を抑制できるので、電力系統7の安定性に貢献できる。
 連系点電力PLWを線23に沿って低下させた場合には、連系点電力PLWを線22に沿って低下させた場合に比べて、電力系統7へ送電する電力量すなわち売電量を多くできる。よって、統括制御装置10は、緊急要請に応じて連系点電力PLWを低下させる場合には、連系点電力PLWの変化速度を許容範囲の中でなるべく遅くすることが望ましい。すなわち、統括制御装置10は、11時45分の緊急要請を受けた場合、線23またはこれに近い線に沿って、時刻毎の連系点電力PLWの目標値を演算することが望ましい。
 図3に示す例では、その後、12時15分に緊急要請を受ける。この緊急要請は、12時30分に出力上限値を0%から50%へ変更することを予告するものである。この場合、統括制御装置10は、緊急要請に応じて、12時15分から連系点電力PLWを上昇させ始め、変更予告時刻である12時30分までには連系点電力PLWを50%まで上昇させる。図3中の線24は、連系点電力PLWを最も急速な許容限度で上昇させる場合に相当する。線24の場合、連系点電力PLWは、12時15分のときの0%から、12時19分10秒のときの50%まで、一定の速度(許容限度に等しい速度)で上昇する。図3中の線25は、緊急要請を満たす範囲で連系点電力PLWを最も緩やかに上昇させる場合に相当する。線25の場合、連系点電力PLWは、12時15分のときの0%から、12時30分のときの50%まで、一定の速度で低下する。
 統括制御装置10は、時刻毎の連系点電力PLWの目標値を変化させる線が、線24と線25との間の範囲(許容範囲)になるようにすれば良い。これにより、緊急要請に応えつつ、連系点電力PLWの急変を抑制できるので、電力系統7の安定性に貢献できる。
 連系点電力PLWを線24に沿って上昇させた場合には、連系点電力PLWを線25に沿って上昇させた場合に比べて、電力系統7へ送電する電力量すなわち売電量を多くできる。よって、統括制御装置10は、緊急要請に応じて連系点電力PLWを上昇させる場合には、連系点電力PLWの変化速度を許容範囲の中でなるべく速くすることが望ましい。すなわち、統括制御装置10は、12時15分の緊急要請を受けた場合、線24またはこれに近い線に沿って、時刻毎の連系点電力PLWの目標値を演算することが望ましい。
 図3に示す例では、その後、13時15分に緊急要請を受ける。この緊急要請は、13時30分に出力上限値を50%から100%へ変更することを予告するものである。この場合、統括制御装置10は、緊急要請に応じて、13時15分から連系点電力PLWを上昇させ始め、変更予告時刻である13時30分までには連系点電力PLWを100%まで上昇させる。図3中の線26は、連系点電力PLWを最も急速な許容限度で上昇させる場合に相当する。線26の場合、連系点電力PLWは、13時15分のときの50%から、13時19分10秒のときの100%まで、一定の速度(許容限度に等しい速度)で上昇する。図3中の線27は、緊急要請を満たす範囲で連系点電力PLWを最も緩やかに上昇させる場合に相当する。線27の場合、連系点電力PLWは、13時15分のときの50%から、13時30分のときの100%まで、一定の速度で上昇する。
 統括制御装置10は、時刻毎の連系点電力PLWの目標値を変化させる線が、線26と線27との間の範囲(許容範囲)になるようにすれば良い。これにより、緊急要請に応えつつ、連系点電力PLWの急変を抑制できるので、電力系統7の安定性に貢献できる。
 連系点電力PLWを線26に沿って上昇させた場合には、連系点電力PLWを線27に沿って上昇させた場合に比べて、電力系統7へ送電する電力量すなわち売電量を多くできる。よって、統括制御装置10は、緊急要請に応じて連系点電力PLWを上昇させる場合には、連系点電力PLWの変化速度を許容範囲の中でなるべく速くすることが望ましい。すなわち、統括制御装置10は、13時15分の緊急要請を受けた場合、線26またはこれに近い線に沿って、時刻毎の連系点電力PLWの目標値を演算することが望ましい。
 図4は、本実施の形態1において統括制御装置10が時刻毎の連系点電力PLWの目標値を演算する方法を説明するためのグラフである。図4に示す例では、連系点電力PLWを、時刻T1のときのP1から、時刻T2のときのP2へ、線28に沿って変化させる。時刻T1と時刻T2との間の任意の時刻Tにおける連系点電力PLWの目標値Pは、次式により演算できる。
 P=(P2-P1)/(T2-T1)×T+(P1×T2-P2×T1)/(T2-T1)  ・・・(1)
