WO2019142534A1 - 再生可能エネルギーハイブリッド発電システム及びその制御方法 - Google Patents

再生可能エネルギーハイブリッド発電システム及びその制御方法 Download PDF

Info

Publication number
WO2019142534A1
WO2019142534A1 PCT/JP2018/045021 JP2018045021W WO2019142534A1 WO 2019142534 A1 WO2019142534 A1 WO 2019142534A1 JP 2018045021 W JP2018045021 W JP 2018045021W WO 2019142534 A1 WO2019142534 A1 WO 2019142534A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
power
generation facility
renewable energy
solar
Prior art date
Application number
PCT/JP2018/045021
Other languages
English (en)
French (fr)
Inventor
佐野 裕子
洋平 河原
知治 中村
憲久 和田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019142534A1 publication Critical patent/WO2019142534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present invention relates to a renewable energy hybrid power generation system including a plurality of renewable energy power generation devices and a control method thereof.
  • the interconnection capacity frame is insufficient, and new power generation facilities can not be interconnected with the power system.
  • the interconnection capacity frame when it is desired to newly install a renewable energy power generation facility at a renewable energy power generation site, the interconnection capacity frame when connecting the power generation site to the electric power system is exceeded, and a new power generation facility is added. The problem is that installation can not be performed.
  • the output power of renewable energy generation fluctuates widely due to the weather.
  • the facility utilization rate is the ratio of the actual amount of power generation to the amount of power obtained when the power generation facility continues the 100% operation below the interconnection capacity.
  • Patent Document 1 discloses a technology capable of improving the facility utilization rate without exceeding the interconnection capacity for the commercial power system.
  • Patent Document 1 “a first power generation facility that generates power using a first energy source, a second power generation facility that generates power using a second energy source, and the second power generation facility output Control for supplying to the commercial power system a second power generation facility control device for controlling the generated power, a total of the generated power output from the first power generation facility and the generated power output from the second power generation facility
  • a hybrid power generation control device for performing the first power generation control device, and the hybrid power generation control device predicts the power generation of the first power generation facility, and an upper limit preset for the commercial power grid
  • the restriction value of the generated power of the second power generation facility is calculated based on the power value obtained by subtracting the predicted value of the generated power of the first power generation facility predicted by the generated power prediction means from the interconnection capacity that is Calculation And it has been described as a hybrid power system.
  • the interconnection capacity when connecting the power generation site to the power grid is determined by the rated output of the solar power generation facility.
  • the combined output of the photovoltaic and wind power plants should not exceed the interconnection capacity.
  • the object of the present invention is to compensate for the slow response speed of the wind turbine with the solar power generation facility and the storage battery device, so that the combined output of the solar power generation facility and the wind power generation facility does not exceed the interconnection capacity.
  • An object of the present invention is to provide a renewable energy hybrid power generation system capable of improving the capacity factor and a control method thereof.
  • the combined power of the first power generation facility that generates power using renewable energy and the second power generation facility is linked to the power grid, and the combined power is within the linked power frame.
  • a control method for a restricted renewable energy hybrid power generation system wherein a first power generation facility having a fast response speed is operated below a first limit power, and a second power generation facility having a slow response speed is a first control system.
  • the difference between the interconnection power frame and the combined power is adjusted by the first power generation facility when the combined power exceeds the interconnection power frame, and is operated at a difference between the output of the power generation facility and the interconnection power box
  • a control method of a renewable energy hybrid power generation system characterized by
  • the combined power of the first power generation facility that generates power using renewable energy and the second power generation facility is interconnected with the power system, and the combined power is limited within the interconnected power frame.
  • a control method of a renewable energy hybrid power generation system comprising: a power storage device, wherein power including the output of the power storage device is interconnected as a combined power to a power system, and a first power generation facility having a high response speed is a first The second power generation facility operating at less than the limit power and having a slow response speed is operated at less than the difference between the output of the first power generation facility and the interconnection power frame, and when the combined power exceeds the interconnection power frame,
  • the control method of a renewable energy hybrid power generation system is characterized in that the difference between the interconnected power frame and the combined power is adjusted by one or both of the first power generation facility and the power storage device.
  • the present invention relates to a “renewable energy hybrid power generation system in which the combined power of a solar power generation facility and a wind power generation facility is linked to an electric power system, and the combined power is limited within the linked power window.
  • the integrated controller that gives control command signals to the photovoltaic power generation facility and the wind power generation facility inputs the output power of the photovoltaic power generation facility, and creates a first control command signal that is equal to or lower than the first limit power.
  • the photovoltaic power generation restriction amount calculation unit given to the facility and the output power of the wind power generation facility are input to create a second control command signal equal to or less than the difference between the output of the photovoltaic power generation facility and the interconnected power frame
  • the present invention also relates to “a renewable energy hybrid power generation system in which the combined power of a solar power generation facility and a wind power generation facility is interconnected to an electric power system, and the combined power is limited within an interconnection power frame.
  • An integrated controller that includes a device, interconnects the power including the output of the storage device as a combined power to the electric power system, and gives a control command signal to the solar power generation facility, the wind power generation facility, and the storage device Input the power, input the output power of the wind power generation facility, and the photovoltaic power generation limit calculation unit that generates the first control command signal to be less than or equal to the first limit power and gives it to the solar power generation facility,
  • a wind power generation restriction amount calculation unit which generates a second control command signal equal to or less than the difference between the output of the photovoltaic power generation facility and the interconnection power frame and gives the wind power generation facility, and the combined power exceeds the interconnection power frame When connecting It is obtained by renewable energy Hybrid Power System ", characterized in that comprises
  • the facility utilization rate can be improved without the combined output of the solar power generation facility and the wind power generation facility exceeding the interconnection capacity. Furthermore, new generation facilities can be introduced to areas that do not already have a grid connection frame.
  • FIG. 2 is a diagram showing a detailed configuration of an integrated controller 9 according to the first embodiment.
  • 6 is a flowchart showing an example of arithmetic processing of the general controller 9 according to the first embodiment.
  • FIG. 7 is a diagram showing an example of the overall configuration of a renewable energy hybrid power generation system according to a second embodiment.
  • FIG. 8 is a diagram showing a detailed configuration of an integrated controller 9 according to a second embodiment.
  • 10 is a flowchart illustrating an example of the calculation process of the general controller 9 according to the second embodiment.
  • FIG. FIG. 18 is a view showing a detailed configuration of the general controller 9 in the case where there is a technical requirement only in the photovoltaic power generation facility 2 according to the third embodiment.
  • FIG. 18 is a diagram showing a detailed configuration of the general controller 9 in the case where there is a technical requirement only in the wind power generation facility 5 according to the third embodiment.
  • FIG. 10 is a flowchart showing an operation method of the storage battery system 13 in a fourth embodiment.
  • 15 is a flowchart for determining the priority of the generator in the fifth embodiment.
  • FIG. 1 is a block diagram showing an overall configuration of a renewable energy hybrid power generation system according to a first embodiment of the present invention.
  • the solar wind power hybrid power generation apparatus 100 of FIG. 1 is linked to the electric power system 1.
  • the solar wind power hybrid power generation apparatus 100 includes a solar power generation facility 2, a wind power generation facility 5, and a power control device 8.
  • the sum of the solar power generation output Ppv output from the solar power generation facility 2 and the wind power generation output Pwt output from the wind power generation facility 5 is supplied to the power grid 1 as a system output Psys.
  • the upper limit value of the system output Psys is the interconnection capacity PL.
  • the solar power generation facility 2 includes a solar panel 3 and a solar power conditioner 4.
  • the solar panel 3 can be configured, for example, by connecting a plurality of silicon-based solar cells of single crystal silicon type, polycrystalline silicon type, microcrystalline silicon type, amorphous silicon type, and the like in series and in parallel. Further, the solar panel 3 may be configured by connecting a plurality of solar cells of a compound system such as InGaAs system, GaAs system, CIS system (charcobalite system), etc. in series and parallel connection.
  • an organic solar cell such as a dye-sensitized solar cell or an organic thin film solar cell may be used as a solar cell constituting the solar panel 3.
  • the solar power conditioner 4 converts the DC generated power output from the solar panel 3 into an AC generated solar power Ppv and outputs it to the power system 1. Therefore, the photovoltaic power generation Ppv supplied to the power system 1 is limited by the rated output of the solar power conditioner 4.
  • the wind power generation facility 5 is composed of a wind turbine 6 and a power conditioner 7 for wind turbine.
  • the wind power generation facility 5 has a function (PCS control) to control the power generation output by the wind turbine power conditioner 7 and a function (pitch angle control) to control the power generation output by angle control of the blades of the wind turbine.
  • PCS control PCS control
  • pitch angle control a function to control the power generation output by angle control of the blades of the wind turbine.
  • the pitch is not controlled until the power generation output of the wind turbine 6 reaches the rated output, and the operation of leaving the wind is performed.
  • the pitch angle is controlled so as to keep the rotation speed of the generator constant.
  • the power generation capacity is calculated from the rotational speed of the generator, and the power conditioner 7 for a wind turbine is provided.
  • the power conditioner 7 for a wind turbine may be installed below the tower of the wind turbine 6.
  • the wind power generation power Pwt output from the wind power generation facility 5 is supplied to the power system 1.
  • the power control device 8 has a function to control power so as to improve the facility utilization rate while suppressing the system output Psys output from the solar wind power hybrid power generation device 100 to be equal to or less than the interconnection capacity.
  • 9 includes a communication network 10 (such as the Internet), an external controller 11, and a terminal 12.
  • the general controller 9 is communicably connected to the external controller 11 via the communication network 10, and the external controller 11 is connected to the terminal 12 via a serial bus or parallel bus or the like.