 緊急要請を受けた場合、統括制御装置10は、図3で説明したようにして連系点電力PLWの目標値Pを変化させる線を決定し、上記式(1)に基づいて時刻毎の連系点電力PLWの目標値Pを演算する。例えば、図3中の12時15分の緊急要請を受けた場合に、線24に沿って連系点電力PLWを上昇させる場合には、T1=12時15分、T2=12時19分10秒、P1=連系定格電力×0%、P2=連系定格電力×50%とする。連系点電力PLWを低下させる場合も同様である。例えば、図3中の11時15分の緊急要請を受けた場合に、線21に沿って連系点電力PLWを低下させる場合には、T1=11時15分、T2=11時30分、P1=連系定格電力×100%、P2=連系定格電力×50%とする。
 図5は、本実施の形態1において統括制御装置10が緊急要請に応じて連系点電力PLWの目標値Pを設定する処理を示すフローチャートである。図5のステップS1で、統括制御装置10の受信部11が緊急要請を受けたか否かを判断する。緊急要請を受けた場合には、ステップS2へ移行する。ステップS2で、統括制御装置10の演算部12は、緊急要請による変更前の出力上限値に相当する出力(または現在の連系点電力PLW)であるP1と、緊急要請による変更後の出力上限値に相当する出力であるP2とを比較する。P1>P2の場合にはステップS2からステップS3へ移行する。P1<P2の場合にはステップS2からステップS4へ移行する。
 P1>P2の場合(ステップS3)は、緊急要請に応じて連系点電力PLWを低下させる場合に相当する。この場合には、統括制御装置10の演算部12は、図3の11時15分または11時45分の緊急要請のときのようにして、連系点電力PLWの目標値Pを低下させる線を決定する。前述した理由から、この場合には、連系点電力PLWの変化速度が許容範囲の中でなるべく遅くなるように、連系点電力PLWの目標値Pを低下させる線を決定することが望ましい。
 P1<P2の場合(ステップS4)は、緊急要請に応じて連系点電力PLWを上昇させる場合に相当する。この場合には、統括制御装置10の演算部12は、図3の12時15分または13時15分の緊急要請のときのようにして、連系点電力PLWの目標値Pを上昇させる線を決定する。前述した理由から、この場合には、連系点電力PLWの変化速度が許容範囲の中でなるべく速くなるように、連系点電力PLWの目標値Pを上昇させる線を決定することが望ましい。
 以上のようにして、統括制御装置10は、緊急要請に応じて連系点電力PLWを上昇させる速度を、緊急要請に応じて連系点電力PLWを低下させる速度に比べて速くすることが望ましい。すなわち、統括制御装置10は、緊急要請に応じて連系点電力PLWを上昇させる速度の絶対値を、緊急要請に応じて連系点電力PLWを低下させる速度の絶対値に比べて大きくすることが望ましい。これにより、電力系統7へ送電する電力量すなわち売電量を増やすことができる。
 図6は、本実施の形態1において統括制御装置10が各パワーコンディショニングシステム3を制御する処理を示すフローチャートである。図6のステップS10では、統括制御装置10の演算部12は、現在時刻の連系点電力PLWの目標値Pを算出する。すなわち、演算部12は、図5のステップS3またはステップS4で決定された、連系点電力PLWの目標値Pを変化させる線と、上記式(1)とに基づいて、現在時刻の連系点電力PLWの目標値Pを算出する。統括制御装置10は、ステップS10からステップS11へ移行する。ステップS11では演算部12は、現在時刻の連系点電力PLWの目標値Pと、電力計6で計測される実際の連系点電力PLWとの偏差ΔPを算出する。
 統括制御装置10は、ステップS11からステップS12へ移行する。ステップS12では演算部12は、ステップS11で算出された偏差ΔPを各パワーコンディショニングシステム3に配分することで、各パワーコンディショニングシステム3の目標出力を算出する。例えば、各パワーコンディショニングシステム3の現在の出力電力をpとし、パワーコンディショニングシステム3の数をnとしたとき、(p+ΔP/n)を各パワーコンディショニングシステム3の目標出力として算出する。