  • the operator can control the processing operation of the general controller 9 via the external controller 11 installed at a location distant from the solar wind hybrid power generation apparatus 100.
  • the general controller 9 can be accessed via the external controller 11, and various setting values and the like necessary for various controls can be input.
  • the operator can display the state (operating state) of the solar wind power hybrid power generation apparatus 100 on the terminal 12.
  • the power controller 8 includes the external controller 11, the communication network 10, and the terminal 12 will be described, but the present invention is not limited to this, and these configurations are external to the power generation site. May be provided.
  • the overall controller 9 is configured by, for example, an arithmetic device such as a CPU (Central Processing Unit).
  • the integrated controller 9 is connected to the solar power conditioner 4 and the wind power generation facility power conditioner 7 via a communication network.
  • the communication connection mode can be set arbitrarily, and for example, any mode of wireless communication and wired communication can be applied.
  • the general controller 9 acquires a monitor signal of the solar power generation power Ppv (hereinafter, referred to as “solar power generation power monitor signal Ppv_fb”), which will be described later in detail, which is measured by the solar power conditioner 4.
  • the photovoltaic power generation monitor signal Ppv_fb may be measured by a power meter or the like provided separately from the solar power conditioner 4.
  • wind power generation monitor signal Pwt_fb a monitor signal of the wind power generation power Pwt measured by the wind turbine power conditioner 7 (hereinafter referred to as "wind power generation monitor signal Pwt_fb").
  • the wind power generation power monitor signal Pwt_fb may be measured by a power meter or the like provided separately from the wind power generation facility 5.
  • the acquisition operation of the various signals (various pieces of information) by the general controller 9 may be performed periodically or irregularly.
  • the integrated controller 9 is based on the photovoltaic power generation monitor signal Ppv_fb input from the solar power conditioner 4 and the wind turbine power generation monitor signal Pwt_fb input from the wind turbine power conditioner 7 to obtain an interconnection capacity. Perform various calculations to improve the equipment utilization rate without exceeding.
  • FIG. 1 shows the case where the solar power conditioner 4 and the wind turbine power conditioner 7 are installed alone, respectively, the invention is not limited thereto.
  • a large-scale solar power generation facility 2 such as a mega solar having a large number of solar panels 3
  • a plurality of solar power conditioners 4 are installed according to the plurality of solar panels 3.
  • a large scale wind power generation facility 5 such as a wind farm provided with a large number of wind turbines 6 may be used.
  • FIG. 2 is a view showing the detailed configuration of the general controller 7.
  • the integrated controller 9 controls the solar power generation power monitor signal Ppv_fb and the wind power generation power monitor signal Pwt_fb so that the system output Psys does not exceed the interconnection capacity of the power system 1.
  • the general controller 9 includes a solar power generation limit calculation unit 91, a solar power generation limit correction unit 92, and a wind power generation limit calculation unit 93.
  • the photovoltaic power generation restriction amount calculation unit 91 and the wind power generation restriction amount calculation unit 93 calculate restriction values Ppv_lim and Pwt_lim of the respective power generation amounts so that the system output Psys does not exceed the interconnection capacity.
  • the output restriction of the wind power generation device 5 may not be in time, and the interconnection capacity may be exceeded. Therefore, the power generation information that the wind power generation facility 5 can not limit is input to the photovoltaic power generation limitation amount correction unit 92, and the limitation amount of the solar power generation facility 2 is corrected. In addition, when the power generated by the solar power generation facility 2 sharply decreases, there is room for the interconnection capacity, so the output restriction of the wind power generation facility 5 is released and the facility utilization rate is improved by rapidly generating power. Can.
  • FIG. 3 is a flow chart showing an example of the arithmetic processing of the general controller 9.
  • processing step S11 which is the first processing of the flowchart in FIG. 3, the detected photovoltaic power output Ppv_fb is limited by the rated output of the solar power conditioner 7 or the interconnection capacity PL, whichever is smaller.
  • the limit value at this time is set as the photovoltaic power generation limit value Ppv_lim.
  • the photovoltaic power generation output Ppv is set to a value equal to or less than the interconnection capacity PL.
  • the photovoltaic power generation limit value Ppv_lim When setting the photovoltaic power generation limit value Ppv_lim, this may be set to the same value as the interconnection capacity PL, or may be set to a value of, for example, about 90% of the interconnection capacity PL. It is good to set it as the photovoltaic power generation limit value Ppv_lim suitably reduced according to the wind power generation installation 5 with a slow response. Due to such consideration, the combined power does not easily exceed the interconnection capacity PL.
  • processing step S12 the difference between the interconnection capacity PL and the photovoltaic power output Ppv after limitation is calculated, and the result is set as the wind power generation limit value Pwt_lim. Then, in process step S13, the wind power generation power monitor signal Pwt_fb is limited by the wind power generation limit value Pwt_lim.
  • this power generation site preferentially executes solar power generation when the grid capacity is less than PL and additionally controls wind power generation from the viewpoint of compliance with grid capacity PL be able to. Further, according to the processing up to this point, the photovoltaic power generation limit value Ppv_lim and the system output Psys as a result of being operated by being limited by the wind power generation limit value Pwt_lim are set to values smaller than the interconnection capacity PL.
  • FIG. 4a shows a state in which the combined output Psys of the solar power generation facility 2 and the wind power generation facility 5 exceeds the interconnection capacity.
  • a case is shown in which no action is taken to prevent the interconnection capacity PL from being exceeded.
  • the excess period of the interconnection capacity PL extends for a long time.
  • FIG. 4 b shows a waveform when the wind power generation facility 5 is limited so as not to exceed the interconnection capacity PL. Since the response speed of the wind power generation facility 5 is slow, the power reduction can not be made in time, and the interconnection capacity PL will be exceeded.
  • the system output Psys is interconnected as shown in FIG. 4c by subtracting the electric power ⁇ P equivalent to the electric power exceeding the interconnection capacity PL in FIG. It can be suppressed to the capacity PL or less.
  • the solar wind power hybrid power generation system 100 can maximally generate power without exceeding the interconnection capacity PL of the power system.
  • FIG. 5 shows the entire configuration of a renewable energy hybrid power generation system according to a second embodiment.
  • a storage battery system 13 is added to FIG.
  • the sum of the solar power generation output Ppv output from the solar power generation facility 2 and the wind power generation output Pwt output from the wind power generation facility 5 is supplied as a combined power generation output Pgen. Ru. Further, the sum of the combined power generation output Pgen and the charge / discharge output Pbat output from the storage battery system 11 is supplied to the power system 1 as a system output Psys.
  • the upper limit value of the system output Psys is the interconnection capacity PL.
  • the storage battery system 13 is configured of a storage battery 14 and a storage battery power conditioner 15.
  • the direct current charge / discharge power output from the storage battery 14 is converted into alternating current charge / discharge power Pbat by the storage battery power conditioner 15 and output to the power system 1.
  • the storage battery power conditioner 15, the above-mentioned power conditioner 4 for sunlights, and the power conditioner 7 for windmills may be called a grid connection inverter.
  • the storage battery 14 is formed of, for example, a secondary battery such as a lead storage battery, a lithium ion storage battery, or a nickel-hydrogen storage battery.
  • the general controller 9 receives the charging rate SOC of the storage battery 14 from the storage battery system 13 in addition to the information from the solar power generation facility 2 and the wind power generation facility 5, and transmits the charge / discharge target value Pbat * to the storage battery power conditioner 15. .
  • FIG. 6 is a view showing a detailed configuration example of the general controller 9 according to the second embodiment.
  • the general controller 9 is configured of a solar power generation limit amount calculation unit 91, a wind power generation limit amount calculation unit 93, and a charge / discharge power calculation unit 94.
  • the solar power generation limited amount calculation unit 91 and the wind power generation limited amount calculation unit 93 basically function in the same manner as the configuration of FIG. 2 of the first embodiment. These input the solar power generation power monitor signal Ppv_fb and the wind power generation power monitor signal Pwt_fb, respectively, so that the limited amount Ppv_lim of the solar power generation facility 2 is generated by the solar power generation so that the combined power generation output Pgen does not exceed the interconnection capacity PL.
  • the limit amount calculation unit 91 calculates the limit amount Pwt_lim of the wind power generation facility 5 by the wind power generation limit amount calculation unit 93.
  • the solar power generation facility 2 copes with the system output Psys when the system output Psys rapidly exceeds the interconnection capacity PL.
  • the storage battery system 11 performs the process correspondence.
  • the charge / discharge power calculation unit 94 calculates the charge / discharge target value Pbat * of the storage system 11 based on the information of the limited amount Pwt_lim of the wind power generation facility 5 and the SOC. Therefore, the facility utilization rate of the solar cell-wind power hybrid system 101 equipped with the storage battery can be improved by charging the storage battery with power whose response of the wind power generation facility 5 is slow and the output restriction exceeds the interconnection capacity without being in time. it can.
  • FIG. 7 is a flowchart showing an example of the arithmetic processing of the general controller 9 in the second embodiment. The difference from FIG. 3 is only that the last processing step is from processing step S14 to processing step S15.
  • the detected photovoltaic power output Ppv_fb is limited by the rated output of the solar power conditioner 7 or the interconnection capacity PL, whichever is smaller.
  • the limit value at this time is set as the photovoltaic power generation limit value Ppv_lim.
  • the photovoltaic power generation output Ppv is set to a value equal to or less than the interconnection capacity PL.
  • this may be set to the same value as the interconnection capacity PL, or may be set to a value of, for example, about 90% of the interconnection capacity PL. It is good to set it as the photovoltaic power generation limit value Ppv_lim suitably reduced according to the wind power generation installation 5 with a slow response. Due to such consideration, the combined power does not easily exceed the interconnection capacity PL.
  • processing step S12 the difference between the interconnection capacity PL and the photovoltaic power output Ppv after limitation is calculated, and the result is set as the wind power generation limit value Pwt_lim. Then, in process step S13, the wind power generation power monitor signal Pwt_fb is limited by the wind power generation limit value Pwt_lim.
  • this power generation site preferentially executes solar power generation when the grid capacity is less than PL and additionally controls wind power generation from the viewpoint of compliance with grid capacity PL be able to. Further, according to the processing up to this point, the photovoltaic power generation limit value Ppv_lim and the system output Psys as a result of being operated by being limited by the wind power generation limit value Pwt_lim are set to values smaller than the interconnection capacity PL.
  • the quick response storage battery 14 is charged, thereby enabling compliance with the interconnection capacity PL of the system output Psys.
  • the storage battery-equipped solar wind power hybrid power generation system 101 can improve the facility utilization rate without wasting the generated power by utilizing the storage battery system 11 without exceeding the interconnection capacity of the electric power system.
  • a renewable energy hybrid power generation system with a storage battery is installed in an area where a power company defines a regulation (technical requirement) for output fluctuation.
  • the regulation for the power fluctuation defined by the electric power company means the fluctuation of the power generated by the solar wind hybrid power generation apparatus 100 even if it is less than the interconnection capacity PL, apart from the compliance with the interconnection capacity PL which is the total amount regulation. For example, it is required to limit to 1% or less.
  • the solar power generation facility 2 there are three possible technical requirements in the case of only the solar power generation facility 2, in the case of only the wind power generation facility 5, and in the case of both of the solar power generation facility 2 and the wind power generation facility 5. First, the case where only the solar power generation facility 2 has a technical requirement will be described.
  • FIG. 8 shows an overall configuration of a renewable energy hybrid power generation system in the case where only the solar power generation facility 2 has a technical requirement in the third embodiment.
  • 8 has a configuration in which the storage battery system 13 is added to the solar power generation facility 2 as compared with FIG. 1.
  • FIG. 8 is the structure which added the storage battery system 13 to the solar power generation equipment 2 side with respect to the structure of FIG. 5, and the symbol given to each part electric power of FIG. There is.
  • FIG. 9 is a diagram showing a detailed configuration example of the general controller 9 in the case where there is a technical requirement only in the solar power generation facility 2 in the third embodiment.
  • the integrated controller 9 of FIG. 9 is a component of the second embodiment, which is a component of the first embodiment, which is a solar power generation limit calculation unit 91, a solar power generation limitation correction unit 92, and a wind power generation limit calculation unit 93.
  • a charge / discharge power calculation unit 94 is provided, and a smoothing unit 95 that smoothes the output of the solar power generation facility 2 is further included.
  • each function solar power generation limit calculation unit 91, solar power generation limit correction unit 92, wind power generation limit calculation unit 93, charge / discharge power calculation unit 94 described in the first embodiment and the second embodiment Since the third embodiment works in the same manner, the detailed description herein will be made briefly.
  • the photovoltaic power generation monitor signal Ppv_fb is input to the smoothing unit 95 to smooth the output fluctuation.
  • the charge / discharge power calculation unit 94 calculates the charge / discharge output necessary for smoothing.
  • the subsequent processing is the same as in the first embodiment and the second embodiment, so that the combined output (system output Psys) of the photovoltaic power Ppv ′ after smoothing and the wind power Pwt does not exceed the interconnection capacity PL.
  • the photovoltaic generation limit amount calculation unit 91 and the wind power generation limit amount calculation unit 93 calculate limit values Ppv_lim and Pwt_lim of the respective generation amounts.
  • the output restriction of the wind power generation device 5 may not be in time, and the interconnection capacity may be exceeded. Therefore, the power generation information that the wind power generation facility 5 can not limit is input to the photovoltaic power generation limitation amount correction unit 92, and the limitation amount of the solar power generation facility 2 is corrected. Alternatively, power information that the wind power generation facility 5 can not limit is input to the charge / discharge power calculation unit 94 to calculate charge / discharge power Pbat * of the storage battery 14. As described above, it is possible to prevent the excess of the interconnection capacity while maintaining the technical requirements of the electric power company.
  • FIG. 10 shows an overall configuration of a renewable energy hybrid power generation system in the case where only the wind power generation facility 5 has a technical requirement in the third embodiment.
  • 10 has a configuration in which the storage battery system 13 is added to the wind power generation facility 5 as compared with FIG. 10 is a configuration in which the storage battery system 13 is added to the wind power generation facility 5 side with respect to the configurations of FIG. 5 and FIG. 8, and the symbols attached to the power of each part in FIG. There are some differences.
  • FIG. 11 is a diagram showing a detailed configuration example of the general controller 9 in the case where there is a technical requirement only in the wind power generation facility 5 in the third embodiment.
  • FIG. 11 differs from FIG. 9 in that the smoothing unit 95 is installed in front of the wind power generation limited amount calculation unit 93.
  • the smoothing unit 95 added here is an output fluctuation of the wind power generation facility 5 to be newly established when the wind power generation facility 5 is newly installed in the existing solar power generation facility 2 in the area where the electric power company defines technical requirements.
  • the equipment must be smoothed out.
  • the photovoltaic power generation limit amount calculation unit 91 inputs the photovoltaic power generation power monitor signal Ppv_fb, and the photovoltaic power generation facility 2 of the photovoltaic power generation facility 2 to limit this to the interconnection capacity PL or less. Set the limit amount Ppv_lim.
  • the smoothing unit 95 smoothes the wind power generation monitor signal Pwt_fb. Thereafter, the wind power generation limit amount calculation unit 73 uses the smoothing signal of the wind power generation power monitor signal Pwt_fb to limit the combined power generation output Pgen so that it does not exceed the interconnection capacity PL.
  • the response speed of the wind power generation device 5 is slow, and the power exceeding the interconnection capacity is limited by the photovoltaic power generation amount correction unit 92 by the solar power generation device 2 or through the charge / discharge power calculation unit 94 The storage battery 14 is charged.
  • the technical requirements of the electric power company can be maintained, the excess of the interconnection capacity can be prevented, and the facility utilization rate can be improved.
  • FIG. 12 shows a detailed configuration example of the general controller 9 at the time of smoothing at the end when there are technical requirements for both the solar power generation facility 2 and the wind power generation facility 5 in the third embodiment.
  • the smoothing unit 95 is installed behind the solar power generation limit calculation unit 91 and the wind power generation limit calculation unit 93.
  • the general controller 9 includes a solar power generation limit calculation unit 91, a wind power generation limit calculation unit 93, a charge / discharge power calculation unit 94, and a smoothing unit 95.
  • FIG. 12 supervises the photovoltaic power generation monitor signal Ppv_fb obtained from the solar power conditioner 4 and the wind turbine generated power monitor signal Pwt_fb obtained from the wind turbine power conditioner 7.
  • the limit amount Ppv_lim of the photovoltaic power generation facility 2 is input to the controller 9 so that the combined power generation output Pgen does not exceed the interconnection capacity PL, and the limit amount Pwt_lim of the wind power generation facility 5 is Calculated by the wind power generation limited amount calculation unit 93.
  • the combined power generation output Pgen after limitation is smoothed by the smoothing unit 95, and the charge / discharge power calculation unit 94 calculates the charge / discharge target value Pbat * of the storage battery system 13 necessary for the smoothing. Further, the charge / discharge power calculation unit 94 corrects the charge / discharge target value Pbat * so as to charge as much as the interconnection capacity PL is exceeded due to the responsiveness of the wind turbine 6.
  • the technical requirements of the electric power company can be maintained, the excess of the interconnection capacity can be prevented, and the facility utilization rate can be improved.
  • FIG. 13 shows a detailed configuration example of the general controller 9 when smoothing is performed first when there are technical requirements for both the solar power generation facility 2 and the wind power generation facility 5 in the third embodiment.
  • the configuration of the general controller 9 is the same as that of FIG. 12, the order of processing is different.
  • the photovoltaic power generation monitor signal Ppv_fb obtained from the solar power conditioner 4 and the wind power generated power monitor signal Pwt_fb obtained from the wind turbine power conditioner 7 are input to the smoothing unit 95, and the combined power generation output Pgen is obtained. Smooth out.
  • the solar power generation power monitor signal Ppv_fb and the wind power generation power monitor signal Pwt_fb may be smoothed individually.
  • Charge / discharge power calculation unit 94 smoothes combined power generation output Pgen, calculates charge / discharge target value Pbat * of storage battery 14 for not exceeding interconnection capacity PL, and transmits it to the storage battery power conditioner.
  • Example 1 and Example 2 abbreviate
  • the solar power generation equipment 2 and the wind-power-generation installation 5 respectively obtain each restriction amount Ppv_lim or Pwt_lim from the integrated controller 9, this restriction amount
  • the limit operation may be performed with the upper limit being limited to that range, or any of feedback control may be performed using this limit amount as a target value.
  • the limited amount only means a control command signal, and the control method on the receiving side can be arbitrarily determined.
  • the solar power generation facility 2 and the wind power generation facility 5 which have received the limited amount which is the control command signal use this as the target value of the feedback control.
  • the limitation amount Ppv_lim or Pwt_lim is a signal obtained by smoothing the solar power generation power monitor signal Ppv_fb or the wind power generation power monitor signal Pwt_fb in the smoothing unit 95, so that the time fluctuation component in a short cycle is excluded. As a result, it is possible to limit the fluctuation of the generated power to, for example, 1% or less by feedback control using the smoothed control command signal as a target value.
  • the storage battery system 13 is used to charge the power exceeding the interconnection capacity PL because the response speed of the wind power generation apparatus 5 is slow. Therefore, the SOC of the storage battery 14 should be low.
  • FIG. 14 shows a flowchart of the method of operating the storage battery system 13 in the fourth embodiment.
  • step S31 it is determined whether the combined power generation output Pgen has reached the interconnection capacity PL. If not reached, there is a margin up to the interconnection capacity, so in step S32, the storage battery 14 is discharged. At this time, the upper limit value of the system output Psys is the interconnection capacity.
  • the storage battery system 13 is not operated because discharge from the storage battery 14 is impossible. Note that it is preferable to use a high power type battery and a high power type battery at the time of high power discharge, since the power storage device is a high power type and a capacitive type.
  • the storage battery system 13 can respond even during sudden charging.
  • the priority of the power generation of the solar power generation facility 2 and the wind power generation facility 5 in the first to third embodiments will be described.
  • the selling prices of the solar power generation facility 2 and the wind power generation facility 5 are generally different. Therefore, there is a difference in selling profit depending on which one is preferentially generated.
  • FIG. 15 is a flow chart for determining the priority of the generator.
  • the unit price Cost_pv of the solar power generation facility 2 and the unit price Cost_wt of the wind power generation facility 5 are compared.
  • the unit price of electricity sales Cost_pv of the photovoltaic power generation facility 2 is high, it is better to preferentially generate power from the photovoltaic power generation facility 2 and sell the generated power. Therefore, in the processing step S43, the wind power generation facility 5 is preferentially restricted.
  • the solar power generation facility 2 is prioritized in processing step S43. Restrict.
  • the present invention is applicable not only to solar light and wind power, but also to two types of power generation facilities having different responsiveness. is there.