 統括制御装置10は、ステップS12からステップS13へ移行する。ステップS13では演算部12は、ステップS12で算出されたパワーコンディショニングシステム3の目標出力を以下のようにして補正する。各々のパワーコンディショニングシステム3の出力は、各々の太陽光発電装置2に対する日射の状態などにより、異なる場合がある。例えば、ある箇所の太陽光発電装置2が、流れている雲の陰に入ると、対応するパワーコンディショニングシステム3の出力が低下する。同様の理由から、各々のパワーコンディショニングシステム3がそのときに出せる最大出力pmaxは、各々の太陽光発電装置2に対する日射の状態などにより、異なる場合がある。ステップS11で算出された目標出力(p+ΔP/n)が現在の最大出力pmaxを超えるパワーコンディショニングシステム3に対しては、演算部12は、最大出力pmaxに等しい値を目標出力にするように補正する。各パワーコンディショニングシステム3の最小出力pminは、通常、ゼロである。ΔPが負の値である場合には、ステップS11で算出された目標出力(p+ΔP/n)が最小出力pmin未満になる場合がある。ステップS11で算出された目標出力(p+ΔP/n)が最小出力pmin未満となるパワーコンディショニングシステム3に対しては、演算部12は、最小出力pminに等しい値を目標出力にするように補正する。以上のようにして一部のパワーコンディショニングシステム3の目標出力を補正した場合には、その補正による増減の分を残りのパワーコンディショニングシステム3の目標出力に再配分しても良い。
 統括制御装置10は、ステップS13からステップS14へ移行する。ステップS14では送信部13は、ステップS12及びステップS13を経て算出された各パワーコンディショニングシステム3の目標出力を各パワーコンディショニングシステム3に対して指令する。
 統括制御装置10は、図6のフローチャートの処理を周期的に(例えば1秒毎に)繰り返し実行する。これにより、連系点電力PLWを目標値Pの線に沿って変化させることができる。本実施の形態1では、以上のような処理を行うことで、統括制御装置10は、一部のパワーコンディショニングシステム3の出力の不足分を、余力のある他のパワーコンディショニングシステム3の出力で補うように、各々のパワーコンディショニングシステム3の目標出力を演算できる。このため、一部の太陽光発電装置2が雲の陰に入ることで一部のパワーコンディショニングシステム3の出力が不足に陥ったような場合であっても、余力のある他のパワーコンディショニングシステム3の出力を増加させることで、連系点電力PLWの低下を抑制できる。
 図7は、本実施の形態1の太陽光発電所の制御システム1において、一部のパワーコンディショニングシステム3の出力の不足分を、余力のある他のパワーコンディショニングシステム3の出力で補うときの状態を模式的に示す図である。図7に示す例では、説明を簡単にするためにパワーコンディショニングシステム3の数を4台とし、出力上限値を90%とする。図7中で右から2番目のパワーコンディショニングシステム3は、対応する太陽光発電装置2が雲の陰に入っていることで、出力が定格の80%に低下している。図7中で一番左のパワーコンディショニングシステム3は、対応する太陽光発電装置2の劣化のために、出力が定格の80%に低下している。これらのパワーコンディショニングシステム3の出力の不足分を補うため、統括制御装置10は、図7中で右から1番目及び3番目のパワーコンディショニングシステム3の出力を100%にすることで、連系点電力PLWを出力上限値(90%)に一致させることができる。このように、一部のパワーコンディショニングシステム3の出力の不足分を、余力のある他のパワーコンディショニングシステム3の出力で補うことで、電力系統7へ送電する電力量すなわち売電量を多くできる。
 図8は、本実施の形態1の太陽光発電所の制御システム1において、一部のパワーコンディショニングシステム3の出力の不足分を、余力のある他のパワーコンディショニングシステム3の出力で補うときの電力の変化の例を示す図である。図8の下段のグラフは、各パワーコンディショニングシステム3の出力の変化を示す。図8中の出力低下30は、太陽光発電装置2が雲の陰に入ることによるものである。複数の太陽光発電装置2が次々に雲の陰に入ることで、複数のパワーコンディショニングシステム3の出力が次々と低下する。これらのパワーコンディショニングシステム3の出力の不足分を補うため、統括制御装置10は、図8中の出力上昇31で示すように、余力のある他のパワーコンディショニングシステム3の出力を上昇させる。図8の上段のグラフは、連系点電力PLWの変化を示す。図8中のPLW1は、統括制御装置10による上述した制御を実施した場合の連系点電力PLWの変化を示す。すなわち、PLW1は、図8の下段の各パワーコンディショニングシステム3の出力の総和に相当する。図8中のPLW2は、統括制御装置10による上述した制御を実施しない場合の連系点電力PLWの変化を示す。PLW1は、PLW2に比べて、出力の低下が抑制されている。このように、統括制御装置10が、一部のパワーコンディショニングシステム3の出力の不足分を、余力のある他のパワーコンディショニングシステム3の出力で補うように制御することで、連系点電力PLWの低下を確実に抑制でき、電力系統7へ送電する電力量すなわち売電量を多くできる。