Abstract

風車の応答速度の遅さを、太陽光発電設備や蓄電池装置で補うことで、太陽光発電設備と風力発電設備の合成出力が連系容量を超過せず、設備利用率を向上させる。 再生可能エネルギーを用いて発電を行う第1の発電設備と第2の発電設備の合成電力を電力系統に連系するとともに、合成電力が連系電力枠内に制限されている再生可能エネルギーハイブリッド発電システムの制御方法であって、応答速度の速い第1の発電設備は第1の制限電力以下で運転され、応答速度の遅い第2の発電設備は、第1の発電設備の出力と連系電力枠の差以下で運転され、合成電力が連系電力枠を超過する際に、連系電力枠と合成電力との差分を第1の発電設備により調整することを特徴とする再生可能エネルギーハイブリッド発電システムの制御方法。

Description

再生可能エネルギーハイブリッド発電システム及びその制御方法
 本発明は、複数の再生可能エネルギー発電装置を備えた再生可能エネルギーハイブリッド発電システム及びその制御方法に関する。
 近年、環境問題等を考慮して太陽光発電や風力発電などの再生可能エネルギー発電システムの導入が促進されているが、導入の促進に伴い新たな課題が生じている。
 この一例として、再生可能エネルギー発電が電力系統に大量に導入されたため、連系容量枠が不足し、新たな発電設備を電力系統に連系できないという課題がある。例えば再生可能エネルギーの発電サイトに、新たに再生可能エネルギーの発電設備を追加設置したい場合に、当該発電サイトを電力系統に接続するときの連系容量枠をオーバーしてしまい、新規発電設備の追加設置が行えないという問題である。
 また、再生可能エネルギー発電の出力電力は天候による変動が大きく、例えば太陽光発電の場合、夜間や悪天候時に発電できないため、確保された連系容量を使い切れず、太陽光発電設備の設備利用率が低下するという課題がある。ここで、設備利用率とは、発電設備が連系容量以下で100%運転を続けた場合に得られる電力量に対し、実際の発電電力量の割合である。
 これらの課題を解決するため、従来、太陽光発電設備に風力発電設備を組み合わせて同一の連系点に接続することで、互いの発電効率を補完する技術が提案されている。例えば、特許文献1には、商用電力系統に対する連系容量を超えることなく設備利用率を向上させることが可能な技術が開示されている。
 特許文献1には、「第1のエネルギー源により電力を発電する第1の発電設備と、第2のエネルギー源により電力を発電する第2の発電設備と、前記第2の発電設備が出力する発電電力を制御する第2の発電設備制御装置と、前記第1の発電設備が出力する発電電力と前記第2の発電設備が出力する発電電力とを合計した電力を商用電力系統へ供給する制御を行うハイブリッド発電制御装置と、を備えてなり、前記ハイブリッド発電制御装置は、前記第1の発電設備の発電電力を予測する発電電力予測手段と、前記商用電力系統に対して予め設定された上限の電力である連系容量から前記発電電力予測手段により予測された前記第1の発電設備の発電電力の予測値を差し引いた電力値に基づき、前記第2の発電設備の発電電力の制約値を算出し、前記算出した制約値を前記第2の発電設備制御装置に設定する制約値設定手段と、を有することを特徴とするハイブリッド発電システム。」と記載されている。
特許第6108510号
 設備利用率向上のため、既設の太陽光発電設備に風力発電設備を増設する場合、当該発電サイトを電力系統に接続する際の連系容量は太陽光発電設備の定格出力で決まっているため、太陽光発電設備と風力発電設備の合成出力は連系容量を超えてはならない。
 そのため、合成出力が連系容量を超えないように、増設した風力発電設備を制御する必要がある。然しながら、風車の応答速度は太陽光発電設備よりも遅いため、太陽光発電出力が急増した際の風車の出力抑制が間に合わず、連系容量を超過するという課題がある。
 以上のことから本発明の目的は、風車の応答速度の遅さを、太陽光発電設備や蓄電池装置で補うことで、太陽光発電設備と風力発電設備の合成出力が連系容量を超過せず、設備利用率を向上させることができる再生可能エネルギーハイブリッド発電システム及びその制御方法を提供することにある。
 以上のことから本発明においては「再生可能エネルギーを用いて発電を行う第1の発電設備と第2の発電設備の合成電力を電力系統に連系するとともに、合成電力が連系電力枠内に制限されている再生可能エネルギーハイブリッド発電システムの制御方法であって、応答速度の速い第1の発電設備は第1の制限電力以下で運転され、応答速度の遅い第2の発電設備は、第1の発電設備の出力と連系電力枠の差以下で運転され、合成電力が連系電力枠を超過する際に、連系電力枠と合成電力との差分を第1の発電設備により調整することを特徴とする再生可能エネルギーハイブリッド発電システムの制御方法」としたものである。
 また本発明は「再生可能エネルギーを用いて発電を行う第1の発電設備と第2の発電設備の合成電力を電力系統に連系するとともに、合成電力が連系電力枠内に制限されている再生可能エネルギーハイブリッド発電システムの制御方法であって、蓄電装置を備え、蓄電装置の出力を含めた電力を合成電力として電力系統に連系し、応答速度の速い第1の発電設備は第1の制限電力以下で運転され、応答速度の遅い第2の発電設備は、第1の発電設備の出力と連系電力枠の差以下で運転され、合成電力が連系電力枠を超過する際に、連系電力枠と合成電力との差分を第1の発電設備、および蓄電装置のいずれか一方または双方により調整することを特徴とする再生可能エネルギーハイブリッド発電システムの制御方法」としたものである。
 また本発明は「太陽光発電設備と風力発電設備の合成電力を電力系統に連系するとともに、前記合成電力が連系電力枠内に制限されている再生可能エネルギーハイブリッド発電システムであって、太陽光発電設備と風力発電設備に制御指令信号を与える統括コントローラは、太陽光発電設備の出力電力を入力して、第1の制限電力以下とする第1の制御指令信号を作成して太陽光発電設備に与える太陽光発電制限量算出部と、風力発電設備の出力電力を入力して、太陽光発電設備の出力と連系電力枠の差以下とする第2の制御指令信号を作成して風力発電設備に与える風力発電制限量算出部と、合成電力が連系電力枠を超過する際に、連系電力枠と合成電力との差分による第3の制御指令信号を作成して太陽光発電設備に与える太陽光発電制限量補正部を備えていることを特徴とする再生可能エネルギーハイブリッド発電システム」としたものである。
 また本発明は「太陽光発電設備と風力発電設備の合成電力を電力系統に連系するとともに、前記合成電力が連系電力枠内に制限されている再生可能エネルギーハイブリッド発電システムであって、蓄電装置を備え、蓄電装置の出力を含めた電力を合成電力として電力系統に連系し、太陽光発電設備と風力発電設備と蓄電装置に制御指令信号を与える統括コントローラは、太陽光発電設備の出力電力を入力して、第1の制限電力以下とする第1の制御指令信号を作成して太陽光発電設備に与える太陽光発電制限量算出部と、風力発電設備の出力電力を入力して、太陽光発電設備の出力と連系電力枠の差以下とする第2の制御指令信号を作成して風力発電設備に与える風力発電制限量算出部と、合成電力が前記連系電力枠を超過する際に、連系電力枠と合成電力との差分による第3の制御指令信号を作成して蓄電装置に与える充放電電力算出部を備えていることを特徴とする再生可能エネルギーハイブリッド発電システム」としたものである。
 本発明によれば、太陽光発電設備と風力発電設備の合成出力が連系容量を超過せずに、設備利用率を向上させることができる。さらに、既に系統連系枠がない地域にも発電設備を新規で導入することができる。
本発明の実施例1に係る再生可能エネルギーハイブリッド発電システムの全体構成例を示すブロック図。 実施例1に係る統括コントローラ9の詳細構成を示す図。 実施例1に係る統括コントローラ9の演算処理の一例を示すフローチャート。 太陽光発電設備2と風力発電設備5の合成出力Psysが連系容量を超過する様子を示す図。 連系容量PLを超過しないように風力発電設備5を制限したときの波形を示す図。 連系容量PLを超過しないように太陽光発電設備2を制限したときの波形を示す図。 実施例2に係る再生可能エネルギーハイブリッド発電システムの全体構成例を示す図。 実施例2に係る統括コントローラ9の詳細構成を示す図。 実施例2に係る統括コントローラ9の演算処理の一例を示すフローチャート。 実施例3に係る太陽光発電設備2のみに技術要件がある場合の再生可能エネルギーハイブリッド発電システムの全体構成例を示す図。 実施例3に係る太陽光発電設備2のみに技術要件がある場合の統括コントローラ9の詳細構成を示す図。 実施例3に係る風力発電設備5のみに技術要件がある場合の再生可能エネルギーハイブリッド発電システムの全体構成例を示す図。 実施例3に係る風力発電設備5のみに技術要件がある場合の統括コントローラ9の詳細構成を示す図。 実施例3に係る太陽光発電設備2と風力発電設備5の両方に技術要件がある場合に、最後に平滑化するときの統括コントローラ9の詳細構成を示す図。 実施例3に係る太陽光発電設備2と風力発電設備5の両方に技術要件がある場合に、最初に平滑化するときの統括コントローラ9の詳細構成を示す図。 実施例4における蓄電池システム13の運用方法を示すフローチャート。 実施例5における発電機の優先度を決定するためのフローチャート。
 以下、図面を用いて、本発明の実施形態について説明する。なお本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 図1は、本発明の実施例1に係る再生可能エネルギーハイブリッド発電システムの全体構成を示すブロック図である。
 図1の太陽光風力ハイブリッド発電装置100は電力系統1に連系されている。太陽光風力ハイブリッド発電装置100は、太陽光発電設備2と風力発電設備5と電力制御装置8とを備える。太陽光発電設備2から出力された太陽光発電出力Ppvと、風力発電設備5から出力された風力発電出力Pwtの総和が、システム出力Psysとして電力系統1に供給される。ここで、システム出力Psysの上限値は、連系容量PLである。
 太陽光発電設備2は、太陽光パネル3と太陽光用パワーコンディショナ4から構成されている。太陽光パネル3は、例えば、単結晶シリコン型、多結晶シリコン型、微結晶シリコン型、アモルファスシリコン型等のシリコン系の太陽電池を複数直並列接続することにより構成することができる。また、太陽光パネル3を、例えば、InGaAs系、GaAs系、CIS系(カルコバライト系)等の化合物系の太陽電池を複数直並列接続することにより構成してもよい。さらに、本実施例では、太陽光パネル3を構成する太陽電池として、例えば、色素増感太陽電池、有機薄膜太陽電池等の有機系の太陽電池を用いてもよい。また、太陽光パワーコンディショナ4は太陽光パネル3から出力された直流の発電電力を交流の太陽光発電電力Ppvに変換し、電力系統1に出力する。したがって、電力系統1に供給される太陽光発電電力Ppvは、太陽光パワーコンディショナ4の定格出力により制限される。
 風力発電設備5は、風車6と風車用パワーコンディショナ7から構成されている。風力発電設備5は、風車用パワーコンディショナ7により発電出力を制御する機能(PCS制御)と、風車の羽根の角度制御により発電出力を制御する機能(ピッチ角制御)を持っている。一般的に、風車6の発電出力が定格出力に達するまではピッチは制御せず、風任せの運転をする。風速が定格風速に達して風車6の発電電力が定格出力に達すると、発電機の回転数を一定に保つようにピッチ角を制御する。また、発電機の回転数から発電可能量を算出し、風車用パワーコンディショナ7与える。ここで、風車用パワーコンディショナ7は風車6のタワー下に設置される場合もある。風力発電設備5から出力される風力発電電力Pwtは電力系統1に供給される。
 電力制御装置8は、太陽光風力ハイブリッド発電装置100から出力されるシステム出力Psysを連系容量以下に抑えつつ、設備利用率を向上するように電力を制御するための機能を有し、統括コントローラ9、通信ネットワーク10(インターネット等)、外部コントローラ11、端末12を備える。電力制御装置8内において、統括コントローラ9は、通信ネットワーク10を介して、外部コントローラ11と通信可能に接続され、外部コントローラ11は、シリアルバス又はパラレルバス等を介して端末12に接続される。
 このような構成の電力制御装置8では、オペレータが、太陽光風力ハイブリッド発電装置100から離れた場所に設置された外部コントローラ11を介して、統括コントローラ9の処理動作を制御することができる。例えば、オペレータが端末12を操作することにより、外部コントローラ11を介して統括コントローラ9にアクセスし、各種制御に必要な各種設定値などを入力することができる。また、例えば、オペレータは、太陽光風力ハイブリッド発電装置100の状態(動作状況)を端末12に表示することができる。なお、実施例1では、電力制御装置8に外部コントローラ11、通信ネットワーク10及び端末12が含まれる構成例を説明するが、本発明はこれに限定されず、これらの構成が当該発電サイトの外部に設けられていてもよい。
 統括コントローラ9は、例えば、CPU(Central Processing Unit)等の演算装置により構成される。統括コントローラ9は通信網を介して、太陽光用パワーコンディショナ4、風力発電設備用パワーコンディショナ7と接続されている。この場合に、通信接続態様は任意に設定することができ、例えば、無線通信及び有線通信のいずれの態様でも適用することができる。統括コントローラ9は、詳細は後述するが、太陽光用パワーコンディショナ4により計測される太陽光発電電力Ppvのモニタ信号(以下、「太陽光発電電力モニタ信号Ppv_fb」と称す)を取得する。なお、太陽光発電電力モニタ信号Ppv_fbは、太陽光用パワーコンディショナ4とは別個に設けられた電力計等により計測されてもよい。
 風力発電設備5に関しても同様で、統括コントローラ9は、風車用パワーコンディショナ7により計測される風力発電電力Pwtのモニタ信号(以下、「風力発電電力モニタ信号Pwt_fb」と称す)を取得する。なお、風力発電電力モニタ信号Pwt_fbは、風力発電設備5とは別個に設けられた電力計等により計測されてもよい。なお、統括コントローラ9によるこれらの各種信号(各種情報)の取得動作は、定期的に行ってもよいし、不定期で行ってもよい。
 また、統括コントローラ9は、太陽光用パワーコンディショナ4から入力された太陽光発電電力モニタ信号Ppv_fbと、風車用パワーコンディショナ7から入力された風車用発電モニタ信号Pwt_fbに基づいて、連系容量を超過せずに設備利用率を向上させるための各種演算を行う。図1では、太陽光用パワーコンディショナ4、風車用パワーコンディショナ7をそれぞれ単体にて設置する場合を示しているがこれに限られない。例えば、多数の太陽光パネル3を備えるメガソーラ等の大規模な太陽光発電設備2では、複数の太陽光パネル3に応じて複数台の太陽光用パワーコンディショナ4を設置する。同様に、多数の風車6を備えるウィンドファーム等の大規模な風力発電設備5としても良い。
 具体的な演算方法について、図2を用いて説明する。図2は統括コントローラ7の詳細構成を示す図である。統括コントローラ9は、システム出力Psysが電力系統1の連系容量を超過しないように、太陽光発電電力モニタ信号Ppv_fbと風力発電電力モニタ信号Pwt_fbを制御する。
 統括コントローラ9は、太陽光発電制限量算出部91、太陽光発電制限量補正部92、風力発電制限量算出部93から構成される。システム出力Psysが連系容量を超過しないように、太陽光発電制限量算出部91と風力発電制限量算出部93は各発電量の制限値Ppv_lim、Pwt_limを算出する。
 ここで、風力発電装置5の応答速度は太陽光発電設備2と比較して遅いため、風力発電装置5の出力制限が間に合わず、連系容量を超過してしまう可能性がある。そのため、風力発電設備5が制限しきれなかった電力情報を太陽光発電制限量補正部92に入力し、太陽光発電設備2の制限量を補正する。また、太陽光発電設備2の発電電力が急激に減少した場合、連系容量に余裕ができるため、風力発電設備5の出力制限を解放し、発電を急増させることにより設備利用率を向上させることができる。
 しかし、一度太陽光発電設備2の発電ポテンシャルが高い日中は、発電電力が急激に減少した後、再び急激に増加する可能性がある。その場合、連系容量を超過しないように風力発電設備5の発電電力を急激に減少させる必要があるが、応答速度が遅いため出力制限が間に合わず連系容量を超過する可能性がある。そこで、太陽光発電設備2の発電電力が急増しても、風力発電設備5の応答速度が原因で連系容量を超過しないよう、太陽光発電設備2の発電出力が急減した後、太陽光発電設備2の上限値を風力発電設備5の応答速度に合わせて少しずつ増加させる。これにより、太陽光発電設備2の発電電力が急増しても、システム出力が連系容量を超過することを防止する。
 図3は統括コントローラ9の演算処理の一例を示すフローチャートである。図3のフローチャートの最初の処理である処理ステップS11では、検出した太陽光発電出力Ppv_fbを太陽光用パワーコンディショナ7の定格出力と、連系容量PLのどちらか小さい値で制限する。このときの制限値を太陽光発電制限値Ppv_limとする。これにより太陽光発電出力Ppvは連系容量PL以下の値とされる。なお太陽光発電制限値Ppv_limを設定する際に、これを連系容量PLと同じ値としてもよいが、連系容量PLの例えば90%程度の値に設定しておくものであってもよい。応答の遅い風力発電設備5に合わせて適宜に低減された太陽光発電制限値Ppv_limとするのがよい。係る配慮により、合成電力が連系容量PLを超過しにくくなる。
 次に処理ステップS12では、連系容量PLと制限後の太陽光発電出力Ppvの差分を計算し、その結果を風力発電制限値Pwt_limとする。その後処理ステップS13において、風力発電電力モニタ信号Pwt_fbを風力発電制限値Pwt_limで制限する。
 上記の処理によれば、この発電サイトは、連系容量PL以下であるときに太陽光発電を優先的に実行し、連系容量PLの順守の観点から風力発電を付随的に制御したものということができる。またここまでの処理によれば、太陽光発電制限値Ppv_limと、風力発電制限値Pwt_limにより制限されて運転された結果としてのシステム出力Psysは、連系容量PL以下の値とされている。
 但し、応答速度が遅い風力発電を連系容量PLの順守の観点から付随的に制御しているため、システム出力Psysが連系容量PLを急激に超過するときの対応には遅れが生じてくることから、最後に処理ステップS14において、連系容量PLを超過する電力と同等の電力ΔPを、太陽光発電設備2の発電電力から減算する。このときには、処理ステップS11で算出した太陽光発電制限値Ppv_limから連系容量PLを超過する電力と同等の電力ΔPを差し引いた新たな値を、太陽光発電制限値Ppv_limとして太陽光発電設備2を制御する。
 上記の考え方によれば、システム出力Psysが連系容量PLを急激に超過したときに、応答の早い太陽光発電出力Ppvが急減することにより、連系容量PLの順守を可能としている。
 図4a、図4b、図4cを用いて本発明による効果を説明する。まず、図4aは太陽光発電設備2と風力発電設備5の合成出力Psysが連系容量を超過する様子を示す。この事例では、連系容量PLを超過しないようにするための対応を実施していない場合を示している。連系容量PLの超過期間が長期に及んでいる。
 図4bは連系容量PLを超過しないように風力発電設備5を制限したときの波形を示す。風力発電設備5の応答速度が遅いため、出力抑制が間に合わず、連系容量PLを超過してしまう。
 そのため実施例1では、図4bの連系容量PLを超過した電力と同等の電力ΔPを、太陽光発電設備2の発電電力から減算することで、図4cに示すようにシステム出力Psysを連系容量PL以下に抑えることができる。
 以上により、太陽光風力ハイブリッド発電システム100は、電力系統の連系容量PLを超過せずに、最大限発電することができる。
 図5は実施例2に係る再生可能エネルギーハイブリッド発電システムの全体構成を示す。図5は図1に対し、蓄電池システム13を追加した構成となっている。
 蓄電池併設太陽光風力ハイブリッド発電装置101では、太陽光発電設備2から出力された太陽光発電出力Ppvと、風力発電設備5から出力された風力発電出力Pwtの総和が、合成発電出力Pgenとして供給される。また、合成発電出力Pgenと蓄電池システム11から出力される充放電出力Pbatの総和が、システム出力Psysとして電力系統1に供給される。ここで、システム出力Psysの上限値は、連系容量PLである。
 蓄電池システム13は、蓄電池14および蓄電池用パワーコンディショナ15から構成されている。蓄電池14から出力される直流の充放電電力は蓄電池パワーコンディショナ15で交流の充放電電力Pbatに変換され、電力系統1に出力される。なお、蓄電池パワーコンディショナ15、上述の太陽光用パワーコンディショナ4、風車用パワーコンディショナ7は、系統連系インバータと称される場合もある。
 蓄電池14は、例えば鉛蓄電池、リチウムイオン蓄電池、ニッケル・水素蓄電池など二次電池により構成される。
 統括コントローラ9は、太陽光発電設備2および風力発電設備5からの情報に加え、蓄電池システム13から蓄電池14の充電率SOCを受け取り、充放電目標値Pbat*を蓄電池用パワーコンディショナ15へ送信する。
 図6は実施例2に係る統括コントローラ9の詳細構成例を示す図である。図6の構成によれば、統括コントローラ9は太陽光発電制限量算出部91、風力発電制限量算出部93、充放電電力算出部94から構成されている。
 この構成においても、太陽光発電制限量算出部91と風力発電制限量算出部93は、実施例1の図2の構成と基本的に同様に機能する。これらは、太陽光発電電力モニタ信号Ppv_fbと風力発電電力モニタ信号Pwt_fbをそれぞれ入力し、合成発電出力Pgenが連系容量PLを超過しないように、太陽光発電設備2の制限量Ppv_limを太陽光発電制限量算出部91で、風力発電設備5の制限量Pwt_limを風力発電制限量算出部93で算出する。
 実施例1では、システム出力Psysが連系容量PLを急激に超過するときの対応を太陽光発電設備2において実施したが、実施例2ではこの処理対応を蓄電池システム11で実行する。
 充放電電力算出部94は、風力発電設備5の制限量Pwt_limとSOCの情報を元に、蓄電システム11の充放電目標値Pbat*を算出する。したがって、風力発電設備5の応答が遅く、出力制限が間に合わずに連系容量を超過する電力を蓄電池に充電することで、蓄電池併設太陽光風力ハイブリッド発電装置101の設備利用率を向上させることができる。
 図7は実施例2における統括コントローラ9の演算処理の一例を示すフローチャートである。図3との違いは、最後の処理ステップが処理ステップS14から処理ステップS15になった点のみである。
 図7のフローチャートの最初の処理である処理ステップS11では、検出した太陽光発電出力Ppv_fbを太陽光用パワーコンディショナ7の定格出力と、連系容量PLのどちらか小さい値で制限する。このときの制限値を太陽光発電制限値Ppv_limとする。これにより太陽光発電出力Ppvは連系容量PL以下の値とされる。なお太陽光発電制限値Ppv_limを設定する際に、これを連系容量PLと同じ値としてもよいが、連系容量PLの例えば90%程度の値に設定しておくものであってもよい。応答の遅い風力発電設備5に合わせて適宜に低減された太陽光発電制限値Ppv_limとするのがよい。係る配慮により、合成電力が連系容量PLを超過しにくくなる。
 次に処理ステップS12では、連系容量PLと制限後の太陽光発電出力Ppvの差分を計算し、その結果を風力発電制限値Pwt_limとする。その後処理ステップS13において、風力発電電力モニタ信号Pwt_fbを風力発電制限値Pwt_limで制限する。
 上記の処理によれば、この発電サイトは、連系容量PL以下であるときに太陽光発電を優先的に実行し、連系容量PLの順守の観点から風力発電を付随的に制御したものということができる。またここまでの処理によれば、太陽光発電制限値Ppv_limと、風力発電制限値Pwt_limにより制限されて運転された結果としてのシステム出力Psysは、連系容量PL以下の値とされている。
 但し、応答速度が遅い風力発電を連系容量PLの順守の観点から付随的に制御しているため、システム出力Psysが連系容量PLを急激に超過するときの対応には遅れが生じてくることから、最後に処理ステップS15において、連系容量PLを超過する電力と同等の電力ΔPを、蓄電池14に充電する。
 上記の考え方によれば、合成発電出力Pgenが連系容量PLを急激に超過したときに、応答の早い蓄電池14に充電することにより、システム出力Psysの連系容量PLの順守を可能としている。