実施の形態2.
 次に、図9を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図9は、本実施の形態2において統括制御装置10が時刻毎の連系点電力PLWの目標値を演算する方法を説明するためのタイムチャートである。図9に示す緊急要請の内容は、図3と同様である。
 図9に示す例では、11時15分に緊急要請を受ける。この緊急要請は、11時30分に出力上限値を100%から50%へ変更することを予告するものである。本実施の形態2では、統括制御装置10は、緊急要請に応じて連系点電力PLWを低下させる場合には、直ちに連系点電力PLWを低下させ始めるのではなく、緊急要請を受けた時刻より後の時刻から連系点電力PLWを低下させ始めるように制御する。図9中の遅延時間DTは、緊急要請を受けた時刻から、連系点電力PLWを低下させ始める時刻までの時間である。図9中の線32は、11時15分に受けた緊急要請を満たす範囲で遅延時間DTを最も長くできる線である。線32の連系点電力PLWの低下速度は、最も急速な許容限度に相当する。線32の場合、連系点電力PLWは、11時25分50秒のときの100%から、11時30分のときの50%まで、一定の速度(許容限度に等しい速度)で低下する。線32の場合、遅延時間DTは、10分50秒である。
 連系点電力PLWを線32に沿って低下させた場合には、連系点電力PLWを線21に沿って低下させた場合に比べて、電力系統7へ送電する電力量すなわち売電量を多くできる。本実施の形態2では、統括制御装置10は、11時15分の緊急要請に応じて連系点電力PLWを低下させる場合には、遅延時間DTを設け、線32またはこれに近い線に沿って時刻毎の連系点電力PLWの目標値を演算することが望ましい。この場合、余裕を持たせるため、遅延時間DTを上記の時間より短くしても良い。
 図9に示す例では、その後、11時45分に緊急要請を受ける。この緊急要請は、12時00分に出力上限値を50%から0%へ変更することを予告するものである。線33は、11時45分に受けた緊急要請を満たす範囲で遅延時間DTを最も長くできる線である。線33の連系点電力PLWの低下速度は、最も急速な許容限度に相当する。線33の場合、連系点電力PLWは、11時55分50秒のときの50%から、12時00分のときの0%まで、一定の速度(許容限度に等しい速度)で低下する。線33の場合、遅延時間DTは、10分50秒である。
 連系点電力PLWを線33に沿って低下させた場合には、連系点電力PLWを線23に沿って低下させた場合に比べて、電力系統7へ送電する電力量すなわち売電量を多くできる。本実施の形態2では、統括制御装置10は、11時45分の緊急要請に応じて連系点電力PLWを低下させる場合には、遅延時間DTを設け、線33またはこれに近い線に沿って時刻毎の連系点電力PLWの目標値を演算することが望ましい。この場合、余裕を持たせるため、遅延時間DTを上記の時間より短くしても良い。
 図9に示す例では、その後、12時15分及び13時15分に緊急要請を受ける。これらの緊急要請は、出力上限値を上昇させることを予告するものである。本実施の形態2では、統括制御装置10は、緊急要請に応じて連系点電力PLWを上昇させる場合には、直ちに連系点電力PLWを上昇させ始める。緊急要請に応じて連系点電力PLWを上昇させる場合の制御は、実施の形態1と同様であるので、説明を省略する。
 以上のようにして、本実施の形態2では、統括制御装置10は、緊急要請を受けた時刻から当該緊急要請に応じて連系点電力PLWを低下させ始めるまでの時間を、緊急要請を受けた時刻から当該緊急要請に応じて連系点電力PLWを上昇させ始めるまでの時間に比べて長くする。すなわち、統括制御装置10は、緊急要請に応じて連系点電力PLWを低下させ始める前には遅延時間DTを設け、緊急要請に応じて連系点電力PLWを上昇させ始める前には遅延時間DTを設けない。このようにすることで、電力系統7へ送電する電力量すなわち売電量を、実施の形態1に比べてさらに増やすことができる。
1 太陽光発電所の制御システム
2 太陽光発電装置
3 パワーコンディショニングシステム
4 連系トランス
5 主変圧器
6 電力計
7 電力系統
10 統括制御装置
11 受信部
12 演算部
13 送信部
20,21,22,23,24,25,26,27,28,32,33 線
30 出力低下
31 出力上昇
121 記憶部
122 CPU