 以上により、蓄電池併設太陽光風力ハイブリッド発電システム101は、電力系統の連系容量を超過せず、蓄電池システム11を活用することで発電電力を無駄にせず、設備利用率を向上させることができる。
 実施例3では、電力会社が出力変動に対する規制(技術要件)を定めている地域に蓄電池付き再生可能エネルギーハイブリッド発電システムを導入する場合について説明する。
 ここで電力会社が定めた出力変動に対する規制とは、総量規制に当たる連系容量PLの順守とは別に、連系容量PL以下であっても太陽光風力ハイブリッド発電装置100が与える発電電力の変動を例えば1%以下に制限することを求めたものである。ここで、技術要件は太陽光発電設備2のみにある場合、風力発電設備5のみにある場合、太陽光発電設備2と風力発電設備5の両方にある場合の3通りが考えられる。まず、太陽光発電設備2のみに技術要件がある場合について説明する。
 図8は実施例3において、太陽光発電設備2のみに技術要件がある場合の再生可能エネルギーハイブリッド発電システムの全体構成を示す。図8は図1に対し、蓄電池システム13を太陽光発電設備2に追加した構成となっている。また図8は、図5の構成に対し、蓄電池システム13を太陽光発電設備2側に追加した構成であり、図8の各部電力に付与した記号が図5のそれとは、一部相違している。
 図9は実施例3において太陽光発電設備2のみに技術要件がある場合の統括コントローラ9の詳細構成例を示す図である。
 図9の統括コントローラ9は、実施例1の構成要素である太陽光発電制限量算出部91、太陽光発電制限量補正部92、風力発電制限量算出部93と、実施例2の構成要素である充放電電力算出部94と、さらに太陽光発電設備2の出力を平滑化する平滑化部95から構成されている。ここでは、実施例1、実施例2で述べた各機能(太陽光発電制限量算出部91、太陽光発電制限量補正部92、風力発電制限量算出部93、充放電電力算出部94)は、実施例3でも同様に動くものであるので、ここでの詳細説明は簡単に行うものとする。
 まず、太陽光発電電力モニタ信号Ppv_fbを平滑化部95に入力して出力変動を平滑化する。平滑化に必要な充放電出力は充放電電力算出部94で算出する。その後の処理は実施例1および実施例2と同様で、平滑化後の太陽光発電電力Ppv’と風力発電電力Pwtの合成出力(システム出力Psys)が連系容量PLを超過しないように、太陽光発電制限量算出部91と風力発電制限量算出部93は各発電量の制限値Ppv_lim、Pwt_limを算出する。
 ここで、風力発電装置5の応答速度は太陽光発電設備2と比較して遅いため、風力発電装置5の出力制限が間に合わず、連系容量を超過してしまう可能性がある。そのため、風力発電設備5が制限しきれなかった電力情報を太陽光発電制限量補正部92に入力し、太陽光発電設備2の制限量を補正する。あるいは、風力発電設備5が制限しきれなかった電力情報を充放電電力算出部94に入力し、蓄電池14の充放電電力Pbat*を算出する。以上により、電力会社の技術要件を守りつつ、連系容量の超過を防止することができる。
 次に、風力発電設備5のみに技術要件がある場合について説明する。図10は実施例3において、風力発電設備5のみに技術要件がある場合の再生可能エネルギーハイブリッド発電システムの全体構成を示す。図10は図1に対し、蓄電池システム13を風力発電設備5に追加した構成となっている。また図10は、図5、図8の構成に対し、蓄電池システム13を風力発電設備5側に追加した構成であり、図10の各部電力に付与した記号が図5、図8のそれとは、一部相違している。
 図11は実施例3において風力発電設備5のみに技術要件がある場合の統括コントローラ9の詳細構成例を示す図である。図11は図9と異なり、平滑化部95が風力発電制限量算出部93の前に設置されている。ここで追加された平滑化部95は、電力会社が技術要件を定めている地域では、既設の太陽光発電設備2に風力発電設備5を新設する場合に、新設する風力発電設備5の出力変動を平滑化しなければならないものとすることから設備されたものである。この場合、太陽光発電側についてみると、太陽光発電制限量算出部91は、太陽光発電電力モニタ信号Ppv_fbを入力して、これを連系容量PL以下に制限すべく太陽光発電設備2の制限量Ppv_limを設定する。
 風力発電側についてみると、平滑化部95において風力発電電力モニタ信号Pwt_fbを平滑化する。その後、風力発電制限量算出部73は、風力発電電力モニタ信号Pwt_fbの平滑化信号を用いて、合成発電出力Pgenが連系容量PLを超過しないように制限すべく風力発電設備5の制限量Pwt_limを設定する。
 そのうえで、風力発電装置5の応答速度が遅く、連系容量を超過する電力は太陽光発電制限量補正部92にて太陽光発電装置2を制限するか、あるいは充放電電力算出部94を介して蓄電池14に充電する。
 以上により、電力会社の技術要件を守り、連系容量の超過を防止でき、設備利用率も向上させることができる。
 次に、太陽光発電設備2と風力発電設備5の両方に技術要件がある場合について説明する。太陽光発電設備2と風力発電設備5の両方の出力変動を平滑化しなければいけない場合、図5に示す再生可能エネルギーハイブリッド発電システムの全体構成でも良いし、太陽光発電装置2と風力発電装置5のそれぞれに蓄電池システムを設置する構成でも良い。
 図12は実施例3において、太陽光発電設備2と風力発電設備5の両方に技術要件がある場合に、最後に平滑化するときの統括コントローラ9の詳細構成例を示す。
 図12は図9および図11と異なり、平滑化部95が太陽光発電制限量算出部91と風力発電制限量算出部93の後ろに設置されている。統括コントローラ9は、太陽光発電制限量算出部91、風力発電制限量算出部93、充放電電力算出部94、平滑化部95から構成される。
 図12は実施例1および実施例2と同様に、太陽光用パワーコンディショナ4から得られる太陽光発電電力モニタ信号Ppv_fbと、風車用パワーコンディショナ7から得られる風力発電電力モニタ信号Pwt_fbを統括コントローラ9に入力し、合成発電出力Pgenが連系容量PLを超過しないように、太陽光発電設備2の制限量Ppv_limを太陽光発電制限量算出部91で、風力発電設備5の制限量Pwt_limを風力発電制限量算出部93で算出する。
 制限後の合成発電出力Pgenを平滑化部95で平滑化し、平滑化に必要な蓄電池システム13の充放電目標値Pbat*を充放電電力算出部94で算出する。更に、充放電電力算出部94では、風車6の応答性が原因で連系容量PLを超過した分も充電するように、充放電目標値Pbat*を補正する。
 以上により、電力会社の技術要件を守り、連系容量の超過を防止でき、設備利用率も向上させることができる。
 これに対し、図13は実施例3において、太陽光発電設備2と風力発電設備5の両方に技術要件がある場合に、最初に平滑化するときの統括コントローラ9の詳細構成例を示す。統括コントローラ9の構成は図12と変わらないが、処理の順序が異なっている。
 まず、太陽光用パワーコンディショナ4から得られる太陽光発電電力モニタ信号Ppv_fbと、風車用パワーコンディショナ7から得られる風力発電電力モニタ信号Pwt_fbを平滑化部95に入力し、合成発電出力Pgenを平滑化する。ここで、平滑化部95の処理の例として合成発電出力Pgenを平滑化する場合について説明したが、太陽光発電電力モニタ信号Ppv_fbと、風力発電電力モニタ信号Pwt_fbを個別に平滑化しても良い。充放電電力算出部94は、合成発電出力Pgenを平滑化し、連系容量PLを超過しないための蓄電池14の充放電目標値Pbat*を算出し、蓄電池用パワーコンディショナへ送信する。
 以上から、技術要件が定められている地域にも蓄電池併設太陽光風力ハイブリッド発電装置101を導入することが可能となる。更に、風力発電装置5の応答性を補うように太陽光発電設備2あるいは蓄電池システム11を活用するため、設備利用率を向上させることができる。
 なお、実施例1、実施例2では説明を省略しているが、太陽光発電設備2および風力発電設備5は、夫々の制限量Ppv_limあるいはPwt_limを統括コントローラ9から入手したときに、この制限量を上限としてその範囲内に制限する制限運転を行ってもよいし、この制限量を目標値とする帰還制御のいずれを実行するものであってもよい。制限量は制御指令信号を意味するのみであって、受け側の制御の仕方は任意に定めることができるものである。
 これに対し、実施例3の場合には、制御指令信号である制限量を受けた太陽光発電設備2および風力発電設備5は、これを帰還制御の目標値として使用する。制限量Ppv_limあるいはPwt_limは、平滑化部95において太陽光発電電力モニタ信号Ppv_fbあるいは風力発電電力モニタ信号Pwt_fbを平滑化した信号を用いているので、短周期での時間変動成分が除外されている。この結果として平滑化された制御指令信号を目標値とする帰還制御により、発電電力の変動を例えば1%以下に制限することができる。
 実施例4では、図5の構成における蓄電池システム13の運用方法について説明する。
 蓄電池併設太陽光風力ハイブリッド発電装置101において、蓄電池システム13は風力発電装置5の応答速度が遅く、連系容量PLを超過した電力を充電するために使用する。したがって、蓄電池14のSOCは低い状態にあるほうが良い。
 図14は実施例4における蓄電池システム13の運用方法のフローチャートを示す。まず処理ステップS31では、合成発電出力Pgenが連系容量PLに到達していないかを判断する。到達していない場合、連系容量まで余裕があるため、処理ステップS32では、蓄電池14から放電する。このとき、システム出力Psysの上限値は連系容量となる。連系容量PLに到達している場合は蓄電池14からの放電は不可能なため、蓄電池システム13は稼動させない。なお蓄電装置は、高出力型と容量型を併設し、高出力放電時は、高出力型電池を使用するのがよい。
 以上により、蓄電池14のSOCを常に低めに保つことができるため、急な充電時にも蓄電池システム13が応答できるようになる。
 実施例5では、実施例1から実施例3における、太陽光発電設備2と風力発電設備5の発電の優先度について説明する。太陽光発電設備2と風力発電設備5の売電単価は一般的に異なる。そのため、どちらを優先的に発電するかによって、売電利益に差がつく。
 図15は発電機の優先度を決定するためのフローチャートである。まず処理ステップS41では、太陽光発電設備2の売電単価Cost_pvと風力発電設備5の売電単価Cost_wtを比較する。太陽光発電設備2の売電単価Cost_pvが高い場合、太陽光発電設備2を優先的に発電し、発電電力を売電した方が儲かる。そのため処理ステップS43において、風力発電設備5を優先的に制限する。
 一方、風力発電設備5の売電単価Cost_wtが高い場合、風力発電設備5を優先的に発電し、発電電力を売電した方が儲かるため、処理ステップS43において太陽光発電設備2を優先的に制限する。
 売電単価をトリガーとするスイッチで切り替える方式にすることで、売電単価が変動しても、優先する発電装置をすぐに切り替えることができる。
 以上により、常に売電単価の高い発電装置を優先的に発電し、発電電力を売電できるため、利益が向上する。
 実施例5までは太陽光発電設備2と風力発電設備5のハイブリッドシステムについて述べてきたが、太陽光や風力に限らず、応答性の異なる2種類の発電設備であれば本発明が適用可能である。
1:電力系統
2:太陽光発電設備
3:太陽光パネル
4:太陽光用パワーコンディショナ
5:風力発電設備
6:風車
7:風車用パワーコンディショナ
8:電力制御装置
9:統括コントローラ 
10:ネットワーク
11:外部コントローラ 
12:端末 
13:蓄電池システム
14:蓄電池
15:蓄電池用パワーコンディショナ
91:太陽光発電制限量算出部
92:太陽光発電制限量補正部
93:風力発電制限量算出部
94:充放電電力算出部
95:平滑化部
100:太陽光風力ハイブリッド発電装置
101:蓄電池併設太陽光風力ハイブリッド発電装置
Ppv:太陽光発電電力
Ppv_fb:太陽光発電電力モニタ信号
Pwt:風力発電電力
Pwt_fb:風力発電電力モニタ信号
Ppv_lim:太陽光発電制限値
Pwt_lim:風力発電制限値
Pgen:合成発電出力
Pbat:充放電電力
Psys:システム出力
Pbat*:充放電目標値
SOC:充電率