Claims (4)

  1.  太陽光発電装置が発電した電力を電力系統に送電する系統連系制御を行う複数のパワーコンディショニングシステムと、
     前記電力系統へ出力する電力である連系点電力が出力上限値以下になるように各々の前記パワーコンディショニングシステムに対して目標出力を指令する統括制御装置と、
     を備え、
     前記統括制御装置は、
     前記出力上限値を変更する時刻及び変更後の出力上限値に関する情報を含む緊急要請を受ける受信部と、
     前記緊急要請で予告された時刻までに前記連系点電力が前記変更後の出力上限値に適合し、且つ前記連系点電力の変化速度が許容限度を超えないように、時刻毎の前記連系点電力の目標値を演算し、当該目標値に基づいて各々の前記パワーコンディショニングシステムの時刻毎の目標出力を演算する演算部と、
     を備える太陽光発電所の制御システム。
  2.  前記統括制御装置は、前記緊急要請に応じて前記連系点電力を上昇させる速度を、前記緊急要請に応じて前記連系点電力を低下させる速度に比べて速くする請求項1に記載の太陽光発電所の制御システム。
  3.  前記統括制御装置は、前記緊急要請を受けた時刻から当該緊急要請に応じて前記連系点電力を低下させ始めるまでの時間を、前記緊急要請を受けた時刻から当該緊急要請に応じて前記連系点電力を上昇させ始めるまでの時間に比べて長くする請求項1に記載の太陽光発電所の制御システム。
  4.  前記統括制御装置は、一部の前記パワーコンディショニングシステムの出力の不足分を、他の前記パワーコンディショニングシステムの出力で補うように、各々の前記パワーコンディショニングシステムの目標出力を演算する請求項1から請求項3のいずれか一項に記載の太陽光発電所の制御システム。
PCT/JP2014/083425 2014-12-17 2014-12-17 太陽光発電所の制御システム WO2016098200A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/083425 WO2016098200A1 (ja) 2014-12-17 2014-12-17 太陽光発電所の制御システム
JP2016564508A JP6265281B2 (ja) 2014-12-17 2014-12-17 太陽光発電所の制御システム
CN201480083549.XA CN107005056B (zh) 2014-12-17 2014-12-17 光伏发电站的控制系统
US15/516,819 US10468888B2 (en) 2014-12-17 2014-12-17 Control system for solar power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083425 WO2016098200A1 (ja) 2014-12-17 2014-12-17 太陽光発電所の制御システム