Claims (16)

  1.  再生可能エネルギーを用いて発電を行う第1の発電設備と第2の発電設備の合成電力を電力系統に連系するとともに、前記合成電力が連系電力枠内に制限されている再生可能エネルギーハイブリッド発電システムの制御方法であって、
     応答速度の速い前記第1の発電設備は第1の制限電力以下で運転され、応答速度の遅い前記第2の発電設備は、前記第1の発電設備の出力と前記連系電力枠の差以下で運転され、前記合成電力が前記連系電力枠を超過する際に、前記連系電力枠と前記合成電力との差分を前記第1の発電設備により調整することを特徴とする再生可能エネルギーハイブリッド発電システムの制御方法。
  2.  再生可能エネルギーを用いて発電を行う第1の発電設備と第2の発電設備の合成電力を電力系統に連系するとともに、前記合成電力が連系電力枠内に制限されている再生可能エネルギーハイブリッド発電システムの制御方法であって、
     蓄電装置を備え、該蓄電装置の出力を含めた電力を前記合成電力として前記電力系統に連系し、
     応答速度の速い前記第1の発電設備は第1の制限電力以下で運転され、応答速度の遅い前記第2の発電設備は、前記第1の発電設備の出力と前記連系電力枠の差以下で運転され、前記合成電力が前記連系電力枠を超過する際に、前記連系電力枠と前記合成電力との差分を前記第1の発電設備、および前記蓄電装置のいずれか一方または双方により調整することを特徴とする再生可能エネルギーハイブリッド発電システムの制御方法。
  3.  請求項1または請求項2に記載の再生可能エネルギーハイブリッド発電システムの制御方法であって、
     前記第1の発電設備における前記第1の制限電力は、前記第2の発電設備の応答速度により決定されることを特徴とする再生可能エネルギーハイブリッド発電システムの制御方法。
  4.  請求項1から請求項3のいずれか1項に記載の再生可能エネルギーハイブリッド発電システムの制御方法であって、
     前記第1の発電設備が太陽光発電、前記第2の発電設備が風力発電であることを特徴とする再生可能エネルギーハイブリッド発電システムの制御方法。
  5.  太陽光発電設備と風力発電設備の合成電力を電力系統に連系するとともに、前記合成電力が連系電力枠内に制限されている再生可能エネルギーハイブリッド発電システムであって、
     前記太陽光発電設備と前記風力発電設備に制御指令信号を与える統括コントローラは、
     前記太陽光発電設備の出力電力を入力して、第1の制限電力以下とする第1の制御指令信号を作成して前記太陽光発電設備に与える太陽光発電制限量算出部と、前記風力発電設備の出力電力を入力して、前記太陽光発電設備の出力と前記連系電力枠の差以下とする第2の制御指令信号を作成して前記風力発電設備に与える風力発電制限量算出部と、前記合成電力が前記連系電力枠を超過する際に、前記連系電力枠と前記合成電力との差分による第3の制御指令信号を作成して前記太陽光発電設備に与える太陽光発電制限量補正部を備えていることを特徴とする再生可能エネルギーハイブリッド発電システム。
  6.  太陽光発電設備と風力発電設備の合成電力を電力系統に連系するとともに、前記合成電力が連系電力枠内に制限されている再生可能エネルギーハイブリッド発電システムであって、
     蓄電装置を備え、該蓄電装置の出力を含めた電力を前記合成電力として電力系統に連系し、
     前記太陽光発電設備と前記風力発電設備と前記蓄電装置に制御指令信号を与える統括コントローラは、
     前記太陽光発電設備の出力電力を入力して、第1の制限電力以下とする第1の制御指令信号を作成して前記太陽光発電設備に与える太陽光発電制限量算出部と、前記風力発電設備の出力電力を入力して、前記太陽光発電設備の出力と前記連系電力枠の差以下とする第2の制御指令信号を作成して前記風力発電設備に与える風力発電制限量算出部と、前記合成電力が前記連系電力枠を超過する際に、前記連系電力枠と前記合成電力との差分による第3の制御指令信号を作成して前記蓄電装置に与える充放電電力算出部を備えていることを特徴とする再生可能エネルギーハイブリッド発電システム。
  7.  請求項6に記載の再生可能エネルギーハイブリッド発電システムであって、
     前記統括コントローラは、前記合成電力が前記連系電力枠を超過する際に、前記連系電力枠と前記合成電力との差分による第4の制御指令信号を作成して前記太陽光発電設備に与える太陽光発電制限量補正部を備えており、前記合成電力が前記連系電力枠を超過する際に、前記連系電力枠と前記合成電力との差分を前記太陽光発電設備、および前記蓄電装置のいずれか一方または双方により調整することを特徴とする再生可能エネルギーハイブリッド発電システム。
  8.  請求項5から請求項7のいずれか1項に記載の再生可能エネルギーハイブリッド発電システムであって、
     前記風力発電制限量算出部は、前記風力発電設備の出力電力を平滑した信号を入力していることを特徴とする再生可能エネルギーハイブリッド発電システム。
  9.  請求項5から請求項7のいずれか1項に記載の再生可能エネルギーハイブリッド発電システムであって、
     前記太陽光発電制限量算出部は、前記太陽光発電設備の出力電力を平滑した信号を入力していることを特徴とする再生可能エネルギーハイブリッド発電システム。
  10.  請求項5から請求項7のいずれか1項に記載の再生可能エネルギーハイブリッド発電システムであって、
     前記風力発電制限量算出部は、前記風力発電設備の出力電力を平滑した信号を入力しており、前記太陽光発電制限量算出部は、前記太陽光発電設備の出力電力を平滑した信号を入力していることを特徴とする再生可能エネルギーハイブリッド発電システム。
  11.  請求項6または請求項7に記載の再生可能エネルギーハイブリッド発電システムであって、
     充放電電力算出部は、前記風力発電設備の出力電力と前記太陽光発電設備の出力電力を平滑した信号を入力していることを特徴とする再生可能エネルギーハイブリッド発電システム。
  12.  請求項5から請求項11のいずれか1項に記載の再生可能エネルギーハイブリッド発電システムであって、
     前記太陽光発電設備と前記風力発電設備の切り替えスイッチを有し、売電単価の高い発電設備を優先的に発電することを特徴とする再生可能エネルギーハイブリッド発電システム。
  13.  蓄電装置を備え、該蓄電装置の出力を含めた電力を前記合成電力として電力系統に連系している、請求項5から請求項12のいずれか1項に記載の再生可能エネルギーハイブリッド発電システムであって、
     前記蓄電装置に充電されている電力を、前記連系電力枠が空いている時間帯に前記蓄電装置から放電することを特徴とする再生可能エネルギーハイブリッド発電システム。
  14.  請求項13に記載の再生可能エネルギーハイブリッド発電システムであって、
     前記蓄電装置に充電されている電力を、売電単価の高い時間帯にまとめて放電することを特徴とする再生可能エネルギーハイブリッド発電システム。
  15.  請求項13または請求項14に記載の再生可能エネルギーハイブリッド発電システムであって、
     前記蓄電装置は前記太陽光発電設備と前記風力発電設備の出力変動を平滑化するために使用され、前記太陽光発電設備と前記風力発電設備は連系容量枠以下で一定出力となるように制御されることを特徴とする再生可能エネルギーハイブリッド発電システム。
  16.  請求項13または請求項14に記載の再生可能エネルギーハイブリッド発電システムであって、
     前記蓄電装置は高出力型と容量型を併設し、高出力放電時は、高出力型電池を使用することを特徴とする再生可能エネルギーハイブリッド発電システム。
PCT/JP2018/045021 2018-01-22 2018-12-07 再生可能エネルギーハイブリッド発電システム及びその制御方法 WO2019142534A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-007863 2018-01-22
JP2018007863A JP7181691B2 (ja) 2018-01-22 2018-01-22 再生可能エネルギーハイブリッド発電システム及びその制御方法