Publications (1)

Publication Number Publication Date
WO2016098200A1 true WO2016098200A1 (ja) 2016-06-23

Family

ID=56126123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083425 WO2016098200A1 (ja) 2014-12-17 2014-12-17 太陽光発電所の制御システム

Country Status (4)

Country Link
US (1) US10468888B2 (ja)
JP (1) JP6265281B2 (ja)
CN (1) CN107005056B (ja)
WO (1) WO2016098200A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101823266B1 (ko) * 2016-10-31 2018-01-29 엘에스산전 주식회사 태양광 발전 제어 방법
WO2018087946A1 (ja) * 2016-11-11 2018-05-17 東芝三菱電機産業システム株式会社 太陽光発電システム
JP2018093623A (ja) * 2016-12-02 2018-06-14 東芝三菱電機産業システム株式会社 太陽光発電所の発電設備およびその統括制御装置
JP6434593B1 (ja) * 2017-09-25 2018-12-05 鹿島建物総合管理株式会社 1回線受電特別高圧発電所における自動復電システム
JP2020080608A (ja) * 2018-11-13 2020-05-28 ネクストエナジー・アンド・リソース株式会社 電力調整装置、電力調整方法及び電力調整システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556874B (zh) * 2019-09-30 2021-08-10 西安特锐德领充新能源科技有限公司 功率控制方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079559A (ja) * 2007-09-27 2009-04-16 Hitachi Engineering & Services Co Ltd 蓄電システム併設型風力発電システム
JP2013066378A (ja) * 2008-03-10 2013-04-11 Hitachi Ltd 電力変換装置及び発電変換システム
JP2013207862A (ja) * 2012-03-27 2013-10-07 Sharp Corp 発電システム、並びに当該発電システムに用いるパワーコンディショナおよび出力抑制管理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901411B2 (en) * 2008-08-27 2014-12-02 General Electric Company System and method for controlling ramp rate of solar photovoltaic system
US20100198420A1 (en) * 2009-02-03 2010-08-05 Optisolar, Inc. Dynamic management of power production in a power system subject to weather-related factors
US9466984B2 (en) * 2009-10-26 2016-10-11 General Electric Company Power ramp rate control for renewable variable power generation systems
US8684150B2 (en) * 2010-06-15 2014-04-01 General Electric Company Control assembly and control method for supplying power to electrified rail vehicles
US20130043723A1 (en) * 2011-08-19 2013-02-21 Robert Bosch Gmbh Solar synchronized loads for photovoltaic systems
CN102611127B (zh) * 2012-02-17 2014-12-03 中国电力科学研究院 一种微电网自平衡和自平滑统一的控制方法
JP5886658B2 (ja) * 2012-03-02 2016-03-16 京セラ株式会社 制御装置、及び制御方法
DE102012204218A1 (de) * 2012-03-16 2013-09-19 Siemens Aktiengesellschaft Leistungsregelung und/oder Frequenzregelung bei einem solarthermischen Dampfkraftwerk
US9509176B2 (en) * 2012-04-04 2016-11-29 Ihi Inc. Energy storage modeling and control
US20140365023A1 (en) * 2013-06-10 2014-12-11 Sap Ag Systems and Methods for Computer Implemented Energy Management
CN103354365B (zh) * 2013-06-26 2015-06-17 国家电网公司 光伏电站智能功率调节方法
US9733623B2 (en) * 2013-07-31 2017-08-15 Abb Research Ltd. Microgrid energy management system and method for controlling operation of a microgrid
JP2015159190A (ja) * 2014-02-24 2015-09-03 三菱電機株式会社 太陽光発電診断システム
CN103928924A (zh) * 2014-03-28 2014-07-16 国家电网公司 计及有功功率变化最大值的风电场有功功率优化控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079559A (ja) * 2007-09-27 2009-04-16 Hitachi Engineering & Services Co Ltd 蓄電システム併設型風力発電システム
JP2013066378A (ja) * 2008-03-10 2013-04-11 Hitachi Ltd 電力変換装置及び発電変換システム
JP2013207862A (ja) * 2012-03-27 2013-10-07 Sharp Corp 発電システム、並びに当該発電システムに用いるパワーコンディショナおよび出力抑制管理装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101823266B1 (ko) * 2016-10-31 2018-01-29 엘에스산전 주식회사 태양광 발전 제어 방법
WO2018087946A1 (ja) * 2016-11-11 2018-05-17 東芝三菱電機産業システム株式会社 太陽光発電システム
JPWO2018087946A1 (ja) * 2016-11-11 2019-06-24 東芝三菱電機産業システム株式会社 太陽光発電システム
JP2018093623A (ja) * 2016-12-02 2018-06-14 東芝三菱電機産業システム株式会社 太陽光発電所の発電設備およびその統括制御装置
JP6434593B1 (ja) * 2017-09-25 2018-12-05 鹿島建物総合管理株式会社 1回線受電特別高圧発電所における自動復電システム
JP2019062593A (ja) * 2017-09-25 2019-04-18 鹿島建物総合管理株式会社 1回線受電特別高圧発電所における自動復電システム
JP2020080608A (ja) * 2018-11-13 2020-05-28 ネクストエナジー・アンド・リソース株式会社 電力調整装置、電力調整方法及び電力調整システム
JP7122749B2 (ja) 2018-11-13 2022-08-22 ネクストエナジー・アンド・リソース株式会社 電力調整装置、電力調整方法及び電力調整システム

Also Published As

Publication number Publication date
JP6265281B2 (ja) 2018-01-24
CN107005056A (zh) 2017-08-01
CN107005056B (zh) 2020-04-21
JPWO2016098200A1 (ja) 2017-09-07
US20170294779A1 (en) 2017-10-12
US10468888B2 (en) 2019-11-05

Similar Documents

Publication Publication Date Title
JP6265281B2 (ja) 太陽光発電所の制御システム
US9954370B2 (en) Electrical grid control system, electrical grid control method, and power conversion apparatus
EP3289656B1 (en) Failsafe power profile for a distributed generation management system
JP6163558B2 (ja) 太陽光発電システム
EP3729596B1 (en) Method of controlling a wind turbine generator
JP5647329B2 (ja) 新エネルギー発電所群の制御システム、およびその制御方法
JP6198894B2 (ja) 風力発電所の運転制御装置、運転制御方法及び風力発電システム
US20140239722A1 (en) Photovoltaic power generation system, control method and control program for photovoltaic power generation system
EP2328259A1 (en) System and method for power management in a photovoltaic installation
JP5766364B1 (ja) 電圧監視制御装置および電圧制御装置
CN111512513A (zh) 用于混合功率装置的功率控制
JP2020022241A (ja) ハイブリッド発電システム及び電力制御装置
WO2019142534A1 (ja) 再生可能エネルギーハイブリッド発電システム及びその制御方法
JP6189092B2 (ja) 系統用蓄電池の複数目的制御装置
US10411469B2 (en) Reactive power control integrated with renewable energy power invertor
JP2018160993A (ja) 電力制御装置、方法及び発電システム
KR101978245B1 (ko) 배전 계통 안정화 시스템
JP6503155B2 (ja) 分散電源の出力変動抑制システム
JP6573546B2 (ja) 再生可能エネルギ発電装置の電力変動制御装置
JP7185178B2 (ja) 発電予備力測定装置及び発電予備力測定方法
JP6832769B2 (ja) 分散型電源システム
JP6391958B2 (ja) 電力系統安定化装置
JP2018093623A (ja) 太陽光発電所の発電設備およびその統括制御装置
JP2023111206A (ja) 電力系統監視装置、電力系統監視装置用コンピュータプログラムおよび電力系統監視方法
JP2021185728A (ja) 送配電系統における電圧調整支援装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908410

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516819

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016564508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908410

Country of ref document: EP

Kind code of ref document: A1