Publications (1)

Publication Number Publication Date
WO2019142534A1 true WO2019142534A1 (ja) 2019-07-25

Family

ID=67302177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045021 WO2019142534A1 (ja) 2018-01-22 2018-12-07 再生可能エネルギーハイブリッド発電システム及びその制御方法

Country Status (2)

Country Link
JP (1) JP7181691B2 (ja)
WO (1) WO2019142534A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021137680A2 (fr) 2019-12-31 2021-07-08 Université Ibn Tofail Système compact (deux en un) de production d'énergie renouvelable hybride pv-eolien
US20220200435A1 (en) * 2019-02-06 2022-06-23 Panasonic Intellectual Property Management Co., Ltd. Electric power system and power conversion device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205125B2 (ja) * 2018-09-18 2023-01-17 富士電機株式会社 発電制御装置、発電制御方法、およびプログラム
JP7379062B2 (ja) * 2019-10-04 2023-11-14 株式会社東芝 電源制御装置および電源制御システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136210A (ja) * 2014-01-16 2015-07-27 三菱重工業株式会社 制御装置、それを備えた発電システム、及び制御方法並びに制御プログラム
WO2018003947A1 (ja) * 2016-07-01 2018-01-04 株式会社日立パワーソリューションズ 発電システム、発電制御装置、発電制御方法、および発電システムの連系発電電力の拡大方法
JP2018007521A (ja) * 2016-07-08 2018-01-11 株式会社Ihi 出力平滑化装置及び出力平滑化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993972B2 (ja) * 2006-09-07 2012-08-08 東京瓦斯株式会社 蓄電池設備と自家発電設備を組み合せた自家発電システムおよび該システムにおける自家発電設備の出力制御方法
JP5902593B2 (ja) * 2012-09-27 2016-04-13 京セラ株式会社 エネルギー管理システム、制御装置、及び制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136210A (ja) * 2014-01-16 2015-07-27 三菱重工業株式会社 制御装置、それを備えた発電システム、及び制御方法並びに制御プログラム
WO2018003947A1 (ja) * 2016-07-01 2018-01-04 株式会社日立パワーソリューションズ 発電システム、発電制御装置、発電制御方法、および発電システムの連系発電電力の拡大方法
JP2018007521A (ja) * 2016-07-08 2018-01-11 株式会社Ihi 出力平滑化装置及び出力平滑化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220200435A1 (en) * 2019-02-06 2022-06-23 Panasonic Intellectual Property Management Co., Ltd. Electric power system and power conversion device
WO2021137680A2 (fr) 2019-12-31 2021-07-08 Université Ibn Tofail Système compact (deux en un) de production d'énergie renouvelable hybride pv-eolien

Also Published As

Publication number Publication date
JP7181691B2 (ja) 2022-12-01
JP2019129547A (ja) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2019142534A1 (ja) 再生可能エネルギーハイブリッド発電システム及びその制御方法
JP7011881B2 (ja) ハイブリッド発電システム及び電力制御装置
EP2722521B1 (en) Power output control device, method and program for wind farm
US20210296928A1 (en) Systems and methods for auxiliary power management of behind-the-meter power loads
EP2328259B1 (en) System and method for power management in a photovoltaic installation
JP6163558B2 (ja) 太陽光発電システム
US10283964B2 (en) Predictive control for energy storage on a renewable energy system
US20120061959A1 (en) Output control method and output control unit for wind power plant
JP5519692B2 (ja) 二次電池の制御方法および電力貯蔵装置
WO2016092774A1 (ja) 電力供給システム
US20170192445A1 (en) Method and Apparatus for Managing Power Flow Between an Alternate Energy Source and a Storage Device
Xiao et al. Flat tie-line power scheduling control of grid-connected hybrid microgrids
Zhang et al. Hierarchical coordinated control of DC microgrid with wind turbines
US20170294779A1 (en) Control system for solar power plant
CN112739904A (zh) 操作混合动力发电厂以优化pv功率输出的方法
JP7180993B2 (ja) 発電システム
JP6674849B2 (ja) 電力変動制御装置及び方法
JP6768571B2 (ja) 電力制御装置、方法及び発電システム
KR20170013773A (ko) 에너지 저장 시스템
US20230411966A1 (en) A method for improved power ramping in a hybrid power plant
US20230223760A1 (en) Hybrid power plant fast frequency response
KR101299269B1 (ko) 배터리 에너지 저장 시스템
KR101936293B1 (ko) 에너지 저장 시스템
JP6573546B2 (ja) 再生可能エネルギ発電装置の電力変動制御装置
JP7181160B2 (ja) 発電制御装置、発電制御方法および再生可能エネルギーハイブリッド発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901549

Country of ref document: EP

Kind code of ref document: A1